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ARTICLE INFO ABSTRACT
Keywords: In the context of a short and local supply chain of fresh produce in the public sector, we introduce a fair
Transportation multi-commodity two-echelon distribution problem. A decision maker has to decide on the planning of the

Service equity

Agri-food supply chains

Two-echelon vehicle routing problems
Multi-commodity

first-echelon collection trips of commodities from suppliers to distribution centers equitably and on the second-
echelon delivery routes of commodities from the centers to customers. In addition to the classic objective of
minimizing the total transportation cost in vehicle routing problems, the goal is to make sure that all suppliers
receive an equitable service with regard to their profits. This is done by introducing fairness measures into
the problem as a set of constraints. We use two widely used inequality metrics from the literature and present
a novel problem-specific equity measure as well. We model the problem as a mixed-integer program using an
arc-route-based formulation and suggest a matheuristic to solve the problem. Through numerical experiments,
we analyze the performance of our matheuristic on a series of generated instances and on the instances of
a French fresh produce supply chain from the literature. We evaluate the efficacy of the three used fairness
schemes with regard to a series of key performance metrics and investigate the strengths and weaknesses of
the different fairness measures. Moreover, we study the trade-off between enforcing fairness and optimizing
transportation costs to come up with insights for the managers of the supply chain.

1. Introduction many studies with a focus on applications of routing, public transporta-
tion, home health care, and food/supply distribution, to name a few,
under fairness objectives. The end users/customers are generally the
primary target group to be served by some routes in these applications.
However, in the context of public organizations, there can also be
applications in which suppliers/producers should be provided with a
fair service, but they are not. Gu et al. (2022) describe such a case in a
local and short supply chain with a two-echelon network of collection

Traditionally, minimizing cost has been the main objective in ve-
hicle routing problems (VRPs). However, focusing only on optimizing
costs does not always lead to implementable decisions in practice,
especially when more than one actor is involved in a logistics system.
As a consequence, in recent decades there has been an increasing
interest in incorporating other metrics and performance measures into
the equation among researchers in the stream of VRPs. In a recent
survey, Vidal et al. (2020) discuss categories of emerging objectives
and their integration into VRP varieties as extra objectives or sets of

and delivery of fresh fruits and vegetables, which is supported by the
local authorities of the department of Isére in France. In this network,

constraints. One of these metrics is equity or fairness (in the rest of
this paper we use these two words interchangeably). The definition of
equity in decision making processes can be broad, as it is dependent
on how the decisions affect individuals/actors. Identifying a basis for
comparison and target groups for fairness leads to defining equity and
proper metrics for evaluating the performance of an equity-oriented
system (Balcik et al., 2011). In VRPs, equity can be interpreted as a
fair distribution of resources, tasks/duties, and costs/gains. The main
categories of equity criteria in routing literature are service equity (in
public and non-profit organizations), workload balance (in the private
sector), and collaborative planning (in the logistics sector) (Vidal et al.,
2020).

Offering equitable services to customers is one of the main goals
in the public and non-profit sector. The literature of VRPs includes

E-mail address: shohre.zehtabian@ovgu.de.
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fresh products (also referred to as commodities) are collected from
farmers (also referred to as suppliers) and transported on direct trips
to distribution centers for consolidation, and then delivered from the
centers to customers (school canteens and supermarkets) on routes.
A customer can be visited more than once. The daily operations of
this network are managed by a central decision maker, i.e. Isére’s
authorities in collaboration with an association of farmers. In spite of a
governmental initiative, there may be some farmers who rarely supply
products. This happens due to the fact that some of the farmers are
located farther away from the distribution centers than the others (Gu
et al.,, 2022) and also because the primary goal of the distribution
network is to minimize the transportation costs.
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In this paper, we address the issue of service inequity for suppli-
ers in the above-mentioned supply chain. We introduce a fair multi-
commodity two-echelon distribution problem, which decides on the
daily planning of the first-echelon collection trips of commodities from
suppliers to distribution centers equitably, and on the second-echelon
delivery routes of commodities from the centers to customers. The
objective is to keep the total transportation cost at a minimum, while
respecting the maximum availability of commodities at the suppli-
ers and vehicle capacities, and satisfying the equity measure. This
problem is an extension of the problem studied by Gu et al. (2022).
These authors model the problem at hand with an arc-based formu-
lation and propose a heuristic sequential approach that decomposes
the two-echelon problem into two subproblems associated with each
echelon, and then solves the subproblems sequentially. In order to
model multiple commodities required by customers for their solution
method, Gu et al. (2022) use a customer—commodity pair associated with
each commodity in a customer’s demand. In other words, a customer
is equivalent to a combination of customer-commodity pairs.

We model our problem as a mixed-integer program (MIP) using
an arc-route-based formulation and include a service equity measure
for suppliers as a set of constraints. We first formulate this set of
constraints by applying two commonly used inequality indexes from
the literature (relative range and Gini coefficient) and then design
our own equity measure proportional to the supply of suppliers and
profits of commodities. Unlike Gu et al. (2022), we do not consider
customer—-commodity pairs when modeling the demand of customers,
as it can result in a large number of combinations when the number
of customers and commodities grow. Moreover, as solution method,
we take a different approach than Gu et al. (2022)’s, that solves
their two-echelon problem in a sequential manner. For our problem,
we design a matheuristic that jointly optimizes the first and second
echelons. We leave the decisions on the first-echelon collection trips to
a default solver. We generate a pool of feasible second-echelon routes
heuristically and pass it to the solver, which will then decide on both
daily collection and delivery plans. We evaluate the performance of
our matheuristic on randomly generated instances of Gu et al. (2022)
and the realistic instances from the French department of Isére. For
benchmarking, we first relax the fairness constraints to fall back to
the problem studied by Gu et al. (2022) and compare our results with
theirs. We then investigate the efficacy of our equity measure versus
the relative range and Gini coefficient metrics with regard to reducing
inequity among suppliers as well as optimizing the cost in terms of
several key performance indicators (KPIs).

We study the effect of service equity for suppliers on the network
to draw some managerial insights. When no fairness is enforced, our
matheuristic on average provides solutions with less total transporta-
tion costs than the best known costs for the instances, while the solution
times are substantially faster, sometimes in an order of magnitude, than
the total run times known from the literature. The numerical exper-
iments also show that guaranteeing a fair collection of commodities
from suppliers can result in an increase in the total transportation cost
on average. However, for each instance group there is a sweet spot
beyond which enforcing fairness becomes increasingly expensive.

The rest of the paper is organized as follows. In Section 2, we pro-
vide a review of the related works in the literature. Section 3 presents
the problem description and formulation as well as the three fairness
measures. We illustrate the elements of our matheuristic in Section 4.
The results of our numerical experiments are discussed in Section 5. We
conclude the paper with some remarks and future avenues in Section 6.

2. Literature review

The problem studied in this paper is related to the stream of two-
echelon VRPs in which (i) a distribution network is divided into two
echelons and first-echelon and second-echelon vehicles are in charge
of picking up commodities from suppliers/depots and delivering them
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to end customers, respectively, (ii) transshipment facilities/distribution
centers are used to merge and prepare collected commodities for further
shipments, and (iii) the goal is to plan a set of routes in the first and
second echelons of the network, such that the total transportation cost
of the network is minimum and the demands of customers are satisfied.
Cuda et al. (2015) and Sluijk et al. (2023) are the most recent survey
papers on two-echelon VRPs. Moreover, two-echelon problems are also
part of a larger body of literature, i.e. freight transportation problems
with intermediate facilities. These facilities can be either satellites or
cross-docks (Guastaroba et al., 2016) and their primary role in the
distribution network is not as inventory but rather as transfer locations.
The decision on the design and scheduling of routes in such problems
are midterm decisions and related to tactical planning of distribution
networks.

Cross-docking is a strategic distribution approach in logistics. Cross-
docks are intermediate or transshipment facilities where freight or
products arrive on inbound vehicles, get sorted and consolidated, and
then depart on outbound vehicles to be delivered to the final desti-
nations. There is already a vast body of literature on the operations
of cross-docks from both academic and practical points of view (for
example see the survey papers by Ladier and Alpan (2016) and Van
Belle et al. (2012)). Some of the operational decisions for cross-docks
are routing and scheduling of the inbound and outbound vehicles. One
important aspect of cross-dock operations is synchronization between
inbound and outbound vehicles (Soriano et al., 2023). Given that we
consider a local agri-food transportation network, we follow the prob-
lem setting studied by Gu et al. (2022). In this setting, the commodity
collections in the first-echelon are performed before the deliveries to
the customers in the second-echelon. Therefore, we do not consider
synchronization at cross-docks. Interested readers can refer to a recent
survey by Soriano et al. (2023) that discusses vehicle routing problems
with transfers or cross-docks in the literature as part of the family
of vehicle routing problem with synchronization. Another interesting
study is the review paper by Lahyani et al. (2015), which discusses the
literature of cross-dock systems as a taxonomy of rich vehicle routing
problems.

In our underlying problem, the supply and demand of commodities
are considered explicitly. Similar to the study by Gu et al. (2022),
the commodities can be collected from any origin that offers them,
consolidated in intermediate locations, and delivered to customers. In
other words, the setting is a many-to-many distribution system. Another
study that deals with more than one commodity in a two-echelon
network with satellite synchronization is the paper by Jia et al. (2023),
which considers customers’ demands for two commodities provided by
two distinct origins (suppliers/depots). These two commodities should
be delivered simultaneously by only one vehicle in the second echelon.
In a recent work by Dellaert et al. (2021), it is mentioned that their
two-echelon distribution problem is a multi-commodity distribution
system. However, the authors consider a one-to-one origin—destination
flow of items. The commodities required by customers are provided
from unique suppliers/depots, consolidated in intermediate facilities,
and then delivered to customers via synchronization processes between
the first and second echelons. In other words, a commodity in such
context refers to a specific depot-customer combination. We refer
the reader to the survey by Sluijk et al. (2023) for further studies
that treat commodities as unique depot-customer pairs with satellite
synchronization in two-echelon distribution systems.

Vidal et al. (2020) list equity as one of the emerging objectives in
the stream of VRPs. Equity can be interpreted as a fair distribution of
resources, tasks/duties, and costs/gains. Therefore, the main categories
of equity criteria in the literature are service equity (in public and
non-profit organizations), workload balance (in the private sector), and
collaborative planning (in the logistics sector) (Vidal et al., 2020).
Humanitarian logistics (survey paper on the applications of multicri-
teria optimization: Gutjahr and Nolz (2016)) and relief routing (review
paper: Balcik et al. (2011)) are two groups of VRPs that deal with
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service equity. An example of humanitarian logistics in the literature
is the study by Eisenhandler and Tzur (2019), which introduces the
humanitarian pickup and distribution problem. This problem focuses
on daily logistics operations of a food bank that collects donated food
from suppliers and distributes it among welfare agencies. The authors
combine a measure of effectiveness of the operation and a measure
of equity of allocations to agencies via the Gini coefficient, borrowed
from economics, in the objective function. In the context of relief
routing, Huang et al. (2012) study last-mile distribution of supplies in
a humanitarian relief chain from a distribution center to aid recipients.
Efficacy, efficiency, and equity metrics are incorporated as alternative
objective functions in their model. Workload balance (equity) focuses
mostly on fair allocations of workloads and balancing resource uti-
lizations in VRPs. In a survey paper, Matl et al. (2018) review and
analyze different ways of incorporating equity metrics for workloads
in biobjective VRPs. These metrics are related either to the tour length
(distance/duration) or to the demand served per tour. Matl et al. (2019)
later extend prior studies to incorporate various workload resources. In
the logistics sector, collaborative planning occurs in VRPs when carriers
enter into a partnership to increase their efficiency (Gansterer and
Hartl, 2018) and share resources, costs, or profits fairly (Guajardo and
Mikael Ronnqvist, 2016). In the stream of collaborative transportation,
a recent study on a multi-depot VRP by Soriano et al. (2023) incorpo-
rates a profit fairness metric into the set of constraints. They calculate
the profit in a current solution compared to a stand-alone solution
per depot. There are some studies that combine workload balance and
collaborative planning. For example, Mancini et al. (2021) consider
workload and profit equity metrics in the constraints in a multi-period
VRP of a collaborative transportation setting.

How to formulate equity/fairness mathematically and incorporate it
into optimization problems are some of the questions that are often dis-
cussed in the Operations Research literature (see survey papers: Karsu
and Morton (2015), Barbati and Piccolo (2016) and Chen and Hooker
(2023)). In a recent survey on fairness measures for optimization
problems, Chen and Hooker (2023) classify well-known equity crite-
ria into four main groups of (i) fairness for disadvantaged, such as
Rawlsian maximin and leximax measures, (ii) inequality-based metrics
such as relative range, relative mean deviation, coefficient of variation,
and Gini coefficient, (iii) group parity measures, such as demographic
parity, and (iv) metrics combining efficiency and fairness, be it classical
methods, such as proportional fairness, or threshold methods. Since
we aim at reducing inequity among suppliers in terms of their prof-
its, we choose two of the most commonly used inequality measures,
namely relative range and Gini coefficient, to incorporate fairness
into our underlying problem. Relative range, defined as the difference
between the maximum and minimum of outcomes and normalized by
the maximum outcome, is widely used as it is easy to understand and
implement. Being the best known income/wealth inequality index, the
Gini coefficient is defined either as proportional to the area between
the Lorenz curve and the diagonal line of perfect equality or as one
half of the average value of pairwise absolute deviations of all outcomes
normalized by the average outcome (Chen and Hooker, 2023). The Gini
coefficient takes values between and including zero and one, where a
value of zero denotes perfect equality among outcomes. We also design
our own fairness measure that is constructed as a guaranteed share
of profit per supplier proportional to their supply and the profits of
commodities.

The concept of fairness places our problem at the intersection of
collaborative planning and service equity. On the one hand, securing
a fair share of the profit per supplier relates the problem to the equity
category of collaborative planning. On the other hand, the underlying
problem is inspired by a case study of the pickup and delivery of fresh
produce in a short agri-food supply chain in which not all suppliers
always provide products due to a transportation cost minimization
objective (Gu et al., 2022). As this distribution system is managed by
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local authorities of the French department of Isére, introducing the
fairness for suppliers links the problem to the service equity category.

As a solution strategy for the problem at hand, we present a
matheuristic that optimizes the first and second echelons jointly, by
solving an arc-route-based formulation of the problem over a pool
of feasible second-echelon routes and leaving the decisions on the
first-echelon collection trips to a default solver. As the closest study
to ours, Gu et al. (2022) propose a heuristic sequential approach
that decomposes the arc-based formulation of their problem into two
subproblems associated with each echelon, and then solves the sub-
problems sequentially. In their sequential technique, the first-echelon
subproblem is modeled as a mixed-integer linear program and solved
to optimality. The second-echelon subproblem is solved by an adaptive
large neighborhood search. These two approaches are then combined
to provide a solution for the complete two-echelon problem. In order to
model multiple commodities required by customers, unlike our solution
approach, Gu et al. (2022) use a customer—commodity pair associated
with each commodity in a customer’s demand, which can result in
a large number of combinations when the number of customers and
commodities grow. For the same problem as in Gu et al. (2022),
preliminary results of an exact branch-price-and-cut algorithm on a
subset of the small instances of Gu et al. (2022) are provided in a
report by Petris et al. (2022). In the PhD thesis by Gu (2019) (Chapter
5), a metaheuristic approach, referred by the author as an integrated
optimization approach, is presented that uses several operators to
improve the solutions of the collection and delivery subproblems used
in the sequential approach of Gu et al. (2022). This heuristic has
been tested only on the generated instances of Gu et al. (2022) and
the results reported denote an average percentage improvement of up
to 0.65% over the best known solutions from the original sequential
metaheuristic used in Gu et al. (2022).

According to the survey paper by Sluijk et al. (2023), there are
two studies in the literature of two-echelon VRPs that suggest and use
matheuristics as solution methods for their corresponding problems.
One work is by Wang et al. (2017), which provides a matheuristic for
a two-echelon capacitated VRP in a distribution network with a single
depot and a set of satellites and a set of customers. This technique relies
on solving an arc-route-based formulation of the problem, given a set
of previously generated second-echelon routes via a variable neighbor-
hood search. In a similar setting to Wang et al. (2017)’s, Amarouche
et al. (2018) present a matheuristic for their two-echelon VRP. Their it-
erative technique is composed of two elements: a neighborhood search
to generate feasible first and second-echelon routes, and a set-covering
formulation of the problem to recombine the routes. In addition to
these two papers, in a recent study, Dumez et al. (2023) also propose
a matheuristic for a two-echelon VRP for a distribution network with
forward and reverse flows, one depot per echelon (two depots in total),
a set of satellites, and a set of customers. Their matheuristic is an
iterative two-phase heuristic that operates on decomposing the problem
into two subproblems; one subproblem per echelon. It finds routes for
each subproblem with a large neighborhood search associated with the
underlying echelon while fixing the other echelon. The resulting routes
for the first and second echelons are then recombined through a route-
based formulation to find a better solution for the problem. These three
studies deal with single commodities. For further details on different
exact and heuristic solution approaches for two-echelon VRPs, we refer
to the thorough review by Sluijk et al. (2023).

3. Problem

In this section, we describe the problem at hand and present a
formulation.
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3.1. Description

The problem we study in this paper is about managing the distribu-
tion system of commodities centrally within a two-echelon short supply
chain in which commodities are picked up from suppliers, consolidated
at distribution centers, and then delivered to customers. The collection
and delivery operations are done on a daily basis.

Suppliers provide commodities, more specifically fresh fruits and
vegetables, up to given available quantities at a price. In the first eche-
lon, the commodities are transported from the suppliers to distribution
centers on direct trips. The collection of supply from a supplier can be
split by both commodity and quantity. Therefore, it is possible that a
supplier is visited by more than one vehicle. In the second echelon, the
commodities are consolidated at and delivered from distribution cen-
ters to customers on routes that are sequences of customers. Transfers
between two suppliers and direct deliveries from suppliers to customers
are prohibited. Neither in the first echelon nor in the second echelon,
transfers between distribution centers are allowed.

Following the problem definition by Gu et al. (2022), we con-
sider that the direct trips of the first echelon between suppliers and
distribution centers are implemented by an unlimited fleet of capac-
itated homogeneous vehicles. In the rest of the paper, we refer to
the first-echelon vehicles as trucks. There is also an unlimited fleet of
capacitated homogeneous vehicles stationed at each distribution center
that operates the second-echelon routes and can transport any group
of commodities. We keep referring to the second-echelon vehicles as
vehicles in the rest of paper. The (first-echelon) trucks and (second-
echelon) vehicles may have different capacities. The demand of a
customer can be split by commodity but not by the quantity of each
commodity. This means that it is allowed to visit a customer in the
second echelon multiple times, but the demand for a single commodity
has to be delivered in a single visit. For an illustration of the structure
of the two-echelon distribution network, see Gu et al. (2022).

The goal of the central decision maker is to find a daily plan that
optimally details the collection and delivery operations of commodities
in order to satisfy the total demand in the network, while minimizing
the total transportation cost and respecting maximum availability of
commodities at suppliers, the capacity of the vehicles, and the fairness
constraints for the suppliers.

3.2. Formulation

Let ¢ = (V,A) be a directed graph. ¥V = S uU D U C is the set of
vertices, where S = {1,...,|S|} is the set of suppliers, D = {|S| +
I,...,|S| + |D|} represents the set of distribution centers, and C =
{IS|+|D| +1,...,|S| + |D| + |C]} is the set of customers. A =4, U A,
is the set of arcs, where A, = {(j,j)lj € S,j’ € D} is the set
of first-echelon arcs between suppliers and distribution centers, and
Ay =G, 0N, G DI €D,j € CYyu{(.jNi.j' € C.j # j'} is the set of
second-echelon arcs between distribution centers and customers as well
as those between customers. There is a non-negative cost associated
with each arc in set A, denoted by ¢; s for (j, j") € A. The specifications
associated with the three actors involved in this problem are as follows.

Suppliers provide a set of commodities M. Each supplier s € S
offers a maximum available quantity O, € N, of commodity m € M.
Let M, = {m € M|Oy,, > 0} be the set of commodities a supplier offers.
The commodities are directly transported to the distribution centers by
a fleet of homogeneous trucks with capacity O € N. The collected
supply from a supplier can be transferred by more than one truck, as the
supply can be split by both commodity and quantity. In other words,
O,,, can be split as well. The cost per truck traveling from supplier s to
distribution center d, regardless of the load, is ¢,,.

Each customer i € C requests a quantity D;,, € N, of commodity m €
M. Associated with each customer, there is set M; = {m € M|D,,, > 0}
of commodities that the customer requires. For the sake of customer
convenience, the demand of a customer with multiple commodities (Gu
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et al., 2022) can be delivered by more than one vehicle, if the demand
is split by commodity. However, the demand per commodity, i.e. D,,,
cannot be split. We assume that at each distribution center there is
a fleet of homogeneous vehicles with capacity QP € N for deliveries
to customers. The delivery of commodities to customers in the second
echelon is done via routes that start from distribution centers, visit at
least one customer, and end at the same starting distribution centers.
Therefore, our second-echelon routes are sequences of locations. Let K
be a set of second-echelon feasible routes and o, is a binary parameter
specifying whether customer i is on route k € K. Associated with each
route k € K, there is a parameter y(k), which represents the distribution
center which the route starts from and ends at, as well as a cost ¢,
which is the total distance traversed on route k, i.e. the summation of
¢;;» of the arcs on the route.

The commodities are palletized. Therefore, the supply and demand
are integer, and we use unit and pallet interchangeably. Each com-
modity m € M has a profit r,,, per unit. A logistics provider operates
the distribution centers and makes decisions on the collection of com-
modities from suppliers to the centers as well as on the delivery of
commodities to customers from the centers. In other words, the decision
maker looks for a collection and delivery plan in which each customer’s
demand is satisfied and the maximum available quantities at suppliers
and the truck and vehicle capacities are taken into consideration.
Moreover, in this plan each supplier should have a fair share of the
profit and the total cost of transportation is minimum.

Based on the arc-based model from Gu et al. (2022), we model our
problem using a route-based formulation in the second echelon and
a set of fairness constraints. Let xi . € Ny be the number of trucks
traversing arc (s,d) € A, and g,,,; € N, be the quantity of commodity
m € M, collected from supplier s € S and transported to distribution
center d € D in the first echelon. On the other hand, for the second
echelon, let y,;, € {0,1} be a binary variable indicating whether
commodity m € M, is delivered to customer i € C on route k € K, if
customer i is on route k, i.e. o;; = 1, and 6, € {0,1} be another binary
variable specifying whether route k¥ € K is selected. The problem is
then formulated as a MIP with all variables and parameters summarized
in Table 1. The model is as follows:

min z c'xdxid + z ¢ 0y 1)
(s, d)EA, kek
s.t. Z Z Dy Ymir = Z s> meM,deD
kek: ieC: SES:
yk=d ojk=1A meMyg
meM;
(2)
Y Gea <O°x,. s€S,deD
meM;

3
qusdsoxm’ SES,mEMX
deD

@
Zymik=lv ieC,meM,;
kekK:
oig=1

)
Z 2 DimymikSQD» ke kK
i€C: meM,;
oix=1

(6)
Ymik < O ieCmeM, keK oy =1

7
x4y € Np, (s.d) € A,

(8)
dmsa € No, (s,d) € Aj,m € M,

©)
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Table 1
Notation.
Sets
S The set of suppliers, index s
D The set of distribution centers, index d
C The set of customers, index i
Y=SuDucC The set of all vertices, i.e. actors
A, The set of arcs between suppliers and distribution centers in the first echelon
A, The set of arcs between distribution centers and customers as well as those between customers in the second echelon
A=A UA, The set of all arcs, index (j, ;')
M The set of commodities, index m
M;CM The set of commodities offered by supplier s € S
M; S M The set of commodities required by customer i € C
K The set of second-echelon feasible routes, index k
Parameters
i The cost of traversing arc (j, ') € A, between two vertices j,j’ € V
Cyy The cost per truck travelling from supplier s € S to distribution center d € D
T, The profit of commodity m € M, per unit
oS The capacity of trucks collecting commodities from suppliers and transporting them to distribution centers
0, The maximum available quantity of commodity m € M offered by supplier s € S
oP The capacity of vehicles delivering commodities from distribution centers to customers
D,, The demand of customer i € C for commodity m € M
¢ The travel cost of route k € K
y(k) €D The distribution center from which route k € K starts and ends at
Ok A binary parameter indicating whether customer i € C is on route k € K
Variables
x! eN, Number of trucks traveling on arc (s,d) € A,
Gmsa € Ny Quantity of commodity m € M, picked up at supplier s € S and transported to distribution center d € D
Ymix € {0,1} It takes value 1 if commodity m € M, is delivered to customer i € C on route k € K with o, = 1; and 0 otherwise.
0, €{0,1} It takes value 1 if route k € K is chosen; and 0 otherwise.
Ymik € {0,1}, ieCmeM,keK : :o;=1 to reduce the relative deviation between the maximum and minimum
10) profits for the suppliers. In other words, the goal is to minimize
0 € {0,1}, ke K maxsES{ZmeMx 2deD Tmmsa} = minses{ZmeMx 2den Tnmsa}
(1) max;es{ Ymem, Laep Fmdmsd }
Fairness constraints. 12) Although this metric is nonlinear, it can be linearized by applying

The objective function (1) aims at minimizing the total transportation
costs of the first and second echelons. Constraints (2) make sure that
enough quantity of each commodity is transported to a distribution cen-
ter in order to satisfy the demand of the customers served on the routes
from that center. Constraints (3) enforce the capacity limit of trucks
transporting commodities from a supplier to a distribution center in the
first echelon. They also make certain that there is enough number of
trucks for collecting commodities from the supplier to the distribution
center. Constraints (4) guarantee that the total quantity of a commodity
transported from a supplier to distribution centers does not violate the
maximum available quantity of the commodity at the supplier. Con-
straints (5) make sure that the demand of a customer for a commodity
is delivered on exactly one second-echelon route. Constraints (6) state
that total quantity of customers’ demands served on a second-echelon
route cannot exceed the vehicle capacity. Constraints (7) emphasize
that a commodity is delivered to a customer on a route, only if that
customer is on the route and the route is chosen. Constraints (8)-(11)
define the decision variables. Note that the binary decision variable 6,
can be defined as a real-valued variable in [0, 1]. However, as it will
always take an integer value in the optimal solution, we leave it as
integer for clarity’s sake. Constraints (12) guarantee a certain share of
the total profit for each supplier to secure a minimum level of fairness
among all suppliers. We will present the formulations of the two classic
equity measures and our designed measure in the next section.

3.3. Fairness constraints
We now present three formulations of the fairness constraints (12).
3.3.1. Relative range

In the first formulation, we use the relative range scheme from the
literature. As an inequality index, the idea behind the relative range is

auxiliary variables (Chen and Hooker, 2023).

Let Tmin - = min:ES { ZmGMJ ZdeD ”mqmsd} and Tmax = MaXseg
{2Zmem, Zaep Tmdmsq }- Then, the relative range metric for the problem
at hand can be formulated as the following groups of constraints:

Z Z Tnmsd = Fmin> sES (12-R1)
meMg deD

Z Z Tmlmsd < Fmaxs sES (12-R2)
meMg deD
Tnax = Fpin < (1 = O, (12-R3)
Tmax> Tmin 2 0. (12-R4)

with a € [0, 1] adjusting the desired level of fairness. Then, the MIP
formulation consists of objective function (1) and constraints (2)—(11),
plus fairness constraints (12-R1)-(12-R4).

3.3.2. Gini coefficient

The second formulation of fairness constraints uses the Gini coeffi-
cient, which is one of the most well-known inequality measures in the
literature. One definition of the Gini coefficient is half of the average
value of the absolute deviations between all pairs of suppliers’ profits
divided by the average profit, ie.

Yies Les | Lmem, Zaep ”mqmvd_stMA_/ aeD Tnlms' d /2|S\ Zies Zmem, 2ded Tnlmsd-
Since the absolute values of differences between the profits of pairs
(s,s’) and (s, s) are the same, this metric can be written as:

Zses Zs/es;: | Znem, ZdeD Fnmsd ~ ZmGMS; den Tmlns'd
5<S°

|S| ZA‘ES ZmEMJ ZdED Tm9msd

The value of the Gini coefficient varies between zero and one. The
closer its value to zero, the less inequality there is among the suppliers
with regard to their profits. The Gini coefficient is a nonlinear metric
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Commodity (m) supply (Ogy,) or demand (D;;,)
..... — First-echelon collection trip

Second-echelon route

..... —>|

e
/4135 = 5,q235 = 10

Fig. 1. An example of an unfair solution of the problem.

which can be linearized using a change of variable (Chen and Hooker,
2023). Let z,  be a variable that satisfies 7 s > | ZmeM, 2udeD Tmmsd—

Ymem., 2deD nmqm,d‘, for s,s’ € S : s <s'. Then, the Gini metric for
s .
our problem can be rewritten as:

s s > 2 z Tm9msd — z Z Tnms' d »

s, €S:is<s

meM deD meMy deD
(12-G1)
— g < Z z Tolmsd — Z z Toplms'd» s, €S is<ys
meM, deD meMy deD
(12-G2)
XY ay<U=-aISIY, Y Y Tlsar (12-G3)

SES s/es:
s<s’

”s,s’ Z 0,

SES meM deD

s, €S:s<y,
(12-G4)

with @ € [0,1] implying the minimum acceptable Gini coefficient.
Therefore, the MIP comprises (1)-(11), plus the new fairness con-
straints (12-G1)-(12-G4).

3.3.3. Our equity measure

Since suppliers in the case study we consider are quite hetero-
geneous, we notice that classic fairness measures may not be fully
adequate. Specifically, as some suppliers are inherently smaller than
others, they will constitute a bottleneck for classic fairness measures
like the range or the Gini index since they can never contribute as much
to the system as suppliers that have more or more valuable produce. To
alleviate this issue, we explicitly consider the available supply of each
farm in our measure.

We now present our own equity measure. Let for each supplier s,
F, be the supplier’s share of the total supply of commodities in the
network, calculated as F; = Znem, Om/Tycs Tme My Ostm Then in order
to serve suppliers equitably, we make sure that each supplier has a
guaranteed percentage of the total profit proportional to their available
supply. To do so, we define our fairness constraints as the following:

aFS z Z”mDimS Z z”mqmsd’

meM; ieC meM, deD

sES. (12-01)
Therefore, the new MIP formulation of the problem at hand involves
objective function (1), constraints (2)-(11), and constraints (12-O1).
Given that we have introduced a new equity measure, we now
investigate the theoretical aspects of our proposed metric through a

group of eight axiomatic properties that are commonly known for the
classical fairness measures, especially for inequality indexes. Following
a discussion by Matl et al. (2018) on these criteria with regard to
allocating workloads to agents, we start by defining the vector of
allocations in our case. Denoted by q, this vector is a vector of the
collected and transported supplies from all suppliers:

q:= ([qmsd]mEMy,dED)ses'

Next, we present our fairness objective as
1 ‘=mina,,

(@) :=ming,
where &, is defined by

L ZmEMJ ZdGD Tmmsd

. Fs EmGMS ZiGC ﬂ-mDim ’
The goal is to find a vector of collections, q, that maximizes equity,
i.e. max I(q), or, equivalently, maximizes a in Constraints (12-O1).

With these definitions, we now analyze our measure with regard to
the eight axiomatic characteristics discussed by Matl et al. (2018). None
of the fairness criteria they investigate satisfies all the properties. Three
out of eight axioms hold for our suggested fairness metric: Transitivity
(Axiom 2), Population Independence (Axiom 4), and Monotonicity (Axiom
7).

a

3.4. An illustrative example

An example of the problem is depicted in Fig. 1. There are three
suppliers, i.e. S = {1,2,3}, denoted by triangles, two distribution
centers, i.e. D = {4,5}, denoted by squares, and four customers, i.e. C =
{6,7,8,9}, denoted by circles. There are two commodities M = {1,2}
with profits -; = 1 and n, = 2 per unit. The capacity of the (first-
echelon) trucks, 05, and (second-echelon) vehicles, P, are assumed to
be both equal to 10. The maximum available quantity of commodities
offered by each supplier, O,,,, and the demand of each customer for
commodities, D,,, are listed next to the corresponding entity inside
dotted ellipses. One feasible solution for this distribution network is
presented in the figure with three first-echelon collection trips and four
second-echelon routes depicted in dashed arrows with dots and dashed
arrows, respectively. Given the demands of the customers that need to
be satisfied via distribution centers 4 and 5 and the available supply
of commodities at suppliers 1 and 3, focusing solely on minimizing the
total transportation cost of the network leaves supplier 2 disconnected
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A Supplier (s)

Distribution center (d)

/ Commodity (m) supply (Os,,,) or demand (D;,y,)

..... — First-echelon collection trip

----- Second-echelon route

Q Customer (i)

..... —>|

e
/4135 = 5,q235 = 10

Fig. 2. An example of a solution of the problem when fairness is enforced.

from the network. The quantities of collected commodities from sup-
pliers 1 and 3 transported to distribution centers 4 and 5 are denoted
above the corresponding first-echelon collection trip. Note that given
the capacity of the trucks, this means that for performing the collection
trip between supplier 1 and distribution center 4, three trucks, the
collection trip between supplier 1 and distribution center 5, one truck,
and the collection trip between supplier 3 and distribution center 5,
two trucks are needed. Imposing fairness through a set of constraints
can (probably) circumvent the issue of excluding supplier 2. A feasible
solution in which supplier 2 is connected to the network and gains a
profit is displayed in Fig. 2. To compare these two solutions in terms
of profit equity, we calculate the profits of suppliers in each solution
and then use the three fairness measures discussed in the previous
sections. In the solution of Fig. 1, the profits of suppliers 1, 2, and 3
are 34 (maximum), O (minimum), and 25, respectively. On the other
hand, in Fig. 2 the profits of suppliers 1, 2, and 3 are 29 (maximum),
5 (minimum), and 25, respectively. Therefore, the relative range for
the first solution is 1 and for the second solution is 0.8. The Gini
coefficient of the first solution is 0.38 and for the second solution is
0.27. For our suggested fairness measure, the suppliers’ share of the
total supply in the network are F; = 0.50 and F, = F; = 0.25, and since
all three suppliers have both commodities available, the total profit of
the network’s demand for their commodities is 59. Since the profit of
supplier 2 in the first solution is zero, our fairness measure evaluates to
ax0.25x59 <0, i.e. to @ = 0 guaranteed share of profit. In the second
solution, supplier 2’s profit is 5, which is the minimum. Therefore,
our metric evaluates to a X 0.25 X 59 < 5, i.e. to maximum « = 0.34
guaranteed share of profit.

4. Solution approach: A matheuristic

As Sluijk et al. (2023) point out, solving midsize two-echelon VRPs
can be computationally expensive. Solving a problem like ours is even
more challenging due to the presence of multiple distribution centers,
the number of suppliers and customers, and the explicit consideration
of multiple commodities. Therefore, we solve the problem at hand
heuristically. We design a matheuristic in which the first and sec-
ond echelons are jointly optimized. A scheme of the matheuristic is
presented in Fig. 3. We first generate a (heuristic) pool of feasible
second-echelon routes and pass it to the model. We then solve the
model containing all the first-echelon variables and the second-echelon

Generate a pool of feasible
second-echelon routes

First-echelon collection trips and
second-echelon routes are
decided by solving the model
with a commercial solver

\ 4

Post-process the second-echelon
routes in the solution

Fig. 3. The general scheme of our matheuristic.

heuristic route pool via a commercial solver (CPLEX) to decide on
the first-echelon collection trips and second-echelon routes. Since the
second-echelon routes are generated heuristically, it is possible for
some customers to be on a selected route in the solution, but no
commodity is actually delivered to those customers. Therefore, as the
final step, we update the route and its cost by excluding such customers.
We refer to this step as post-processing the second-echelon routes in the
solution.

4.1. Second-echelon route generation

Generating the set of all routes becomes computationally intractable
for realistic instances. Therefore, we present a heuristic technique that
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Algorithm 1: Estimation of the current available capacity of a route.

1 Data: route r;; the portion of customers’ demands, §%; the vehicle capacity, Q”

Result: 234 (0

3 fori’eC:oy=1do
4 | if Qﬁﬂ(k) <P Zmem, D then
5 set 0P (k) « -
—Curr
6 break
7 else
8

the available capacity the most */

9 imeEM/ lm—ﬂZmGM/ ,-/mthen
10 \ set ggw(k) « max(0, ng(k) = Test, Dirm)
11 else
12 set gfm(k) “ -
13 break

end

end
end

4 o . D
find M, € Argmax vy, {ZmEMI’, Dy, : ZmeM:/ Dy, Q. ()}

/* initialize the available capacity */

/* a subset of customer’s commodities that fills

/* update the available capacity */

constructs a pool of feasible second-echelon routes, while avoiding
duplicates in the pool. In our case, a route is a sequence of customers
to be visited by a vehicle which departs from and returns to the same
distribution center. We consider a limit on the number of generated
routes to circumvent the problem of exploding the MIP size for the
solver. Moreover, the demand of a customer for multiple commodities
can be split by commodity but not by quantity in the second echelon.
Hence, to exclude very long and suboptimal routes, which will probably
not be selected by the model, we estimate the current available capacity
of route k € K, denoted by QD (k) The calculation of the current
available capacity of the route is described in Algorithm 1.

The information the algorithm requires are the route, the minimum
portion of customers’ demands that should fit on the route, i.e. %, and
the vehicle capacity, i.e. QP, in the second-echelon (line 1). Note that
p is a hyperparameter of the matheuristic. We initialize the available
capacity with vehicle capacity (line 2). Next, for every customer i’ € C
on route k, i.e. oy, = 1, we iteratively (lines 3-13) verify whether
the available capacity is less than % of the total demand of the
customer (line 4). If yes (lines 4-6), we declare the remaining capacity
insufficient by setting it to —co and break out of the loop (lines 5-6). If
no (lines 7-13), we then find a subset of customer’s commodities that
fills the available capacity the most (line 8). If the demand of this subset
is at least as big as f% of the total demand of the customer (lines 9—
10), we update the available capacity by taking the maximum between
zero and the demand of the commodity combination subtracted from
the current available capacity (line 10). If that is not the case (lines 11—
13), we announce the current remaining capacity insufficient by setting
25 rr(k) to —oco and stop the iteration (lines 12-13).

We then use this estimate in the following conditions when inserting
a customer i € C into the route:

(a) Customer i is not added to the route, if the total minimum demands
of the customers currently on the route plus the minimum
demand of i violates the vehicle capacity, i.e. if

Z min {D,m} + mm {D,m} > 0P,

meM
i'ec:
o, /k—l

(b) Assume QCLL rr(k) > 0. Customer i is not added to route k, if
the current remaining capacity is smaller than g% of the total
demand of the customer, i.e. QD (k) <P Yme M D;,,. Otherwise,
customer i is not added to route k if the demand of the subset
of commodities that fills the current available capacity of the

route the most is smaller than f% of the total demand of the
customer. To formulate this part, assume M; C M, to be the
subset of commodities with M; € arg max MM, {2 em! Dim

D M D;, < QD .(k)}, then customer i will not be added to the

route, if
Z Dim < ﬂ Z Dim'
meM,; meM;

If i is added to route k, then we update the remaining capacity
as Q° (k) « max(0,0° (k)= X,.c 1, Dim)-

(c) Customer i is not added to route k, if the insertion imposes a detour
bigger than a small enough threshold 7, 0 < 7 < 1, on the route
cost. In other words, let ¢, (i) be the estimated travel cost of route
k with the possibility of customer i being inserted in the cheapest
position plus a random noise on the insertion cost drawn from
interval [—max N,max N], where max N = p max; ine 4, {c;n}
and n = 0.025. Then, i is not added to the route, if

c (i) > (1 4+ 7)cy.

We recall that ¢, is the cost of route k without customer i. Our
route generation procedure is composed of two main phases: Phase
1, generating a set of feasible routes via a restricted enumeration to
guarantee the feasibility of the MIP model; and Phase 2, enlarging the
pool of routes in four sub-steps via a constructive heuristic, and destroy
and repair operators. The details of the two phases are as follows.

Phase 1 Restricted enumeration of single-customer and two-customer
routes: From each distribution center, we produce routes with
one and two customers on them. In both cases, we make sure
that condition (a) mentioned above is respected. In case of two-
customer routes, we consider two more conditions. We put two
customers on a route, if (i) the distribution center closest to them
is the same, and (ii) the distance between the two customers is
not bigger than half of the largest distance between the second-
echelon nodes, i.e. the distance between the distribution centers
and customers, and between customers themselves. These routes
will then be added to the pool of routes, which is initially empty.

Phase 2

Step 1 Generating a base set of routes via a constructive heuris-
tic: From each distribution center, we construct an initial
set of routes by using the Savings algorithm from Clarke
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and Wright (1964), while making sure that firstly con-
dition (a) is respected and secondly condition (b) is re-
spected with the current available capacity of routes es-
timated via Algorithm 1. We then improve these routes
by applying a local search, namely a series of intra-route
2-opt moves (Lin, 1965), on them. These routes will then
be used to construct more routes in Step 3.

Step 2 Extending the base set of routes: Before adding the result-
ing routes from Step 1 to the pool, we try to extend them.
For every route from Step 1, we go through the set of
customers and for every customer that is not currently
on the route, we check whether conditions (a) and (c)
are respected. If so, we then insert the customer in the
cheapest position possible on that route. The purpose of
this step is to find customers that are not added to a route
from Step 1 only because of condition (b), while visiting
them will cause a very small detour (maximum 1% of the
route cost, i.e. 7 := 0.01 in condition (c)) on the route, and
add those customers to the route, as the route is still good
to serve at least the smallest demands of such customers
without costing much. The materialized routes will be
added to the pool afterwards.

Step 3 Deduplicating the base set of routes: The routes in Step 1
are constructed from every distribution center and, there-
fore, customers can appear on multiple routes. To avoid
operating on copies of the same customer, we deduplicate
customers on the routes. To do so, we keep a customer on
a route from a randomly chosen distribution center and
remove it from the routes of other distribution centers.
The resulting routes will then be utilized in the next step.

Step 4 Constructing more routes by applying destroy and repair
operators iteratively: Borrowed from the Large Neigh-
borhood Search algorithm, we apply destroy and repair
moves on the deduplicated routes from Step 3, iteratively
to produce more routes that are diverse as well. In each
iteration, we use two operators presented in Ropke and
Pisinger (2006): the random removal and basic greedy
insertion with a random noise on the insertion cost. We
randomly remove a certain number (drawn also randomly
between 20% and 50%) of customers and then insert back
the removed customers into the routes by applying the
basic greedy insertion with a random noise. We make
sure that firstly condition (a) and secondly condition (b)
with the current available capacity of routes estimated
by Algorithm 1 are respected by the insertion. Similar
to Ropke and Pisinger (2006), we calculate the noise by
drawing a number from interval [—max N,max N] ran-
domly, where max N = nmax; ine 4, {¢;jr} and 5 = 0.025.
At each iteration, we calculate the noise and add it to
the insertion cost for deciding on which route to insert
a customer. Note that there is a possibility that one or
more customers cannot be inserted back into any route
due to conditions (a) and (b). If this happens, i.e. there are
some customers unserved on any existing route, we cre-
ate empty routes from the distribution centers and start
inserting the unserved customers into those routes via the
basic greedy insertion operator with random noise, while
still respecting conditions (a) and (b). At the end of each
iteration of destroy and repair, we apply a series of intra-
route 2-opt moves (Lin, 1965) on the constructed routes,
until no further improvement is possible, and then we add
the resulting routes to the pool. We apply destroy and
repair operators for 100 iterations.

To avoid having multiple copies of the same route added to the pool,
we check whether a route generated in Phase 1 or in Step 2 and Step 4
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from Phase 2 already exists in the pool. If not, we then add the route
to the pool. Moreover, before adding a route to the pool, we check the
current size of the pool to avoid violating the limit on the number of
routes generated.

5. Numerical experiments

In this section, we first evaluate the performance of our matheuris-
tic in solving the multi-commodity two-echelon distribution problem
by Gu et al. (2022), which is a special case of our problem with
relaxed fairness constraints. We use the results from these authors as
benchmarks. Next, we compare the efficacy of our proposed fairness
measure with the relative range and Gini coefficient schemes from the
literature through the lens of different KPIs. Finally, by activating the
fairness constraints in our MIP model, we study the consequences of
the level of equity enforced on both echelons’ transportation costs and
finish the section with some managerial insights.

The numerical experiments are conducted using the instances from
Gu et al. (2022), which we will briefly describe in the beginning of
this section. All numerical tests are implemented in C# and run on a
machine with a 1.8 Gigahertz AMD Ryzen 7 5700U CPU and 16 GB of
RAM.

5.1. Instances

In the study by Gu et al. (2022), there are two categories of
instances: randomly generated instances and case-study instances. From
multiple sets of generated instances, Gu et al. (2022) chose three
sets, referred to as &, SIS, and 6’25, each containing 12 instances,
to solve their compact model by CPLEX and by their proposed six
sequential heuristics. The instances in these sets have either four or
six suppliers, two distribution centers, and either 10, 15, 20, or 25
customers with locations built from the well-known Solomon (1987)
instances, more specifically C101 instances. There are either two or
three commodities in the network and customers demand commodities
with the probability of either 0.6 or 1. The probability of 1 means that
every customer has a demand for each commodity. The probability set
to 0.6 means that the probability that a customer has a demand for
a specific commodity is 60%. The capacity of trucks and vehicles in
these instances are equal and set to either 150, 180, or 209 units. There
are two groups of instances from the case-study category in Gu et al.
(2022): school canteen instances; and supermarket instances. The case
study was conducted by the local authorities of the French department
of Isére to increase the volume of locally produced fresh fruits and
vegetables sold through a short supply chain in that region of France.
In the school canteen instances, there are either 54 or 61 suppliers
offering at least one commodity. In all eight instances of this group,
there are five distribution centers and 103 customers. The number of
commodities in the network varies between five and eight. The capacity
of trucks is 600 units and the capacity of vehicles is 1200 units. In the
supermarket instances, the number of suppliers offering at least one
commodity ranges from 45 to 61. In all 10 instances in this group, there
are five distribution centers and 188 customers. Similar to the school
canteen instances, the number of commodities in the network varies
from five to eight. The capacity of trucks is 3000 units and the capacity
of vehicles is 6000 units. For more details on these two instance groups
selected for our numerical studies, we refer to Appendix.

Unless otherwise stated, the portion of customers’ demands used
in the calculation of the current available capacity and conditions in
our route generation process, i.e. f%, is set to 20% for the selected
generated instances of Gu et al. (2022) and to 90% for the case-
study instances of Isére. These values are chosen after preliminary
experiments with different values ranging from 10% to 90%. The time
limit for solving the selected generated instances and school canteen
instances of the case-study is set to one hour. For supermarket instances
of the case-study, however, the time limit for the solver is set to
three hours. The vector of profits of commodities in the network is
set to [10,20, 15,5, 10,25, 15, 20] €/per pallet for commodities [one, two,
three, ..., eight].
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Table 2
Result comparisons for generated instances.
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Set Instance Gu et al. (2022)’s six heuristics Our matheuristic
Solution Route generation
Best T (s) Best gap (%) T (s) Nb.Trucks & Nb.Routes Nb.Routes t (s)
1 394.66 50 394.67 0.0 0.9 4 &4 116 0.1
2 579.52 58 586.37 1.2 1.7 7&8 60 <0.1
3 470.77 59 470.77 0.0 2 5&5 76 <0.1
4 512.50 89 510.91 -0.3 0.9 7&6 163 <0.1
5 765.47 133 771.4 0.8 15.5 10 & 11 120 <0.1
s 6 551.88 122 556.07 0.8 4 7&6 189 <0.1
7 636.71 270 637.82 0.2 3.3 8&8 276 0.1
8 1007.04 295 1018.1 1.1 9.4 14 & 13 209 0.1
9 708.62 376 709.58 0.1 22.3 9&9 310 0.1
10 818.57 141 800.58 -2.2 9.2 10 & 11 360 0.1
11 1184.62 173 1184.71 0.0 23.8 15 & 16 336 0.2
12 827.29 168 858.70 3.8 149.9 10 & 10 434 0.2
1 406.52 48 406.53 0.0 0.8 4 &4 116 <0.1
2 562.34 57 580.71 3.3 0.9 7 &8 60 <0.1
3 437.98 70 437.97 0.0 1.4 5&5 76 <0.1
4 533.43 96 533.46 0.0 1.0 7&6 163 <0.1
5 784.05 134 787.66 0.5 3.3 10 & 11 120 <0.1
S 6 554.73 152 572.81 3.3 6.1 7&6 189 <0.1
! 7 668.5 255 662.8 -0.9 3.1 8&8 276 0.1
8 1077.43 292 1092.62 1.4 41.2 13 & 13 209 0.1
9 775.3 152 774.81 -0.1 30.5 8&9 310 0.1
10 849.29 138 831.86 -2.1 7.0 10 & 11 360 0.1
11 1258.91 164 1275.21 1.3 69.2 15 & 16 336 0.2
12 894.56 164 896.15 0.2 9.2 10 & 10 434 0.1
1 406.52 41 417.15 2.6 0.3 4 &4 116 <0.1
2 663.52 52 680.88 2.6 0.7 7&8 60 <0.1
3 463.58 58 463.58 0.0 0.4 5&5 76 <0.1
4 590.55 85 625.8 6.0 0.4 7&6 163 <0.1
5 893.09 133 895.98 0.3 0.4 10 & 11 120 <0.1
s 6 590.71 122 590.74 0.0 1.2 7&6 189 <0.1
2 7 713.16 236 713.26 0.0 0.7 8&8 276 0.1
8 1177.46 253 1231.69 4.6 2.5 13 & 13 209 0.1
9 835 311 842.12 0.9 6.9 8&9 310 0.1
10 881.02 175 925.49 5.0 4.6 10 & 11 360 0.1
11 1367.61 147 1388.33 1.5 10.2 15 & 16 336 0.2
12 939.52 151 101232 7.7 15.3 10 & 10 434 0.2
Average - 150.6 - 1.2 12.8 8.7 & 89 - -

5.2. Matheuristic performance analysis

We solve the selected instances of the multi-commodity two-echelon
distribution problem with our proposed matheuristic and compare the
results with the ones from Gu et al. (2022). For these analyses, we
relax the fairness constraints in our model by setting the guaranteed
percentage of suppliers’ share, i.e. a, to zero. Since there is no best
heuristic, Gu et al. (2022) report the best results out of six heuristics,
which they have run on an Intel(R) Core(TM) i7-4600U, 2.10 GHz
with 16 GB of RAM, and give the total run time of all heuristics. In
the following, we discuss the performance of the matheuristic for the
generated instances and case-study instances.

Generated instances. The results of our approach along with the
ones reported by Gu et al. (2022) on the three sets of (in total 36)
generated instances are provided in Table 2. For each instance, the first
two columns titled Best and T (s) present the best total cost among
the six heuristics that Gu et al. (2022) applied and the total run time
of those six heuristics in seconds. The next six columns display the
performance of our proposed matheuristic. From these six columns,
the first four are the KPIs associated with the solution. Columns Best
and gap (%) show the total cost returned by the matheuristic and its
percentage gap with the best result of Gu et al. (2022). Column T
(s) for our matheuristic reports the total time in seconds, i.e. route
generation time plus the CPU time of the solver, our approach took to
provide a solution. Column Nb.Trucks & Nb.Routes presents the number
of trucks and routes used in the first and second echelon of our solution,
respectively. For these sets of instances, Gu et al. (2022) did not report

10

the number of trucks and vehicles used in their solutions. The last
two columns are the KPIs associated with the route generation step
of the matheuristic. Nb.Routes and t (s) denote the number of routes
generated and the time our heuristic route generation scheme took.

From the numbers in Table 2, we note that on average our matheuris-
tic returns a solution with a total cost within 1.2% of the best cost in Gu
et al. (2022), about 12 times faster than Gu et al. (2022). Moreover,
we find new best costs for five instances in this group of generated
instances.

Case-study instances. In Tables 3 and 4, we report the results of
our matheuristic and Gu et al. (2022)’s results for the school canteens
and supermarket instances of the case study by the French depart-
ment of Isére, respectively. The columns in these tables are the same
columns associated with our matheuristic as the table for the generated
instances. However, in addition to the two columns associated with the
results from Gu et al. (2022) for the generated instances, Tables 3 and
4 contain one more column: Nb.Trucks & Nb.Vehicles, which reports
the number of trucks and vehicles associated with the best result of Gu
et al. (2022)’s six heuristics.

From both tables, we observe that our matheuristic provides a
solution with a total cost of 7% and 1.5% in case of school canteen
instances and supermarket instances, respectively, on average lower
than the best costs reported by Gu et al. (2022). In addition, on average
the total run times of the matheuristic are twice and 3.5 times faster
than Gu et al. (2022)’s for school canteens and supermarket instances,
respectively. Although our solution uses more trucks and routes in the
first and second echelons on average compared to the best solutions
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Table 3
Result comparisons for school canteen instances.
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Instance Gu et al. (2022)’s six heuristics Our matheuristic
Solution Route generation

Best T (s) Nb.Trucks & Nb.Vehicles Best gap (%) T (s) Nb.Trucks & Nb.Routes Nb.Routes t (s)
1 2877.15 12123.68 41 & 16 2545.12 -11.5 3620.1 42 & 17 3004 20.1
2 2756.37 7941.12 41 & 14 2572.42 -6.7 3622.7 43 & 15 3010 22.7
3 2070.29 6757.6 33&9 1931.49 -6.7 3617.1 29 & 12 2787 17.1
4 2144.25 4618.24 35 &8 2099.34 -2.1 3615.2 39 & 10 2699 15.2
5 2905.79 6159.37 46 & 11 2741.41 -5.7 3617.2 47 & 12 2872 17.2
6 2233.42 3970.63 38 &8 2152.82 -3.6 3616.0 39&10 2764 16.0
7 2365.34 6928.82 41 & 10 2165.66 -8.4 3617.4 39 & 13 2834 17.4
8 2000.32 8746.92 34&9 1775.13 -11.3 3617.6 35&11 2747 17.6
Average - 7155.8 38.6 & 10.6 - -7.0 3617.9 39.1 & 125 - -

Table 4
Result comparisons for supermarket instances.
Instance Gu et al. (2022)’s six heuristics Our matheuristic
Solution Route generation

Best T (s) Nb.Trucks & Nb.Vehicles Best gap (%) T (s) Nb.Trucks & Nb.Routes Nb.Routes t (s)
1 6449.01 33456.70 76 & 35 6256.68 -3.0 11024.1 77 & 45 7902 224.1
2 6183.81 22499.36 73 & 31 6181.01 0.0 11003.2 73 & 42 7783 203.2
3 6168.55 33718.74 73 & 34 5619.12 -8.9 11009.2 73 & 45 7915 209.2
4 5351.62 49915.48 84 & 37 5403.93 1.0 11025.9 86 & 52 7940 225.9
5 4415.45 20483.72 77 & 33 4625.91 4.8 11007.7 76 & 44 7903 207.7
6 7037.98 30045.25 95 & 43 6995.32 -0.6 11063.5 98 & 59 8333 263.5
7 7847.62 71251.28 108 & 49 7615.07 -3.0 11076.8 109 & 58 8270 276.8
8 7954.41 46 509.08 105 & 48 7658.40 -3.7 11 040.9 106 & 56 8222 240.9
9 7436.06 45285.77 93 & 44 7047.99 -5.2 11033.7 95 & 53 8085 233.7
10 6449.01 31680.10 76 & 35 6696.45 3.8 11025.7 79 & 52 7882 225.7
Average - 38484.55 86 & 38.9 - -1.5 11031.1 87.2 & 50.6 - -

reported by Gu et al. (2022), the matheuristic chooses trips and routes
with minimum total transportation costs. We believe that the reason
for this particular result of our technique is that, unlike the sequential
heuristics of Gu et al. (2022) that decompose the problem into two
subproblems associated with each echelon, the matheuristic optimizes
the first and second echelons jointly. The matheuristic finds new best
costs for all school canteen instances and for six out of 10 supermarket
instances.

5.3. The choice of fairness measure

How to define a fairness measure has been a question that many
studies with the focus on equity have faced in the literature. As we
use two classic fairness metrics from the literature and also introduce
our own equity measure, in this section we assess the adequacy of
our metric versus the relative range and Gini coefficient with regard
to achieving fairness in suppliers’ profits and minimizing the cost in
terms of two groups of KPIs. To do so, we run a series of numerical
experiments on the generated instances of group & and the school
canteen instances with fairness being modeled by using one of these
measures. The equity level, i.e. a, varies from 0% to 100% with a
step-size of 10%. The results are presented in Tables 5 and 6.

Both tables contain nine columns. The first column shows the equity
level, i.e., the values of a. For each value, there are groups of KPIs
reported in two columns per fairness measure used. Column KPIs-Profit
consists of maximum profit of suppliers (Max. Profit (€)), minimum
profit of suppliers (Min. Profit (€)), average profit among suppliers
(Avg. Profit (€)), standard deviation of suppliers’ profits (STDEV.),
number of suppliers with no profit (#Supp.No Profit), and the total time
in seconds, meaning route generation plus the CPU time of the solver,
our matheuristic took to return a solution (T(s)). Column KPIs-Cost
includes total transportation cost of the network (Total cost), first-
echelon cost (First-echelon cost), second-echelon cost (Second-echelon
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cost), number of first-echelon trucks (Nb.Trucks), and second-echelon
routes (Nb.Routes). Associated with each of these two groups of KPIs,
there are three columns reporting the values of the KPIs for the relative
range, Gini coefficient, and our own fairness measure. All numbers
reported in Tables 5 and 6 are averaged over the instances of each
corresponding instance group. For the values of « where none of the
instances in a group was solved by using a fairness metric, no number
for the KPIs is reported.

From Table 5 we note that in case of the generated instances
of group &, all suppliers are already connected to the network and
gain profit, even before the fairness measures are enforced, because
of the demand structure. When the fairness constraints are imposed,
i.e. starting from a = 10%, no major changes occur in any of the KPIs-
Profit and KPIs-Cost until « reaches 60% for the relative range, 90% for
the Gini coefficient, and 70% for our measure. Regarding profit related
KPIs, starting from a« = 60%, the minimum profit starts increasing, while
the maximum profit and consequently the standard deviation of profit
start decreasing for the relative range. A similar trend can be observed
from our measure starting from a = 70%.

Regarding cost related KPIs, the total transportation cost and first-
echelon cost start increasing as of a = 60% for the relative range and
as of «a = 70% for our measure. Unlike these two measures, the Gini
coefficient is rather slow in reacting to higher level of fairness enforced
on the profits. Regardless of the measure, 100% fairness can only be
achieved in one instance because the supply and demand structure of
the other instances does not allow a perfectly balanced distribution of
profits.

Table 6, relating to the school canteen instances, demonstrates that,
unlike the generated instances, as soon as the fairness measures are
enforced, i.e. a = 10%, the KPIs-Profit and KPIs-Cost start changing
considerably for the relative range and our measure, while not much
change happens in those KPIs for the Gini coefficient. Using the relative
range or our measure guarantees that every supplier gains a profit,
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Table 5
Average performance of different equity measures for set § of the generated instances.
“+1: Achieving full fairness by all three measures was possible only for one instance.

Equity measures Equity measures

a KPIs-Profit KPIs-Cost
Relative range Gini coefficient Our measure Relative range Gini coefficient Our measure

Max. Profit (€) 5579.2 5615.0 5615.0

Min. Profit (€) 3202.1 3310.8 3138.8 Total cost 708.3 708.3 708.3

Avg. Profit (€) 4676.8 4676.8 4676.8 First-echelon cost 243.2 243.2 243.2
0% STDEV. 1131.6 1081.0 1158.9 Second-echelon cost 465.1 465.2 465.2

#Supp.No Profit 0.0 0.0 0.0 Nb. Trucks 8.8 8.8 8.8

T (s) 19.6 20.7 20.2 Nb. Routes 8.9 8.9 8.9

Max. Profit (€) 5548.8 5532.1 5601.3

Min. Profit (€) 3202.9 3355.8 3161.3 Total cost 708.3 708.3 708.3

Avg. Profit (€) 4676.8 4676.8 4676.8 First-echelon cost 243.2 243.2 243.2
10% STDEV. 1092.8 1017.5 1135.4 Second-echelon cost 465.2 465.1 465.1

#Supp.No Profit 0.0 0.0 0.0 Nb. Trucks 8.8 8.8 8.8

T (s) 17.8 19.6 20.5 Nb. Routes 8.9 8.9 8.9

Max. Profit (€) 5615.0 5570.0 5612.5

Min. Profit (€) 3140.0 3166.3 3197.1 Total cost 708.3 708.3 708.3

Avg. Profit (€) 4676.8 4676.8 4676.8 First-echelon cost 243.2 243.2 243.2
20% STDEV. 1139.5 1123.4 1114.4 Second-echelon cost 465.2 465.2 465.2

#Supp.No Profit 0.0 0.0 0.0 Nb. Trucks 8.8 8.8 8.8

T (s) 18.0 20.2 20.3 Nb. Routes 8.9 8.9 8.9

Max. Profit (€) 5566.7 5590.0 5601.7

Min. Profit (€) 3215.4 3165.0 3061.7 Total cost 708.3 708.3 708.3

Avg. Profit (€) 4676.8 4676.8 4676.8 First-echelon cost 243.2 243.2 243.2
30% STDEV. 1083.0 1146.5 1175.0 Second-echelon cost 465.2 465.2 465.2

#Supp.No Profit 0.0 0.0 0.0 Nb. Trucks 8.8 8.8 8.8

T (s) 19.3 11.5 18.6 Nb. Routes 8.9 8.9 8.9

Max. Profit (€) 5566.7 5549.2 5601.7

Min. Profit (€) 3263.8 3204.2 3205.4 Total cost 708.3 708.3 708.3

Avg. Profit (€) 4676.8 4676.8 4676.8 First-echelon cost 243.2 243.2 243.2
40% STDEV. 1086.6 1071.9 1116.8 Second-echelon cost 465.2 465.1 465.1

#Supp.No Profit 0.0 0.0 0.0 Nb. Trucks 8.8 8.8 8.8

T (s) 16.6 18.1 17.4 Nb. Routes 8.9 8.9 8.9

Max. Profit (€) 5582.1 5575.8 5594.2

Min. Profit (€) 3313.8 3265.4 3227.1 Total cost 708.3 708.3 708.3

Avg. Profit (€) 4676.8 4676.8 4676.8 First-echelon cost 243.2 243.2 243.2
50% STDEV. 1066.1 1066.1 1085.7 Second-echelon cost 465.1 465.1 465.1

#Supp.No Profit 0.0 0.0 0.0 Nb. Trucks 8.8 8.8 8.8

T (s) 14.9 18.8 18.6 Nb. Routes 8.9 8.9 8.9

Max. Profit (€) 5577.5 5545.0 5580.8

Min. Profit (€) 3665.8 3256.7 3333.8 Total cost 715.3 708.3 708.3

Avg. Profit (€) 4676.8 4676.8 4676.8 First-echelon cost 246.9 243.2 243.2
60% STDEV. 899.4 1045.2 1040.1 Second-echelon cost 468.4 465.1 465.2

#Supp.No Profit 0.0 0.0 0.0 Nb. Trucks 9.1 8.8 8.8

T (s) 18.7 11.0 16.9 Nb. Routes 9.0 8.9 8.9

Max. Profit (€) 5405.8 5549.2 5582.5

Min. Profit (€) 3877.9 3272.1 3646.7 Total cost 717.9 708.3 715.3

Avg. Profit (€) 4676.8 4676.8 4676.8 First-echelon cost 252.3 243.2 246.9
70% STDEV. 710.4 1046.8 889.7 Second-echelon cost 465.6 465.2 468.4

#Supp.No Profit 0.0 0.0 0.0 Nb. Trucks 9.3 8.8 9.0

T (s) 24.9 13.3 20.9 Nb. Routes 9.0 8.9 9.0

Max. Profit (€) 5118.8 5568.3 5556.3

Min. Profit (€) 4203.8 3304.6 3820.8 Total cost 7311 708.3 719.8

Avg. Profit (€) 4676.8 4676.8 4676.8 First-echelon cost 264.0 243.2 253.6
80% STDEV. 441.5 1046.1 782.8 Second-echelon cost 467.1 465.1 466.2

#Supp.No Profit 0.0 0.0 0.0 Nb. Trucks 9.5 8.8 9.3

T (s) 41.9 17.0 18.5 Nb. Routes 9.0 8.9 9.0

Max. Profit (€) 4881.3 5473.8 5510.8

Min. Profit (€) 4418.8 3537.1 4224.6 Total cost 750.7 714.5 735.7

Avg. Profit (€) 4676.8 4676.8 4676.8 First-echelon cost 269.0 244.7 265.7
90% STDEV. 218.7 931.2 591.8 Second-echelon cost 481.7 469.8 470.0

#Supp.No Profit 0.0 0.0 0.0 Nb. Trucks 9.5 9.0 9.5

T (s) 53.4 20.0 32.0 Nb. Routes 9.0 9.0 9.0

Max. Profit (€) 3010.0 3010.0 3010.0

Min. Profit (€) 3010.0 3010.0 3010.0 Total cost 486.0 486.0 486.0

Avg. Profit (€) 3010.0 3010.0 3010.0 First-echelon cost 216.5 216.5 216.5
100%**+! STDEV. 0.0 0.0 0.0 Second-echelon cost 269.5 269.5 269.5

#Supp.No Profit 0.0 0.0 0.0 Nb. Trucks 6.0 6.0 6.0

T (s) 1.4 1.7 1.3 Nb. Routes 5.0 5.0 5.0
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Table 6

Average performance of different equity measures for school canteen instances, if any instance solved.
r4: Achieving 20% fairness by the relative range was possible only for four instances.

r2: Achieving 30% fairness by the relative range was possible only for two instances.

s4: Achieving 90% fairness by the Gini coefficient was possible only for four instances.

Equity measures Equity measures

a KPIs-Profit KPIs-Cost
Relative range Gini coefficient Our measure Relative range Gini coefficient Our measure

Max. Profit (€) 11751.9 10305.0 11751.9

Min. Profit (€) 0.0 0.0 0.0 Total cost 2269.8 2364.1 2269.8

Avg. Profit (€) 2509.7 2509.7 2509.7 First-echelon cost 1022.6 1087.7 1022.6
0% STDEV. 2684.7 2579.4 2684.7 Second-echelon cost 1247.2 1276.3 1247.2

#Supp.No Profit 22.3 22,5 223 Nb. Trucks 39.0 39.9 39.0

T (s) 2254.7 3278.6 2278.8 Nb. Routes 13.0 13.3 13.0

Max. Profit (€) 5318.1 11373.1 10318.1

Min. Profit (€) 614.4 0.0 12.5 Total cost 3043.6 2332.7 3048.6

Avg. Profit (€) 2509.7 2509.7 2509.7 First-echelon cost 1814.3 1052.9 1821.9
10% STDEV. 1488.3 2556.8 2026.4 Second-echelon cost 1229.3 1279.8 1226.7

#Supp.No Profit 0.0 22.4 0.0 Nb. Trucks 60.4 39.5 60.5

T (s) 3617.9 3617.9 1694.7 Nb. Routes 13.1 13.0 12.5

Max. Profit (€) 4995.04 9846.3 8231.9

Min. Profit (€) 1000.0* 0.0 20.0 Total cost 3168.9™ 2326.0 3080.2

Avg. Profit (€) 2867.8™ 2509.7 2509.7 First-echelon cost 1779.6™ 1051.5 1906.5
20% STDEV. 1350.0™ 2507.4 1846.3 Second-echelon cost 1389.3™ 1274.5 1173.7

#Supp.No Profit 0.0 22.3 0.0 Nb. Trucks 61.5 39.3 60.6

T (s) 2778.0™ 3236.0 1687.4 Nb. Routes 15.8™ 12.5 13.5

Max. Profit (€) 5000.02 10913.8 8075.6

Min. Profit (€) 1500.0"2 0.0 30.0 Total cost 3482.7" 2313.8 3062.1

Avg. Profit (€) 3975.77% 2509.7 2509.7 First-echelon cost 1855.17 1101.9 1841.2
30% STDEV. 1134.87 2577.0 1802.7 Second-echelon cost 1627.6 1212.0 1220.8

#Supp.No Profit 0.0 22.3 0.0 Nb. Trucks 61.57 39.5 60.6

T (s) 2597.97 3011.4 1465.2 Nb. Routes 18.07 13.4 12.8

Max. Profit (€) 10768.1 8318.8 2293.4 3075.9

Min. Profit (€) 0.0 26.9 Total cost

Avg. Profit (€) 2509.7 2509.7 First-echelon cost 1056.8 1877.1
40% STDEV. 2494.0 1819.0 Second-echelon cost 1236.6 1198.8

#Supp.No Profit 21.9 0.0 Nb. Trucks 39.5 61.1

T (s) 2567.5 1971.2 Nb. Routes 12.9 13.0

Max. Profit (€) 9878.1 8796.9

Min. Profit (€) 0.0 36.9 Total cost 2377.8 3068.6

Avg. Profit (€) 2509.7 2509.7 First-echelon cost 1090.1 1844.1
50% STDEV. 2271.5 1897.6 Second-echelon cost 1287.7 1224.5

#Supp.No Profit 20.6 0.0 Nb. Trucks 41.3 61.0

T (s) 3617.9 1105.9 Nb. Routes 13.3 13.1

Max. Profit (€) 7429.4 9067.5 2455.4 3069.8

Min. Profit (€) 0.0 413 Total cost

Avg. Profit (€) 2509.7 2509.7 First-echelon cost 1228.8 1840.9
60% STDEV. 1901.7 1935.9 Second-echelon cost 1226.6 1228.8

#Supp.No Profit 17.1 0.0 Nb. Trucks 45.3 61.0

T (s) 3317.0 1500.5 Nb. Routes 13.3 13.8

Max. Profit (€) 6287.5 8146.3

Min. Profit (€) 0.0 59.5 Total cost 2622.1 3072.8

Avg. Profit (€) 2509.7 2509.7 First-echelon cost 1326.4 1870.1
70% STDEV. 1510.5 1861.2 Second-echelon cost 1295.7 1202.6

#Supp.No Profit 11.8 0.0 Nb. Trucks 49.0 60.9

T (s) 3203.3 1388.0 Nb. Routes 14.8 13.4

Max. Profit (€) 5216.9 9787.5

Min. Profit (€) 0.0 35.6 Total cost 3027.9 3080.3

Avg. Profit (€) 2509.7 2509.7 First-echelon cost 1642.7 1898.6
80% STDEV. 1099.1 1999.0 Second-echelon cost 1385.2 1181.7

#Supp.No Profit 6.4 0.0 Nb. Trucks 54.9 61.0

T (s) 3533.3 1110.1 Nb. Routes 14.8 13.8

Max. Profit (€) 4343854 9177.5

Min. Profit (€) 375.0%4 45.0 Total cost 3396.78* 3073.0

Avg. Profit (€) 3044.784 2509.7 First-echelon cost 1878.284 1836.8
90% STDEV. 768.854 1935.0 Second-echelon cost 1518.5¢* 1236.3

#Supp.No Profit 2.384 0.0 Nb. Trucks 59.88% 61.5

T (s) 3619.384 1186.9 Nb. Routes 17.08% 13.1

Max. Profit (€) 9300.0

Min. Profit (€) 481 Total cost 3108.2

Avg. Profit (€) 2509.7 First-echelon cost 1889.7
100% STDEV. 1931.8 Second-echelon cost 1218.5

#Supp.No Profit 0.0 Nb. Trucks 61.8

T (s) 1020.7 Nb. Routes 13.4
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therefore the minimum profit starts increasing, while the maximum
profit and standard deviation start decreasing. Between these two
metrics, the relative range enforces the fairness more aggressively by
tapering the maximum profit more and more toward the minimum
profit. As a consequence, there are fewer instances solved by the
relative range when the value of « increases, as the small suppliers
cannot increase their quota any further to bring up the minimum due to
small available supplies. At 20% only four out of eight instances, at 30%
only two out of eight instances, and as of 30% none of the instances are
solved. Our measure, on the other hand, can deal with different level
of fairness imposed without flattening the maximum profit forcefully,
while lifting up the suppliers with no profit by assuring a minimum
share of total profit given the available supply of those suppliers.

Unlike the relative range and our measure, the Gini coefficient does
not guarantee a profit for every supplier, even if the value of a starts
increasing. That is why there are still suppliers with no profit even at
a = 90%. Similar to the relative range, the Gini coefficient enforces
equity among suppliers by depressing the maximum profit, but without
lifting up all suppliers with no profit. Although the Gini coefficient
starts assuring a profit for more suppliers at the higher values of «, not
all school canteen instances are solvable for those high values. At 90%,
only four out of eight and at 100% none of the instances are solved
by using the Gini coefficient. From the computational perspective, our
measure seems more favorable, seeing that our matheuristic spends
considerably less time to return a solution when using our measure,
as this metric has the smallest T(s) among the three, no matter a.

Regarding cost related KPIs, the total cost, first-echelon cost, and
number of trucks start increasing as soon as fairness constraints are
imposed by relative range and our measure. These values change
relatively slowly when using the Gini coefficient, as this metric leaves
6.4 suppliers with no profit even at a = 80%. Overall, our measure
guarantees a share of the network profit for all suppliers without
artificially dampening the maximum profit. Moreover, the problem at
hand is solvable no matter the value of « in a shorter time, when using
our metric.

In order to obtain an intuitive insight into how each fairness met-
ric distributes the profits among the suppliers, we plot the Lorenz
curve (Lorenz, 1905) of each measure for Instance 1 of school canteens
in case of @ = 10% as a representative instance. As a representation of
inequality in a distribution, the Lorenz curve is a graph denoting the cu-
mulative percentage of profit gained versus the cumulative population
of suppliers, when they are sorted in an ascending order of profit. In a
perfectly equitable solution, X% of the suppliers should share exactly
X% of the profit, for any X between 0 and 100. This is denoted by the
diagonal line in the figure. The resulting graphs are displayed in Fig. 4.

The Lorenz curves for both relative range and our measure are
much closer to the equality line for different portions of the population
compared to the Gini coefficient. This means the two metrics distribute
the profit of satisfying the demand of the network among suppliers
more equally, even if a low level of fairness is imposed. On the contrary,
the Gini coefficient leaves up to 35% of suppliers with no profit.
Between the relative range and our measure, the Lorenz curve from our
measure is slightly closer to the line of equality than the one from the
relative range. In conclusion, our measure facilitates shorter runtimes,
is effective already at a low « but also feasible at a large a, and tends to
encourage fairness by connecting more suppliers to the network rather
than reducing the profits of large suppliers. Therefore, we continue
using our suggested fairness metric in the remaining computational
studies.

5.4. The cost of fairness

Achieving fairness among suppliers imposes an extra cost on the
logistics system, as every supplier must send a certain percentage of
their share of supply to some of the distribution centers, which will
probably result in a larger first-echelon transportation cost. It may also
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affect the second-echelon transportation cost, since the availability of
commodities at certain distribution centers might change and hence
different second-echelon routes might be selected.

From a managerial point of view, in order to study the trade-off
between the level of equity enforced on the first echelon and the
transportation costs, we vary the value of the guaranteed percentage
of suppliers’ share, i.e. a, from zero to one (100%) gradually with a
step-size of 0.1 (10%), for all instance groups. We then monitor the
cost of fairness for the system, which demonstrates itself in relative
changes in the total transportation, first-echelon, and second-echelon
costs compared to the no-fairness case, i.e. « = 0%, averaged over the
instances of each group. For these analyses, we keep the time limit
of the solver at one hour for the generated instances and the school
canteen instances. However, we also set the MIP gap of the solver to
10% for the school canteen instances. For supermarket instances, we
increase the solver time limit to five hours and impose a MIP gap of
10%. The results are displayed in Figs. 5, 6, and 7.

Figs. 5(a) and 5(b) present respectively average relative changes
in the total transportation, first-, and second-echelon costs and in the
number of trucks and routes used, for the generated instances. No
instance of this group was solved with full fairness, i.e. « = 100%,
therefore no number is reported in these two figures on a = 100%. We
observe that there is no change in the costs and the number of trucks
and routes on average from a = 0 to « = 10% for these instances. This
means that the suppliers are served equitably and already connected
to the distribution network providing commodities, even before the
fairness constraints are enforced. This trend continues until « = 60%,
meaning that 60% of the suppliers’ share can be collected without
imposing extra costs on the system. When collecting at least 70% of
a supplier’s share is enforced, the first-echelon cost and consequently
the total transportation cost (Fig. 5(a)) starts increasing, on average.
The second-echelon cost starts to slightly decrease (from a = 80%).
The number of trucks used in the first-echelon also starts to increase
on average, when the system is required to collect at least 70% of
the share from suppliers. The changes in the second-echelon cost and
the number of second-echelon routes are both due to the fact that
the supplies are distributed differently among the distribution centers,
which might enable different choices for the second echelon, when «a is
at least 70%. Therefore, to advise the managers of such supply chains
on how equitable the collection of commodities from suppliers should
be, the option of a = 60% is the cheapest and yet equitable level of
service for the generated instances.

Figs. 6(a) and 6(b) depict the average relative changes in the total
transportation, first-, and second-echelon costs and in the number of
trucks and routes, respectively, for Isére’s school canteen instances. We
note that as soon as the fairness constraints are enforced, i.e. 10%
of each supplier’s share must be collected, the first-echelon and total
transportation costs, and the number of trucks increase considerably,
on average. After « = 10%, these KPIs reach a plateau. By ensuring
an equitable collection of at least 10% of available commodities from
suppliers, the allocation of supplies to the distribution centers changes
as well. This can result in alternative routing plans for the second
echelon and hence relative changes in both the second-echelon cost and
the number of routes, on average, for these instances. Considering the
relatively flat trend of the total transportation cost after a« = 10%, we
can conclude that there are two options to suggest to the managers
of the supply chain. One option is no equitable service enforced at
all, i.e. @ = 0, which results in a completely utilitarian collection
of commodities from suppliers without making sure every supplier
is connected to the distribution system. Another option is to have
a completely egalitarian commodity collection plan from suppliers,
i.e. a = 100%, which will result in collecting all the available quantities
at the suppliers of the school canteen instances.

Figs. 7(a) and 7(b) respectively display the average relative changes
in the total transportation, first-, and second-echelon costs and in the
number of trucks and routes for Isére’s supermarket instances. The
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Fig. 4. Distribution of profits among suppliers by three fairness metrics applied on Instance 1 of school canteens with a = 10%.
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(b) Change in number of trucks and routes used.

Fig. 5. Average relative changes compared to a = 0%, when guaranteed share of profits of suppliers, i.e. a, varies — Generated instances.

100%": At a = 100% no instance was solved.

numbers are present until « = 90%, as for full equity, i.e. « = 100%,
one of the instances was not solved. We see that imposing fairness
does not significantly increase routing costs until the 90% level, when
the total transportation cost goes up by 5% on average. Overall, the
supermarket instances do not seem to react strongly to the enforcement
of equity, maybe because most (all) suppliers are already connected to
the distribution network in any case due to the demand structure.

6. Conclusion

In this paper, we have addressed the issue of service inequity for
suppliers (farmers) in a short agri-food supply chain in the public
sector. This supply chain is designed in two echelons: In the first
echelon, commodities (fresh fruits and vegetables) are collected from
suppliers on direct trips and transported to distribution centers for
consolidation. In the second echelon, the commodities are distributed
from the centers to customers on routes. A customer can be visited
more than once. Local authorities and an association of farmers are in
charge of the daily operations of this network. Not all suppliers are,
however, connected to the distribution network, as some of them are
located farther away than the others. Therefore, we have introduced
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a fair multi-commodity two-echelon distribution problem that decides
on the daily planning of first-echelon equitable collection trips and
second-echelon delivery routes.

To model the problem, we have used an arc-route-based formulation
with a service equity measure for suppliers, defined as a set of con-
straints proportional to their supplies and the profits of commodities.
We have suggested a matheuristic to jointly optimize the first and
second echelons. The decisions on first-echelon collection trips are left
to a default solver and we have designed a heuristic route generation
procedure to construct a pool of feasible second-echelon routes to be
passed to the solver. The daily collections and delivery plans are then
both decided by the solver. We have evaluated our solution method on
a series of generated instances and on the instances of a French short
agri-food supply chain from the literature.

The numerical results illustrate that our matheuristic on average
provides solutions for the special case without fairness with less total
transportation costs than the best known costs for the instances in times
substantially faster, sometimes in an order of magnitude, than the total
run times known in the literature. It also finds several new best costs
for some of the instances.
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Fig. 6. Average relative changes compared to a = 0%, when guaranteed share of profits of suppliers, i.e. a, varies — School canteen instances.

We have defined the fairness metric dependent on suppliers’ avail-
able supplies. The reason is that if the same share is collected from
every supplier regardless of the available supply, it is possible that
some suppliers will be simply unable to provide the share as they
have less available supply. We then assess the efficacy of our equity
measure versus the relative range and Gini coefficient metrics from the
literature with regard to reducing inequity among suppliers as well as
optimizing the cost in terms of several key performance indicators. The
results indicate that our measure facilitates shorter runtimes and en-
courages fairness by connecting more suppliers to the network instead
of aggressively reducing the profits of large suppliers.

Moreover, by using our suggested fairness measure, we have studied
the trade-off between guaranteeing an equitable service for suppliers
and optimizing the total transportation cost. The results demonstrate
that overall there is a minimum level for fair collections that leads to
an equitable service for suppliers, while keeping the relative increase
in the total transportation cost low, on average. This level can help
decision makers with the planning of first-echelon fair collection trips
and second-echelon delivery routes. In conclusion, if most (or even all)
suppliers are connected to the distribution network, our results indicate
that raising the fairness level does not cost the logistics provider much
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for low levels of equity. However, imposing the highest levels of
fairness results in a significant increase in the total transportation costs,
on average.

The demand in the second echelon is assumed to be static and
known in advance. A future study can look into how to plan fair collec-
tion of supplies in the first echelon, when the demand becomes known
dynamically or is stochastic in the second echelon. Another research
question worth investigating is how to serve farmers equability, if the
first-echelon collection trips are required to be consistent and/or if the
customers have time windows in the second echelon.
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Table A.7
Gu et al. (2022) generated instances solved in their study by a commercial solver and by their six sequential heuristics —
|D| = 2.
Set D |S| |C| IM| Probability Truck & vehicle capacity
1 4 10 2 0.6 150
2 4 10 2 1 180
3 4 10 3 0.6 209
4 4 15 2 0.6 150
5 4 15 2 1 180
s 6 4 15 3 0.6 209
7 4 20 2 0.6 150
8 4 20 2 1 180
9 4 20 3 0.6 209
10 6 25 2 0.6 150
11 6 25 2 1 180
12 6 25 3 0.6 209
1 4 10 2 0.6 150
2 4 10 2 1 180
3 4 10 3 0.6 209
4 4 15 2 0.6 150
5 4 15 2 1 180
$s 6 4 15 3 0.6 209
! 7 4 20 2 0.6 150
8 4 20 2 1 180
9 4 20 3 0.6 209
10 6 25 2 0.6 150
11 6 25 2 1 180
12 6 25 3 0.6 209
1 4 10 2 0.6 150
2 4 10 2 1 180
3 4 10 3 0.6 209
4 4 15 2 0.6 150
5 4 15 2 1 180
$s 6 4 15 3 0.6 209
2 7 4 20 2 0.6 150
8 4 20 2 1 180
9 4 20 3 0.6 209
10 6 25 2 0.6 150
11 6 25 2 1 180
12 6 25 3 0.6 209
Table A.8 Table A.9

Gu et al. (2022)’s school canteen instances solved in their study by their
six sequential heuristics — Truck capacity: 600 units; Vehicle capacity:

1200 units.
D IS] ID| IC] IM]
1 61 5 103 8
2 61 5 103 7
3 61 5 103 6
4 61 5 103 5
5 61 5 103 6
6 61 5 103 5
7 61 5 103 6
8 54 5 103 7

Appendix. Details of instances

The details of the generated instances and case-study instances
from Gu et al. (2022), which we use for our numerical experiments,
are summarized in Tables A.7-A.9.
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