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ABSTRACT 

We revisit much-investigated relationships between schooling and health, focusing on schooling impacts on 
cognitive abilities at older ages using the Harmonized Cognition Assessment Protocol in the Health & Retirement 
Study (HRS) and a bounding approach that requires relatively weak assumptions. Our estimated upper bounds on 
the population average effects indicate potentially large causal effects of increasing schooling from primary to 
secondary; yet, these upper bounds are smaller than many estimates from the literature on causal schooling impacts 
on cognition using compulsory-schooling laws. We also cannot rule out small and null effects at this margin. We do, 
however, find evidence for positive causal effects on cognition of increasing schooling from secondary to tertiary. 
We replicate findings from the HRS using older adults from the Midlife in United States Development Study 
Cognitive Project.  We further explore possible mechanisms through which schooling may be working—such as 
health, SES, occupation and spousal schooling—finding suggestive evidence of effects through such mechanisms. 
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1. Introduction 

Does schooling have a causal effect on cognition at older ages? This is an important 

question for several reasons. First, cognitive health is a vital component of the overall health and 

well-being of older adults, who due to population aging represent an increasing segment of the 

population. In 2020, people aged 65 and above accounted for 17% of the US population, whereas 

this group only accounted for 5% of the population in 1920. The growth grate of the older age 

population over this period is almost five times that of the total population (Caplan 2023). Lower 

cognitive functioning is associated with a poorer quality of life due to difficulties in performing 

daily activities (Garrett et al. 2019), increased disabilities (Lee et al. 2005), and higher mortality 

risks (Batty et al. 2016). Understanding causal effects of schooling on older-age cognition can thus 

help determine whether investing in schooling will lead to health improvements for older adults. 

Second, the causal effect of schooling on cognition of older adults has important 

implications for tackling Alzheimer’s disease and related dementia (ADRD), a pressing public 

health issue. In 2023, 6.7 million Americans were living with ADRD, and this is projected to reach 

13.8 million by 2060 (Alzheimer’s Association 2023). The health care costs of ADRD are 

forecasted to increase from $345 billion in 2023 to $1 trillion in 2050 (Alzheimer’s Association 

2023). ADRD also imposes substantial costs to caregivers. In 2022, more than 11 million 

caregivers provided 17 billion hours of care worth $340 billion (Alzheimer’s Association 2023). 

While age is the largest risk factor for ADRD, schooling has been identified as a modifiable early-

life intervention to tackle ADRD. The 2024 Lancet Commission on Dementia Prevention, 

Intervention and Care estimated that 5% of dementia cases could be avoided by increased levels 

of basic schooling, and research on the US has found that increases in schooling attainment are 

significantly associated with declining dementia trends (Hudomiet et al. 2022).  
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One mechanism through which schooling can reduce dementia risks is by improving 

cognitive abilities at older ages. Neuropsychological testing is widely used to determine whether 

individuals meet criteria for dementia diagnoses. Higher schooling attainment is associated with 

better performance on cognition tests (Opdebeek et al. 2016). This entails a lower likelihood that 

an individual is diagnosed with dementia given existing thresholds, and thus a later age at dementia 

onset. Small delays in age at onset can lead to large reductions in population disease burdens. For 

example, Brookmeyer et al. (1998) projected that an intervention taken in 2015 to delay the onset 

of dementia by one year would reduce global cases in 2050 by 10% (12 million). Given the 

potentially large effect of schooling on overall dementia cases operating through the age of 

dementia onset, understanding whether schooling has a causal effect on cognition of aging people 

is vital for assessing future dementia trends, as cohorts reaching older ages will have higher levels 

of schooling as a result of schooling expansion in the 20th century.  

Third, poor cognition and ADRD have important financial ramifications. Lower cognitive 

function at older ages is associated with less favorable financial outcomes. Banks & Oldfield 

(2007) found that low levels of numeracy were associated with lower levels of wealth and lower 

probability of owning a private pension in the English Longitudinal Study of Ageing (ELSA). In 

the US Health & Retirement Study (HRS), Angrisani & Lee (2019) found that declines in cognition 

scores of the household financial decision maker were associated with reductions in household 

wealth. Nicholas et al. (2021) found individuals with ADRD were more likely to miss bill 

payments six years before diagnosis and develop subpar credit scores 2.5 years before diagnosis. 

Thus, policies to increase schooling attainment may improve both the health and financial standing 

of older adults if schooling has a causal effect on cognition decades later in life at older ages. 
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Figure 1 illustrates mechanisms through which schooling could affect cognition at older 

ages. Schooling can improve cognition of older adults through reducing age-related brain 

pathology (brain maintenance) and by building cognitive reserve (Stern et al. 2023). It is 

hypothesized that schooling protects the brain from age-related pathology such as white matter 

damage which accumulates in all older adults, thus aiding brain maintenance. Cognitive reserve 

refers to the brain’s ability to maintain successful cognitive performance despite age-related brain 

changes. Cognitive stimulation that occurs during schooling is thought to build cognitive reserve. 

Schooling attainment is a marker of cognitive reserve, and higher schooling attainment is 

hypothesized to allow individuals to process and store information that allows for normal cognitive 

functioning despite brain aging (Stern 2002). Some empirical evidence found that schooling was 

associated with cognitive reserve but not brain maintenance (Zahodne et al. 2019).1  

There may be indirect effects of schooling through SES and health at middle and older 

ages. More schooling is associated with greater income, enabling the purchase of basic health-

enhancing resources. More-schooled individuals may be more likely to work in cognitively 

stimulating occupations or more frequently engage in cognitively stimulating activities (e.g., 

social/cultural clubs) that build cognitive reserve. Similarly, more schooling is associated with 

better self-reported health and lower likelihoods of depression and smoking, which are associated 

with better cognition. Another indirect channel is marriage. Highly schooled individuals tend to 

also have highly schooled spouses, and spousal schooling is positively associated with older-age 

cognition (Liu et al. 2024; Saenz et al. 2020; Xu 2020). Spousal schooling can influence older-age 

 
1 Using two large samples of older adults without dementia at baseline, they found that schooling was not 

associated with white matter hyperintensities, suggesting no relationship between schooling and brain maintenance. 
They found evidence in support of cognitive reserve as memory scores of individuals with higher schooling attainment 
were less affected by increases in white matter hyperintensity volume compared to those with less schooling. 
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cognition by promoting healthier behaviors and increasing household SES (income/wealth) and 

cognitive reserve through engagement in cognitively stimulating activities.    

Alternatively, associations between schooling and cognition at older ages may reflect the 

influence of earlier abilities or other unobserved confounders (e.g., genetics and family 

background) that are correlated with schooling and older-age cognition rather than causal 

relationships. Studies using schooling reforms as natural experiments have found evidence of a 

causal effect of schooling on cognition at ages 19–20 (Brinch & Galloway 2012; Lager et al. 2017; 

Xiao et al. 2017), suggesting that early-life cognition could be a confounding factor. Hence, it is 

important to determine whether the relationship between schooling and older age cognition is 

causal. 

The literature on causal effects of schooling on cognition at older ages is surprisingly 

sparse. Some studies using changes in compulsory schooling laws to identify exogenous variation 

in schooling attainment (e.g., Glymour et al. 2008; Banks and Mazzonna 2012; Schneeweis et al. 

2014; Gorman 2023) have found protective effects on immediate and delayed memory, with 

estimates showing an extra grade of schooling improved immediate and delayed memory scores 

by 0.08-0.50 standard deviations (SDs). However, findings for other cognitive domains are mixed.  

Despite some advantages, estimates based on compulsory-schooling laws also have 

shortcomings. First, they capture the effects only for individuals whose schooling is causally 

increased by such laws, rather than effects for the general population. Second, they mostly 

represent effects of increasing schooling from primary to secondary and are not directly 

informative about effects of schooling at other parts of the educational distribution. Third, causal 

inference relies on the relatively strong assumption that school reforms affect cognition only 
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through their effect on schooling (the exclusion restriction), which may not always hold (e.g., 

Avendano et al. 2020). 

We provide new evidence on the causal effect of schooling on cognition at older ages using 

the Harmonized Cognition Assessment Protocol in the HRS. Our contribution is to employ a 

nonparametric partial-identification approach (Manski and Pepper 2000), which provides bounds 

on the causal effect using relatively weak and arguably credible assumptions. Specifically, we 

assume (1) that there is positive selection into schooling such that individuals with higher 

schooling attainment have on average higher latent cognition and (2) more schooling does not 

worsen cognitive abilities. We then employ mother’s schooling attainment as a monotone 

instrumental variable—a variable that is assumed to have a weakly increasing mean relationship 

with potential outcomes—to help tighten the bounds under these assumptions. 

Our approach has several attractive features. First, it provides bounds on the population 

average treatment effect (ATE) as opposed to the average effect for a subpopulation, such as those 

for whom compulsory-schooling laws are binding. Second, it allows for arbitrary correlations 

between schooling and unobserved factors that can affect cognition. Third, it allows us to look at 

dose-response relations between schooling and cognition by providing bounds on the effect of 

increasing schooling at different parts of the educational distribution (e.g., going from being a 

high-school dropout to a high-school graduate, or from being a high-school to a college graduate). 

There may be important effects of obtaining credentials (high-school diploma; college degree) on 

cognition because credentials likely have large effects on mid-life conditions such as income and 

occupation. Nonlinear effects of schooling have been observed for other health outcomes, 

including mortality (Montez et al. 2012).  
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We find that there are potentially large effects of completing secondary schooling, with 

estimated bounds indicating that an extra grade of schooling at most increases immediate and 

delayed memory by 0.18 SDs when increasing schooling from primary to secondary. This 

estimated upper bound is smaller than many estimates from studies using compulsory-schooling 

laws. We also cannot rule out small and null effects at this margin. We obtain tighter bounds that 

indicate a statistically significant positive causal effect of increasing schooling from secondary to 

tertiary. An extra grade of schooling increases immediate and delayed memory scores by 0.03-

0.10 SDs when transitioning from being a high-school to college graduate. Statistically positive 

effects are also found for several other cognition domains. We find suggestive evidence that this 

effect could work through better health at older ages, lower probabilities of being in poverty, higher 

probabilities of working in managerial and professional occupations (which likely involve 

cognitive stimulation) and having more-schooled spouses. 

We view our estimates as providing important new and complementary evidence about the 

plausible magnitude of the causal effect under relatively weak assumptions. By using a completely 

different research design, our study contributes by triangulating evidence and increasing 

confidence that there exists a causal relationship between schooling and older-age cognition. 

Though we do not point-identify the causal effect, Mullahy et al. (2021), argue that partial-

identification should be more prevalent in public-health and clinical research: rather than focusing 

on point estimates, base public-health recommendations, and policies on ranges of plausible 

effects. Finally, we replicate the findings from the HRS in a sample of older adults from the Midlife 

in United States Development Study Cognitive Project. This provides additional confidence in our 

results and highlights the value of using partial identification in different datasets to assess external 

validity.   
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2. Previous Studies 

Most studies have used schooling variation arising from changes in compulsory-schooling 

laws within instrumental variable (IV) and fuzzy regression-discontinuity (RDD) designs.2 

Glymour et al. (2008) predicted grades of schooling in the 1980 US Census 5% sample using 

compulsory-schooling laws between 1907-1961. Predicted grades of schooling were then 

employed as an independent predictor of cognition in the HRS. Banks and Mazzonna (2012) used 

the ELSA and the 1947 increase in the minimum school leaving age from 14 to 15 with a fuzzy 

RDD. Both studies found large effects of schooling on memory. An extra grade of schooling was 

associated with a 0.34 (0.50) SD increase in memory in the HRS (ELSA). Glymour et al. (2008) 

found no effect of schooling on mental status. Banks and Mazzonna (2012) found that schooling 

improved executive functioning for men but not for women. Gorman (2023) employed the 1972 

increase in the minimum school-leaving age from 15 to 16 in the UK and the Understanding 

Society dataset. She found that an additional grade of schooling increased memory scores by 0.42 

SDs. She also found positive but imprecise effects on verbal fluency. Exploiting compulsory-

schooling laws across Europe, Schneeweis et al. (2014) found an extra grade of schooling 

increased immediate (delayed) memory by 0.08 (0.09) SDs for older adults in Survey of Health, 

Ageing and Retirement in Europe. They found no causal effects of schooling on verbal fluency, 

numeracy, and orientation to-date.  

A key assumption for causal inferences in these studies is the exclusion restriction—that 

school reforms affect cognition only through their effect on schooling—which could be violated 

in certain contexts. For example, using the 1972 schooling reform in the UK, Avendano et al. 

 
2 These studies are summarized in appendix table C1. Appendix Table C1 also shows two studies have used 

within-sibling comparisons. Herd and Sicinski (2022) found that more schooling is associated with higher memory 
scores for individuals in their 70s in Wisconsin.  Fletcher et al. (2021) found higher fluid intelligence scores for more-
schooled individuals in their 50s in the UK. 
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(2020) found that education did not improve mental health for individuals in their mid-50s, and 

that compulsory-schooling laws may affect later life mental health through channels other than 

increased schooling.3 They argued and provided descriptive evidence that the reform forced young 

people who did not want to stay in school, but rather go to the labor market, to continue their 

education. These young people may have been negatively affected by being forced to stay in school 

in a stressful academic environment in which they were less likely to succeed compared to their 

peers. Courtin et al. (2019) also found that the increase in the minimum school leaving age from 

14 to 16 in France 1959 increased depressive symptoms for women in their 60s. These findings 

imply that results in Gorman (2023) that are based on the 1972 reform, and more generally those 

that utilize compulsory-schooling laws for identification, may be biased because compulsory 

schooling laws possibly directly led to worse mental health, which in turn may have affected 

cognition (e.g., Donovan et al. 2017; Nafilyan et al. 2021). Hence, mental health is another channel 

through which compulsory-schooling laws could affect cognition later in life, which would violate 

the exclusion restriction. This assumption could also be violated if compulsory-schooling laws are 

correlated with school quality, which can affect cognition independently of level of schooling. 

Stephens and Yang (2014) showed that estimates of the effect of schooling on wages, 

unemployment, divorce, occupation in the US using compulsory-schooling laws as instruments 

became insignificant, and in many instances wrong-signed, when controlling for school quality. 

In the presence of heterogenous effects, IV and fuzzy-RDD methods identify a local 

average treatment effect (LATE) for those individuals whose treatment is affected by the 

instrument (“compliers”). That is, these methods estimate the average effect of increasing 

schooling on cognition only for individuals who increased their schooling because of the 

 
3 They found that an extra grade of schooling increased the probability of having a mental health condition, 

and the probability of having depression/anxiety by about 30%.  
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compulsory-schooling laws (i.e., those whose schooling would have been lower in the absence of 

such laws). Previous IV and fuzzy-RDD studies are thus not directly informative about the 

population ATE, or about schooling effects at upper parts of the schooling distribution (e.g., 

college education), as compliers are generally individuals from the lower part of the schooling 

distribution (Clark and Royer 2013).4  

In sum, the current evidence suggests that there likely is a causal relationship between 

schooling and memory, but findings for other cognition domains are mixed. Point identification of 

causal effects, though, rests on strong assumptions; the effects identified pertain to specific 

subpopulations and usually lower parts of the schooling distribution. In contrast, our approach 

employs relatively weak assumptions to provide bounds on the population ATE of increasing 

schooling at different parts of the schooling distribution. 

 

3. Econometric Framework 

Let 𝑌𝑌𝑖𝑖 (𝑡𝑡1) and 𝑌𝑌𝑖𝑖(𝑡𝑡2) be two potential outcomes, i.e., the values of the outcome (older-age 

cognition) that individual 𝑖𝑖 would obtain as a function of two different treatment or schooling 

levels (e.g. high-school graduation 𝑡𝑡2 and less-than high-school 𝑡𝑡1). We are interested in the 

population ATE of increasing schooling attainment from less-than high-school (𝑡𝑡1) to high-school 

graduation (𝑡𝑡2) on cognition test scores, defined as: 

 

(1)  ∆ (𝑡𝑡1, 𝑡𝑡2) = 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] − 𝐸𝐸[𝑌𝑌(𝑡𝑡1)] 

 

 
4 Exploiting variation in college availability and student loan regulations in Germany, Kamhöfer et al. (2019) 

found positive effects of college graduation on reading speed, reading comprehension and mathematical literacy for 
individuals in their early 50s.  
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Estimation of the ATE is complicated because the potential outcome 𝑌𝑌(𝑡𝑡2) is unobserved for 

individuals with schooling level different from 𝑡𝑡2, and 𝑌𝑌(𝑡𝑡1) is unobserved for individuals with 

schooling level different from 𝑡𝑡1. Letting S denote realized schooling, and using the law of iterated 

expectations to write the expected potential outcome 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] as: 

 

(2) 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] = 𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑆𝑆 < 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆 < 𝑡𝑡2) + 𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑆𝑆 = 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆 = 𝑡𝑡2)
+ 𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑆𝑆 > 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆 > 𝑡𝑡2) 

 

The data identify the sample analogues of all the right-side quantities except of the counterfactuals 

𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑆𝑆 < 𝑡𝑡2] and 𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑆𝑆 > 𝑡𝑡2], i.e., the average cognition under high school graduation 

(𝑡𝑡2) for individuals with realized schooling (𝑆𝑆), respectively, less and higher than high school.  A 

similar equation applies to 𝐸𝐸[𝑌𝑌(𝑡𝑡1)]. The bounding approach we employ consists of making 

assumptions to bound each one of the counterfactuals in the expressions for 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] and 𝐸𝐸[𝑌𝑌(𝑡𝑡1)] 

to then bound the ATE ∆ (𝑡𝑡1, 𝑡𝑡2). The assumptions are outlined below and illustrated in Figure 2 

with further details in appendix A. 

 

Assumption 1: Bounded Support. This assumption exploits that the measures of cognition 

employed have a minimum (𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚) and a maximum (𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚) value, which are used in place of the 

counterfactuals (Figure 2 Panel A) to obtain a lower and an upper bound on each 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] and 

𝐸𝐸[𝑌𝑌(𝑡𝑡1)]. 

 

Assumption 2: Monotone Treatment Selection (MTS): MTS states that individuals with higher 

schooling attainment on average have weakly higher potential outcomes at every schooling level 

𝑡𝑡. For example, when comparing high-school graduates to high-school dropouts, the MTS 
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assumption requires that average potential cognition score at any schooling level (e.g., less-than 

high-school, some college, college graduation) of high-school graduates is higher than that of high-

school dropouts.  

While the MTS assumption is untestable (since counterfactual outcomes are unobserved), 

it is plausible in our application. Economic models of human capital posit that individuals with 

higher innate ability have more schooling (Ben-Porath 1967), and polygenic scores for education 

and cognition (which can be interpreted as measures of innate ability) predict cognition at older 

ages (Fletcher et al. 2021; Herd and Sicinski 2022), indicating that higher innate ability is likely 

related to better cognition at older ages. Given that individuals with higher innate ability are more 

likely to have more schooling and better cognition at older ages, it is plausible that, on average, 

individuals with higher schooling attainment have higher potential cognition at all schooling 

levels.5 More generally, MTS  captures the notion that, relative to individuals who self-select into 

lower schooling levels, individuals who self-select into higher schooling levels are more likely to 

have pre-treatment characteristics that also make them more likely to have better average potential 

older-age cognition at any given schooling level, for instance, due to (on average) higher innate 

ability, better health inputs and better family background.   

Figure 2 Panel B shows that under the MTS assumption, the observed mean cognition for 

those with schooling 𝑡𝑡2 (𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑆𝑆 = 𝑡𝑡2])—e.g., high school—can be used as an upper bound 

(respectively, lower bound) for the mean potential cognition under high school for those with 

realized schooling less (higher) than high school, as 𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑆𝑆 < 𝑡𝑡2] ≤ 𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑆𝑆 = 𝑡𝑡2] ≤

𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑆𝑆 > 𝑡𝑡2]. 

 
5 Note that correlations of unobserved factors (e.g., innate ability) with schooling and cognition are consistent 

with the MTS. What MTS rules out is the possibility that third factors affect cognition in such a way that, on average, 
at a given level of schooling, more-schooled individuals have worse potential cognitive performance than less-
schooled individuals. 
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Assumption 3: Monotone Treatment Response (MTR): MTR assumes that more schooling does 

not decrease cognitive ability at older ages for any individual; that is, for two schooling levels 𝑡𝑡1 

and 𝑡𝑡2 with 𝑡𝑡2 > 𝑡𝑡1, 𝑌𝑌𝑖𝑖(𝑡𝑡2) ≥ 𝑌𝑌𝑖𝑖(𝑡𝑡1). MTR is thus an assumption about the (weak) ranking of the 

potential outcomes for the same individual—MTR compares potential cognition under high-school 

graduation versus the potential cognition under less-than high-school graduation for the same 

individual. This is different from the MTS assumption, which compares means of the same 

potential outcome (e.g., cognition under high-school graduation) for two different subpopulations 

defined by their observed levels of schooling (e.g., high-school graduates versus high-school 

dropouts).  

The MTR assumption is stronger than the MTS assumption as it is required to hold for each 

individual, rather than on average. The MTR assumption would be violated if more schooling leads 

to worse cognitive performance for some individuals. One could argue that more schooling may 

worsen mental health for individuals who work in stressful jobs, or for individuals forced to stay 

in school by compulsory-schooling laws, and that such deterioration in mental health could lead 

to worse cognition. The MTR assumption does not rule out such negative channels, but rather 

assumes that the positive channels linking schooling to cognition dominate; for example, the 

negative impacts of poor mental health on cognition are outweighed by the positive impacts of 

schooling on brain maintenance, cognitive reserve, assortative mating, and mid-life health and SES 

conditions.  

There are theoretical models to suggest that the MTR assumption holds. In the Grossman 

(1972) model of health production, schooling directly increases health production by increasing 

the marginal productivity of health inputs or behaviors (productive efficiency) and by enhancing 
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individuals’ abilities to acquire and process health information (allocative efficiency). Cognition 

at older ages is a component of overall health, which is increased through schooling’s effect on 

productive and allocative efficiency. The MTR assumption is also consistent with theories of 

cognitive reserve (Stern 2002).6  

Figure 2 Panel C illustrates how MTR tightens bounds on 𝐸𝐸[𝑌𝑌(𝑡𝑡2)]. Intuitively, for the 

counterfactual 𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑆𝑆 = 𝑡𝑡1] (e.g., mean cognition under high-school for those with no high 

school), MTR provides the lower bound 𝐸𝐸[𝑌𝑌(𝑡𝑡1)|𝑆𝑆 = 𝑡𝑡1] (mean observed cognition for those with 

no high school), since more schooling cannot decrease potential cognition, implying 

𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑆𝑆 = 𝑡𝑡1] ≥ 𝐸𝐸[𝑌𝑌(𝑡𝑡1)|𝑆𝑆 = 𝑡𝑡1]. Panel D shows how tighter bounds on 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] can be 

obtained by combing the MTS and MTR assumptions. Manski & Pepper (2000) show that a 

testable implication of the MTS+MTR assumptions is that observed mean cognition scores are 

weakly increasing in schooling attainment. This testable implication will fail if the assumptions 

are not satisfied in the data, providing a check on them. 

 

Assumption 4: Monotone Instrumental Variable (MIV): Each of the bounds under the previous 

assumptions can be narrowed by using a MIV, which is a variable that has a monotone (weakly 

increasing or weakly decreasing) mean relationship with the potential outcomes 𝑌𝑌(𝑡𝑡). We use 

mothers’ schooling attainments as the MIV, thus assuming individuals’ mean potential cognitions 

at older ages are weakly increasing (i.e., not strictly decreasing) in their mothers’ schooling levels. 

 
6 The active cognitive-reserve hypothesis posits that individuals with more education make more efficient 

use of brain networks and process tasks more efficiently, leading them to experience less cognitive decline from brain 
aging compared to less-educated individuals. The common cause hypothesis argues that if cognition declines in age 
come from a common cause, then the cognition of higher educated individuals will decline at a similar rate to the 
population rate. However, more educated individuals will continue to perform at a higher level at a given age because 
of greater baseline brain reserve. The compensation hypothesis states that education allows more cognitive domains 
to fully develop, and once brain aging affects cognition, the domains not affected compensate for declines in the other 
cognitive domains.  
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Mother’s schooling attainment is a natural MIV as studies have shown that higher parental 

schooling, and more generally childhood SES, are associated with better cognition at older ages 

(see Greenfield and Moorman 2019 for a review).   

The MIV assumption is weaker than the exclusion restriction that would require that 

mothers’ schooling affects children’s older-age cognition only through effects on children’s 

schooling. The exclusion restriction is unlikely to be satisfied because mothers’ schooling can 

affect children’s older-age cognition through many other channels. Mothers with more schooling 

may have children with higher innate abilities, who in turn obtain higher schooling levels and have 

better older-age cognitions. More-schooled mothers may also provide better nutrition to their 

children or more cognitively stimulating home environments that affect neurocognitive 

development (Hackman and Farah 2009). These channels are allowed by the MIV assumption and  

help to justify its plausibility. This assumption does not require the MIV (mothers’ schooling) to 

have causal effects on outcomes (children’s older-age cognitions).7  

For mothers’ schooling, the MIV assumption implies that if we take two subsamples where 

individuals counterfactually have the same level of schooling but two different levels of mothers’ 

schooling (e.g., mothers are high-school dropouts and mothers are high-school graduates), mean 

potential cognition 𝐸𝐸[𝑌𝑌(𝑡𝑡)] will be weakly higher for the sample whose mothers are high-school 

graduates. Note that this inequality holds weakly, so it also allows for such means to be equal. The 

inequality is also assumed to hold for all schooling levels 𝑡𝑡, and it does not need to hold for every 

individual in the two subsamples, as the MIV assumption refers to average (rather than individual) 

 
7 Mothers’ schooling is positively associated with characteristics such as children’s cognition (Carneiro et al. 

2013; Cave et al. 2022; Dickinson et al. 2016; Magnuson 2007) and their schooling attainments (De Hann 2011; 
Holmlund et al. 2011; Sacerdote et al. 2002), which in turn affect older-age cognitions. 
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potential outcomes. Lastly, the MIV assumption is untestable as counterfactual outcomes are 

unobserved. 

To illustrate how the MIV narrows bounds, consider using it along with the MTS+MTR 

bounds. We can divide the sample into bins defined by the values of mothers’ schooling and 

compute the MTS+MTR bounds within each bin. The MTS+MTR+MIV bounds on 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] are 

then obtained by taking the weighted average over all the conditional-on-MIV bounds, resulting 

in bounds that are (weakly) narrower than without using the MIV. 

 

Bounds on the ATE ∆ (𝑡𝑡1, 𝑡𝑡2): Let 𝐿𝐿𝐿𝐿𝐴𝐴 𝐸𝐸[𝑌𝑌(𝑡𝑡)] and 𝑈𝑈𝑈𝑈𝐴𝐴 𝐸𝐸[𝑌𝑌(𝑡𝑡)] denote, respectively, the lower 

and upper bounds for the mean potential outcome at schooling level 𝑡𝑡 under the different 

assumptions 𝐴𝐴={NA, MTS, MTR, MTS+MTR, MTS+MTR+MIV}, where NA denotes the “no-

assumptions” bounds using only Assumption 1. Bounds on the ATE of increasing schooling from 

𝑡𝑡1 to 𝑡𝑡2 for a given set of assumptions are calculated by: 

 

(3) 𝐿𝐿𝐿𝐿𝐴𝐴𝐸𝐸[𝑌𝑌(𝑡𝑡2)] − 𝑈𝑈𝑈𝑈𝐴𝐴𝐸𝐸[𝑌𝑌(𝑡𝑡1)] ≤ ∆ (𝑡𝑡1, 𝑡𝑡2) ≤ 𝑈𝑈𝑈𝑈𝐴𝐴𝐸𝐸[𝑌𝑌(𝑡𝑡2)] − 𝐿𝐿𝐿𝐿𝐴𝐴𝐸𝐸[𝑌𝑌(𝑡𝑡1)] 

 

Bounds on the ATE for other schooling margins (e.g. increasing schooling from high-school 

graduation to some college, or from high-school to college graduation) are computed analogously. 

Note that under the MTR assumption the lower bound on ∆ (𝑡𝑡1, 𝑡𝑡2) is never below zero, because 

the MTR rules out the possibility that more schooling worsens cognitive abilities.  

 

Estimation and Inference: All bounds are estimated by plugging in sample analogs for the 

expectations and probabilities in the corresponding bounds’ expressions provided in appendix A. 
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Inference is undertaken by constructing confidence intervals that cover the true value of the 

population ATE with a specified probability. Estimation and inference for bounds using the MIV 

assumption is non-standard, requiring dealing with biases arising from taking min and max 

(intersections) over several candidate bounds. We deal with these issues by applying the 

methodology of Chernozhukov et al. (2013) to obtain all the estimated bounds and confidence 

intervals, including those not using the MIV assumption. Section A of the online appendix 

provides further details. We implement the methods using the user-written STATA command 

mpclr (Germinario et al. 2021). 

 

4. Data 

The HRS is a US nationally representative longitudinal survey of individuals over age 50 

and their spouses that started in 1992. The initial HRS cohort consisted of persons born in 1931–

41 and their spouses of any age. A second study, Asset and Health Dynamics Among the Oldest, 

was fielded the next year to capture an older birth cohort, those born in 1890–1923. In 1998, the 

two studies were merged, and, to make the sample fully representative of the older US population, 

two new cohorts were enrolled, the Children of the Depression, born in 1924–1930, and the War 

Babies, born in 1942–1947. The HRS now employs a steady-state design, replenishing the sample 

every six years with younger cohorts to continue making it fully representative of the population 

over age 50.  

 

4.1 Schooling Attainment 

We obtain the schooling attainment of HRS participants and their mothers from the RAND 

HRS dataset (version V1), which is measured with grades of schooling ranging from 0–17. We 
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discretize participants’ grades of schooling into high-school dropout (<12), high-school graduation 

(12), some college education (13-15) and college graduation (≥16). Mothers’ schooling is 

discretized into high-school dropout, high-school graduate and more than high school. 

 

4.2 Cognition Measures 

Cognition measures come from the Harmonized Cognition Protocol Assessment (HCAP), 

which was initiated in 2016. Participants were selected to be part of HCAP if they were 65 years 

or older and had completed the 2016 interview. Though the HRS includes spouses/couples, there 

are no spousal/couple pairs in HCAP. Of those eligible for HCAP, the HRS randomly selected half 

of uncoupled respondents, and one respondent from each coupled household. 

HCAP consisted of two parts, a respondent interview and an informant interview. In the 

respondent interview, participants completed comprehensive, in-person neuropsychological 

assessments (see appendix B for test descriptions) that took about one hour. Immediately 

afterwards an individual nominated by each HRS respondent completed an informant interview in 

another room answering questions on the respondent’s functioning and changes in abilities over 

the last 10 years. Of the eligible 4,425 participants, 3,496 completed the HCAP interview. There 

were 149 cases where the HRS respondents were not able to conduct interviews and only the 

informant interviews were conducted.  

Appendix Table C2 shows the order in which the cognitive tests were undertaken, cognitive 

domains assessed, numbers of observations and numbers of missing observations. For most 

cognition tests, the number of missing observations is low (<50; 2% of HCAP respondents). For 

some tests, the number of missing observations is higher (e.g., letter cancellation has 150 



18 

observations imputed). The HRS has imputed missing cognition scores, so we do not lose data due 

to missing cognition scores in our analysis. 

To aid comparisons with the literature, we primarily focus on composite scores for 

immediate and delayed memories constructed by summing up the scores on the HRS Telephone 

Interview for Cognitive Status (TICS), three trials of the Consortium to Establish a Registry for 

Alzheimer’s Disease (CERAD) word list-immediate, three trials of the CERAD word list-delayed, 

CERAD constructional praxis-delayed, story-recall immediate, and story-recall delayed tests. The 

other cognition outcomes we examine are: Mini Mental State Examination (MMSE, which is seen 

as a measure of global cognition), recognition memory (sum of scores on CERAD word list-

recognition and story-recall recognition), verbal fluency (animal naming test), executive function 

(Raven’s progressive matrices test), attention/speed (sum of scores on backward counting and 

letter cancellation tests), and visuospatial (CERAD constructional praxis-immediate). 

 

5. Results 

5.1 Descriptive Statistics 

Summary statistics for our analytical sample are shown in Table 1 column 1. We have an 

analytical sample of 3,072. From the full HCAP sample of 3,496 observations, we lose 149 

observations where no respondent interview was conducted. We then drop respondents with 

missing data on schooling (4 observations), mothers’ schooling (269 observations), and race (2 

observations). The average age is 76 years (range of 65–102 years), 61% are female, and 73% are 

non-Hispanic white. Mothers’ schooling is concentrated at the lower end of the schooling 

distribution. Over half (54%) of individuals had mothers who never graduated from high school, 

and 32% of individuals had mothers who graduated from high school. Only 14% of individuals 
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had mothers who had more than high-school education. Average grade of schooling for HCAP 

participants is 12.92, with 18% of individuals being high-school dropouts and 25% being college 

graduates.   

Columns 2-5 provide summary statistics by gender and race. Although men have higher 

schooling attainment than women, they do not outperform women on all cognition domains. 

Women score higher on average on the MMSE, immediate and delayed memory, and recognition 

memory. On average, men perform better than women on verbal fluency, executive function, 

attention/speed, and visuospatial tests. Non-Hispanic white and non-Hispanic black individuals 

have higher schooling attainment than Hispanic individuals. Average cognition scores on all 

domains are higher for non-Hispanic white individuals compared to non-Hispanic black and 

Hispanic individuals.  

Average cognition scores by schooling attainment are in appendix Table C3. Cognition 

scores are increasing in schooling attainments, which is consistent with the testable implication of 

the MTS+MTR assumptions. Finally, at equivalent levels of schooling, the average score on our 

composite measure of immediate and delayed memory is higher for women than men. For 

example, the average immediate and delayed memory score for women (respectively, men) who 

are high-school dropouts is 38.98 (34.80), and for those who are college graduates is 58.96 (53.71). 

These findings are consistent with descriptive evidence from Angrisani et al. (2020) showing that 

the schooling gap by gender is negligible on cognition tests that do not require numeracy or 

literacy. 
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5.2 Results for Immediate and Delayed Memory 

 Panel A of Table 2 displays the results for increasing schooling from high-school dropout 

to high-school graduate. The OLS estimate (column 2) indicates that the memory score of high-

school graduates is on average 9.3 points higher than that of high-school dropouts. This represents 

an average effect of 0.58 SDs relative to the SD of high-school dropouts (the control group). 

Columns 3–7 show the estimated bounds and 95% confidence intervals under different sets of 

assumptions. The NA bounds are wide, indicating that the true average causal effect of completing 

secondary schooling could at worst lower memory scores by 71.80 points and at most improve 

scores by 74.44 points. Adding the MTS assumption—that individuals with higher schooling 

attainment have on average higher potential cognition—substantially reduces the estimated upper 

bound. Completing secondary schooling under the MTS assumption (column 4) at most increases 

memory scores by 34.47 points. The MTS bounds are still wide and include zero. Adding the MTR 

assumption by itself (column 5) restricts the lower bound mechanically to zero, because MTR rules 

out the possibility that schooling worsens cognition. The combination of the MTS and MTR 

assumptions (column 6) provides considerably tighter bounds compared to previous bounds. 

Completing secondary schooling at worst has no effect and at most increases the memory score by 

12.92 points. This represents an effect of at most 0.81 SDs relative to the control SD. To tighten 

the MTS+MTR bounds we use mothers’ schooling as a MIV with three bins (high-school dropout, 

high-school graduate, more than high school). Adding the MIV to the MTS+MTR assumptions 

slightly reduces the estimated upper bound to 11.48 points (0.72 SDs) in column 7.8 

How does the range of causal effects for completing secondary schooling under the 

MTS+MTR+MIV assumptions compare with IV and fuzzy-RDD estimates from studies using 

 
8 Adding the MIV to the MTS (MTR) assumption also only leads to slight tightening of bounds. The ATE of 

going from being a high-school dropout to high-school graduate under the MTS+MIV (MTR+MIV) assumptions is 
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compulsory-schooling laws? First note that our bounds are on the population ATE of completing 

secondary schooling and are not directly comparable to prior IV and fuzzy-RDD estimates. While 

these latter estimates also capture effects at the lower part of the schooling distribution, they 

estimate a LATE for individuals who continued their schooling because of compulsory-schooling 

laws (the compliers), which may differ from the effect for individuals who would have remained 

in school regardless of the compulsory-schooling laws (Clark and Royer 2013), and thus from the 

population ATE. The bounds indicate that there is potentially a substantial effect of completing 

secondary schooling—0.72 SDs. This implies that an additional grade of schooling increases 

memory scores by at most 0.18 SDs, given a four-grade difference in schooling between high-

school graduates and dropouts. Our estimated upper bound is thus substantially smaller than 

estimates of an extra grade of schooling for the US (0.34 SDs; Glymour et al. 2008) and UK (0.42–

0.50 SD; Banks and Mazzonna 2012; Gorman 2023), but possibly larger than the IV estimates 

identified for Europe (0.08–0.09 SDs; Schneeweis et al. 2014). The fact that the IV estimate for 

the US in Glymour et al. (2008) is above our estimated upper bound may be interpreted as 

reflecting treatment-effect heterogeneity. Since compulsory-schooling laws are most likely to 

affect the schooling levels of individuals who would otherwise have relatively low schooling 

(Card, 1999), the average effect for the compliers being larger than for the population would be 

consistent with these individuals having higher marginal returns to additional years of secondary 

schooling in terms of cognition at older ages relative to the overall population. A similar reasoning 

has been used before in the context of estimating the effect of schooling on earnings, where Card 

(1999) points to possible differences in the returns to education as a potentially important reason 

why IV estimates of this effect based on compulsory-schooling laws tend to exceed corresponding 

 
between −48.86 and 33.01 (0 and 52.82). MTS+MIV and MTR+MIV bounds for all schooling margins are shown in 
appendix Table C4. 
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OLS estimates. Finally, note that our bounds include the OLS estimates, whereas prior IV 

estimates are larger than OLS estimates.9 

Panel B shows results for increasing schooling from high-school graduation to some-

college education. Under the MTS+MTR+MIV assumptions going from high school to some-

college education increases memory scores by 0–4.10 points (0–0.24 SDs). The MTS+MTR+MIV 

bounds in panel C show that going from having some college education to graduating from college 

increases memory scores by 0–5.26 points (0.32 SDs). We note that the estimated upper bounds 

under the MTS+MTR+MIV assumptions at both of these schooling margins are much smaller 

compared to those from completing high school. 

Panel D provides results for increasing schooling from high-school to college graduation. 

Here, we obtain fairly tight bounds under the MTS+MTR+MIV assumptions. Increasing schooling 

from secondary to tertiary increases average memory score by 1.87–6.74 points (0.11–0.39 SDs).10 

The estimated bounds exclude zero and the OLS estimate (9.64), as does the 95% confidence 

interval, which implies that the true effect is between 1.14 and 7.75 points (0.07–0.45 SDs). Given 

a difference of four grades of schooling between college and high-school graduates, the estimated 

bounds (95% confidence interval) imply that an additional grade of schooling increases memory 

scores by 0.03–0.10 (0.02–0.11) SDs.  

We also obtain informative bounds under the MTS+MTR+MIV assumptions for increasing 

schooling from primary to tertiary in panel E. The bounds indicate that the average causal effect 

 
9 With heterogeneous treatment effects, OLS estimates the population ATE while IV estimates a LATE. 

Differences between OLS and IV estimates may come from possible bias in OLS estimates or from the fact that OLS 
and IV methods estimate effects for different populations.  

10 Appendix Table C5 shows estimated bounds on the mean potential memory scores for each schooling level 
𝑡𝑡 (𝐸𝐸[𝑌𝑌(𝑡𝑡)]). For example, following equation (3) and under the MTS+MTR+MIV assumptions, the lower bound on 
the average memory-score effect from secondary (t2) to tertiary (t4) in Table 2 is positive because the estimated lower 
bound on E[Y(t4)] (52.35) is greater than the estimated upper bound on E[Y(t2)] (50.51). See note to online appendix 
Table C5 for further details. 
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is between 3.43–16.30 points (0.22–1.02 SDs).  The 95% confidence interval excludes the OLS 

estimate (18.91) and zero, implying a statistically significant average memory effect of at least 

0.22 SDs of increasing schooling from primary to tertiary.  

Figure 3 gives MTS+MTR+MIV bounds by gender and race at the different schooling 

margins. Across both gender and race, there are possibly large effects of completing high school 

with estimated upper bounds of 0.77 SDs for men, 0.80 SDs for women, 0.65 SDs for non-Hispanic 

white individuals, 0.63 SDs for non-Hispanic black individuals and 0.90 SDs for Hispanic 

individuals. These bounds are also consistent with moderate, small, and null effects. In general, it 

is difficult to draw strong conclusions regarding effect heterogeneity because the bounds overlap 

and thus there are no statistically significant differences by gender and race. When examining 

differences between college and high-school graduates non-Hispanic white individuals have the 

narrowest bounds (0.09–0.34 SDs). In contrast, non-Hispanic black and Hispanic individuals have 

wider bounds, and the confidence intervals include zero. Finally, increasing schooling from 

primary to tertiary statistically significantly increases average memory scores across all genders 

and races. 

 

5.3 Results for Other Cognition Domains 

We focus on results from increasing schooling from primary to secondary (for comparisons 

with studies using compulsory-schooling laws) and from secondary to tertiary (to see if the 

informative bounds for memory replicate).11 Figure 4 Panel A presents results for completing 

secondary schooling, indicating that there could be zero, small, or potentially large causal effects. 

The literature has found mixed results for cognition domains other than memory, and given the 

 
11 See appendix Table C6 for full results. 
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width of the bounds, we cannot make strong comparisons with previous studies.  For example, the 

estimated upper bounds indicate that completing secondary schooling increases verbal-fluency 

scores at most by 0.67 SDs, implying that an additional grade of schooling increases verbal fluency 

by at most 0.17 SDs. This is larger than the IV estimate in Gorman (2023), who found that an extra 

grade of schooling increased verbal fluency by 0.05 SDs but was imprecisely estimated. The 

bounds do exclude IV estimates for verbal fluency in Schneeweis et al. (2014), which were all 

negative and statistically insignificant.  

Panel B shows results for increasing schooling from secondary to tertiary. All the bounds 

statistically exclude zero (marginally for recognition memory and visuospatial), implying 

statistically significant average effects of increasing schooling from secondary to tertiary on these 

cognitive measures. The tightest bounds are obtained for the MMSE. Transitioning from being a 

high-school to college graduate increases MMSE scores by 0.08–0.27 SDs. The width of the 

bounds is similar for verbal fluency, executive function, attention/speed, indicating average causal 

effects of about 0.05–0.40 SDs. All the bounds and 95% confidence intervals (except for MMSE 

and recognition memory) exclude the OLS estimates. These results highlight the potential role that 

increasing schooling from secondary to tertiary can have in improving cognitive abilities at older 

ages. 

Gender and race specific bounds under the MTS+MTR+MIV assumptions are shown in 

Figure 5. While there are no statistically significant differences, there is some suggestive evidence 

of racial differences for attention/speed, where we can only statistically rule out null effects for 

non-Hispanic black individuals (with bounds indicating effects between 0.26–0.47 SDs). Effects 

of increasing schooling at other parts of the schooling distribution by gender and race are shown 
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in appendix Figures C1-C4. As before, there are no statistically significant gender or race 

differences. 

 

5.4 Possible Mechanisms 

 This section investigates effects of schooling on possible pathways through which 

schooling can affect older-age cognition. Panel A in Table 3 presents MTS+MTR+MIV bounds 

on effects of increasing schooling for HCAP respondents on the probability of reporting poor/fair 

health, body-mass index (BMI), depressive symptoms measured by the Center for Epidemiologic 

Studies Depression Scale (CES-D; scale 0-8), probability of reporting ever smoked, probability of 

reporting ever diagnosed with high blood pressure and probability of reporting not doing vigorous 

exercise in the 2016 HRS survey. Since schooling is negatively correlated with these measures, we 

employ non-positive versions of the MTS and MTR assumptions and assume that mothers’ 

schooling has a weakly decreasing relationship with the mean potential outcomes of these 

measures.12 Estimated bounds show that college graduates are 2.1–11.4 percentage points less 

likely to be in poor/fair health and 2.1–5.9 percentage points less likely to have ever smoked 

compared to high-school graduates. The CES-D score of college graduates is also 0.012–0.34 

points lower than high-school graduates. While the estimated bounds exclude null effects, the 95% 

confidence intervals do not. The results thus provide some suggestive evidence that the effects of 

increasing schooling from secondary to tertiary on older-age cognition could operate partly 

through better health at older ages.   

 
12 Taking depressive symptoms as an example, the MTR assumption now requires that more schooling does 

not increase depressive symptoms, and the MTS assumption states that individuals with higher schooling attainment 
do not have strictly higher mean potential depressive symptoms at every schooling level. The MIV assumption states 
that the individuals’ mean potential depressive symptoms are not strictly increasing in their mothers’ schooling levels. 
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 Panel B column 1 reports effects of schooling on the probability of the respondent’s 

household being in poverty the last calendar year. Going from being a high-school to college 

graduate reduces the probability of being in poverty by 1.3–5.7 percentage points and the 95% 

confidence interval marginally excludes zero. We use information on the occupation code for the 

job with the longest tenure from the RAND HRS 2016 wave to create a dummy variable for having 

worked in managerial/professional occupations the longest. This may be an important channel 

because managerial/professional occupations are likely to be cognitively stimulating, which 

enhances cognitive reserve and protects against cognitive decline. Increasing schooling from 

secondary to tertiary statistically significantly increases the probability of having longest tenure in 

managerial/professional occupations by 2.2–9 percentage points (column 2), and the probability 

of having  spouses who are college graduate by 6.2–28.4 percentage points (column 3). Overall, 

these results suggest that the effects of increasing schooling from secondary to tertiary on cognition 

could work through the channels in Panel B. 

 

5.5 Robustness Checks 

We conducted two robustness checks. First, our main analysis uses grades of schooling to 

group respondents and their mothers into educational groups. We investigated whether bounds 

would be narrower when using respondents’ grades of schooling as the treatment and mother’s 

grades of schooling (with three bins) as the MIV. Results are shown in appendix Table C7. Our 

main findings on the effects of increasing schooling from high-school to college graduation are 

robust to this alternative coding scheme. We find that increasing schooling from 12 to 16 grades 

increases immediate and delayed memory scores by 0.14–0.27 SDs, memory recognition by 0.04–

0.17 SDs, MMSE by 0.10–0.23 SDs, verbal fluency by 0.10–0.34 SDs, executive function by 0.25–
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0.33 SDs, attention/speed by 0.24–0.30 SDs, and visuospatial by 0.10–0.34 SDs. With this coding 

scheme we cannot statistically exclude null effects for MMSE, recognition memory, verbal 

fluency, and visuospatial, whereas in Figure 4 all the 95% confidence intervals exclude zero 

(marginally for recognition memory and visuospatial).  

Second, we examined the robustness of the estimated bounds to attrition in the HRS 

through inverse probability weighting. We first performed a logit regression on the probability of 

being in the HRS 2016 survey as a function of year of birth, gender, schooling, mother’s schooling, 

self-reported health, mental health (CES-D score), cognition scores, and BMI.13 Self-reported 

health, BMI, CES-D, and cognition scores were averaged across the first observed wave through 

the last observed wave (not including 2016). Covariates with missing values (mainly mother’s 

schooling) were imputed with their sample mean and controlled for in regressions with 

missingness dummy variables. The inverse of the predicted probabilities was then used to weight 

the observations when computing the OLS estimates and estimated bounds. Results are given in 

appendix Table C8, which are similar to our main findings. 

 

5.6 Replication in the Midlife in United States Development Study (MIDUS) 

 For external validity, we examined schooling effects on cognition for a sample of older 

adults in the MIDUS, which is a national sample of 7,108 adults aged 25–74 first interviewed in 

1995–96. Nine years later the second wave (MIDUS 2) included data from about 75% (N=4,963) 

of the original respondents. We use the MIDUS 2 Cognitive Project where 4,512 participants 

undertook the Brief Test of Adult Cognition by Telephone (BTACT). The BTACT included 

 
13 For cognition, we used the summary measure of cognition in the RAND dataset, which sums up scores 

from (1) a 10-word immediate and delayed recall tests of memory; (2) a serial 7s subtraction test of working memory; 
(3) counting backwards to assess attention and processing speed; (4) an object-naming test to assess language; and (5) 
recall of the date and president and vice-president to assess orientation. 
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measures of memory (immediate and delayed recall of 15 words), inductive reasoning (number 

series; completing a pattern in a series of 5 numbers), verbal fluency (the number of words 

produced from the category of animals in 60 seconds, as in the HRS), processing speed (backward 

counting, as in the HRS) and working memory (backward digit span; the highest span achieved in 

repeating strings of digits in reverse order). Despite its brief length, the BTACT is a reliable and 

valid measure of cognition (Lachman et al. 2014). 

We restricted our analysis to 1,016 individuals aged 65 years or older with data on 

schooling and mothers’ schooling. Summary statistics are in appendix Table C9. The average age 

and proportion of women in the MIDUS is similar to the HRS, as well as the distribution of 

mothers’ schooling. Average grades of schooling are higher in the MIDUS (13.79) than in the HRS 

(12.92), reflecting the higher proportion of white individuals in the MIDUS (95% vs 73%). 

Average grades of schooling of white individuals in our HRS analytical sample (13.49) is similar 

to the MIDUS. 

 Appendix Figure C5 presents a comparison of results for increasing schooling from (a) 

primary to secondary and (b) secondary to tertiary (full results are in appendix Table C10). Similar 

to the HRS, the MIDUS bounds show that the average causal effect of completing secondary 

schooling could be zero, small, equal to OLS estimates, or potentially larger (but at most about 

0.50–0.55 SDs, depending on the specific measure). The OLS estimates and the width of the 

bounds are quite similar, especially for immediate and delayed memory. In the MIDUS, estimated 

bounds for increasing schooling from secondary to tertiary on immediate and delayed memory are 

tight (0.10–0.17 SDs), but the 95% confidence interval is much wider (0–0.32 SDs). Similarly, the 
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bounds for verbal fluency and attention/speed do not statistically exclude zero, whereas they do in 

the HRS. In both datasets, all the estimated upper bounds are smaller than the OLS estimates.14  

6. Summary 

Does schooling have a causal effect on cognition at older ages? The evidence for this 

important question is surprisingly limited, given growing ADRD cases, the recognition of 

schooling as the largest non-biological life-cycle intervention for ADRD, and the many 

associations without attempts to provide casual estimates between schooling and various 

dimensions of aging. We contribute to the literature by employing a partial-identification approach 

to determine a range of plausible values for the population average causal effect of schooling on 

cognition in the HRS, under weak assumptions. We find that the average causal effect of increasing 

schooling from primary to secondary levels on immediate and delayed memory could be zero, 

small, or potentially large, but no more than 0.72 SDs. The estimated upper bound implies that an 

additional grade of schooling increases memory scores by at most 0.18 SDs. This is substantially 

smaller than estimates from studies using compulsory-schooling laws for identification, where 

estimates represent a LATE only for those who increase their schooling due to these laws. We also 

reach similar conclusions for global cognition, verbal fluency, executive function, recognition 

memory and visuospatial. We further provide new evidence that there are important effects of 

schooling on older-age cognition at other parts of the schooling distribution. This is critical because 

the previous literature using compulsory-schooling laws for identification obtaining LATE 

estimates for secondary-school completion, and the effects may differ at other points of the 

schooling distribution. We obtain a fairly narrow range of estimated average causal effects of 

 
14 We also estimated bounds on the effects of schooling on cognition for individuals aged 25–50 years, 

finding that increasing schooling from secondary to tertiary increases memory scores, verbal fluency, and 
attention/speed, respectively, by 0.03–0.18, 0.06–0.39, and 0.05–0.71 SDs, statistically ruling out null effects for the 
last two. Full results are in appendix Table C11. 
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increasing schooling from secondary to tertiary on all cognition domains. Moreover, these 

estimated bounds statistically rule-out zero effects for all the cognition domains (marginally for 

recognition memory and visuospatial). For example, an extra grade of schooling increases average 

immediate and delayed memory by 0.03–0.10 SDs when transitioning from being a high-school to 

a college graduate. Finally, we find some suggestive evidence that these effects may work through 

having higher probabilities of working in cognitively stimulating (managerial/professional) 

occupations, more-schooled spouses, higher SES and better health at older ages. Thus, our analyses 

lead to a more nuanced and extended understanding of the impacts of different levels of schooling 

on cognition at older ages in the US. 
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Figure 2: No-Assumption, MTS and MTR Bounds for 𝑬𝑬[𝒀𝒀(𝒕𝒕𝟐𝟐)] 
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Table 1: Summary Statistics 
 Full Sample Men Women Whites Blacks Hispanics 
Demographics       
Age 76.15 (7.41) 75.96 (7.18) 76.27 (7.55) 76.80 (7.47) 74.41 (6.97) 74.36 (6.98) 
Female 0.61 (0.49) — — 0.59 (0.49) 0.69 (0.46) 0.61 (0.49) 
Race: Non-Hispanic White 0.73 (0.44) 0.77 (0.42) 0.71 (0.45) — — — 
Race: Non-Hispanic Black 0.16 (0.35) 0.12 (0.32) 0.16 (0.37) — — — 
Race: Hispanic 0.10 (0.30) 0.10 (0.30) 0.10 (0.32) — — — 
Race: Other 0.02 (0.15) 0.02 (0.13) 0.02 (0.15)    
Mother: HS Dropout 0.54 (0.50) 0.48 (0.50) 0.58 (0.49) 0.46 (0.50) 0.68 (0.47) 0.87 (0.33) 
Mother: HS Grad 0.32 (0.47) 0.37 (0.48) 0.28 (0.45) 0.36 (0.48) 0.25 (0.44) 0.09 (0.28) 
Mother: More than HS 0.14 (0.35) 0.14 (0.35) 0.14 (0.35) 0.17 (0.38) 0.06 (0.24) 0.04 (0.20) 
       
Schooling       
Grades of Schooling 12.92 (3.07) 13.24 (3.06) 12.71 (3.05) 13.49 (2.44) 12.50 (2.84) 9.35 (4.55) 
HS Dropout 0.18 (0.38) 0.16 (0.36) 0.19 (0.40) 0.11 (0.32) 0.24 (0.43) 0.55 (0.50) 
HS Grad 0.33 (0.47) 0.31 (0.46) 0.34 (0.47) 0.35 (0.48) 0.33 (0.47) 0.20 (0.40) 
Some College 0.23 (0.42) 0.22 (0.41) 0.24 (0.43) 0.24 (0.43) 0.23 (0.42) 0.16 (0.37) 
College Grad 0.25 (0.44) 0.31 (0.46) 0.22 (0.42) 0.29 (0.46) 0.19 (0.40) 0.08 (0.27) 
       
Cognition        
Mini-Mental State Exam 26.76 (3.84) 26.60 (3.64) 26.87 (3.95) 27.26 (3.48) 25.48 (4.22) 25.27 (4.61) 
Immediate and Delayed 
Memory 

48.81 (18.12) 46.46 (16.90) 50.33 (18.72) 50.72 (17.98) 44.33 (17.95) 42.06 (16.49) 

Memory Recognition 28.82 (4.44) 28.56 (4.15) 28.99 (4.60) 29.25 (4.26) 28.13 (4.89) 26.88 (4.34) 
Verbal Fluency 16.16 (6.65) 16.45 (6.68) 15.96 (6.62) 16.92 (6.69) 13.55 (6.19) 14.71 (5.76) 
Attention/Speed 44.02 (15.08) 44.97 (14.85) 43.40 (15.20) 43.36 (13.99) 38.05 (15.67) 36.14 (16.15) 
Executive Function 12.44 (3.73) 12.84 (3.73) 12.17 (3.70) 13.19 (3.33) 9.98 (4.00) 10.70 (3.83) 
Visuospatial ability 8.12 (2.33) 8.42 (2.25) 8.07 (2.37) 8.52 (2.22) 7.15 (2.36) 7.41 (2.51) 
       
Observations 3,072 1,206 1,866 2,248 448 310 

Notes: Standard deviations are shown in parentheses.  
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Table 2: OLS Estimates and Bounds for the Effect of Schooling on Immediate and Delayed Memory 

Notes: Robust standard errors in (.) in column 2. In columns 3-7 estimated bounds are in [.] and corresponding 95% confidence intervals in (.) are 
from 999 bootstrap replications. The min and max values of the outcome was used in computing the bounds. The MIV is mother’s schooling with 
bins for high-school dropout, high-school graduate and more than high school.   
***p<0.001

 Control 
Mean (SD) 

OLS No Assumption MTS MTR MTR+MTS MTS+MTR+MIV 

 (1) (2) (3) (4) (5) (6) (7) 
Panel A 
HS Grad vs HS 
Dropout 

37.55 
(15.95) 

9.29*** 
(0.87) 

[-71.80, 74.41] 
(-72.61, 75.21) 

[-48.75,34.47] 
(-49.52,35.90) 

[0.00, 52.89] 
(0.00, 53.40) 

[0.00, 12.92] 
(0.00, 14.18) 

[0.00, 11.48] 
(0.00, 13.42) 

Panel B 
Some College 
vs HS Grad 

46.82 
(17.22) 

4.90*** 
(0.82) 

[-69.07, 71.78] 
(-69.94 ,72.55) 

[-46.55, 25.24] 
(-47.23, 26.47) 

[0.00, 54.33] 
(0.00, 54.85) 

[0.00, 7.79] 
(0.00, 8.94) 

[0.00, 4.10] 
(0.00, 4.71) 

Panel C 
College vs 
Some College 

51.73 
(16.55) 

4.73*** 
(0.88) 

[-72.59, 75.18] 
(-73.41, 75.93) 

[-49.09, 31.01] 
(-49.88, 32.32) 

[0.00, 53.06] 
(0.00, 53.57) 

[0.00, 8.88] 
(0.00, 10.09) 

[0.00, 5.26] 
(0.00, 6.32) 

Panel D 
College vs HS 
Grad 

46.82 
(17.22) 

9.64*** 
(0.83) 

[-66.50, 71.80] 
(-67.35, 72.56) 

[-57.39, 17.98] 
(-58.22, 19.37) 

[0.00, 65.11] 
(0.00, 65.84) 

[0.00, 11.29] 
(0.00, 12.63) 

[1.87, 6.74] 
(1.14, 7.75) 

Panel E 
College vs HS 
Dropout 

37.55 
(15.95) 

18.91*** 
(0.93) 

[-72.61, 80.55] 
(-73.54, 81.24) 

[-72.61, 18.92] 
(-73.54, 20.42) 

[0.00, 80.55] 
(0.00, 81.24) 

[0.00, 18.92] 
(0.00, 20.44) 

[3.43, 16.30] 
(2.75, 18.46) 
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Table 3: Bounds for the Effects of Schooling on Health, Poverty, Occupation, and Spousal Schooling at Older Ages 
Panel A: Health  
Measures 

Poor or Fair 
Health 

BMI CES-D Ever-Smoke High blood 
pressure 

Not engaging in 
vigorous exercise 

HS Grad vs HS 
Dropout 

[-0.203, 0.000] 
(-0.254, 0.000) 

[-0.196, 0.000] 
(-0.956, 0.000) 

[-0.830, 0.000] 
(-1.031, 0.000) 

[-0.048, -0.007] 
(-0.093,  0.000) 

[-0.116, 0.000] 
(-0.149, 0.000) 

[-0.103, 0.000] 
(-0.151, 0.000) 

Some College vs 
HS Grad 

[-0.077, 0.000] 
(-0.095, 0.000) 

[-0.164, -0.007] 
(-0.460, 0.000) 

[-0.200, 0.000] 
(-0.294, 0.000) 

[-0.012, -0.013] 
(-0.048, 0.000) 

[-0.042, 0.000] 
(-0.061, 0.000) 

[-0.031, 0.000] 
(-0.053, 0.000) 

College Grad vs 
Some College 

[-0.078, 0.000] 
(-0.105, 0.000) 

[-0.370, 0.000] 
(-0.894, 0.000) 

[-0.229, 0.000] 
(-0.362, 0.000) 

[-0.046, -0.002] 
(-0.087, 0.000) 

[-0.065, 0.000] 
(-0.093, 0.000) 

[-0.135, -0.008] 
(-0.167, 0.000) 

College Grad vs 
HS Grad 

[-0.114, -0.021] 
(-0.139, -0.000) 

[-0.443, 0.000] 
(-0.928, 0.000) 

[-0.343, -0.012] 
(-0.480, 0.000) 

[-0.059, -0.021] 
(-0.097, 0.000) 

[-0.075, -0.011] 
(-0.102, 0.000) 

[-0.141, -0.027] 
(-0.171, 0.000) 

College Grad vs 
HS Dropout 

[-0.270, -0.058] 
(-0.324, -0.039) 

[-0.553, 0.000] 
(-1.374, 0.000) 

[-1.014, -0.135] 
(-1.251, -0.045) 

[-0.109, -0.027] 
(-0.161, 0.000) 

[-0.172, -0.022] 
(-0.213, -0.003) 

[-0.234, -0.032] 
(-0.291, -0.005) 

Panel B: SES 
Measures 

In Poverty Professional/ 
Managerial 
Occupations 

Spouse is a 
College Graduate 

   

HS Grad vs HS 
Dropout 

[-0.124, 0.000] 
(-0.158, 0.000) 

[0.000, 0.122] 
(0.000, 0.152) 

[0.000, 0.288] 
(0.000, 0.323) 

   

Some College vs 
HS Grad 

[-0.044, 0.000] 
(-0.056, 0.000) 

[0.000, 0.040] 
(0.000, 0.062) 

[0.000, 0.096] 
(0.000, 0.115) 

   

College Grad vs 
Some College 

[-0.037, 0.000] 
(-0.052, 0.000) 

[0.002, 0.080] 
(0.000, 0.107) 

[0.000, 0.272] 
(0.000, 0.304) 

   

College Grad vs 
HS Grad 

[-0.057, -0.013] 
(-0.072, -0.001) 

[0.022, 0.090] 
(0.003, 0.119) 

[0.062, 0.284] 
(0.041, 0.316) 

   

College Grad vs 
HS Dropout 

[-0.155, -0.034] 
(-0.192, -0.021) 

[0.031, 0.194] 
(0.013, 0.235) 

[0.076, 0.548] 
(0.056, 0.587) 

   

Notes: Estimated bounds are in [.] and corresponding 95% confidence intervals in (.) are from 999 bootstrap replications. The min and max values 
of the outcome were used in computing the bounds. The MIV is mother’s schooling with bins for high-school dropout, high-school graduate and 
more than high school. For the variable “Spouse is a College Graduate”, the analysis is done only for HCAP respondents who are part of a coupled 
household. We use information on spousal schooling from the HRS 2016 wave. 
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Appendix A: Technical Appendix  

This appendix provides additional details on our econometric approach. Let every 

individual 𝑖𝑖 have a response function 𝑌𝑌 (∙):𝑇𝑇 → 𝒴𝒴 which maps treatments 𝑡𝑡 𝜖𝜖 𝑇𝑇 into potential 

outcomes 𝑌𝑌𝑖𝑖 (𝑡𝑡)  𝜖𝜖 𝒴𝒴. In our context, the treatment 𝑡𝑡 is schooling attainment consisting of four 

levels: high-school dropouts (𝑡𝑡1), high-school graduates (𝑡𝑡2), some college education (𝑡𝑡3) and 

college graduates (𝑡𝑡4). Let 𝑆𝑆𝑖𝑖 denote the realized treatment received by individual 𝑖𝑖, so that 𝑌𝑌𝑖𝑖 ≡

∑ 1{𝑆𝑆𝑖𝑖 = 𝑡𝑡} ⋅ 𝑌𝑌𝑖𝑖𝑡𝑡∈𝑇𝑇 (𝑡𝑡) is the associated observed outcome, where 1{𝐴𝐴} is the indicator function 

which equals one if the statement 𝐴𝐴 is true and equals zero otherwise. We are interested in the 

population ATE of, for example, increasing schooling attainment from 𝑡𝑡1 to 𝑡𝑡2 on cognition test 

scores, defined as: 

 

(A1)   ∆ (𝑡𝑡1, 𝑡𝑡2) = 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] − 𝐸𝐸[𝑌𝑌(𝑡𝑡1)] 

 

As discussed in section 3 of the paper, estimation of the ATE is complicated because of the missing 

counterfactuals, which can be seen by using the law of iterated expectations to write the expected 

potential outcome 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] as: 

 

(A2) 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] = 𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑆𝑆 < 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆 < 𝑡𝑡2) + 𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑆𝑆 = 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆 = 𝑡𝑡2)
+ 𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑆𝑆 > 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆 > 𝑡𝑡2) 
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Manski (1989) suggested a bounded-support assumption, whereby one uses the minimum (𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚) 

and maximum (𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚) of the outcome variable in place of the counterfactuals. This gives Manski’s 

(1989) “no-assumption” bounds: 

 

(A3) 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑃𝑃(𝑆𝑆 < 𝑡𝑡2)  +  𝐸𝐸[𝑌𝑌|𝑆𝑆 = 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆 = 𝑡𝑡2) +  𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑃𝑃(𝑆𝑆 > 𝑡𝑡2) 
                             ≤ 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] ≤ 
       𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑃𝑃(𝑆𝑆 < 𝑡𝑡2)   + 𝐸𝐸[𝑌𝑌|𝑆𝑆 = 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆 = 𝑡𝑡2) + 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑃𝑃(𝑆𝑆 > 𝑡𝑡2) 
 

The no-assumption lower (upper) bound on the ATE ∆ (𝑡𝑡1, 𝑡𝑡2) is calculated by subtracting 

the upper (lower) bound of 𝐸𝐸[𝑌𝑌(𝑡𝑡1)] from the lower (upper) bound of 𝐸𝐸[𝑌𝑌(𝑡𝑡2)]. Bounds for other 

treatment effects such as ∆ (𝑡𝑡2, 𝑡𝑡3), ∆ (𝑡𝑡1, 𝑡𝑡3) or ∆ (𝑡𝑡2, 𝑡𝑡4) are computed analogously. In practice, 

the no-assumption bounds are typically wide and uninformative,  and contain zero by construction. 

To tighten the bounds, we employ three monotonicity assumptions introduced in Manski (1997) 

and Manski and Pepper (2000): (1) monotone treatment selection; (2) monotone treatment 

response; and (3) monotone instrumental variable. 

 

Monotone Treatment Selection (MTS) 

We employ the non-negative MTS assumption which captures the notion that, on average, 

individuals who “selected” into higher education have higher latent cognitive abilities. Formally, 

for each 𝑡𝑡 𝜖𝜖 𝑇𝑇 and two treatment levels μ1 and μ2 

 

(A4) µ2  ≥ µ1  ⇒ 𝐸𝐸[𝑌𝑌(𝑡𝑡) ∣ 𝑆𝑆 = μ2] ≥ 𝐸𝐸[𝑌𝑌(𝑡𝑡) ∣ 𝑆𝑆 = μ1] 

 

The MTS assumption requires that individuals with higher schooling attainment on average have 

weakly higher potential outcomes at every schooling level 𝑡𝑡. For example, when comparing high-
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school graduates (e.g., 𝑆𝑆 = μ2) to high-school dropouts (𝑆𝑆 = μ1), the MTS assumption requires 

that the average potential cognition at older ages at any schooling level 𝑡𝑡 (e.g., as a college 

graduate) of high-school graduates is higher than that of high-school dropouts. 

Consider the conditional mean potential outcomes for individuals with 𝑆𝑆 < 𝑡𝑡2 and 𝑆𝑆 > 𝑡𝑡2. 

Under the MTS assumption, 𝐸𝐸[𝑌𝑌(𝑡𝑡2) ∣∣ 𝑆𝑆 < 𝑡𝑡2 ]  cannot be more than 𝐸𝐸[𝑌𝑌(𝑡𝑡2) ∣∣ 𝑆𝑆 = 𝑡𝑡2 ], which 

is identified by the observed mean outcome for those receiving 𝑡𝑡2. The observed mean outcome 

for those receiving 𝑡𝑡2 can therefore be used as an upper bound for the mean of 𝑌𝑌(𝑡𝑡2) for those with 

𝑆𝑆 < 𝑡𝑡2. Similarly, for the conditional mean potential outcome 𝐸𝐸[𝑌𝑌(𝑡𝑡2) ∣∣ 𝑆𝑆 > 𝑡𝑡2 ], the MTS implies 

that the unidentified quantity cannot be smaller than 𝐸𝐸[𝑌𝑌(𝑡𝑡2) ∣∣ 𝑆𝑆 = 𝑡𝑡2 ], or the observed mean 

outcome for 𝑆𝑆 = 𝑡𝑡2, 𝐸𝐸[𝑌𝑌|𝑆𝑆 = 𝑡𝑡2]. This implies that the observed mean outcome for those 

receiving 𝑡𝑡2 can be used as a lower bound for the mean of 𝑌𝑌(𝑡𝑡2) for those with 𝑆𝑆 > 𝑡𝑡2. Then, the 

MTS bounds on 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] are given by (Manski and Pepper, 2000): 

 

(A5) 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑃𝑃(𝑆𝑆 < 𝑡𝑡2) +  𝐸𝐸[𝑌𝑌|𝑆𝑆 = 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆 = 𝑡𝑡2) +  𝐸𝐸[𝑌𝑌|𝑆𝑆 = 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆 > 𝑡𝑡2) 
≤ 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] ≤ 

       𝐸𝐸[𝑌𝑌|𝑆𝑆 = 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆 < 𝑡𝑡2)  + 𝐸𝐸[𝑌𝑌|𝑆𝑆 = 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆 = 𝑡𝑡2) + 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑃𝑃(𝑆𝑆 > 𝑡𝑡2) 
 

As before, the lower (upper) bound on the ATE ∆ (𝑡𝑡1, 𝑡𝑡2) is calculated by subtracting the upper 

(lower) bound of 𝐸𝐸[𝑌𝑌(𝑡𝑡1)] from the lower (upper) bound of 𝐸𝐸[𝑌𝑌(𝑡𝑡2)], and likewise for other 

comparisons of interest.  

 

Monotone Treatment Response (MTR) 

We employ the non-negative MTR assumption, imposing the restriction that higher 

schooling attainment does not decrease cognitive ability at older ages. Formally, for each 

individual and any treatment levels 𝑡𝑡𝑘𝑘 and 𝑡𝑡𝑗𝑗: 
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(A6)𝑡𝑡𝑗𝑗 ≥ 𝑡𝑡𝑘𝑘 ⟹ 𝑌𝑌�𝑡𝑡𝑗𝑗� ≥ 𝑌𝑌(𝑡𝑡𝑘𝑘) 

 

A key implication from MTR is that, for example, 𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑆𝑆 = 𝑡𝑡ℓ] ≥ 𝐸𝐸[𝑌𝑌(𝑡𝑡1)|𝑆𝑆 = 𝑡𝑡ℓ] for 

any ℓ, given that 𝑡𝑡2 > 𝑡𝑡1. For any treatment levels 𝑡𝑡 < 𝑡𝑡2, MTR implies that the conditional mean 

𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑆𝑆 = 𝑡𝑡] is no less than 𝐸𝐸[𝑌𝑌(𝑡𝑡)|𝑆𝑆 = 𝑡𝑡], or the observed mean of 𝑌𝑌 at 𝑡𝑡, 𝐸𝐸[𝑌𝑌|𝑆𝑆 = 𝑡𝑡]. This 

increases the lower bound on 𝐸𝐸[𝑌𝑌(𝑡𝑡2)], relative to that obtained from the bounded support 

assumption alone. Further, for treatment levels 𝑡𝑡′ > 𝑡𝑡2, MTR implies that the conditional mean 

𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑆𝑆 = 𝑡𝑡′] cannot be more than 𝐸𝐸[𝑌𝑌(𝑡𝑡′)|𝑆𝑆 = 𝑡𝑡′], which is identified by the observed mean 

of 𝑌𝑌 at 𝑡𝑡′, 𝐸𝐸[𝑌𝑌|𝑆𝑆 = 𝑡𝑡′]. This reduces the upper bound on the unconditional mean 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] when 

compared to the no-assumption upper bound. 

The MTR bounds on 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] are given by (Manski 1997): 

 

(A7)  𝐸𝐸[𝑌𝑌|𝑆𝑆 < 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆 < 𝑡𝑡2) +  𝐸𝐸[𝑌𝑌|𝑆𝑆 = 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆 = 𝑡𝑡2) + 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑃𝑃(𝑆𝑆 > 𝑡𝑡2) 
                                  ≤ 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] ≤ 
         𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 ∗ 𝑃𝑃(𝑆𝑆 < 𝑡𝑡2)  + 𝐸𝐸[𝑌𝑌|𝑆𝑆 = 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆 = 𝑡𝑡2) + 𝐸𝐸[𝑌𝑌|𝑆𝑆 > 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆 > 𝑡𝑡2)  
 

As usual, the MTR lower (respectively, upper) bound on the ATE ∆ (𝑡𝑡1, 𝑡𝑡2) is calculated by 

subtracting the upper (lower) bound of 𝐸𝐸[𝑌𝑌(𝑡𝑡1)] from the lower (upper) bound of 𝐸𝐸[𝑌𝑌(𝑡𝑡2)]. Under 

the non-negative MTR assumption the lower bound on ∆ (𝑡𝑡1, 𝑡𝑡2) is never below zero, because the 

MTR rules out the possibility that more education worsens cognitive abilities.  

 

Montone Treatment Selection Combined with Monotone Treatment Response 

The MTR and MTS assumptions can be combined to provide tighter bounds on mean 

potential outcomes. The MTS+MTR bounds on 𝐸𝐸[𝑌𝑌(𝑡𝑡2)]  are given by (Manski and Pepper, 2000): 
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(A8)  𝐸𝐸[𝑌𝑌|𝑆𝑆 < 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆 < 𝑡𝑡2) +  𝐸𝐸[𝑌𝑌|𝑆𝑆 = 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆 = 𝑡𝑡2) +  𝐸𝐸[𝑌𝑌|𝑆𝑆 = 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆
> 𝑡𝑡2)                  ≤ 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] ≤ 

        𝐸𝐸[𝑌𝑌|𝑆𝑆 = 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆 < 𝑡𝑡2)  + 𝐸𝐸[𝑌𝑌|𝑆𝑆 = 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆 = 𝑡𝑡2) + 𝐸𝐸[𝑌𝑌|𝑆𝑆 > 𝑡𝑡2] ∗ 𝑃𝑃(𝑆𝑆 > 𝑡𝑡2) 
As before, the MTR+MTS lower (upper) bound on the ATE ∆ (𝑡𝑡1, 𝑡𝑡2) is calculated by subtracting 

the upper (lower) bound of 𝐸𝐸[𝑌𝑌(𝑡𝑡1)] from the lower (upper) bound of 𝐸𝐸[𝑌𝑌(𝑡𝑡2)].  The MTS and 

MTR assumptions imposed together yield a testable implication that observed mean cognition 

scores are weakly increasing in schooling attainment. That is, for any two treatments 𝑡𝑡𝑘𝑘 and 𝑡𝑡𝑗𝑗, 

𝑡𝑡𝑗𝑗 > 𝑡𝑡𝑘𝑘 implies that 𝐸𝐸�𝑌𝑌�𝑆𝑆 = 𝑡𝑡𝑗𝑗� ≥ 𝐸𝐸[𝑌𝑌|𝑆𝑆 = 𝑡𝑡𝑘𝑘]. This is the case because 𝑡𝑡𝑗𝑗 > 𝑡𝑡𝑘𝑘 implies: 

 

(A9) 𝐸𝐸�𝑌𝑌�𝑆𝑆 = 𝑡𝑡𝑗𝑗� = 𝐸𝐸�𝑌𝑌(𝑡𝑡𝑗𝑗)�𝑆𝑆 = 𝑡𝑡𝑗𝑗� ≥ 𝐸𝐸�𝑌𝑌�𝑡𝑡𝑗𝑗��𝑆𝑆 = 𝑡𝑡𝑘𝑘� ≥ 𝐸𝐸[𝑌𝑌(𝑡𝑡𝑘𝑘)|𝑆𝑆 = 𝑡𝑡𝑘𝑘] = 𝐸𝐸[𝑌𝑌|𝑆𝑆 = 𝑡𝑡𝑘𝑘], 

 

where the first inequality follows from the MTS assumption and the second from the MTR. Lastly, 

note that these inequalities help to highlight a key distinction between the MTS and MTR 

assumptions: while the MTS compares the mean of the same potential outcome for two different 

subpopulations defined by their observed levels of 𝑡𝑡, the MTR compares different potential 

outcomes for the same individual(s). For example, the MTS would compare the average potential 

cognition at a given schooling level (e.g., as a college graduate) of high-school graduates versus 

high-school dropouts, while the MTR would compare the potential cognition under high-school 

graduation versus the potential cognition under a high-school dropout for the same individual(s). 

 
Monotone Instrumental Variable (MIV) 

A MIV is a variable that has a monotone (weakly increasing or weakly decreasing) mean 

relationship with the potential outcomes 𝑌𝑌(𝑡𝑡). Specifically, a weakly increasing MIV 𝑍𝑍 satisfies: 
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(A10)   𝑚𝑚1 ≤ 𝑚𝑚 ≤ 𝑚𝑚2  ⇒   𝐸𝐸[𝑌𝑌(𝑡𝑡)|𝑍𝑍 = 𝑚𝑚1] ≤ 𝐸𝐸[𝑌𝑌(𝑡𝑡)|𝑍𝑍 = 𝑚𝑚] ≤ 𝐸𝐸[𝑌𝑌(𝑡𝑡)|𝑍𝑍 = 𝑚𝑚2] 

for all treatment levels 𝑡𝑡 ∈ 𝑇𝑇.  

To motivate how the MIV narrows bounds, consider using it along with the MTS+MTR bounds. 

With a variable 𝑍𝑍 satisfying the MIV assumption, we can divide the sample into bins defined by 

the values of 𝑍𝑍 and compute the MTS+MTS bounds within each bin. We use mother’s schooling 

as the MIV. In our case of a non-negative MIV, equation (A10) implies that the lower bound on 

𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑍𝑍 = 𝑚𝑚] is no lower than the lower bound on 𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑍𝑍 = 𝑚𝑚1], and its upper bound is no 

higher than the upper bound on 𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑍𝑍 = 𝑚𝑚2].  For the bin where 𝑍𝑍 has a value of 𝑚𝑚, we can 

thus obtain a new lower bound by taking the largest lower bound over all bins where 𝑍𝑍 ≤ 𝑚𝑚. This 

type of bounding approach is known as intersection-bounds. This is illustrated in Figure A1, which 

shows fictitious MTS+MTR upper and lower bounds in three bins of Z. In the subsample Z=2, the 

maximum lower bound is estimated over all subsamples with Z≤ 2. This is the lower bound at Z=1, 

so this becomes the new lower bound at Z=2. Likewise, we can obtain a new upper bound by 

taking the smallest upper bound over all bins where 𝑍𝑍 ≥ 𝑚𝑚. Looking at Z=2 in Figure A1, the 

lowest upper bound over all values Z≥ 2 turns out to be the upper bound at Z=3. So, this becomes 

the new upper bound at Z=2. The MTS+MTR+MIV bounds are then obtained by taking the 

weighted average over all the conditional-on-𝑍𝑍 bounds (which follows from the law of iterated 

expectations): 

 

(A11)∑ 𝑃𝑃(𝑍𝑍 = 𝑚𝑚)𝑚𝑚 ∈ 𝑀𝑀 ∗ �𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1≤𝑚𝑚 𝐿𝐿𝐿𝐿𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑍𝑍=𝑚𝑚1]�  

                 ≤ 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] ≤ 

           ∑ 𝑃𝑃(𝑍𝑍 = 𝑚𝑚)𝑚𝑚 ∈ 𝑀𝑀  ∗ �𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2≥𝑚𝑚 𝑈𝑈𝑈𝑈𝐸𝐸[𝑌𝑌(𝑡𝑡2)|𝑍𝑍=𝑚𝑚2]�  
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where 𝐿𝐿𝐿𝐿 denotes the MTS+MTR lower bound from equation (A8) on 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] at values 𝑍𝑍 = 𝑚𝑚1  

of the MIV. Likewise, 𝑈𝑈𝑈𝑈 represents the MTR+MTS upper bound on 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] conditional on 

values 𝑍𝑍 = 𝑚𝑚2 of the MIV. 

 The MTR+MTS+MIV lower (upper) bound on the ATE ∆ (𝑡𝑡1, 𝑡𝑡2) is calculated once again 

by subtracting the upper (lower) bound of 𝐸𝐸[𝑌𝑌(𝑡𝑡1)] from the lower (upper) bound of 𝐸𝐸[𝑌𝑌(𝑡𝑡2)].  

 

 

 

Estimation and Inference Issues 

As noted in the paper, all bounds are estimated by plugging in sample analogs for the 

expectations and probabilities in the corresponding bounds’ expressions. Inference is undertaken 
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by constructing confidence intervals that cover the true value of the population average treatment 

effect of interest with a specified probability (e.g., 95%).  

Estimation and inference under the MTR+MTS+MIV bounds require that we deal with 

two issues that have been noted since Manski and Pepper (2000)—see, e.g., Tamer (2010) and 

references therein. The first is that the plug-in estimators of equation (A11)—an example of so-

called intersection bounds—suffer from bias in finite samples that makes them narrower relative 

to the corresponding true identified set. The bias then carries over to estimated bounds on the 

average treatment effects of interest. The second, related issue is that the corresponding confidence 

intervals do not have the expected coverage at the desired level. Both of these issues arise because 

of the non-concavity and non-convexity, respectively, of the min and max operators in equation 

(A11). 

We address both issues in the bounds involving the MIV assumption by employing the 

estimation and valid-inference procedure in Chernozhukov et al. (2013; hereafter, CLR) for 

intersection bounds.1 The CLR procedure allows us to obtain lower- and upper-bound estimators 

that satisfy a half-median unbiasedness property, that is, the estimated lower (upper) bound will 

fall below (above) the true lower (upper) bound with a probability of at least one-half 

asymptotically. This property is important because Hirano and Porter (2012) showed that there 

exist no locally asymptotically unbiased estimators of parameters that contain min and max 

operators, implying that methods aimed at reducing bias (such as those based on the bootstrap) 

cannot completely eliminate it and reducing bias too much eventually leads the variance of such 

methods to increase significantly.  

 
1 See also Flores and Flores-Lagunes (2013) for additional discussion on the CLR procedure and an 

application estimating bounds on local-average-treatment effects without the exclusion restriction under a different 
set of monotonicity assumptions. 
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Computation of all the estimated bounds and confidence intervals, including for cases not 

using the MIV assumption, is done by employing the CLR methodology. While the use of the CLR 

methodology is only strictly necessary for the MIV bounds (which contain maxima/minima), we 

use it for all bounds for the practical reason of not requiring a different procedure. Indeed, the CLR 

methodology can be thought of as a generalization of the methods in Imbens and Manski (2004) 

and Stoye (2009), which are commonly used to create confidence intervals on the parameter of 

interest for bounds that do not contain minimum or maximum operators (see, e.g., CLR, 2013, 

footnote 13). As for Stoye’s (2009) confidence intervals, CLR’s confidence intervals remain valid 

even when the width of the bounds is not bounded away from zero (CLR, 2009). Regarding the 

estimated bounds for non-intersection bounds, the use of the CLR procedure results in minuscule 

corrections, as expected, since they do not contain minimum or maximum operators (or, in the 

context of CLR’s methodology, they take the minimum or maximum of a single object). 

 

Implementation of the CLR Procedure 

To provide some intuition on the CLR method, we first make explicit the notion of creating 

the bins of the MIV. We use below 3 MIV bins ℬ𝑚𝑚, 𝑚𝑚 = 1, 2, 3. Then, for instance, the lower 

bound on 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] from equation (A11) can be rewritten as: 

 

(A12) � 𝑃𝑃(𝑍𝑍 ∈ ℬ𝑚𝑚)
3

𝑚𝑚=1

⋅ maxm1≤m𝐿𝐿𝐵𝐵𝑚𝑚1
1  

 

where the 𝐿𝐿𝐵𝐵𝑚𝑚1
1 are the MTR-MTS lower bounds in bins 𝑚𝑚1 up through 𝑚𝑚. 
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Instead of expressions like (A12) which comprise 3 different maxima, the CLR method requires 

that these be rewritten as a set of expressions under a single maximum (or minimum, for upper 

bounds), with each element inside the max operator called a bounding function. These bounding 

functions are objects for which standard (e.g., asymptotically normally distributed) estimators 

exist, and hence they do not contain max/min operators. Intuitively, each bounding function 

represents one of the possible outcomes from evaluating (A12) in the data. To see that (A12) 

implies three different maxima, note that it can be written as: 𝑃𝑃�𝑍𝑍 ∈ ℬ𝑚𝑚1� ⋅ max{𝐿𝐿𝐵𝐵𝑚𝑚1
1 } +𝑃𝑃�𝑍𝑍 ∈

ℬ𝑚𝑚2� ⋅  max{𝐿𝐿𝐵𝐵𝑚𝑚1
1 , 𝐿𝐿𝐵𝐵𝑚𝑚2

2 } + 𝑃𝑃�𝑍𝑍 ∈ ℬ𝑚𝑚3� ⋅  max{𝐿𝐿𝐵𝐵𝑚𝑚1
1 , 𝐿𝐿𝐵𝐵𝑚𝑚2

2 , 𝐿𝐿𝐵𝐵𝑚𝑚3
3 }. These expressions with 

different maxima can be manipulated using the properties of the maximum operator to obtain an 

expression with a single maximum operator over six bounding functions as follows. Let 𝑝𝑝𝑙𝑙 ≡

𝑃𝑃(𝑍𝑍 ∈ ℬ𝑙𝑙), then: max{(𝑝𝑝1 + 𝑝𝑝2 + 𝑝𝑝3) 𝐿𝐿𝐵𝐵𝑚𝑚1
1 ,(𝑝𝑝1 + 𝑝𝑝2) 𝐿𝐿𝐵𝐵𝑚𝑚1

1 +  𝑝𝑝3𝐿𝐿𝐵𝐵𝑚𝑚2
2 , (𝑝𝑝1 + 𝑝𝑝2) 𝐿𝐿𝐵𝐵𝑚𝑚1

1 +

 𝑝𝑝3𝐿𝐿𝐵𝐵𝑚𝑚3
3 ,𝑝𝑝1𝐿𝐿𝐵𝐵𝑚𝑚1

1 + 𝑝𝑝2𝐿𝐿𝐵𝐵𝑚𝑚2
2 + 𝑝𝑝3𝐿𝐿𝐵𝐵𝑚𝑚1

1 ,𝑝𝑝1𝐿𝐿𝐵𝐵𝑚𝑚1
1 + 𝑝𝑝2𝐿𝐿𝐵𝐵𝑚𝑚2

2 + 𝑝𝑝3𝐿𝐿𝐵𝐵𝑚𝑚2
2 ,𝑝𝑝1𝐿𝐿𝐵𝐵𝑚𝑚1

1 + 𝑝𝑝2𝐿𝐿𝐵𝐵𝑚𝑚2
2 +

𝑝𝑝3𝐿𝐿𝐵𝐵𝑚𝑚3
3 }. 

Finally, the full set of bounding functions is defined for the ATE, so we also perform all 

necessary subtractions. For example, the final bounding functions for the lower bound on ∆ (𝑡𝑡1, 𝑡𝑡2) 

are created from all possible subtractions of the 𝐸𝐸[𝑦𝑦(𝑡𝑡1)] upper bound bounding functions from 

the 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] lower bound bounding functions. In total, each bound on each ATE implies (2^{3 −

1})^2 = 16 bounding functions, denoted 𝜃𝜃𝑙𝑙(𝑣𝑣) and θ𝑢𝑢(𝑣𝑣), 𝑣𝑣 = 1, … ,16, for the respective lower 

and upper bounds. Using these bounding functions and denoting the true value of the lower bound 

of the ATE as 𝜃𝜃0𝑙𝑙  and the one for the upper bound as 𝜃𝜃0𝑢𝑢, we can write 

 

𝜃𝜃0𝑙𝑙 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣∈𝒱𝒱𝑙𝑙

{𝜃𝜃𝑙𝑙(𝑣𝑣)} 

and 
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 𝜃𝜃0𝑢𝑢 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣∈𝒱𝒱𝑢𝑢

{θ𝑢𝑢(𝑣𝑣)}, 

 

where 𝒱𝒱𝑙𝑙 and 𝒱𝒱𝑢𝑢 are the indexing sets for the bounding functions of the lower (𝜃𝜃𝑙𝑙(𝑣𝑣)) and upper 

(𝜃𝜃𝑢𝑢(𝑣𝑣)) bounds, respectively.  

 

The key aspect of the CLR procedure is that the steps for estimation of the bounds and for 

constructing confidence intervals are completed on the individual bounding functions prior to 

taking the associated maximum (or minimum). This is referred to as the precision adjustment and 

proceeds as follows.2 Generally, the adjustment involves taking the product of a critical value κ(𝑝𝑝) 

and the pointwise standard error 𝑠𝑠(𝑣𝑣) of the bounding function. For lower bounds, this product is 

subtracted from the estimator θ𝑙𝑙� (𝑣𝑣); for upper bounds, it is added to θ𝑢𝑢�(𝑣𝑣). Then—depending on 

the choice of critical value 𝑝𝑝—the adjustment yields either the half-median unbiased estimator of 

the lower and upper bounds (𝑝𝑝 = 0.5), or the desired lower and upper limits of the confidence 

interval (see below). In this way, the CLR method offers the convenience that median-bias 

correction and inference are carried out within the same procedure. Also, we note that the resulting 

large number of bounding functions makes it crucial to implement the CLR procedure for 

estimation of the bounds and the construction of valid confidence intervals, as in practice the 

amount of bias tends to increase with the number of bounding functions (e.g., Germinario et al. 

2021). 

 More specifically, the precision-corrected estimators of the lower (𝜃𝜃0𝑙𝑙 ) and upper (𝜃𝜃0𝑢𝑢) 

bounds of the average treatment effect are given, respectively, by: 

 
2 This process requires that the estimators of 𝜃𝜃𝑙𝑙(𝑣𝑣) and 𝜃𝜃𝑢𝑢(𝑣𝑣) are consistent and asymptotically normal. 

Since in our case these estimators are made up of sample means and sample proportions, these conditions are met. 
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(A13)  θ𝑙𝑙� (𝑝𝑝) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣∈𝒱𝒱𝑙𝑙

�θ𝑙𝑙� (𝑣𝑣) − κ𝑙𝑙(𝑝𝑝) ⋅ 𝑠𝑠𝑙𝑙(𝑣𝑣)} 

and 

(A14)  θ𝑢𝑢�(p) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣∈𝒱𝒱𝑢𝑢

�θ𝑢𝑢�(v) + κ𝑢𝑢(p) ⋅ s𝑢𝑢(v)} 

 

where θ𝑙𝑙� (𝑣𝑣) and θ𝑢𝑢�(𝑣𝑣) are the unadjusted estimators of the bounding functions, and 𝑠𝑠𝑙𝑙(𝑣𝑣) and 

𝑠𝑠𝑢𝑢(𝑣𝑣) are their associated standard errors. The critical values κ𝑙𝑙(𝑝𝑝) and κ𝑢𝑢(𝑝𝑝) are computed via 

simulations as described below. An important feature of the CLR procedure is that the critical 

values κ𝑙𝑙(𝑝𝑝) and κ𝑢𝑢(𝑝𝑝) are computed by simulation not based on the indexing sets 𝒱𝒱𝑙𝑙 and 𝒱𝒱𝑢𝑢, but 

instead based on the preliminary set estimators 𝑉𝑉𝑙𝑙� and 𝑉𝑉𝑢𝑢�  of, respectively: 

 

𝑉𝑉0𝑙𝑙 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣∈𝒱𝒱𝑙𝑙

{𝜃𝜃𝑙𝑙(𝑣𝑣)}  

and 

 𝑉𝑉0𝑢𝑢 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣∈𝒱𝒱𝑢𝑢

{θ𝑢𝑢(𝑣𝑣)} 

    

Intuitively, 𝑉𝑉𝑙𝑙� (respectively, 𝑉𝑉𝑢𝑢� ) selects those bounding functions that are close enough to 

binding to affect the asymptotic distribution of the estimator of the lower bound  θ𝑙𝑙� (𝑝𝑝) (upper 

bound   θ𝑢𝑢� (𝑝𝑝)). This is done because choosing the maximum or minimum over all possible 

bounding functions by using 𝒱𝒱𝑙𝑙 and 𝒱𝒱𝑢𝑢, respectively, leads to asymptotically valid but 

conservative inference. Below we describe how the preliminary set estimators 𝑉𝑉𝑙𝑙� and 𝑉𝑉𝑢𝑢�—which 

CLR call adaptive inequality selectors—are computed. 
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First, consider the lower bound, and more specifically, computing κ𝑙𝑙(𝑝𝑝) and 𝑉𝑉𝑙𝑙�. Let 𝛄𝛄𝑙𝑙�  be 

the 16-dimensional column vector of sample analog estimators of all the unadjusted bounding 

functions for the lower bound, with 𝛄𝛄𝑢𝑢� defined likewise for the upper bounds. An initial step 

obtains from 𝐵𝐵 = 999 bootstrap replications a consistent estimate Ω�𝑙𝑙 of the asymptotic variance-

covariance matrix of √𝑁𝑁�𝛄𝛄𝑙𝑙� − 𝛄𝛄𝑙𝑙�, where 𝑁𝑁 denotes the sample size (an analogous process is 

followed for the upper bounds). With 𝒈𝒈𝒍𝒍�(𝒗𝒗)′ the 𝑣𝑣 th row of Ω�𝑙𝑙
1/2, define 𝑠𝑠𝑙𝑙(𝑣𝑣) ≡ ||𝑔𝑔𝑙𝑙�(𝑣𝑣)||

√𝑁𝑁
. Next, 

following CLR, we simulate 𝑅𝑅 = 100,000 draws from a 𝒩𝒩(𝟎𝟎, 𝑰𝑰) distribution, where 𝑰𝑰 is the 

16 × 16 identity matrix. The draws are labelled 𝒁𝒁𝑟𝑟, 𝑟𝑟 = 1, … ,100,000, and are used to compute 

𝑍𝑍𝑟𝑟∗(𝑣𝑣) ≡ 𝒈𝒈𝒍𝒍�(𝒗𝒗)′𝒁𝒁𝑟𝑟/ ��𝑔𝑔𝑙𝑙� (𝑣𝑣)�� for each 𝑟𝑟 and 𝑣𝑣. In each replication, we select the maximum over 

the set of 𝑍𝑍𝑟𝑟∗(1), … ,𝑍𝑍𝑟𝑟∗(16). From the resulting 𝑅𝑅 values, we compute κ𝑙𝑙(𝑐𝑐), which is defined as 

the 𝑐𝑐th quantile of these values, where 𝑐𝑐 ≡ 1 − (0.1/ 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁). The value of κ𝑙𝑙(𝑐𝑐) is then used to 

construct the following set estimator: 

 

𝑉𝑉𝑙𝑙� = �𝑣𝑣 ∈ 𝒱𝒱𝑙𝑙: θ𝑙𝑙� (𝑣𝑣) ≥ 𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣�∈𝒱𝒱𝑙𝑙

�θ𝑙𝑙� (𝑣𝑣�) − κ𝑙𝑙(𝑐𝑐) ⋅ 𝑠𝑠𝑙𝑙(𝑣𝑣�)� − 2κ𝑙𝑙(𝑐𝑐) ⋅ 𝑠𝑠𝑙𝑙(𝑣𝑣)} 

 

From the values 𝑍𝑍𝑟𝑟∗(𝑣𝑣), we next take the maximum from each replication 𝑟𝑟, this time 

restricting the search only to 𝑣𝑣 ∈ 𝑉𝑉𝑙𝑙� (instead of searching over all the indexes 𝑣𝑣 ∈ 𝒱𝒱𝑙𝑙). Lastly, the 

CLR critical value κ𝑙𝑙(𝑝𝑝) is taken as the 𝑝𝑝th quantile of these 𝑅𝑅 values (i.e., as the  𝑝𝑝th quantile of 

the R maximums coming from each replication). 
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Regarding computation of κ𝑢𝑢(𝑝𝑝) and 𝑉𝑉𝑢𝑢�  for the upper bound, the same procedure as above 

is followed, now defining 𝑉𝑉𝑢𝑢�  as:3 

 

𝑉𝑉𝑢𝑢� = �𝑣𝑣 ∈ 𝒱𝒱𝑢𝑢: θ𝑢𝑢�(𝑣𝑣) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚
𝑣𝑣�∈𝒱𝒱𝑢𝑢

�θ𝑢𝑢�(𝑣𝑣�) + κ𝑢𝑢(𝑐𝑐) ⋅ 𝑠𝑠𝑢𝑢(𝑣𝑣�)� + 2κ𝑢𝑢(𝑐𝑐) ⋅ 𝑠𝑠𝑢𝑢(𝑣𝑣)}. 

 

Half-median unbiased estimators of the lower and upper bounds of the average treatment effect 

are obtained by setting 𝑝𝑝 = 0.5, computing the critical values κ𝑙𝑙(0.5) and κ𝑢𝑢(0.5) as described 

above, and using equations (13) and (14) to compute the half-median unbiased estimates  θ𝑙𝑙� (0.5) 

and   θ𝑢𝑢� (0.5).    

To obtain (1 − α) ⋅ 100% confidence intervals for the true value of the average treatment 

effect 𝜃𝜃0, we must make one final adjustment which accounts for the width of the identified set. 

Borrowing notation from CLR (2013), define: 

 

Γ� ≡ θ𝑢𝑢�(0.5) − θ𝑙𝑙� (0.5) 

Γ+� ≡ max{0, Γ�} 

ρ ≡ max{θ𝑢𝑢� (0.75) − θ𝑢𝑢�(0.25) ,  θ𝑙𝑙� (0.25) − θ𝑙𝑙� (0.75)} 

τ ≡ 1/(ρ log𝑁𝑁) 

𝑝̂𝑝 ≡ 1 −Φ�τΓ+�� ⋅ 𝛼𝛼, 

 

where Φ(⋅) is the standard normal CDF. Note that 𝑝̂𝑝 ∈ [1 − 𝛼𝛼, 1 − 𝛼𝛼/2], with 𝑝̂𝑝 approaching 1 −

𝛼𝛼 when Γ� grows large relative to sampling error, and 𝑝̂𝑝 = 1 − 𝛼𝛼/2 when Γ� =0.  An asymptotically 

 
3 Because of the symmetry of the normal distribution, no changes are needed in any of the other steps. 
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valid (1 − α) ⋅ 100% confidence interval for the true value of 𝜃𝜃0 is given by �  θ𝑙𝑙� (𝑝̂𝑝),   θ𝑢𝑢� (𝑝̂𝑝)�. We 

report 95% confidence intervals for 𝜃𝜃0 using the critical values κ𝑙𝑙(𝑝̂𝑝) and κ𝑢𝑢(𝑝̂𝑝) with α = 0.05 in 

equations (A13) and (A14), respectively. 
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Appendix B: Description of Cognition Tests  

 

Mini-Mental State Examination (MMSE): This test includes 22 items (10 orientation, 8 language, 

1 of each: registration, memory, spelling backward, and construction). The maximum score is 30. 

 

HRS Telephone Interview for Cognition Status (TICS): Participants had to identify two name two 

words (vocabulary) and naming the President of the United States. Specific questions were: (1) 

What do people usually use to cut paper? (2) What do you call the kind of prickly plant that grows 

in the desert? (3) Who is the President of the United States right now? The maximum score is 3. 

 

Consortium to Establish a Registry for Alzheimer’s Disease Word (CERAD) Word List Learning 

and Recall- Immediate: Participants were shown a list of 10 words, two seconds at a time for each 

word. Participants read each word and after the last word were asked to recall as many words from 

the list as possible. The score ranges from 0-10. Participants undertook three trails of the task. 

 

Animal Naming: Participants were asked to name as many animals as they could within a 60-

second time limit. The test score range is 0-43. 

 

Letter Cancellation: Participants had one minute to cross out as many “P” and “W” letters as 

possible from a large grid of letters. 

 

Backward Counting: Participants had to count backward from 100 as fast as possible in a 30 second 

time limit. 
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Community Screening Instrument for Dementia (CSI-D): Participants were asked questions 

evaluating language, knowledge and the ability to follow directions. The questions/tasks were: (1) 

point to your elbow; (2) what do you do with a hammer? (3) where is the local market/ local store?; 

(4) point first to the window and then to the door. The maximum score is 4. 

 

CERAD Word List-Delayed: This is a single trial to recall the list of 10 words from the CERAD 

Word List Learning and Recall (Immediate) task. Participants are asked to freely recall as many 

words as possible from that list. The interviewer records all correct responses as well as intrusions 

(words not on the original list). Respondents are given up to 2 minutes to complete this task. 

 

Story Memory-Immediate: Participants were read one of two from the Wechsler Memory Scale 

(WMS-IV). participants had to report back on the main parts of the story immediately after it was 

read. 

 

CERAD Word List-Recognition: Participants were visually presented a series of 20 words, 10 

from the CERAD word list and 10 foils. They were asked to identify which words were given on 

the original list 

 

CERAD Constructional Praxis – Immediate: Participants had to copy geometric figures that varied 

in difficulty 
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Symbol-Digit Modalities Test (SDMT): Participants were given random geometric figures and a 

separate key that paired numbers with each figure. Participants had to substitute a number of each 

figure, completing as many pairings as possible in the 90-second time limit. 

 

CERAD Constructional Praxis – Delayed: This is a delayed recall of the geometric shaped drawn 

in the test of CERAD Constructional Praxis – Immediate. Respondents are asked to draw the 

shapes from earlier in the interview to the best of their memory. 

Story Memory-Delayed: Participants were asked to think back to the two stories read to them 

earlier and recall as much about each story as they can. 

 

Story Memory-Recognition: Participants were given 15 yes/no questions on whether a specified 

story point was part of the story they were read 

 

HRS Number Series: Participants were presented with a series of numbers with one or two 

numbers missing. Participants had to identify the missing numbers. The test was not timed and 

was adaptive such that difficulty level changed depending on the participants’ responses. The 

range is 409-584. 

 

Raven’s Standard Progressive Matrices: This test evaluates picture-based pattern reasoning of 

varying difficulty. Each question presents a geometric picture with a small section that appears to 

have been cut out. Participants are shown a set of smaller pictures that fit the missing piece and 

are asked to identify which is the correct one to complete the pattern. 
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Trail Making Test (A and B): Participants asked to draw lines connecting consecutively numbered 

circles on a worksheet (part A) and connect consecutively numbered and lettered circles on another 

worksheet (part B) by alternating between the numbers and letters. The interviewer is instructed 

to point out errors to the participant and have the participant go back to the previous circle and 

move on to the next correct one. The score for this test is the number of seconds to complete part 

A and part B, where the time to correct errors serves to increase the total time to complete the test. 
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Appendix C: Additional Tables 
 
Appendix Table C1: Literature Summary 

Study Country and 
Data 

 Method Age Sample Outcome βOLS  (95% 
CI) 

ΒCausal  (95% 
CI) 

Glymour et 
al. (2008) 

US; HRS  IV based on 
changes in 
compulsory 
school 
leaving age 
over 1907-
1962 

Range: 
55-101  

Men+Women 
 
 
Men+Women 

Immediate+ 
Delayed Memory 
 
Mental Status 

0.09 (0.08, 
0.10) 
 
 
0.15 (0.14, 
0.16) 

0.34 (0.11, 
0.57) 
 
 
-0.06 (-0.37, 
0.26) 

         
Herd & 
Sicinski 
(2023) 

US; WLS  Sibling 
fixed-effects 
controlling 
for education 
polygenic 
score 

Mean: 72 Men+Women 
 
Men+Women 

Delayed Memory 
 
Immediate Memory 

0.031 (0.01, 
0.05) 
 
0.054 (0.03, 
0.07) 

0.032 (0.00, 
0.06) 
 
0.067 (0.03, 
0.08) 

         
Banks & 
Mazzonna 
(2012) 

England; 
ELSA 

 IV based on 
1947 Raising 
of School 
leaving age 
from 14 to 
15 

Range: 
72-74 

Men 
 
 
Women 
 
 
Men 

Immediate+Delayed 
Memory 
 
Immediate+Delayed 
Memory 
 
Executive Function  

Not Reported 
 
Not Reported 
 
Not Reported 

0.51 (0.07, 
0.96) 
 
0.52 (-0.02, 
1.06) 
 
0.55 (0.12, 
0.98) 

      
Women 

 
Executive Function 

 
Not Reported 

 
0.20 (-0.39, 
0.79) 
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Study Country and 
Data 

 Method Age Sample Outcome βOLS  (95% 
CI) 

ΒCausal  (95% 
CI) 

Goorman 
(2023) 

England; 
Understanding 
Society 

 IV based on 
1972 Raising 
of School 
leaving age 
from 15 to 
16 

Range: 
48-60 

Men+Women Immediate+Delayed 
Memory 
 
Verbal Fluency  

0.24 (0.24, 
0.24) 
 
 
0.23 (0.23, 
0.23) 

0.42 (0.05, 
0.79) 
 
 
0.05 (-0.34, 
0.44) 

         
Fletcher et 
al. (2021) 

UK; UK 
Biobank 

 Sibling 
fixed-effects 
with controls 
for 
Alzheimer’s 
Disease, 
cognition 
and 
education 
polygenic 
scores 

Mean: 57 Men+Women Fluid Intelligence 0.21 (0.20, 
0.23) 

0.12 (0.09, 
0.15) 

         
Schneeweis 
et al. (2014) 

European 
Countries; 
SHARE 

 IV based on 
education 
reforms 

Mean age: 
61 

Men+Women Immediate Memory 0.07 (0.06, 
0.07) 

0.08 (0.01, 
0.16) 

     Men+Women Delayed Memory 0.06 (0.06, 
0.07) 

0.09 (0.01, 
0.16) 

       0.06 (0.06, 
0.07) 

-0.03 (-0.11, 
0.05) 

         
     Men+Women Verbal Fluency 0.06 (0.06, 

0.07) 
-0.03 (-0.05, 
0.11) 

         
     Men+Women Good Numeracy 0.03 (0.03, 

0.03) 
-0.01 (-0.06, 
0.03) 
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Study Country and 
Data 

 Method Age Sample Outcome βOLS  (95% 
CI) 

ΒCausal  (95% 
CI) 

     Men+Women Good Orientation to 
Date 

0.00 (0.00, 
0.01) 

-0.01 (-0.03, 
0.02) 

Notes: Estimates are taken from the following tables: Glymour et al. (2008) Table 3 model 4; Banks & Mazzonna (2012) Table 5 with a bandwidth of 2 years and 
conditional on leaving school before age 16; Fletcher et al. (2021) Table 2 column 3 (OLS) and column 6 (FE); Schneeweis et al. (2014) Table 5 baseline 
specification. Effect size: standard deviation per 1 additional grade of schooling, apart from good numeracy and good orientation in Schneeweis et al. (2014) which 
are dummy variables. Fletcher et al. (2021) measure schooling with a series of dummy variable for years of schooling and the outcome is not standardized. We 
report estimates on the dummy variable years of education=10. We divide the estimates by 3 since the reference category is 7 years of education, and then divide 
by the SD of the outcome (2.1) We divide the estimates by 6 (we assume a difference of 6 grades between individuals with primary schooling and those without) 
and then by the standard deviation of the outcome. HRS: Health & Retirement Study. ELSA: English Longitudinal Study of Ageing. WLS: Wisconsin Longitudinal 
Study. SHARE: Survey of Health, Ageing, and Retirement in Europe.  
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Table C2: Cognition Tests in HCAP 
Test Domains Assessed Observations Number of Imputed 

Observations 
Mini Mental State  
Examination 

O; MemI; MemD; 
VF; AS; Viz 

3,347 0 

HRS TICS MemI 3,344 3 
    
CERAD Word MemI 3,338 9 
List-Immediate Trail 1    
CERAD Word MemI 3,330 17 
List-Immediate Trail 2    
CERAD Word MemI 3,323 24 
List-Immediate Trail 3    
Animal Naming  VF 3,345 2 
Letter  AS 3,197 150 
Cancellation    
Backward AS 3,302 45 
Counting    
Community  O; EF; VF 3,341 6 
Screening Instrument for    
Dementia (CSI-D)    
CERAD Word MemD 3,341 16 
List-Delayed    
Story Recall MemI 3,306 41 
Immediate    
CERAD Word List MemR 3,323 24 
Recognition    
CERAD Constructional Viz 3,308 39 
Praxis-Immediate    
Symbol Digit  EF; AS 3,168 179 
Modalities Test (SDMT)    
CERAD Constructional MemD 3,305 42 
Praxis-Delayed    
Story Recall MemD 3,316 31 
-Delayed    
Story Recall MemR 3,239 108 
-Recognition    
HRS Number EF 2,769 578 
Series    
Raven’s EF 3,287 60 
matrices    
Trail making  AS 3,242 105 
Part A    
Trail making AS 3,131 216 
Part B    

Notes: MemD: Delayed Memory MemI: Immediate Memory MemR: Recognition Memory O: Orientation 
VF: Verbal Fluency AS: Attention/Speed EF: Executive Function Viz: Visuospatial. Information taken from: 
https://hrs.isr.umich.edu/sites/default/files/meta/hcap/2016/codebook/hc16hp_ri.htm

https://hrs.isr.umich.edu/sites/default/files/meta/hcap/2016/codebook/hc16hp_ri.htm
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Table C3: Average Cognition Scores by Schooling Attainment 
 Mini Mental 

State Exam 
Immediate + 
Delayed Memory 

Recognition 
Memory 

Verbal 
Fluency 

Attention/ 
Speed 

Executive 
Function 

Visuospatial 

A: Full Sample        
HS Dropout 24.28 (4.56) 37.55 (15.95) 26.64 (4.51) 12.76 (5.33) 32.42 (14.37) 9.54 (3.87) 6.88 (2.39) 
HS Grads 26.71 (3.60) 46.82 (17.22) 28.78 (4.41) 15.30 (6.04) 43.63 (13.56) 12.05 (3.57) 8.04 (2.24) 
Some College 27.49 (3.46) 51.73 (16.55) 29.37 (4.09) 16.74 (6.29) 46.65 (13.52) 13.20 (3.09) 8.40 (2.15) 
College Grad 27.87 (3.06) 56.46 (17.65) 29.87 (4.20) 19.07 (7.17) 50.12 (14.23) 14.22 (2.99) 9.16 (2.09) 
B: Men        
HS Dropout 23.79 (4.51) 34.80 (15.34) 26.20 (4.33) 13.10 (5.69) 32.70 (13.19) 9.72 (3.99) 7.10 (2.21) 
HS Grads 26.21 (3.65) 43.00 (15.83) 28.34 (4.20) 15.35 (6.09) 43.01 (13.81) 12.12 (3.66) 8.08 (2.28) 
Some College 27.38 (3.27) 49.22 (14.49) 28.97 (4.09) 16.78 (6.12) 47.51 (13.26) 13.60 (3.10) 8.57 (2.14) 
College Grad 27.83 (2.39) 53.71 (16.21) 29.66 (3.54) 19.02 (7.06) 51.19 (13.58) 14.57 (2.81) 9.31 (1.91) 
C: Women        
HS Dropout 24.54 (4.57) 38.98 (16.10) 26.88 (4.60) 12.58 (5.13) 32.28 (14.96) 9.45 (3.81) 6.77 (2.48) 
HS Grads 27.01 (3.54) 49.07 (17.61) 29.05 (4.51) 15.27 (6.02) 43.99 (13.41) 12.01 (3.52) 8.01 (2.21) 
Some College 27.56 (3.57) 53.20 (17.50) 29.60 (4.07) 16.71 (6.39) 46.15 (13.65) 12.97 (3.05) 8.30 (2.15) 
College Grad 27.91 (3.56) 58.96 (18.53) 30.06 (4.72) 19.12 (7.27) 49.15 (14.73) 13.91 (3.12) 9.01 (2.23) 
D: Non-Hispanic 
White 

       

HS Dropout 25.28 (4.17) 39.52 (16.82) 27.35 (4.45) 12.98 (5.70) 35.93 (12.95) 10.47 (3.72) 7.28 (2.38) 
HS Grads 27.00 (3.59) 47.66 (17.29) 28.88 (4.44) 15.71 (5.96) 45.21 (12.70) 12.57 (3.28) 8.24 (2.18) 
Some College 27.66 (3.20) 52.47 (16.52) 29.58 (3.93) 17.21 (6.19) 47.39 (13.58) 13.65 (2.90) 8.58 (2.05) 
College Grad 28.01 (2.93) 57.18 (17.54) 30.13 (3.96) 19.64 (7.13) 50.87 (13.89) 14.58 (2.71) 9.29 (2.04) 
E: Non-Hispanic 
Black 

       

HS Dropout 23.21 (4.45) 35.75 (15.21) 26.66 (4.33) 11.55 (4.85) 28.96 (13.51) 8.12 (3.93) 6.42 (2.23) 
HS Grads 25.28 (3.49) 42.38 (16.60) 28.59 (4.50) 12.75 (5.48) 36.04 (15.60) 9.18 (3.86) 6.87 (2.28) 
Some College 26.80 (4.08) 48.78 (17.09) 28.63 (5.07) 14.59 (6.71) 45.56 (12.80) 11.37 (3.28) 7.48 (2.30) 
College Grad 27.08 (3.96) 53.06 (19.07) 28.59 (5.65) 16.17 (7.05) 45.09 (14.86) 12.05 (3.62) 8.14 (2.35) 
F: Hispanic        
HS Dropout 23.67 (4.87) 36.29 (14.86) 25.70 (4.48 13.30 (4.89) 29.89 (15.77) 9.18 (3.64) 6.57 (2.46) 
HS Grads 27.06 (2.68) 47.68 (16.67) 28.21 (3.91) 16.60 (6.77) 42.59 (11.85) 12.49 (2.96) 8.19 (1.93) 
Some College 27.12 (4.48) 49.41 (15.55) 28.53 (3.55) 15.86 (5.86) 43.35 (12.51) 12.37 (2.97) 8.43 (2.43) 
College Grad 27.96 (2.11) 52.44 (13.01) 28.32 (3.48) 17.20 (5.94) 48.04 (16.21) 13.24 (4.01) 9.12 (2.02) 

Notes: Standard deviations in parentheses.
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Table C4: MTS+MIV and MTR+MIV Bounds for the Effect of Schooling on Immediate and 
Delayed Memory 

 MTS+MIV MTR+MIV 
HS Grad vs HS Dropout [-48.861, 33.012] 

(-49.640, 34.976) 
[0.000, 45.785] 
(0.000, 46.864) 

Some College vs HS Grad  [-46.460, 25.190] 
(-47.081, 26.387) 

[5.977, 15.253] 
(4.549, 17.012) 

College vs Some College [-49.038, 30.043] 
(-49.757, 31.357) 

[17.255, 13.562] 
(15.130, 16.105) 

College vs HS Grad [-57.499, 17.081] 
(-58.279, 18.512) 

[25.239, 26.952] 
(23.826, 29.126) 

College vs HS Dropout [-72.891, 16.299] 
(-73.776, 18.357) 

[32.543, 65.050] 
(31.530, 67.068) 

Notes: Estimated bounds are in [.] and corresponding 95% confidence intervals in (.) are from 999 bootstrap 
replications. The min and max values of the outcome was used in computing the bounds. The MIV is mother’s 
schooling with bins for high-school dropout, high-school graduate and more than high school. 
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Table C5: Bounds on Expected Immediate and Delayed Memory Scores for Levels of 
Schooling Attainment 

Assumptions High-school 
Dropout 

High-school 
Graduate 

Some  
College 

College 
Graduate 

No Assumption [6.684, 87.238] 
(6.221, 87.929) 

[15.438, 81.127] 
(14.756, 81.885) 

[12.054, 87.217] 
(11.365, 87.847) 

[14.627, 87.239] 
(13.860, 87.836) 

MTS [37.545, 87.238] 
(36.436, 87.929) 

[38.483, 72.015] 
(37.604, 72.876) 

[25.457, 63.721] 
(24.567, 64.683) 

[14.627, 56.464] 
(13.860, 57.465) 

MTR [6.684, 48.814] 
(6.221, 49.321) 

[22.124, 59.578] 
(21.407, 60.273) 

[34.180, 76.454] 
(33.452, 77.163) 

[48.811, 87.239] 
(48.303, 87.836) 

MTS+MTR [37.545, 48.814] 
(36.417, 49.330) 

[45.169, 50.465] 
(44.384, 51.049) 

[47.584, 52.957] 
(46.942, 53.789) 

[48.811, 56.464] 
(48.284, 57.502) 

MTS+MIV [39.207, 87.310] 
(37.413, 87.990) 

[38.428, 72.000] 
(37.517, 72.834) 

[25.425, 63.631] 
(24.573, 64.527) 

[14.417, 55.471] 
(13.698, 56.533) 

MTR+MIV [10.640, 48.909] 
(9.869, 49.394) 

[48.690, 56.348] 
(48.198, 57.148) 

[62.213, 63.902] 
(60.969, 65.870) 

[81.723, 75.591] 
(80.578, 77.816) 

MTS+MTR+MIV [39.207, 48.909] 
(37.294, 49.425) 

[48.690, 50.510] 
(48.161, 51.062) 

[50.166, 52.892] 
(49.575, 53.681) 

[52.352, 55.471] 
(51.452, 56.655) 

Notes: Estimated bounds are in [.] and corresponding 95% confidence intervals in (.) are from 999 bootstrap 
replications. The min and max values of the outcome were used in computing the bounds.The MIV is mother’s 
schooling with bins for high-school dropout, high-school graduate and more than high school. The estimated bounds 
on 𝐸𝐸[𝑌𝑌(𝑡𝑡)] presented in this table provide a more nuanced picture of the estimated bounds in Table 2. It is important 
to note, however, that the estimated bounds on the population ATE in Table 2 cannot be directly obtained from the 
bounds in Table C4 by using equation (3) in the main text. Specifically, while close, the estimated lower (respectively, 
upper) bounds in Table 2 will not in general be numerically equal to the difference between the estimated lower (upper) 
and upper (lower) bounds of the corresponding average potential outcomes 𝐸𝐸[𝑌𝑌(𝑡𝑡)]. For example, under the 
MTS+MTR+MIV assumptions, the estimated lower bound on the effect from secondary (𝑡𝑡2) to tertiary (𝑡𝑡4) in Table 
2 of 1.87, is close but not numerically equal to the difference between the lower bound on 𝐸𝐸[𝑌𝑌(𝑡𝑡4)] in Table C4 of 
52.35 and the upper bound on 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] of 50.51, which equals 1.84. The reason is that, contrary to expectations, the 
Chernozhukov et al. (2013) bias-correction method employed to estimate the bounds does not have the property that 
the estimates from the method applied to the bounds on the effect (e.g., Δ(𝑡𝑡2, 𝑡𝑡4) = 𝐸𝐸[𝑌𝑌(𝑡𝑡4) − 𝑌𝑌(𝑡𝑡2)]) equal the 
difference in the corresponding estimates from separately applying the method to the bounds of each of the mean 
potential outcomes (e.g., 𝐸𝐸[𝑌𝑌(𝑡𝑡2)] and 𝐸𝐸[𝑌𝑌(𝑡𝑡4)]). See appendix A for further details on the Chernozhukov et al. (2013) 
procedure.    
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Table C6: OLS Estimates and Bounds for the Effect of Schooling on Other Cognition 
Domains 

 Control 
Mean (SD) 

OLS MTS+MTR MTS+MTR+MIV 

 (1) (2) (3) (4) 
Panel A: Mini-Mental State Examination 
HS Grad vs HS Dropout 24.28 

(4.56) 
2.433*** 
(0.225) 

[0.000, 2.916] 
(0.000, 3.260) 

[0.000, 2.916] 
(0.000, 3.318) 

Some College vs HS Grad 26.71 
(3.60) 

0.780*** 
(0.172) 

[0.000, 1.312] 
(0.000, 1.554) 

[0.000, 0.864] 
(0.000, 1.002) 

College Grad vs Some 
College 

27.49 
(3.46) 

0.379** 
(0.167) 

[0.000, 1.209] 
(0.000, 1.451) 

[0.000, 0.537] 
(0.000, 0.753) 

College Grad vs HS Grad 26.71 
(3.60) 

1.159*** 
(0.157) 

[0.000, 1.593] 
(0.000, 1.849) 

[0.289, 0.954] 
(0.122, 1.164) 

College Grad vs HS Dropout 24.28 
(4.56) 

3.592*** 
(0.223) 

[0.000, 3.593] 
(0.000, 3.969) 

[0.710, 3.369] 
(0.557, 3.818) 

Panel B: Recognition Memory 
HS Grad vs HS Dropout 26.64 

(4.51) 
2.141*** 
(0.238) 

[0.000, 2.559] 
(0.000, 2.914) 

[0.000, 2.318] 
(0.000, 3.018) 

Some College vs HS Grad 28.78 
(4.41) 

0.581*** 
(0.206) 

[0.000, 1.094] 
(0.000, 1.395) 

[0.000, 0.725] 
(0.000, 0.887) 

College Grad vs Some 
College 

29.37 
(4.09) 

0.505** 
(0.213) 

[0.000, 1.182] 
(0.000, 1.494) 

[0.000, 0.535] 
(0.000, 0.832) 

College Grad vs HS Grad 28.78 
(4.41) 

1.086*** 
(0.203) 

[0.000, 1.468] 
(0.000, 1.808) 

[0.197, 0.885] 
(0.003, 1.169) 

College Grad vs HS Dropout 26.64 
(4.51) 

3.227*** 
(0.244) 

[0.000, 3.228] 
(0.000, 3.641) 

[0.552, 2.751] 
(0.375, 3.503) 

Panel C: Verbal Fluency     
HS Grad vs HS Dropout 12.76 

(5.33) 
2.540*** 
(0.297) 

[0.000, 3.857] 
(0.000, 4.294) 

[0.000, 3.581] 
(0.000, 4.516) 

Some College vs HS Grad 15.30 
(6.04) 

1.441*** 
(0.302) 

[0.000, 2.500] 
(0.000, 2.923) 

[0.000, 1.266] 
(0.000, 1.493) 

College Grad vs Some 
College 

16.74 
(6.29) 

2.338*** 
(0.346) 

[0.000, 3.524] 
(0.000, 3.998) 

[0.000, 2.026] 
(0.000, 2.406) 

College Grad vs HS Grad 15.30 
(6.04) 

3.779*** 
(0.317) 

[0.000, 4.233] 
(0.000, 4.743) 

[0.627, 2.403] 
(0.352, 2.773) 

College Grad vs HS Dropout 12.76 
(5.33) 

6.319*** 
(0.341) 

[0.000, 6.321] 
(0.000, 6.889) 

[1.019, 5.461] 
(0.765, 6.492) 

Panel D: Executive Function 
HS Grad vs HS Dropout 9.54 

(3.87) 
2.509*** 
(0.200) 

[0.000, 3.342] 
(0.000, 3.641) 

[0.000, 2.831] 
(0.000, 3.194) 

Some College vs HS Grad 12.05 
(3.57) 

1.154*** 
(0.161) 

[0.000, 1.865] 
(0.000, 2.087) 

[0.000, 0.973] 
(0.000, 1.097) 

College Grad vs Some 
College 

13.20 
(3.09) 

1.020*** 
(0.157) 

[0.000, 2.053] 
(0.000, 2.261) 

[0.000, 1.123] 
(0.000, 1.314) 

College Grad vs HS Grad 12.05 
(3.57) 

2.173*** 
(0.154) 

[0.000, 2.621] 
(0.000, 2.859) 

[0.454, 1.522] 
(0.311, 1.703) 

College Grad vs HS Dropout 9.54 
(3.87) 

4.682*** 
(0.197) 

[0.000, 4.684] 
(0.000, 5.006) 

[0.872, 3.887] 
(0.736, 4.285) 
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Panel E: Attention/Speed 
HS Grad vs HS Dropout 32.42 

(14.37) 
11.207*** 
(0.748) 

[0.000, 13.598] 
(0.000, 14.686) 

[0.000, 12.153] 
(0.000, 13.491) 

Some College vs HS Grad 43.63 
(13.56) 

3.023*** 
(0.601) 

[0.000, 5.921] 
(0.000, 6.866) 

[0.000, 3.621] 
(0.000, 4.159) 

College Grad vs Some 
College 

46.56 
(13.52) 

3.471*** 
(0.714) 

[0.000, 7.005] 
(0.000, 8.046) 

[0.000, 3.258] 
(0.000, 4.157) 

College Grad vs HS Grad 43.63 
(13.56) 

6.494*** 
(0.660) 

[0.000, 8.493] 
(0.000, 9.589) 

[1.253, 5.025] 
(0.632, 5.900) 

College Grad vs HS Dropout 32.42 
(14.37) 

17.701*** 
(0.795) 

[0.000, 17.706] 
(0.000, 19.009) 

[3.097, 15.108] 
(2.516, 16.683) 

Panel F: Visuospatial      
HS Grad vs HS Dropout 6.88 

(2.39) 
1.156*** 
(0.124) 

[0.000, 1.532] 
(0.000, 1.722) 

[0.000, 1.521] 
(0.000, 1.755) 

Some College vs HS Grad 8.04 
(2.24) 

0.366*** 
(0.101) 

[0.000, 0.768] 
(0.000, 0.914) 

[0.000, 0.395] 
(0.000, 0.479) 

College Grad vs Some 
College 

8.40 
(2.15) 

0.753*** 
(0.109) 

[0.000, 1.146] 
(0.000, 1.293) 

[0.000, 0.710] 
(0.000, 0.836) 

College Grad vs HS Grad 8.04 
(2.24) 

1.120*** 
(0.102) 

[0.000, 1.326] 
(0.000, 1.486) 

[0.103, 0.905] 
(0.011, 1.025) 

College Grad vs HS Dropout 6.88 
(2.39) 

2.276*** 
(0.126) 

[0.000, 2.277] 
(0.000, 2.488) 

[0.301, 2.176] 
(0.214, 2.433) 

Notes: Robust standard errors in (.) in column 2. In columns 3 and 4 estimated bounds are in [.] and corresponding 
95% confidence intervals in (.) are from 999 bootstrap replications. The min and max values of the outcome was used 
in computing the bounds. The MIV is mother’s schooling with bins for high-school dropout, high-school graduate and 
more than high school. 
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Table C7: Bounds on Effects of Schooling on Cognition with Alternative Education Coding Schemes 
  Mini-Mental 

State Exam 
Immediate 
+Delayed 
Memory  

Recognition  
Memory 

Attention/ 
Speed 

Verbal  
Fluency 

Executive 
Function 

Visuospatial 

Grades of Schooling        
Treatment Control        
10 ≤9 [0.000, 3.652] 

(0.000, 4.048) 
[0.008, 13.969] 
(0.000, 17.486) 

[0.000, 3.435] 
(0.000, 3.917) 

[0.000, 15.417] 
(0.000, 17.168) 

[0.000, 3.996] 
(0.000, 4.916) 

[0.000, 3.623] 
(0.000, 4.147) 

[0.000, 1.830] 
(0.000, 2.106) 

11 10 [0.000, 0.323] 
(0.000, 0.425) 

[0.000, 1.327] 
(0.000, 1.716) 

[0.106, 0.312] 
(0.000, 0.427) 

[0.000, 1.177] 
(0.000, 1.485) 

[0.000, 0.272] 
(0.000, 0.416) 

[0.000, 0.219] 
(0.000, 0.310) 

[0.000, 0.140] 
(0.000, 0.191) 

12 11 [0.000, 0.275] 
(0.000, 0.396) 

[0.000, 1.142] 
(0.000, 1.820) 

[0.000, 0.087] 
(0.000, 0.318) 

[0.000, 1.361] 
(0.000, 1.690) 

[0.000, 0.732] 
(0.000, 0.905) 

[0.000, 0.269] 
(0.000, 0.364) 

[0.000, 0.189] 
(0.000, 0.284) 

13 12 [0.000, 0.637] 
(0.000, 0.883) 

[0.000, 2.719] 
(0.000, 3.820) 

[0.000, 0.529] 
(0.000, 0.787) 

[0.000, 2.763] 
(0.000, 3.668) 

[0.000, 0.863] 
(0.000, 1.261) 

[0.000, 0.721] 
(0.000, 0.947) 

[0.000, 0.242] 
(0.000, 0.377) 

14 13 [0.000, 0.475] 
(0.000, 0.717) 

[0.000, 2.974] 
(0.000, 4.047) 

[0.000, 0.439] 
(0.000, 0.738) 

[0.000, 1.697] 
(0.000, 2.552) 

[0.000, 1.116] 
(0.000, 1.519) 

[0.000, 0.571] 
(0.000, 0.778) 

[0.000, 0.194] 
(0.000, 0.345) 

15 14 [0.000, 0.239] 
(0.000, 0.751) 

[0.000, 2.176] 
(0.000, 4.134) 

[0.000, 0.257] 
(0.000, 0.785) 

[0.000, 2.162] 
(0.000, 4.246) 

[0.000, 1.075] 
(0.000, 2.001) 

[0.000, 0.823] 
(0.000, 1.235) 

[0.000, 0.385] 
(0.000, 0.676) 

16 15 [0.000, 0.369] 
(0.000, 0.707) 

[0.000, 2.003] 
(0.000, 3.659) 

[0.000, 0.370] 
(0.000, 0.854) 

[0.000, 2.119] 
(0.000, 3.642) 

[0.000, 0.779] 
(0.000, 1.481) 

[0.000, 0.519] 
(0.000, 0.853) 

[0.000, 0.568] 
(0.000, 0.787) 

17 16 [0.000, 0.152] 
(0.000, 0.752) 

[0.000, 4.764] 
(0.000, 7.306) 

[0.000, 0.472] 
(0.000, 1.082) 

[0.000, 1.466] 
(0.000, 4.724) 

[0.000, 1.787] 
(0.000, 3.326) 

[0.000, 0.568] 
(0.000, 1.033) 

[0.000, 0.631] 
(0.000, 1.020) 

16 12 [0.375, 0.850] 
(0.000, 1.094) 

[2.338, 4.675] 
(0.344, 6.034) 

[0.188, 0.731] 
(0.000, 1.078) 

[3.229, 4.036] 
(0.292, 5.269) 

[1.062, 1.811] 
(0.000, 2.341) 

[0.889, 1.191] 
(0.483, 1.484) 

[0.230, 0.763] 
(0.000, 0.934) 

Notes: Robust standard errors in (.) in column 2. In columns 3-7 estimated bounds are in [.] and corresponding 95% confidence intervals in (.) are from 999 
bootstrap replications. The min and max values of the outcome was used in computing the bounds. The MIV is mother’s grades of schooling divided into 3 bin
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Table C8: Inverse Probability Weighted OLS Estimates and Bounds for the Effect of 
Schooling on Cognition 

 Control 
Mean (SD) 

OLS MTS+MTR MTS+MTR+MIV 

 (1) (2) (3) (4) 
Panel A: Immediate+Delayed Memory 
HS Grad vs HS Dropout 37.55 

(15.95) 
10.477*** 
(0.202) 

[0.000, 13.701] 
(0.000, 16.692) 

[0.000, 12.657] 
(0.000, 15.606) 

Some College vs HS Grad 46.82 
(17.22) 

6.488*** 
(1.365) 

[0.000, 9.439] 
(0.000, 11.499) 

[0.000, 6.231] 
(0.000, 7.601) 

College Grad vs Some 
College 

51.73 
(16.55) 

1.928 
(1.667) 

[0.000, 8.153] 
(0.000, 11.040) 

[0.000, 4.239] 
(0.000, 6.687) 

College Grad vs HS Grad 46.82 
(17.22) 

8.416*** 
(1.887) 

[0.000, 10.922] 
(0.000, 13.986) 

[2.654, 6.506] 
(1.164, 8.930) 

College Grad vs HS Dropout 37.55 
(15.95) 

18.892*** 
(2.234) 

[0.000, 18.903] 
(0.000, 22.602) 

[5.082, 16.157] 
(3.647, 19.853) 

Panel B: Mini-Mental State Examination 
HS Grad vs HS Dropout 24.28 

(4.56) 
3.627*** 
(0.734) 

[0.000, 3.638] 
(0.000, 4.792) 

[0.000, 3.457] 
(0.000, 4.370) 

Some College vs HS Grad 26.71 
(3.60) 

1.270*** 
(0.396) 

[0.000, 2.059] 
(0.000, 2.675) 

[0.000, 1.543] 
(0.000, 1.990) 

College Grad vs Some 
College 

27.49 
(3.46) 

0.283 
(0.259) 

[0.000, 1.734] 
(0.000, 2.232) 

[0.000, 0.846] 
(0.000, 1.322) 

College Grad vs HS Grad 26.71 
(3.60) 

1.553*** 
(0.377) 

[0.000, 2.276] 
(0.000, 2.889) 

[0.509, 1.528] 
(0.058, 2.012) 

College Grad vs HS Dropout 24.28 
(4.56) 

4.580*** 
(0.700) 

[0.000, 4.583] 
(0.000, 5.722) 

[1.186, 4.124] 
(0.748, 5.053) 

Panel C: Recognition Memory 
HS Grad vs HS Dropout 26.64 

(4.51) 
2.687*** 
(0.451) 

[0.000, 2.991] 
(0.000, 3.728) 

[0.000, 2.778] 
(0.000, 3.488) 

Some College vs HS Grad 28.78 
(4.41) 

0.738** 
(0.285) 

[0.000, 1.366] 
(0.000, 1.868) 

[0.000, 1.166] 
(0.000, 1.534) 

College Grad vs Some 
College 

29.37 
(4.09) 

-0.059 
(0.610) 

[0.000, 1.008] 
(0.000, 2.084) 

[0.000, 0.436] 
(0.000, 1.410) 

College Grad vs HS Grad 28.78 
(4.41) 

0.679 
(0.609) 

[0.000, 1.322] 
(0.000, 2.408) 

[0.258, 1.063] 
(0.000, 2.171) 

College Grad vs HS Dropout 26.64 
(4.51) 

3.366*** 
(0.703) 

[0.000, 3.370] 
(0.000, 4.572) 

[0.840, 3.034] 
(0.500, 4.382) 

Panel D: Verbal Fluency     
HS Grad vs HS Dropout 12.76 

(5.33) 
2.655*** 
(0.587) 

[0.000, 3.829] 
(0.000, 4.688) 

[0.000, 3.631] 
(0.000, 4.581) 

Some College vs HS Grad 15.30 
(6.04) 

1.947*** 
(0.435) 

[0.000, 2.923] 
(0.000, 3.568) 

[0.000, 1.849] 
(0.000, 2.286) 

College Grad vs Some 
College 

16.74 
(6.29) 

1.469*** 
(0.449) 

[0.000, 3.220] 
(0.000, 3.937) 

[0.000, 1.801] 
(0.000, 2.336) 

College Grad vs HS Grad 15.30 
(6.04) 

3.415*** 
(0.500) 

[0.000, 4.050] 
(0.000, 4.834) 

[0.927, 2.326] 
(0.433, 2.855) 

College Grad vs HS Dropout 12.76 
(5.33) 

6.070*** 
(0.597) 

[0.000, 6.073] 
(0.000, 7.065) 

[1.467, 5.219] 
(1.007, 6.231) 
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Panel E: Executive Function 
HS Grad vs HS Dropout 9.54 

(3.87) 
2.559*** 
(0.478) 

[0.000, 3.463] 
(0.000, 4.112) 

[0.000, 2.942] 
(0.000, 3.478) 

Some College vs HS Grad 12.05 
(3.57) 

1.626*** 
(0.374) 

[0.000, 2.446] 
(0.000, 2.967) 

[0.000, 1.502] 
(0.000, 1.827) 

College Grad vs Some 
College 

13.20 
(3.09) 

0.899*** 
(0.214) 

[0.000, 2.442] 
(0.000, 2.837) 

[0.000, 1.523] 
(0.000, 1.988) 

College Grad vs HS Grad 12.05 
(3.57) 

2.525*** 
(0.382) 

[0.000, 3.136] 
(0.000, 3.673) 

[0.695, 2.057] 
(0.295, 2.449) 

College Grad vs HS Dropout 9.54 
(3.87) 

5.083*** 
(0.367) 

[0.000, 5.085] 
(0.000, 5.698) 

[1.327, 4.297] 
(0.987, 4.864) 

Panel F: Attention/Speed 
HS Grad vs HS Dropout 32.42 

(14.37) 
13.025*** 
(2.008) 

[0.000, 15.078] 
(0.000, 18.184) 

[0.000, 13.054] 
(0.000, 15.511) 

Some College vs HS Grad 43.63 
(13.56) 

4.122*** 
(1.141) 

[0.000, 7.517] 
(0.000, 9.412) 

[0.000, 5.563] 
(0.000, 6.934) 

College Grad vs Some 
College 

46.56 
(13.52) 

1.226 
(1.262) 

[0.000, 6.701] 
(0.000, 9.022) 

[0.000, 2.392] 
(0.000, 4.256) 

College Grad vs HS Grad 43.63 
(13.56) 

5.348*** 
(1.490) 

[0.000, 8.460] 
(0.000, 11.005) 

[1.714, 5.193] 
(0.491, 7.135) 

College Grad vs HS Dropout 32.42 
(14.37) 

18.373*** 
(2.079) 

[0.000, 18.383] 
(0.000, 21.862) 

[4.845, 14.889] 
(3.395, 17.772) 

Panel G: Visuospatial      
HS Grad vs HS Dropout 6.88 

(2.39) 
1.088*** 
(0.244) 

[0.000, 1.511] 
(0.000, 1.869) 

[0.000, 1.464] 
(0.000, 1.803) 

Some College vs HS Grad 8.04 
(2.24) 

0.637*** 
(0.193) 

[0.000, 1.047] 
(0.000, 1.327) 

[0.000, 0.614] 
(0.000, 0.785) 

College Grad vs Some 
College 

8.40 
(2.15) 

0.647*** 
(0.199) 

[0.000, 1.272] 
(0.000, 1.599) 

[0.000, 0.939] 
(0.000, 1.296) 

College Grad vs HS Grad 8.04 
(2.24) 

1.283*** 
(0.242) 

[0.000, 1.544] 
(0.000, 1.917) 

[0.206, 1.179] 
(0.000, 1.504) 

College Grad vs HS Dropout 6.88 
(2.39) 

2.372*** 
(0.249) 

[0.000, 2.373] 
(0.000, 2.788) 

[0.459, 2.314] 
(0.290, 2.781) 

Notes: Robust standard errors in (.) in column 2. In columns 3 and 4 estimated bounds are in [.] and corresponding 
95% confidence intervals in (.) are from 999 bootstrap replications. The min and max values of the residuals were 
used in computing the bounds. The MIV is mother’s schooling with bins for high-school dropout, high-school 
graduate and more than high school
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Table C9: Summary Statistics for older adults in the MIDUS 
 Mean (SD) Min (Max) Observations 
 (1) (3) (5) 
Demographics    
Age 72.04 (5.15) 65 (84) 1,016 
Female 0.56 (0.50) 0 (1) 1,016 
White 0.95 (0.21) 0 (1) 1,016 
White Missing 0.04 (0.18) 0 (1) 1,106 
Mother: HS Dropout 0.52 (0.50) 0 (1) 1,016 
Mother: HS Grad 0.28 (0.45) 0 (1) 1,016 
Mother: More than HS Grad 0.19 (0.39) 0 (1) 1,016 
Schooling    
Grades of Schooling 13.79 (2.69) 6 (20) 1,016 
HS Dropout 0.10 (0.30) 0 (1) 1,016 
HS Grad 0.31 (0.46) 0 (1) 1,016 
Some College 0.29 (0.45) 0 (1) 1,016 
College Grad 0.30 (0.45) 0 (1) 1,016 
Cognition    
Immediate+Delayed 
Memory 

9.07 (4.56) 0 (28) 950 

Attention/Speed 30.78 (9.23) 0 (100) 1,010 
Verbal Fluency 16.24 (5.54) 0 (38) 1,015 

Notes: Standard deviations in parentheses. Analysis limited to individuals aged 65 years 
or older in the MIDUS Cognition Project. 
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Table C10: OLS Estimates and Bounds for the Effect of Schooling on Cognitive Abilities of 
Older Individuals in the MIDUS 

 Control 
Mean (SD) 

OLS MTS+MTR MTS+MTR+MIV 

 (1) (2) (3) (4) 
Panel A: Immediate+Delayed Memory 
HS Grad vs HS Dropout 7.15 

(3.72) 
1.280*** 
(0.462) 

[0.000, 2.046] 
(0.000, 2.742) 

[0.000, 2.247] 
(0.000, 3.013) 

Some College vs HS 
Grad 

8.43 
(4.18) 

1.203*** 
(0.383) 

[0.000, 1.376] 
(0.000, 1.928) 

[0.000, 0.756] 
(0.000, 1.070) 

College vs Some 
College 

9.63 
(4.92) 

0.170 
(0.401) 

[0.000, 0.781] 
(0.000, 1.359) 

[0.000, 0.557] 
(0.000, 1.186) 

College Grad vs HS 
Grad 

8.43 
(4.18) 

1.372*** 
(0.363) 

[0.000, 1.494] 
(0.000, 2.103) 

[0.408, 0.726] 
(0.016, 1.332) 

College Grad vs HS 
Dropout 

7.15 
(3.72) 

2.653*** 
(0.477) 

[0.000, 2.655] 
(0.000, 2.452) 

[0.507, 2.753] 
(0.175, 3.648) 

Panel B: Verbal Fluency 
HS Grad vs HS Dropout 13.91 

(5.04) 
1.345** 
(0.580) 

[0.000, 2.465] 
(0.000, 3.399) 

[0.000, 2.784] 
(0.000, 3.956) 

Some College vs HS 
Grad 

15.26 
(5.20) 

0.682 
(0.424) 

[0.000, 1.533] 
(0.000, 2.150) 

[0.000, 0.487] 
(0.000, 0.767) 

College vs Some 
College 

15.94 
(5.25) 

2.379*** 
(0.447) 

[0.000, 2.796] 
(0.000, 3.444) 

[0.000, 2.033] 
(0.000, 2.551) 

College Grad vs HS 
Grad 

15.26 
(5.20) 

3.062*** 
(0.438) 

[0.000, 3.198] 
(0.000, 3.918) 

[0.077, 2.158] 
(0.000, 2.683) 

College Grad vs HS 
Dropout 

13.91 
(5.04) 

4.407*** 
(0.597) 

[0.000, 4.410] 
(0.000, 5.459) 

[0.217, 4.570] 
(0.000, 5.925) 

Panel C: Attention/Speed 
HS Grad vs HS Dropout 26.07 

(8.45) 
3.764*** 
(0.973) 

[0.000, 5.079] 
(0.000, 6.754) 

[0.000, 5.221] 
(0.000, 7.699) 

Some College vs HS 
Grad 

29.83 
(8.50) 

0.308 
(0.695) 

[0.000, 1.809] 
(0.000, 2.881) 

[0.000, 0.826] 
(0.000, 1.446) 

College vs Some 
College 

30.14 
(8.63) 

3.761*** 
(0.756) 

[0.000, 4.260] 
(0.000, 5.393) 

[0.000, 2.582] 
(0.000, 3.421) 

College Grad vs HS 
Grad 

29.83 
(8.50) 

4.069*** 
(0.739) 

[0.000, 4.442] 
(0.000, 5.684) 

[0.003, 2.964] 
(0.000, 3.836) 

College Grad vs HS 
Dropout 

26.07 
(8.45) 

7.834*** 
(1.017) 

[0.000, 7.839] 
(0.000, 9.674) 

[0.366, 7.525] 
(0.000, 10.074) 

Notes: Robust standard errors in (.) in column 2. In columns 3 and 4 estimated bounds are in [.] and corresponding 
95% confidence intervals in (.) are from 999 bootstrap replications. The min and max values of the residuals were 
used in computing the bounds. The MIV is mother’s schooling with bins for high-school dropout, high-school graduate 
and more than high school. Analysis limited to individuals aged 65 years and over in the MIDUS Cognition Project. 
Estimation sample size in panels A ,B and C are 950, 1015, and 1010 observations respectively. 
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Table C11: OLS Estimates and Bounds for the Effect of Schooling on Cognitive Abilities of 
Middle-Aged Individuals in the MIDUS 

 Control 
Mean (SD) 

OLS MTS+MTR MTS+MTR+MIV 

 (1) (2) (3) (4) 
Panel A: Immediate+Delayed Memory 
HS Grad vs HS Dropout 11.40 

(4.64) 
0.480 
(0.627) 

[0.000, 1.262] 
(0.000, 2.372) 

[0.000, 1.067] 
(0.000, 2.490) 

Some College vs HS 
Grad 

11.88  
(4.15) 

0.655** 
(0.316) 

[0.000, 0.987] 
(0.000, 1.466) 

[0.000, 0.288] 
(0.000, 0.538) 

College vs Some 
College 

12.53 
(4.41) 

0.774*** 
(0.278) 

[0.000, 0.982] 
(0.000, 1.430) 

[0.000, 0.724] 
(0.000, 1.030) 

College Grad vs HS 
Grad 

11.88 
(4.15) 

1.429*** 
(0.295) 

[0.000, 1.453] 
(0.000, 1.971) 

[0.125, 0.749] 
(0.000, 1.073) 

College Grad vs HS 
Dropout 

11.40 
(4.64) 

1.909*** 
(0.608) 

[0.000, 1.912] 
(0.000, 3.055) 

[0.155, 1.681] 
(0.019, 3.125) 

Panel B: Verbal Fluency 
HS Grad vs HS Dropout 17.89 

(5.22) 
0.427 
(0.707) 

[0.000, 2.738] 
(0.000, 3.899) 

[0.000, 2.687] 
(0.000, 3.887) 

Some College vs HS 
Grad 

18.32 
(5.29) 

1.575*** 
(0.400) 

[0.000, 2.776] 
(0.000, 3.363) 

[0.000, 0.564] 
(0.000, 0.738) 

College vs Some 
College 

19.89 
(5.81) 

2.959*** 
(0.376) 

[0.000, 3.427] 
(0.000, 3.983) 

[0.000, 2.071] 
(0.000, 2.435) 

College Grad vs HS 
Grad 

18.32 
(5.29) 

4.534*** 
(0.387) 

[0.000, 4.556] 
(0.000, 5.201) 

[0.318, 2.087] 
(0.075, 2.453) 

College Grad vs HS 
Dropout 

17.89 
(5.22) 

4.961*** 
(0.693) 

[0.000, 4.964] 
(0.000, 6.188) 

[0.337, 4.602] 
(0.093, 5.837) 

Panel C: Attention/Speed 
HS Grad vs HS Dropout 37.32 

(12.54) 
1.769 
(1.649) 

[0.000, 5.031] 
(0.000, 7.998) 

[0.000, 6.276] 
(0.000, 9.678) 

Some College vs HS 
Grad 

39.09 
(10.24) 

2.674*** 
(0.767) 

[0.000, 4.090] 
(0.000, 5.286) 

[0.000, 1.010] 
(0.000, 1.355) 

College vs Some 
College 

41.77 
(10.90) 

3.325*** 
(0.696) 

[0.000, 4.162] 
(0.000, 5.203) 

[0.000, 2.875] 
(0.000, 3.554) 

College Grad vs HS 
Grad 

39.09 
(10.24) 

6.000*** 
(0.734) 

[0.000, 6.086] 
(0.000, 7.349) 

[0.507, 2.941] 
(0.043, 3.621) 

College Grad vs HS 
Dropout 

37.32 
(12.54) 

7.768*** 
(1.615) 

[0.000, 7.777] 
(0.000, 10.807) 

[0.581, 8.856] 
(0.115, 12.280) 

Notes: Robust standard errors in (.) in column 2. In columns 3 and 4 estimated bounds are in [.] and corresponding 
95% confidence intervals in (.) are from 999 bootstrap replications. The min and max values of the residuals were 
used in computing the bounds. The MIV is mother’s schooling with bins for high-school dropout, high-school graduate 
and more than high school. Analysis limited to individuals aged 25-50 years in the MIDUS Cognition Project. 
Estimation sample size in panels A, B and C are 1347, 1400, and 1393 observations respectively. 
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