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Abstract

Mental models help people navigate complex environments. This paper studies
how people deal with model uncertainty. In an experiment, participants estimate a
company’s value, facing uncertainty about which one of two models correctly deter-
mines its true value. Using a between-subjects design, we vary the degree of model
complexity. Results show that in high-complexity conditions people fully neglect
model uncertainty in their actions. However, their beliefs continue to reflect model
uncertainty. This disconnect between beliefs and actions suggests that complexity
leads to biased decision-making, while beliefs remain more nuanced. Furthermore,
we show that complexity, via full uncertainty neglect, leads to higher confidence in
the optimality of own actions.

1 Introduction

People rely on mental models to interpret and navigate the complexities of external re-

ality. These models are mental frameworks that shape how individuals process informa-

tion, form expectations, and make decisions. In contexts of economic decision-making,

mental models play a critical role, as individuals attempt to simplify and make sense

of complex environments. However, in many situations, economic agents face not only

uncertainty about future outcomes, but also model uncertainty—uncertainty regarding

which mental model best captures the true dynamics of the environment.
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mermann: University of Bonn, IZA and Max Planck Institute for Research on Collective Goods (flo-
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helpful comments and suggestions. Funding by the Deutsche Forschungsgemeinschaft (DFG) through
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fully acknowledged. This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (ERC Starting Grant: 948424 -
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Model uncertainty is prevalent in many areas of economics. For instance, when form-

ing expectations about future inflation or returns on investments, individuals may be un-

certain about which underlying model of the economy is most appropriate to use. Sim-

ilarly, when assessing the effectiveness of government policies, people may lack clarity

on which mental model best explains how government actions translate into economic

outcomes. In these cases, individuals face a dual problem: not only must they process

new information, but they must also decide how to map this information into a decision,

given uncertainty about competing models of the world. This problem arguably is es-

pecially severe in environments where working with models is complex. The question

hence arises how people function under model uncertainty, in particular when model

complexity is high. The uncertainty about which model is correct can have profound

implications for decision-making, beliefs, and ultimately, economic outcomes.

Existing research on mental models has largely focused on understanding the deter-

minants of model selection, how mental models can be used to persuade others, and the

consequences of relying on misspecified models. For example, Schwartzstein and Sun-

deram (2021) and Barron and Fries (2024) examine how individuals might be persuaded

to adopt specific mental models under different contexts, while Heidhues, Kőszegi, and

Strack (2018) explore how biased models can lead to systematic mistakes in decision-

making. Similarly, recent work by Frick, Iijima, and Ishii (2022) investigates the strategic

use of mental models in shaping economic beliefs. However, less is known about how

individuals cope with model uncertainty in the first place.

In this paper, we aim to fill this gap by studying how individuals operate under model

uncertainty. We hypothesize that the complexity of mental models determines whether

people neglect model uncertainty. Our experimental results indeed reveal that, when

complexity is high, people simplify the world by operating as if one model of the world

is correct, hence fully neglecting model uncertainty. This is echoed by hovering data

which suggest that when complexity is high, people have a tendency to predominantly

attend to one specific model of the world. These results are robust to variations in the

signal space as well as variations in the specific task people need to perform. Turning to

implications of this complexity-induced simplification, we document two key results: (i)

neglect of model uncertainty does not translate into a distorted view of the world. When

we directly elicit beliefs about which model of the world is correct, these beliefs do reflect
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model uncertainty despite model neglect in actions, creating a wedge between actions

and beliefs; (ii) model neglect creates an illusion of certainty. The complexity-induced

simplification leads to higher levels of confidence in the optimality of own actions such

that, perhaps counter to intuitions, complexity increases rather than decreases decision

confidence in our setting.

We design an experiment that allows us to infer from their actions how people deal

with model uncertainty. We implement our experiment in a financial decision-making

context where participants task is to provide valuations for fictitious companies. There is

a set of variables that are potentially relevant to determine company values. Participants

face uncertainty about which of two models of the world makes correct use of these vari-

ables to estimate the value of a company. Participants are endowedwith a 50-50 prior and

then receive a noisy signal about which model is correct. In a between-subjects design,

we manipulate the complexity of these models, keeping all other aspects of the decision

environment constant. In the low-complexity condition, each model provides a direct

estimate of the company’s value using the variables as input, requiring no computations

from participants to get at each model’s estimate. In the high-complexity condition,

we add a layer of computational complexity, as participants need to compute the value

estimates of the models themselves using the variables as inputs. Participants provide

value estimates for eight different companies. Afterwards, we also measure beliefs about

which model participants think is correct. This allows us to examine the extent to which

complexity influences both actions (i.e., the valuation) and beliefs (i.e., the perception

of which model is correct).

Our findings suggest that complexity significantly alters how people deal with model

uncertainty. Compared to the low-complexity condition, participants in the high-complexity

condition have a more pronounced tendency to simplify the world by neglecting model

uncertainty in their actions, behaving as if the more likely model is definitely correct.

This tendency to act as if there is no model uncertainty implies an overreaction to the sig-

nal about the correct model. In other words, when complexity is high, participants place

too much weight on the value estimate provided by the more likely model. Data on hov-

ering times indicate that complexity affects decision-making through an attention chan-

nel (Bordalo, Gennaioli, and Shleifer (2012), Bordalo, Conlon, Gennaioli, Kwon, and

Shleifer (2023b), Bordalo, Conlon, Gennaioli, Kwon, and Shleifer (2023a), Ba, Bohren,
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and Imas (2022)). In the high-complexity condition, participants spend significantly

more time focusing on the signal-congruent model, whereas in the low-complexity con-

dition, their attention is more evenly distributed between the two models.

In another experiment, we verify that simplification does not require one model to be

more likely than the other. When both models of the world are equally likely, complex-

ity nonetheless leads to a neglect of model uncertainty. Additional experiments further

underscore the robustness of our results. When we replace the value estimation task

with an investment task, we continue to see that complexity leads to a neglect of model

uncertainty.

Next, we turn to implications of this complexity-induced simplification. We first doc-

ument that neglect of model uncertainty in actions does not translate into beliefs. Par-

ticipants’ stated beliefs continue to reflect model uncertainty. This disconnect between

beliefs and actions creates a systematic wedge between what individuals believe and

how they behave under model uncertainty. This echoes earlier work by Giglio, Maggiori,

Stroebel, and Utkus (2021), Ameriks, Kézdi, Lee, and Shapiro (2020), Beutel and M.

Weber (2023), Laudenbach, A. Weber, R. Weber, and Wohlfart (forthcoming) who have

identified a gap between subjective beliefs and economic behavior in different contexts.1

Notably, this gap arises directly after participants stated their valuations, and persists

even after a 1 day delay, as we verify in a separate experiment that spans over 2 days.

Second, using additional experiments where we measure participants’ confidence in

the optimality of their actions, we document that confidence in the optimality of own ac-

tions is higher in the high-complexity conditions compared to the low-complexity condi-

tions. This holds for an unincentivized confidence measure, where participants state the

probability that their guesses were optimal, as well as an incentivized measure, where

participants place a bet on the optimality of their actions. Prior literature in contexts

different from ours has shown that complexity tends to increase cognitive uncertainty

(Enke and Graeber (2023), Enke, Graeber, and Oprea (forthcoming), Enke, Graeber,

and Oprea (2023)). In contrast, it seems that in the context of model uncertainty, the

possibility to respond to complexity by simplifying the world through full neglect of

model uncertainty leads to an illusion of certainty and hence increased confidence in ac-

tion optimality. In the final part of the paper we present a simple model that formalizes
1Yang (2023) provides an explanation for the attenuated relation between beliefs and actions based

on a specific form of cognitive uncertainty.
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this intuition and can generate the key results from our experiments. The model is an

augmented and simplified version of Bordalo, Gennaioli, Lanzani, and Shleifer (2025).

Our work directly relates to a growing literature on (misspecified) mental models

(Schwartzstein and Sunderam (2021), Montiel Olea, Ortoleva, Pai, and Prat (2022),

Gagnon-Bartsch, Rabin, and Schwartzstein (2023), Mailath and Samuelson (2019), Hei-

dhues, Kőszegi, and Strack (2018) Heidhues, Kőszegi, and Strack (2023) Frick, Iijima,

and Ishii (2022), Aina (2024), Barron and Fries (2024)).2 Until now, this literature has

largely focused on an analysis of the determinants of model selection, howmental models

can be used to persuade others, and the consequences of relying on misspecified models.

In contrast, our focus is on how people deal with model uncertainty. A common assump-

tion in the literature is that people work with a single (possibly misspecified) model

when making decisions, rather than entertaining multiple weighted models simultane-

ously (e.g. Schwartzstein (2014), Schwartzstein and Sunderam (2021), Montiel Olea,

Ortoleva, Pai, and Prat (2022)).3 We empirically document this kind of simplification,

show that it increases with decision complexity and study its implications.

Our work also ties to a literature that studies how limited attention shapes how peo-

ple react to information.4 Bordalo, Conlon, Gennaioli, Kwon, and Shleifer (2023b) and

Bordalo, Conlon, Gennaioli, Kwon, and Shleifer (2023a) provide formal frameworks as

well as experimental evidence of how attention (and memory) patterns shape belief for-

mation and information processing. Ba, Bohren, and Imas (2022) show that attention

processes can lead to overreaction to information. Esponda, Oprea, and Yuksel (2023)

show that a form of representativeness heuristic has important implications in contexts

of statistical discrimination. Enke and Zimmermann (2019), Enke (2020), and Grae-

ber (2023) provide evidence that people systematically fail to attend to key aspects of
2Relatedly a growing theoretical and empirical literature studies the role of stories and narratives in

economics (e.g., Shiller (2017), Eliaz and Spiegler (2022), Andre, Haaland, Roth, and Wohlfahrt (2024),
Graeber, Roth, and Zimmermann (2024), Graeber, Roth, and Schesch (2024)).

3Aina and Schneider (2025) study how people update their beliefs in the presence of competing models
that could explain observed data. They provide evidence that the majority of people select the model that
explains the observed data best. While our focus is on the role of complexity and the implications of model
uncertainty neglect, consistent with our finding of full neglect of model uncertainty, they also find that
many participants in their experiments build their belief formation process on only one model of the world.

4More broadly, Bordalo, Gennaioli, and Shleifer (2012), Bushong, Rabin, and Schwartzstein (2021),
Kőszegi and Szeidl (2013) formalize how contextual features steer attention and focus and hence influence
behavior. (See Dertwinkel-Kalt, Gerhardt, Riener, Schwerter, and Strang (2022) as well as Somerville
(2022) for experimental tests.) Gabaix (2014), Kőszegi and Matějka (2020), Caplin, Dean, and Leahy
(2019) formalize attention as a “top-down” process where decision-makers decide to limit attention to
reduce the complexity of a problem.
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the information environment when processing new information.5 We document a re-

lated phenomenon in the context of model uncertainty where people selectively attend

to only one model of the world.

Our work also relates to a literature that studies the effect of complexity on attention.

Recent research on complexity hasmade substantial progress in defining and quantifying

complexity and studying implications in different decision contexts (e.g., Oprea (2020),

Kendall and Oprea (2024), Enke and Shubatt (2024), Shubatt and Yang (2024)), Ar-

rieta and Nielsen (2024). A common finding is that limited attention on a subset of

relevant decision parameters is a simplification response to complexity (Enke (2024),

Ba, Bohren, and Imas (2022), Enke (2020), Enke and Zimmermann (2019), Graeber

(2023)). We show that in the presence of model uncertainty, complexity induces people

to fully neglect model uncertainty. Furthermore, we document that due to the simpli-

fication response of uncertainty neglect, confidence in the optimality of own actions is

higher in the high-complexity conditions compared to the low complexity conditions.

The rest of the paper is structured as follows. In Section 2, we describe the baseline

experimental design. Section 3 presents the results on how model complexity leads to

the simplification of model uncertainty in actions. Section 4 then delves into implications

of this simplification, studying beliefs and cognitive uncertainty. In Section 5 we present

a short model that can generate the observed pattern of results, before concluding in

Section 6.

2 Baseline Experimental Design

We designed our experiment with the following goals in mind: (i) implement an econom-

ically meaningful and somewhat natural decision environment that allows us to study

how people deal with model uncertainty in the face of model complexity; (ii) achieve a

well-defined notion of model uncertainty that allows us to exogenously vary model com-

plexity in a straightforward way and (iii) being able to infer the weighting of competing

models through the measurement of actions.
5Hartzmark, Hirshman, and Imas (2021) show that ownership leads to overreaction to information, an

effect that is driven by channeled attention on information. Augenblick, Lazarus, and Thaler (forthcoming)
and Fan, Liang, and Cameorn Peng (2024) instead focus on the role of cognitive noise and similarity
patterns, respectively, in explaining over- and underreaction to information.

6



The Task and Model Uncertainty. We chose a financial decision-making task. In the

experiment, respondents had to estimate the value of 8 fictitious companies. The correct

company value was determined by one of two models, "The CEO is key" or "Products

are crucial". The two models used different variables as inputs. One of the models was

correct, meaning that it provided the correct company values for all 8 companies, while

the other model produced uninformative values.

Each of the two models consists of a formula to calculate the proposed values. "The

CEO is key" had the variables CEO competence C and Supporting Staff S as inputs, which

could be used to calculate the company value as C×S−C−S+10. "Products are crucial"

had the inputs number of products P and research cost R, and the company value was

given by P × (10− R) + R− P.

To implement model uncertainty, the correct rule was determined in secret by the

computer with a simulated coin flip. Therefore, without any additional information, the

probability that either rule produced the correct company values was 50%. Respondents

then received a noisy but informative signal about the correct model. This signal corre-

sponded to the truth with a probability of 65%.6 This was visualized using a ball drawn

from an urn containing 65 balls with the correct model and 35 balls with the incor-

rect model. Afterwards, to measure actions, respondents were asked to provide value

estimates for the 8 companies, each featuring different sets of variable realizations.7

Company value estimates were incentivized through a binarized scoring rule.8 In this

way, the chance of respondents to win a bonus was maximized by stating their best guess.

Danz, Vesterlund, and Wilson (2022) document empirically that the binarized scoring

rule can lead to systematic bias. Notice that such bias (if present in our setting) would

not compromise our identification which relies on the comparison of value estimates

between conditions of high and low complexity. Furthermore, our results are robust to

using investment behavior rather than value estimates as an outcome, which features a

different incentive scheme (see Section 3.3).
6We did not provide any feedback between rounds. Hence, the only information respondents receive

about which model is correct is the signal described above.
7The variable realizations were integers between 0 and 10 and all implemented configurations were

selected to yield company values between 10 and 100.
8Every tenth participant was eligible to receive a bonus payment, in which case a random decision from

the survey was incentivized. If a company value guess was incentivized, respondents received $10 with a
probability (in percent) of 100− 100× (Truth/100− Guess/100)2, where Truth is the true company value and
Guess the company value guess.
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Complexity Manipulation. We varied the implementation complexity of the two mod-

els between-subjects. In treatment condition HighComplexity, working with the models

was complex. Specifically, respondents had to calculate the company values under both

models themselves. To obtain the Bayesian company value guess, they then needed to

weight both values by the respective probabilities of 65% and 35%. In treatment con-

dition LowComplexity, they were provided with the calculated company values for both

models. Hence, respondents only needed to combine and weight the two values to make

their guess, which significantly reduced the complexity of working with the models.9

Cognitive Uncertainty and Beliefs about Model Uncertainty. Wemeasured cognitive

uncertainty, i.e., people’s confidence in the optimality of their value estimates similar to

Enke and Graeber (2023). Specifically, after the series of 8 value estimation tasks, we

asked people: ’How certain are you that, on average, your guesses were no more than 10

points away from the best possible guess given the information you received?’ Respondents

indicated their answer on a scale from 0 to 100 percent. The cognitive uncertainty mea-

sure was only implemented in a subset of experiments (see Table A.1 and Section 4.2)

and was not incentivized. We conducted an additional experiment that features an in-

centivized confidence measure where participants place a bet on the optimality of their

actions (see Section 4.2)).

In the last part of the experiment, respondents had to guess the probabilities that

either of the two models generated the correct company values. Since respondents re-

ceived a noisy signal during the company valuation task, this corresponds to the stan-

dard bookbag and chips belief updating task with a signal precision of 65% (cf. Benjamin

(2019)). The stated belief was incentivized using a binarized scoring rule.10 Participants

were also asked an un-incentivized direct recall question where they were asked to state

which rule was indicated to be more likely by the signal.

Design Details and Procedures. Respondents in both treatment conditions initially

received the same set of instructions, explaining both treatments. Afterwards, they went

through compulsory comprehension checks and two test runs, where they could practice
9Indeed, average guessing times in the Baseline experiment were significantly shorter at 17.09 seconds

in LowComplexity, compared to 49.11 seconds in HighComplexity (p<0.001).
10If a probability guess was incentivized, respondents received $10 with a probability of 100 − 100 ×

(Truth/100− Guess/100)2 %, where Truth is either 100 or 0, and Guess is the stated probability between 0 and
100.
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applying each of the model formulas. After they completed the test runs, they were ran-

domly assigned their treatment, received the noisy signal, and subsequently completed

the 8 rounds of the task.

On the decision screens, respondents had to hover their mouse over the name of the

respective model to uncover the variables and formula or calculated company value (cf.

Ba, Bohren, and Imas (2022)). This allows us to study the attention paid to both of the

models and signal realizations.

The experiments in this paper were pre-registered on the platform AsPredicted. The

pre-registrations include the experimental design, hypotheses, analyses, sample sizes,

and exclusion criteria. Table A.1 provides links to each pre-registration.

We conducted the experiments online using the survey provider Prolific. Respondents

were recruited from the United States and restricted to be fluent in English. To qualify for

the survey, participants had to pass comprehension checks after reading the instructions.

The experimental instructions can be found in Appendix D. The median completion time

in the Baseline Experiment was 22 minutes. Respondents received a fixed payment of

$4 for the initial study. Every tenth respondent had the chance of winning an additional

bonus of up to $10.

As preregistered, we focus our analysis on two different samples. After reading the

instructions, but before treatment assignment, we presented respondents with two test

runs for how to calculate the estimates of themodels under high complexity (as described

above). There, they could familiarize themselves with how to calculate the estimates un-

der both decision models. In order to ensure that we have a respondent pool that is in

principle able to solve the formulas in the high-complexity condition, we pre-registered

to restrict our sample to respondents who correctly answered both of the two example

decisions. The restricted sample of the Baseline Experiment includes 230 respondents.

All figures and tables in the main text and Appendix A are based on the restricted sam-

ple. Appendix B reproduces all exhibits using the also pre-registered more lenient sample

that only requires one of the two questions to be answered correctly, featuring 319 re-

spondents for the Baseline Experiment.
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3 Complexity and Simplification of Model Uncertainty

3.1 Framework and Hypothesis

Take a decision-maker whose task is to state a value estimate gactual . Recall that in each

decision scenario, the correct company value corresponds to one of the two values given

by the models "The CEO is key" and "Products are crucial". The noisy signal received by

the participant then indicates the model that is more likely to deliver the correct value.

We call the signal-consistent value vconsistent , and the signal-inconsistent value proposed

by the other model vinconsistent . Since the signal reveals the correct rule with a probability

of 65%, the rational guess for the company value is given by

grat ional = 0.65× vconsistent + 0.35× vinconsistent .

Now take a decision-maker who seeks to simplify the world by neglecting model uncer-

tainty. Such a decision-maker will base their value estimates exclusively on the more

likely model. The naive benchmark that fully neglects model uncertainty and takes the

signal at face value is hence given by

gnaive = vconsistent .

As pre-registered, the main statistical measure we employ is the naive weight λ im-

plicitly defined by

gactual = λ× gnaive + (1−λ)× grat ional , (1)

which can be rearranged to obtain

λ=
gactual − grat ional

gnaive − grat ional
. (2)

The naive weight λ equals 1 if a participant states the naive guess (full neglect of model

uncertainty) and 0 if they state the rational guess.

We expect that decision-makers will be more prone to simplify the world if complexity

is high. Therefore we state the following, pre-registered, hypothesis:

Hypothesis. Decision-makers are more likely to neglect model uncertainty when complexity

10



is high, compared to when complexity is low.

3.2 Results

Figure 1a plots histograms of decision-level naive weights in our main sample for both

treatments. The distribution in HighComplexity features more mass at 1 than the one

in LowComplexity, indicating a larger amount of fully naive guesses and overreaction to

information in the former condition. Conversely, the distribution for LowComplexity has

more mass around 0 than for HighComplexity, implying more guesses in close proximity

to the rational benchmark. The prevalence of fully naive guesses is 80% in HighComplex-

ity, compared to 59% in LowComplexity (p < 0.01). Hence, the vast majority of guesses

is fully naive in HighComplexity.11 Figure 1b confirms this pattern by comparing the av-

erage naive weight across treatments, finding a significantly larger average naive weight

under complexity (p < 0.01).

Table 1 complements this analysis by regressing the company value guesses on the

rational and naive benchmarks. This can be interpreted as estimating Equation 1 without

the restriction that the weights on the rational and naive benchmarks add up to 1. We can

see that the fully naive benchmark is relatively more predictive of participants’ guesses

in treatment HighComplexity compared to LowComplexity.

Result 1. There is substantially more neglect of model uncertainty when complexity is high,

compared to when it is low.

We note that the naive weight defined in Equation (2) is quite sensitive to outliers.

To ensure that our results are not driven by outliers, we look at the 8 decision scenarios

for each subject and compute the median naive weight. In an analysis that was not

preregistered, we plot the histogram of median naive weights for each subject in Figure

A.1. We again observe a higher mass around naive weights of 1 in HighComplexity, and

more mass between 0 and 1 in LowComplexity, confirming the earlier results that full

neglect of model uncertainty is more prevalent under complexity.

Appendix B.1 replicates all exhibits using the also pre-registered more lenient sample

that only requires one of the two questions to be answered correctly. In Appendix A.7
11A large fraction of guesses in LowComplexity also reveal full naivete, which may be caused by the

residual complexity of the general experimental set-up or more specifically of the need to combine the
signal-consistent and signal-inconsistent values into a value estimate.
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Figure 1: Decision-level naive weights in LowComplexity and HighComplexity condi-
tions. Panel (a) plots the distribution of naive weights λ calculated as specified in Equation
2, using the restricted sample of the Baseline Experiment with 230 participants. Panel (b)
plots average naive weights.
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Table 1: Company Value Guesses

Dependent variable: Company Value Guess

Sample: LowComplexity HighComplexity Pooled
(1) (2) (3)

Rational Benchmark 0.593*** 0.343*** 0.593***
(0.079) (0.065) (0.079)

Naive Benchmark 0.481*** 0.703*** 0.481***
(0.070) (0.057) (0.070)

Rational B. × HighComplexity -0.250**
(0.102)

Naive B. × HighComplexity 0.222**
(0.090)

R2 0.881 0.918 0.900

Observations 904 936 1840

The table presents OLS regressions of respondents’ company value guesses on the rational and
naive benchmarks as detailed in Section 3.1. The table is based on the restricted sample of the
Baseline Experiment. Column (1) uses observations from the LowComplexity treatment, col-
umn (2) from the HighComplexity treatment, and column (3) from both. Stars highlight signif-
icant differences from 0 with * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Standard errors
are clustered on the subject level.
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we show that we replicate all the findings for the Baseline Confidence Experiment (see

Section 4.2 and Table A.1).

Role of Attention. The above results indicate that people simplify complexity by ne-

glecting model uncertainty. To further corroborate this finding, we study the role of

attention. Recall that respondents had to hover their mouse over either "The CEO is

key" or "Products are crucial" to observe the parameters needed to make company value

guesses. In LowComplexity, the company value was displayed only when hovering over

the respective rule. In HighComplexity, the respective variable realizations needed to

calculate the company value were displayed. The resulting data on hover times allows

us to study how much attention participants paid to either rule.

Figure 2 shows the distribution of the median consistent hovering shares per subject

separately for both treatments. In treatment HighComplexity, an overwhelming majority

of participants only considers the variables of the signal-consistent model. In treatment

LowComplexity, most participants consider the proposed values by both models, with

the mode being at equal hovering times for both the signal-consistent and inconsistent

model.

Table 2 analyzes more formally how attention differs between the two treatments.

The first column shows that the average hover time for the signal-consistent rule more

than triples with higher complexity. The second column shows that the hover time for the

signal-inconsistent rule also increases, but by much less. The third column confirms that

the share of consistent hover time increases inHighComplexity, meaning that participants

in this condition pay relatively more attention to the signal-consistent rule.

3.3 Robustness

Investment Behavior. In the baseline experiment, our main outcome measure is re-

spondents’ value estimates for the hypothetical companies. We ran two additional pre-

registered versions of the Baseline Experiment that replace the company value estimate

with an investment decision. The design of the experiments was exactly as described in

Section 2, with only one change. Instead of providing a guess for the value of the com-

pany, participants were asked to submit an investment bid for each company. For each

decision, they received a budget of 100 cents and could subsequently decide how much
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Figure 2: Distribution of subject-medians of the consistent hovering shares. The figure
plots the distribution of the share of time that respondents spent looking at the values of
the signal-consistent rule, using the restricted sample of the Baseline Experiment with 230
participants. Only the median consistent share for each participant is plotted.

Table 2: Hover Times

Dependent variable: Consistent Hover Time Inconsistent Hover Time Consistent Share

Sample: Pooled Pooled Pooled
(1) (2) (3)

Constant 2.641*** 1.533*** 0.635***
(0.232) (0.153) (0.018)

HighComplexity 11.611*** 1.588*** 0.153***
(0.954) (0.392) (0.027)

R2 0.262 0.033 0.079

Observations 1840 1840 1840

The table presents OLS regressions using the restricted sample of the Baseline Experiment. Hover times were
winsorized at the top at the 97.5% quantile. All columns use observations from both the HighComplexity and
LowComplexity conditions. In column (1), the time that respondents spent looking at the values for the signal-
consistent rule is regressed on a constant and a treatment dummy for the HighComplexity condition. In column
(2), the dependent variable is the time spent looking at the signal-inconsistent rule. In column (3), it is the
share of time that was spent looking at the signal-consistent rule. Stars highlight significant differences from 0
with * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Standard errors are clustered on the subject level.
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to bid for the company. The bids were incentivized through a random auction mech-

anism: a random price between 10 and 100 cents was drawn for the company. If the

bid was greater than or equal to the price, the company was bought by the participant,

paying the drawn price, and receiving the true company value. If the bid was lower than

the price, there was no transaction.

Both experiments were pre-registered (see Table A.1). To ensure comparability with

the other experiments, for both experiments we focus on the results from the restricted

sample. For experiment 1 this yields 193 participants, for experiment 2 this sample

features 323 participants.12

Taken together, the results go in the same direction as for the Baseline Experiment.

The overall prevalence of fully naive bids in experiment 1 is 73% in HighComplexity and

47% in LowComplexity (p<0.001). Figure A.5b shows that the mean naive weight is

significantly higher under complexity. Hover times show the same patterns as in the

Baseline Experiment, with there being significantly more consistent hovering in High-

Complexity. In experiment 2, the share of fully naive guesses is 70% in HighComplexity

and 41% in LowComplexity, and the mean naive weight is also significantly higher under

complexity as can be seen in Figure A.9b, confirming the results from the first experi-

ment. Again, hover times also show the same pattern as before (see Appendix A.5).13

Result 2. Our results are robust to using a different outcome, namely investment behavior.

People’s investment bids reflect substantially more full neglect of model uncertainty when

complexity is high, compared to when it is low.

Equally Likely Models. In the baseline experiment, we endow respondents with a nat-

ural candidate for simplification, namely the objectively more likely model. Hence, the

question arises whether simplification also occurs if both models are equally likely. To

address this, we conducted an additional preregistered study, where participants com-

pleted a version of the Baseline Experiment that excluded the informative signal. Instead,

they were only endowed with a 50-50 prior when estimating company values. The link
12Notice that for experiment 1, we deviate from the specification in the pre-registration where we pre-

registered the use of the lenient sample and the full sample. Appendix B.3 and Appendix B.4 produce the
corresponding results. Also notice that for experiment 1 we pre-registered a smaller sample size than for
the other experiments.
13Appendices B.3 and B.5 produce results for the more lenient sample. Overall, results are similar to

the restricted sample, although the treatment difference in mean naive weights in experiment 1, while
directionally present, fails to be significant in the pre-registered lenient sample (p=0.207).
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to the preregistration can be found in Table A.1.

The experiment followed the design described in Section 2 but omitted both the signal

and the belief elicitation regarding the rule determining company values. To maintain

the experiment’s length and incentive structure, we replaced the belief elicitation with

an unrelated belief-updating task.

In the absence of a noisy signal, there is no clear reason to expect participants to

simplify model uncertainty in a specific direction when facedwith complexity. Therefore,

our hypothesis for this study was that participants in theHighComplexity condition would

more frequently state guesses equal to the values proposed by either rule, whereas more

intermediate guesses would be observed in the LowComplexity condition.

To test this, we examine the implicit decision weight, γ, assigned to the company

value proposed by the "The CEO is key" rule, defined as

gactual = γ× vC EO + (1− γ)× vProducts. (3)

Additionally, we define weight extremity as

Weight extremity = |γ− 1
2
|. (4)

Our pre-registered hypothesis then is that weight extremity is higher in the HighCom-

plexity condition compared to the LowComplexity condition.

The pre-registered restricted sample consists of 348 participants who correctly solved

both HighComplexity example decision screens.

Figure 3a displays the distribution of decision-level CEO weights for both treatments.

In the LowComplexity condition, the distribution has greater mass at intermediate val-

ues, particularly near the rational CEO weight of 0.5. In contrast, the HighComplexity

distribution shows more mass at weights corresponding to simplified guesses, especially

at a CEO weight of 1. Figure 3b further confirms that the average weight extremity in

HighComplexity is significantly higher than in LowComplexity.

Figure A.2 displays the distribution of the share of time participants spent hovering

over the "The CEO is key" model in both treatments. Participants in HighComplexity are

more likely to focus on a single model, whereas those in LowComplexity typically attend

to both models.
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Figure 3: Decision-level CEO weights and weight extremity in LowComplexity and High-
Complexity conditions of the Equally Likely Models Experiment. Panel (a) plots the dis-
tribution of CEO weights γ calculated as specified in Equation 3, using the restricted sample
of the Equally Likely Models study with 348 participants. Panel (b) plots the average weight
extremity |γ− 1

2 | calculated as specified in Equation 4.
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In Appendix B.2, we replicate the analysis using the more lenient sample of 452

participants who answered at least one of the two HighComplexity example screens

correctly. All results continue to hold in this sample.14

Result 3. People also neglect model uncertainty as a response to complexity when both

models are equally likely.

4 Results: Implications of Simplification

4.1 Beliefs about Models

We have shown that model complexity leads to a simplification response: people tend to

fully neglect model uncertainty in their actions. As pre-registered, we now ask whether

this simplification also causes a distorted view of reality, namely that people misperceive

model uncertainty when directly asked.15

For this purpose, beliefs about which model is correct were elicited immediately after

all company value guesses had been submitted.

Figure 4a shows histograms of signed probability guesses (signed in the direction

of the received signal), separately for treatments LowComplexity and HighComplexity in

the Baseline experiment. There are no visible differences in beliefs. This is confirmed

by Figure 4b which plots average guesses for the probability that "The CEO is key" is the

correct model, stratified by the signal participants received and their assigned treatment.

There is no significant treatment difference in average beliefs for either signal.

Table 3 presents regressions for signed probability guesses and correct recall of the

signal. The regressions confirm that there are no significant treatment differences in

beliefs. Similarly, there are no differences in the accuracy of recall of the received signal,

as column (2) reveals.

We also investigate belief patterns in the Investment 1, Investment 2 and Baseline
14A perhaps interesting follow-up question is whether people that simplify model uncertainty as a re-

sponse to complexity do so in a consistent fashion, always focusing on the same model. To shed some
light on this, in an analysis that was not preregistered, Figure A.3 restricts the sample to participants in
the HighComplexity condition who made only fully naive guesses—that is, who consistently guessed a
value corresponding to either the "The CEO is key" or "Products are crucial" rule for every decision. This
applies to 91 out of all 174 participants in HighComplexity. The figure suggests a large fraction of re-
spondents (about half) consistently simplify in the same direction, always choosing values from the same
model, while a sizeable fraction alternates between models.
15Notice that, while we pre-registered this analysis, we did not pre-register a specific hypothesis.
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(b) Mean probability guesses for "The CEO is key".

Figure 4: Beliefs in the Baseline Experiment. In Panel (a) beliefs are converted into the
direction of the more likely model, so that 65 corresponds to the Bayesian probability. Panel
(b) plots mean probability guesses for the model "The CEO is key". The figure is based on
the restricted sample of the Baseline Experiment with 230 participants.
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Table 3: Beliefs and Recall in the Baseline Experiment

Dependent variable: Probability Guess Correct Recall

Sample: Pooled Pooled
(1) (2)

Constant 67.679*** 0.965***
(2.078) (0.018)

HighComplexity 3.351 -0.007
(2.819) (0.026)

R2 0.006 0.000

Observations 230 230

The table presents OLS regressions using the restricted sample of the
Baseline Experiment. In column (1), the dependent variable is the
probability guess for the likely state. Column (2) uses a dummy
for whether respondents correctly recall the more likely model. All
columns use observations from both the HighComplexity and Low-
Complexity conditions. Stars highlight significant differences from 0
with * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Standard errors
are clustered on the subject level.

Confidence experiments. In the restricted samples of all of these studies, we find the

same result of no significant treatment differences in beliefs and recall, as can be seen

in the respective sections of Appendix A.16 Taken together, these results suggest that

the complexity-induced neglect of model uncertainty in actions does not translate into

corresponding belief patterns.

Result 4. The neglect of model uncertainty in actions does not translate to beliefs about

model uncertainty. These beliefs appear to reflect model uncertainty and are largely unaf-

fected by complexity.

Robustness: Delayed Belief Elicitation. In an additional pilot study that was not pre-

registered (see Table A.1), we investigated whether adding a delay between actions

(value guesses) and belief elicitation about model uncertainty could potentially induce

treatment differences in beliefs. The rationale was that it might take time for simplification-

induced misperceptions to form. The design was exactly as described in Section 2, with

an additional second part that took place one day after the initial survey. Respondents in
16In Appendix B we present the results for the lenient samples. Here, we find a (marginally) stronger

belief response under complexity in the Baseline and Baseline Confidence studies, and no significant treat-
ment differences in Investment Experiment 1 and Investment Experiment 2.
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the Immediate condition stated their beliefs immediately after the company value guesses

as in the Baseline Survey, and completed unrelated tasks during the second survey. Re-

spondents in the Delay condition completed the company value guesses and unrelated

tasks during the first part of the survey, and the belief elicitation during the second survey

one day later.

We first note that also in this experiment, we see that complexity induces people to

neglect model uncertainty in actions. However, as Appendix A.6 reveals, both with and

without delay, simplification does not induce biased beliefs about model uncertainty.

To summarize, adding a one day delay does not induce treatment differences both in

stated beliefs and correct recall of the received signal.

Results on Belief-Action Link. Notice that our results imply a complexity-induced

wedge between actions and beliefs. A recent literature has investigated the link between

beliefs and actions (Giglio, Maggiori, Stroebel, and Utkus (2021), Ameriks, Kézdi, Lee,

and Shapiro (2020), Beutel and M. Weber (2023), Laudenbach, A. Weber, R. Weber, and

Wohlfart (forthcoming)), and the determinants of how strongly beliefs translate into ac-

tions. Charles, Frydman, and Kilic (2024) find that increased complexity of forming a

belief weakens the transmission of beliefs into actions. Similarly, Yang (2023) as well as

Enke, Graeber, Oprea, and Yang (2024) highlight a link between information processing

constraints and a weak elasticity of decisions with respect to economic fundamentals.

To investigate this wedge in our experiment more formally, Figure 5 presents a binned

scatterplot with beliefs on the horizontal axis, and corresponding actions on the vertical

axis, using data from the Baseline Experiment. Beliefs are given by the probability guess

for the "The CEO is key" model. To ensure comparability, actions are represented by

the implicit decision weight γ on the company value proposed by the "The CEO is key"

model, as defined in Equation 3.

The plot illustrates the overreaction in actions caused by the complexity of calculating

the optimal guess: when moving away from a probability guess of 50%, the decision

weights in HighComplexity quickly move to extreme values, while the response is more

muted in LowComplexity. This implies that the effect of complexity on the belief-action

link is not straightforward in our setting. In a neighborhood around 50%, complexity

increases responsiveness of actions to beliefs. However, when moving to more extreme

beliefs, complexity renders the action response rather flat, since naive guessing is already
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Figure 5: The relationship between decisions and beliefs. The figure shows a binned
scatterplot using the restricted sample of the Baseline Experiment with 230 participants. It
has the probability guess that "The CEO is key" is the more likely model on the horizontal
axis, and the decision weight γ as defined in Equation 3 on the vertical axis. The lines show
LOWESS regressions based on all datapoints.
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triggered starting from fairly moderate beliefs.

We show analogous plots for the Investment 1, Investment 2 and Baseline Confidence

studies in Appendix A, as well as results for the lenient samples in Appendix B, each

showing qualitatively identical results.

Result 5. Complexity induces a wedge between beliefs and actions. When complexity is

high, beliefs continue to reflect model uncertainty, actions tend to be based on neglect of

model uncertainty.

4.2 Confidence

Here we investigate whether the complexity-induced simplification of neglect of model

uncertainty in actions affects how people view the optimality of their actions. This type

of confidence has been shown to explain a broad range of behavioral anomalies and

also mediates to what extent individual biases matter for aggregate outcomes (Enke and

Graeber (2023), Enke, Graeber, and Oprea (forthcoming), Enke, Graeber, and Oprea

(2023)). A typical and highly intuitive finding in the literature is that complexity reduces

confidence in action optimality.

Baseline Confidence. In a replication of the Baseline Experiment, we elicited cognitive

uncertainty, i.e. people’s confidence in the optimality of their value estimates. The ex-

periment was pre-registered, including the analysis of the cognitive uncertainty measure

(see Table A.1). As pre-registered, we use the same sample restriction as for the Baseline

study, resulting in a restricted sample with 336 participants.17

Figure 6 shows the average confidence levels by treatment condition. We find that

participants in the HighComplexity condition are significantly more confident in their

guesses than those in the LowComplexity condition—despite exhibiting greater simplifi-

cation and a lower rate of rational guesses under complexity, a seemingly contradictory

pattern.

We also elicited the same measure in the Equally Likely Models study and featured

its analysis in the preregistration. Figure A.4 confirms that the finding replicates in this

study. Additional results presented in Appendix B show that the results in both studies

also hold true when using the more lenient sample restrictions.
17Similar to the analysis of beliefs, while we pre-registered this analysis, we did not pre-register a specific

hypothesis.
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Figure 6: Average value guess confidence in the Baseline Confidence Experiment. The
figure plots the average confidence that respondents had in their company value guesses,
using the restricted sample of the Baseline Confidence study with 336 participants.

Incentivized Confidence. In another replication of the Baseline Confidence experi-

ment, we further added an incentivized version of the confidence elicitation. Here, par-

ticipants could bet on the optimality of their guesses. They received an endowment

of $10 and could choose how much to bet (between $0 and $10) on the event that

their guesses had been, on average, no more than 10 points away from the best possi-

ble guess. The bet was multiplied by 3 if their guesses had indeed been accurate and

was lost otherwise. After completing all company value guesses, participants answered

the non-incentivized (probability) and incentivized (bet) versions on the same screen.

The experiment was pre-registered, including the analysis of the incentivized and non-

incentivized cognitive uncertainty measures (see Table A.1). As pre-registered, we use

the same sample restriction as for the Baseline study, resulting in a restricted sample with

203 participants. We report the results on confidence for this experiment in the main

text and refer the reader to Appendix A.8 for the remaining analyses.

Figure 7 plots the average confidence measures. The lower panel replicates the previ-

ous result that participants in the high-complexity condition stated a higher confidence

level in the optimality of their company value guesses than their counterparts in the

low-complexity condition. The upper panel presents results from the incentivized bet-
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Figure 7: Average value guess confidence in the Incentivized Confidence Experiment. The
top figure plots the average incentivized confidence measure, while the bottom figure plots
the non-incentivized measure, both using the restricted sample of the Incentivized Confidence
study with 203 participants.
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ting task. While these data are naturally more noisy due to the betting context, the Figure

again confirms our result that higher complexity yields higher confidence. Appendix B.7

produces these results under the more lenient sample restrictions, yielding qualitatively

identical results.

Taken together, our results indicate that confidence in the optimality of own actions

is higher in the high-complexity conditions compared to the low complexity conditions.

It seems that in contrast to prior results from different contexts, in the context of model

uncertainty, the possibility to respond to complexity by greatly simplifying the world

through full neglect of model uncertainty leads to an illusion of certainty and hence

increased confidence in action optimality.

Result 6. Complexity leads to higher confidence in the optimality of own actions.

5 A Simple Model of Representations

We have shown that respondents simplify model uncertainty when computational com-

plexity is high. This, however, does not carry over to beliefs about model uncertainty.

Finally and perhaps most surprisingly, higher computational complexity increases confi-

dence in the optimality of own actions rather than decreasing it. In the final part of the

paper we present a simplemodel that can generate this pattern of results. Themodel is an

augmented and simplified version of Bordalo, Gennaioli, Lanzani, and Shleifer (2025).

In the model, when faced with a decision problem, an agent first forms a mental repre-

sentation of the problem. This process is shaped both by bottom-up and top-down atten-

tion. Upon being presented a decision problem, a bottom-up process of cue-dependent

memory determines which of the currently stored mental representations is top of mind.

Then, in a top-down process, the agent decides whether they want to further simplify

this representation. This section contains the basic intuitions, while Appendix C presents

the formal model.

This model formalizes economic decision making as a cognitively constrained pro-

cess operating over a structured internal database of mental representations. Initially,

this database comprises only a broad representation, which encodes a probabilistic as-

sessment of the decision environment (e.g., a 0.65 likelihood for the more probable state)

along with abstract contextual features (e.g., task framing, informational structure, and
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the need to estimate a company’s value).

Each decision - whether it concerns an action, confidence judgment, or belief report

- invokes a two-step cognitive process to form a mental representation of the decision

problem:

1. Bottom-Up Retrieval: Agents hold a database of mental representations. When

faced with a decision, similarity-based recall (Bordalo, Gennaioli, and Shleifer

(2020), Bordalo, Conlon, Gennaioli, Kwon, and Shleifer (2023b), Enke, Schw-

erter, and Zimmermann (2024), Graeber, Roth, and Zimmermann (2024), Jiang,

Liu, Cameron Peng, and Yan (forthcoming)) determines which representation is

top of mind. In other words, the representation most similar to the current deci-

sion cue is retrieved from memory.

2. Top-Down Simplification: Once a representation is top of mind, the agent, in a top-

down process, evaluates whether the cognitive costs of computing a response using

the retrieved representation exceed the benefits. If so, the agent further simplifies

the representation to reduce processing demands.

The key insight from our model is that people make decisions within the mental

representation they formed for this specific decision problem. Hence, specific decisions

(actions, confidence judgments, or belief reports) in a given underlying environment

may be based on very different mental representations of that environment, allowing us

to explain our seemingly contradictory pattern of results.

Estimation of Company Values. Upon observing a signal, the agent must compute an

optimal guess. Since this is the first decision agents take, the database of representations

only contains the broad representation of the problem. Under low complexity, cognitive

costs are manageable, so participants compute the optimal guess using the full broad

representation of the problem, i.e., fully taking model uncertainty into account. Under

high complexity, cognitive costs may exceed the benefits, prompting simplification to a

mental representation in which model uncertainty is fully neglected. Once a decision

has been taken, the corresponding representation is added to the database, including

their contextual features.
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Confidence Elicitation. In the low complexity treatment, when faced with the confi-

dence assessment, agents will retrieve the broad representation (their database only con-

sists of broad representations). As confidence judgments are cognitively light, no further

simplification occurs. In the high complexity treatment, similarity-based retrieval favors

the recall of the simplified representation. This is because the confidence elicitation cues

the estimation tasks (it explicitly asks for confidence about the estimation task). As de-

scribed above, confidence in own action optimality is then assessed by agents within

this mental representation. Consequently, confidence can be elevated by complexity if

confidence within the simplified high complexity environment is higher than in the full

representation of the low complexity environment.18

Belief Elicitation. In the low complexity treatment, the broad representation is again

retrieved and used without simplification, yielding probabilistically grounded belief re-

ports about model uncertainty. In the high complexity treatment, retrieval of mental

representations favors the broad representation over the simple one, since the belief task

directly asks about model uncertainty and is hence more similar to the broad representa-

tion. Since the cognitive costs of belief elicitation are negligible, no further simplification

occurs. People then state the beliefs of their mental representation and therefore beliefs

in both treatments will tend to reflect model uncertainty.

6 Conclusion

This paper explores how individuals navigate model uncertainty in economic decision-

making and demonstrates that complexity significantly influences the way people deal

with model uncertainty. Through a controlled experimental framework, we investigate

whether individuals account for model uncertainty when making decisions or instead

simplify the world by implicitly assuming one model is correct. Our findings reveal that

when model complexity is high, individuals tend to neglect model uncertainty in their

actions, behaving as if one model is definitively correct. However, this neglect of uncer-

tainty does not translate into distorted beliefs, as participants’ stated beliefs continue to
18While this seems plausible, our model does not formalize why confidence within the simplified high

complexity environment may be higher than in the full representation of the low complexity environment.
The key insight from our model is that confidence is assessed within the mental representation of the
problem.
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reflect model uncertainty. This creates a systematic wedge between actions and beliefs.

Furthermore, our results show that complexity-induced simplification leads to increased

confidence in decision optimality, contradicting prior findings that suggest complexity

typically raises cognitive uncertainty.

Our results provide a direct test of the widely held assumption in the theoretical

literature on misspecified models that people attend to a single model when making

decisions, rather than entertaining multiple weighted models simultaneously.

By systematically manipulating the complexity of models, we provide robust evidence

that individuals simplify complex problems by focusing on a single mental model. Data

on attention allocation further support this conclusion, showing that participants in high-

complexity conditions spend more time attending to one model, rather than considering

both models equally. This attention-based mechanism helps explain why complexity

amplifies the tendency to neglect model uncertainty in actions. The robustness of these

findings is confirmed across different tasks, including an investment decision context,

demonstrating that the observed pattern extends beyond the specific valuation task used

in our primary experiment.

Our findings contribute to a deeper understanding of how complexity shapes eco-

nomic cognition. Existing research on mental models has largely focused on selection

and persuasion, whereas our study highlights a novel dimension: the impact of complex-

ity on how people handle competing models. Our findings reveal that, when complexity

is high, in order to be able to operate and make decisions, people need to simplify the

world by acting as if only one model exists. Interestingly, this complexity-induced sim-

plifications can lead to an illusion of certainty, where people are confident about the

optimality of their actions.

While we do not study persuasion directly, an intuitive implication of our results

may be that, when complexity is high, the presence of model uncertainty might make

decision-makers more susceptible to persuasive narratives that present a single, seem-

ingly definitive interpretation of economic realities.
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A Additional Results for the Restricted Samples

A.1 Overview of Data Collections

Table A.1: Overview of Data Collections

Collection Participants Description Link to pre-analysis plan

Baseline 600 As described in Section 2. Treatments: HighComplexity and Low-
Complexity. Outcomes: Company value guesses, hover times, be-
liefs.

https://aspredicted.
org/t79h-2mkj.pdf

Equally Likely Models 600 As Baseline, but without noisy indication, hence 50-50 belief about
more likely model, and with additional guess confidence mea-
sure. Treatments: HighComplexity and LowComplexity. Out-
comes: Company value guesses, guess confidence, hover times.

https://aspredicted.
org/92cr-9kwd.pdf

Investment 1 400 As Baseline, but company value guesses replaced by investment
decisions. Treatments: HighComplexity and LowComplexity. Out-
comes: Investment decisions, hover times, beliefs.

https://aspredicted.
org/4c38-7psb.pdf

Investment 2 600 As Investment, but larger sample size. Treatments: HighComplex-
ity and LowComplexity. Outcomes: Investment decisions, hover
times, beliefs.

https://aspredicted.
org/7vcv-gq8z.pdf

Delayed Belief Elicitation 588 As Baseline, but additional variation the timing of belief elicita-
tion: For half the respondents, beliefs are elicited immediately as
in Baseline, for the other half they are elicited with a one-day de-
lay. Treatments: (HighComplexity, LowComplexity) × (Immedi-
ate, Recall). Outcomes: Company value guesses, hover times, be-
liefs.

Not preregistered

Baseline Confidence 600 As Baseline, but with additional guess confidence measure. Treat-
ments: HighComplexity and LowComplexity. Outcomes: Com-
pany value guesses, guess confidence, hover times, beliefs.

https://aspredicted.
org/v6cv-y9yh.pdf

Incentivized Confidence 600 As Baseline Confidence, but with additional incentivized guess
confidence measure on the same page as the non-incentivized
measure. Treatments: HighComplexity and LowComplexity. Out-
comes: Company value guesses, guess confidence, hover times,
beliefs.

https://aspredicted.
org/txsk-3hky.pdf

This Table provides an overview of the different data collections. The sample sizes refer to the size of the original data collection, prior to
applying exclusion restrictions.
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A.2 Baseline Experiment: Additional Results in Restricted Sample

Here, we present additional results for the restricted sample of the Baseline Experiment,

featuring 230 participants who solved both of the example screens.
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Figure A.1: Distribution of median naive weights, computed for each subject. The figure
plots the distribution of naive weights λ calculated as specified in Equation (2), using the
restricted sample of the Baseline Experiment with 230 participants. Only the median naive
weight for each participant is plotted.
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A.3 Equally Likely Models: Additional Results in Restricted Sample

Here, we present additional results for the restricted sample of the Equally Likely Models

Experiment, featuring 348 participants who solved both of the example screens.
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Figure A.2: Distribution of decision-level CEO hovering share in the Equally Likely Mod-
els Experiment. The figure plots the distribution of the share of time that respondents spent
looking at the values of the "The CEO is key" model, using the restricted sample of the Equally
Likely Models study with 348 participants. Hovering shares are plotted separately for each
of the eight guessses made by respondents
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Figure A.3: Distribution of naive decision-making in the Equally Likely Models Experi-
ment. The figure plots the distribution of the number of times participants selected the value
corresponding to the "The CEO is key" model, using the restricted sample of the HighCom-
plexity treatment of the Equally Likely Models study, limited to the 91 participants in the
HighComplexity condition who made only fully naive guesses, i.e. who always selected a
value corresponding to either the "The CEO is key" or "Products are crucial" model.
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Figure A.4: Average value guess confidence in the Equally Likely Models Experiment.
The figure plots the average confidence that respondents had in their company value guesses,
using the restricted sample of the Equally Likely Models study with 348 participants.
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A.4 Investment Experiment 1: Results in Restricted Sample

Here, we present the results for the restricted sample of the Investment Experiment 1,

featuring 193 participants who solved both of the example screens.
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(a) Distribution of decision-level naive weights
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Figure A.5: Decision-level naive weights in the restricted sample of the Investment Ex-
periment 1. Panel (a) plots the distribution of naive weights λ calculated as specified in
Equation 2, using the restricted sample of the Investment Experiment 1 with 193 partici-
pants. Panel (b) plots average naive weights.
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Table A.2: Company Bids in Restricted Sample of Investment Experiment 1

Dependent variable: Company Bids

Sample: LowComplexity HighComplexity Pooled
(1) (2) (3)

Rational Benchmark 0.478*** 0.311*** 0.478***
(0.065) (0.065) (0.064)

Naive Benchmark 0.558*** 0.725*** 0.558***
(0.053) (0.055) (0.052)

Rational B. × HighComplexity -0.167*
(0.092)

Naive B. × HighComplexity 0.167**
(0.076)

R2 0.906 0.920 0.913

Observations 784 760 1544

The table presents OLS regressions of respondents’ company bids on the rational and naive
benchmarks as detailed in Section 3.1. The table is based on the restricted sample of the Invest-
ment Experiment 1. Column (1) uses observations from the LowComplexity treatment, column
(2) from the HighComplexity treatment, and column (3) from both. Stars highlight significant
differences from 0 with * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Standard errors are
clustered on the subject level.

0.0 0.2 0.4 0.6 0.8 1.0
Subject-median consistent hovering share

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

Distribution of Consistent Hovering Share
LowComplexity
HighComplexity

Figure A.6: Distribution of subject-medians of the consistent hovering shares in the re-
stricted sample of the Investment Experiment 1. The figure plots the distribution of the
share of time that respondents spent looking at the values of the signal-consistent model,
using the restricted sample of the Investment Experiment 1 with 193 participants. Only the
median consistent share for each participant is plotted.
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(a) Histogram of signed probability guesses.
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(b) Mean probability guesses for "The CEO is key".

Figure A.7: Beliefs in the restricted sample of the Investment Experiment 1. In Panel (a)
beliefs are converted into the direction of the more likely model, so that 65 corresponds to
the Bayesian probability. Panel (b) plots mean probability guesses for the model "The CEO
is key". The figure is based on the restricted sample of the Investment Experiment 1 with
193 participants.
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Table A.3: Beliefs and Recall in Restricted Sample of the
Investment Experiment 1

Dependent variable: Probability Guess Correct Recall

Sample: Pooled Pooled
(1) (2)

Constant 66.844*** 0.959***
(1.758) (0.020)

HighComplexity 2.044 0.030
(2.598) (0.023)

R2 0.003 0.009

Observations 193 193

The table presents OLS regressions using the restricted sample of the
Investment Experiment 1. In column (1), the dependent variable is
the probability guess for the likely state. Column (2) uses a dummy
for whether respondents correctly recall the more likely model. All
columns use observations from both the HighComplexity and Low-
Complexity conditions. Stars highlight significant differences from 0
with * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Standard errors
are clustered on the subject level.
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Figure A.8: The relationship between decisions and beliefs in the restricted sample of the
Investment Experiment 1. The figure shows a binned scatterplot using the restricted sample
of the Investment Experiment 1 with 193 participants. It has the probability guess that "The
CEO is key" is the more likely model on the horizontal axis, and the decision weight γ as
defined in Equation 3 on the vertical axis. The lines show LOWESS regressions based on all
datapoints.
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A.5 Investment Experiment 2: Results in Restricted Sample

Here, we present the results for the restricted sample of the Investment Experiment 2,

featuring 323 participants who solved both of the example screens.
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(a) Distribution of decision-level naive weights
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Figure A.9: Decision-level naive weights in the restricted sample of the Investment Ex-
periment 2. Panel (a) plots the distribution of naive weights λ calculated as specified in
Equation 2, using the restricted sample of the Investment Experiment 2 with 323 partici-
pants. Panel (b) plots average naive weights.
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Figure A.10: Distribution of subject-medians of the consistent hovering shares in the
restricted sample of the Investment Experiment 2. The figure plots the distribution of the
share of time that respondents spent looking at the values of the signal-consistent model,
using the restricted sample of the Investment Experiment 2 with 323 participants. Only the
median consistent share for each participant is plotted.

Table A.4: Company Bids in Restricted Sample of Investment Experiment 2

Dependent variable: Company Bids

Sample: LowComplexity HighComplexity Pooled
(1) (2) (3)

Rational Benchmark 0.508*** 0.281*** 0.508***
(0.052) (0.050) (0.052)

Naive Benchmark 0.534*** 0.721*** 0.534***
(0.043) (0.045) (0.043)

Rational B. × HighComplexity -0.227***
(0.072)

Naive B. × HighComplexity 0.187***
(0.062)

R2 0.892 0.908 0.900

Observations 1352 1232 2584

The table presents OLS regressions of respondents’ company bids on the rational and naive
benchmarks as detailed in Section 3.1. The table is based on the restricted sample of the Invest-
ment Experiment 2. Column (1) uses observations from the LowComplexity treatment, column
(2) from the HighComplexity treatment, and column (3) from both. Stars highlight significant
differences from 0 with * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Standard errors are
clustered on the subject level.
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(a) Histogram of signed probability guesses.
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(b) Mean probability guesses for "The CEO is key".

Figure A.11: Beliefs in the restricted sample of the Investment Experiment 2. In Panel
(a) beliefs are converted into the direction of the more likely model, so that 65 corresponds
to the Bayesian probability. Panel (b) plots mean probability guesses for the model "The
CEO is key". The figure is based on the restricted sample of the Investment Experiment 2
with 323 participants.
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Table A.5: Beliefs and Recall in Restricted Sample of the
Investment Experiment 2

Dependent variable: Probability Guess Correct Recall

Sample: Pooled Pooled
(1) (2)

Constant 69.302*** 0.982***
(1.176) (0.010)

HighComplexity -1.563 -0.021
(1.999) (0.019)

R2 0.002 0.004

Observations 323 323

The table presents OLS regressions using the restricted sample of the
Investment Experiment 2. In column (1), the dependent variable is
the probability guess for the likely state. Column (2) uses a dummy
for whether respondents correctly recall the more likely model. All
columns use observations from both the HighComplexity and Low-
Complexity conditions. Stars highlight significant differences from 0
with * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Standard errors
are clustered on the subject level.
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Figure A.12: The relationship between decisions and beliefs in the restricted sample of
the Investment Experiment 2. The figure shows a binned scatterplot using the restricted
sample of the Investment Experiment 2 with 323 participants. It has the probability guess
that "The CEO is key" is the more likely model on the horizontal axis, and the decision weight
γ as defined in Equation 3 on the vertical axis. The lines show LOWESS regressions based
on all datapoints.
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A.6 Delayed Belief Elicitation: Results in Restricted Sample

Here, we present the results for the restricted sample of the Delayed Belief Elicitation

Experiment, featuring 342 participants who solved both of the example screens.
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Figure A.13: Immediate and recalled beliefs in the Delayed Belief Elicitation Experiment.
The top panel plots the mean probability guess for the "The CEO is key" model in the Im-
mediate condition by received signal separately for the LowComplexity and HighComplexity
condition. The bottom panel does the same for the Recall condition, where beliefs were
elicited with a one day delay. This figure is based on the restricted sample of the Delayed
Belief Elicitation Experiment with 342 participants.
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Figure A.14: Distribution of immediate and recalled beliefs in the restricted sample of the
Delayed Belief Elicitation Experiment. The top panel plots the distribution of immediate
beliefs and the bottom panel of recalled beliefs. Beliefs are converted into the direction of the
more likely model, so that 65 corresponds to the Bayesian probability. This figure is based
on the restricted sample of the Delayed Belief Elicitation Experiment with 342 participants.
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Table A.6: Beliefs and Recall in the Restricted Sample of the Delayed
Belief Eliciation Experiment

Dependent variable: Probability Guess Correct Recall

Sample: Immediate Recall Immediate Recall
(1) (2) (3) (4)

Constant 65.713*** 61.195*** 0.950*** 0.736***
(1.865) (2.106) (0.025) (0.048)

HighComplexity -1.008 0.044 0.026 0.014
(2.547) (2.843) (0.030) (0.066)

R2 0.001 0.000 0.005 0.000

Observations 163 179 163 179

The table presents OLS regressions using the restricted sample of the Delayed Be-
lief Elicitation Experiment. In columns (1) and (2), we regress respondents’ prob-
ability guesses on a constant and a treatment dummy for the HighComplexity con-
dition. Probability guesses are converted in the direction of the more likely model,
so that a guess of 65 corresponds to the Bayesian probability. In columns (3) and
(4), the dependent variable is a dummy for whether respondents correctly recall
the more likely model. Columns (1) and (3) use observations from the Immediate
condition, while columns (2) and (4) use observations from the Recall condition.
Stars highlight significant differences from 0 with * for p < 0.10, ** for p < 0.05,
*** for p < 0.01. Standard errors are clustered on the subject level.
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A.7 Baseline Confidence: Additional Results in Restricted Sample

Here, we present the results for the restricted sample of the Baseline Confidence Exper-

iment, featuring 336 participants who solved both of the example screens.
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Figure A.15: Decision-level naive weights in the restricted sample of the Baseline Confi-
dence Experiment. Panel (a) plots the distribution of naive weights λ calculated as specified
in Equation 2, using the restricted sample of the Baseline Confidence Experiment with 336
participants. Panel (b) plots average naive weights.
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Figure A.16: Distribution of subject-medians of the consistent hovering shares in the re-
stricted sample of the Baseline Confidence Experiment. The figure plots the distribution of
the share of time that respondents spent looking at the values of the signal-consistent model,
using the restricted sample of the Baseline Confidence Experiment with 336 participants.
Only the median consistent share for each participant is plotted.

Table A.7: Company Value Guesses in the Restricted Sample of the Baseline Con-
fidence Experiment

Dependent variable: Company Value Guess

Sample: LowComplexity HighComplexity Pooled
(1) (2) (3)

Rational Benchmark 0.428*** 0.226*** 0.428***
(0.052) (0.042) (0.052)

Naive Benchmark 0.613*** 0.797*** 0.613***
(0.044) (0.039) (0.044)

Rational B. × HighComplexity -0.202***
(0.067)

Naive B. × HighComplexity 0.184***
(0.059)

R2 0.920 0.936 0.928

Observations 1280 1408 2688

The table presents OLS regressions of respondents’ company value guesses on the rational and
naive benchmarks as detailed in Section 3.1. The table is based on the restricted sample of the
Baseline Confidence Experiment. Column (1) uses observations from the LowComplexity treat-
ment, column (2) from the HighComplexity treatment, and column (3) from both. Stars high-
light significant differences from 0 with * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Stan-
dard errors are clustered on the subject level.
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(a) Histogram of signed probability guesses.
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(b) Mean probability guesses for "The CEO is key".

Figure A.17: Beliefs in the restricted sample of the Baseline Confidence Experiment. In
Panel (a) beliefs are converted into the direction of the more likely model, so that 65 corre-
sponds to the Bayesian probability. Panel (b) plots mean probability guesses for the model
"The CEO is key". The figure is based on the restricted sample of the Baseline Confidence
Experiment with 336 participants.
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Table A.8: Beliefs and Recall in the Restricted Sample of
the Baseline Confidence Experiment

Dependent variable: Probability Guess Correct Recall

Sample: Pooled Pooled
(1) (2)

Constant 68.806*** 0.944***
(1.518) (0.018)

HighComplexity 1.716 0.022
(2.056) (0.023)

R2 0.002 0.003

Observations 336 336

The table presents OLS regressions using the restricted sample of the
Baseline Confidence Experiment. In column (1), the dependent vari-
able is the probability guess for the likely state. Column (2) uses
a dummy for whether respondents correctly recall the more likely
model. All columns use observations from both the HighComplexity
and LowComplexity conditions. Stars highlight significant differences
from 0 with * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Standard
errors are clustered on the subject level.
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Figure A.18: The relationship between decisions and beliefs in the restricted sample
of the Baseline Confidence Experiment. The figure shows a binned scatterplot using the
restricted sample of the Baseline Confidence Experiment with 336 participants. It has the
probability guess that "The CEO is key" is the more likely model on the horizontal axis, and
the decision weight γ as defined in Equation 3 on the vertical axis. The lines show LOWESS
regressions based on all datapoints.
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A.8 Incentivized Confidence: Additional Results in Restricted Sam-

ple

Here, we present the results for the restricted sample of the Incentivized Confidence

Experiment, featuring 203 participants who solved both of the example screens.

4 2 0 2 4 6
Naive weight

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ob

ab
ilit

y

Decision-level naive weight by treatment
LowComplexity
HighComplexity

(a) Distribution of decision-level naive weights
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Figure A.19: Decision-level naive weights in the restricted sample of the Incentivized
Confidence Experiment. Panel (a) plots the distribution of naive weights λ calculated as
specified in Equation 2, using the restricted sample of the Incentivized Confidence Experiment
with 203 participants. Panel (b) plots average naive weights.

54



0.0 0.2 0.4 0.6 0.8 1.0
Subject-median consistent hovering share

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

Distribution of Consistent Hovering Share
LowComplexity
HighComplexity

Figure A.20: Distribution of subject-medians of the consistent hovering shares in the re-
stricted sample of the Incentivized Confidence Experiment. The figure plots the distribu-
tion of the share of time that respondents spent looking at the values of the signal-consistent
model, using the restricted sample of the Incentivized Confidence Experiment with 203 par-
ticipants. Only the median consistent share for each participant is plotted.

Table A.9: Company Value Guesses in the Restricted Sample of the Incentivized
Confidence Experiment

Dependent variable: Company Value Guess

Sample: LowComplexity HighComplexity Pooled
(1) (2) (3)

Rational Benchmark 0.488*** 0.404*** 0.488***
(0.069) (0.080) (0.069)

Naive Benchmark 0.593*** 0.638*** 0.593***
(0.054) (0.069) (0.054)

Rational B. × HighComplexity -0.084
(0.106)

Naive B. × HighComplexity 0.045
(0.087)

R2 0.912 0.898 0.905

Observations 832 792 1624

The table presents OLS regressions of respondents’ company value guesses on the rational and
naive benchmarks as detailed in Section 3.1. The table is based on the restricted sample of the
Incentivized Confidence Experiment. Column (1) uses observations from the LowComplexity
treatment, column (2) from the HighComplexity treatment, and column (3) from both. Stars
highlight significant differences from 0 with * for p < 0.10, ** for p < 0.05, *** for p < 0.01.
Standard errors are clustered on the subject level.
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(a) Histogram of signed probability guesses.
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(b) Mean probability guesses for "The CEO is key".

Figure A.21: Beliefs in the restricted sample of the Incentivized Confidence Experiment.
In Panel (a) beliefs are converted into the direction of the more likely model, so that 65
corresponds to the Bayesian probability. Panel (b) plots mean probability guesses for the
model "The CEO is key". The figure is based on the restricted sample of the Incentivized
Confidence Experiment with 203 participants.
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Table A.10: Beliefs and Recall in the Restricted Sample of
the Incentivized Confidence Experiment

Dependent variable: Probability Guess Correct Recall

Sample: Pooled Pooled
(1) (2)

Constant 70.327*** 0.962***
(1.766) (0.019)

HighComplexity -0.238 0.018
(3.036) (0.024)

R2 0.000 0.003

Observations 203 203

The table presents OLS regressions using the restricted sample of the
Incentivized Confidence Experiment. In column (1), the dependent
variable is the probability guess for the likely state. Column (2) uses
a dummy for whether respondents correctly recall the more likely
model. All columns use observations from both the HighComplexity
and LowComplexity conditions. Stars highlight significant differences
from 0 with * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Standard
errors are clustered on the subject level.
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Figure A.22: The relationship between decisions and beliefs in the restricted sample of
the Incentivized Confidence Experiment. The figure shows a binned scatterplot using the
restricted sample of the Incentivized Confidence Experiment with 203 participants. It has the
probability guess that "The CEO is key" is the more likely model on the horizontal axis, and
the decision weight γ as defined in Equation 3 on the vertical axis. The lines show LOWESS
regressions based on all datapoints.
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B Additional Results for the Robustness Samples

B.1 Baseline Experiment: Results in Lenient Sample

Here, we present the results for the lenient sample of the Baseline Experiment, featuring

319 participants who solved at least one of the example screens.
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(a) Distribution of decision-level naive weights
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Figure B.1: Decision-level naive weights in the lenient sample of the Baseline Experiment.
Panel (a) plots the distribution of naive weights λ calculated as specified in Equation 2, using
the lenient sample of the Baseline Experiment with 319 participants. Panel (b) plots average
naive weights.
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Figure B.2: Distribution of subject-medians of the consistent hovering shares in the le-
nient sample of the Baseline Experiment. The figure plots the distribution of the share of
time that respondents spent looking at the values of the signal-consistent model, using the
lenient sample of the Baseline Experiment with 319 participants. Only the median consis-
tent share for each participant is plotted.
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Figure B.4: The relationship between decisions and immediate beliefs in the lenient
sample of the Baseline Experiment. The figure shows a binned scatterplot using the lenient
sample of the Baseline Experiment with 319 participants. It has the probability guess that
"The CEO is key" is the more likely model on the horizontal axis, and the decision weight γ
as defined in Equation 3 on the vertical axis. The lines show LOWESS regressions based on
all datapoints.
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Table B.1: Company Value Guesses in the Lenient Sample of the Baseline Exper-
iment

Dependent variable: Company Value Guess

Sample: LowComplexity HighComplexity Pooled
(1) (2) (3)

Rational Benchmark 0.658*** 0.334*** 0.658***
(0.070) (0.053) (0.070)

Naive Benchmark 0.432*** 0.702*** 0.432***
(0.060) (0.047) (0.060)

Rational B. × HighComplexity -0.323***
(0.088)

Naive B. × HighComplexity 0.270***
(0.076)

R2 0.875 0.915 0.894

Observations 1264 1288 2552

The table presents OLS regressions of respondents’ company value guesses on the rational and
naive benchmarks as detailed in Section 3.1. The table is based on the lenient sample of the
Baseline Experiment. Column (1) uses observations from the LowComplexity treatment, col-
umn (2) from the HighComplexity treatment, and column (3) from both. Stars highlight signif-
icant differences from 0 with * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Standard errors
are clustered on the subject level.
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(a) Histogram of signed probability guesses.
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(b) Mean probability guesses for "The CEO is key".

Figure B.3: Beliefs in the Lenient Sample of the Baseline Experiment. In Panel (a) beliefs
are converted into the direction of the more likely model, so that 65 corresponds to the
Bayesian probability. Panel (b) plots mean probability guesses for the model "The CEO
is key". The figure is based on the lenient sample of the Baseline Experiment with 319
participants.

61



Table B.2: Beliefs and Recall in the Lenient Sample of the
Baseline Experiment

Dependent variable: Probability Guess Correct Recall

Sample: Pooled Pooled
(1) (2)

Constant 66.321*** 0.943***
(1.871) (0.019)

HighComplexity 4.266* 0.020
(2.536) (0.024)

R2 0.009 0.002

Observations 319 319

The table presents OLS regressions using the lenient sample of the
Baseline Experiment. In column (1), the dependent variable is the
probability guess for the likely state. Column (2) uses a dummy
for whether respondents correctly recall the more likely model. All
columns use observations from both the HighComplexity and Low-
Complexity conditions. Stars highlight significant differences from 0
with * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Standard errors
are clustered on the subject level.
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B.2 Equally Likely Models: Results in Lenient Sample

Here, we present the results for the lenient sample of the Equally Likely Models Experi-

ment, featuring 452 participants who solved at least one of the example screens.
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(a) Distribution of decision-level CEO weights
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Figure B.5: Decision-level CEO weights and CEO weight extremity in the lenient sample
of the Equally Likely Models Experiment. Panel (a) plots the distribution of CEO weights γ
calculated as specified in Equation 3, using the lenient sample of the Equally Likely Models
study with 452 participants. Panel (b) plots the average CEO weight extremity |γ − 1

2 |
calculated as specified in Equation 4.
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Figure B.6: Distribution of decision-level CEO hovering share in the Equally Likely Mod-
els Experiment. The figure plots the distribution of the share of time that respondents spent
looking at the values of the "The CEO is key" model, using the lenient sample of the Equally
Likely Models study with 452 participants.
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Figure B.7: Average value guess confidence in the lenient sample of the Equally Likely
Models Experiment. The figure plots the average confidence that respondents had in their
company value guesses, using the lenient sample of the Equally Likely Models study with
452 participants.
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Figure B.8: Distribution of naive decision-making in the lenient sample of the Equally
Likely Models Experiment. The figure plots the distribution of the number of times par-
ticipants selected the value corresponding to the "The CEO is key" model, using the lenient
sample of the HighComplexity treatment of the Equally Likely Models study. The sample is
limited to the 106 participants in the HighComplexity condition who made only fully naive
guesses, meaning they always selected a value corresponding to either the "The CEO is key"
or "Products are crucial" model.
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B.3 Investment Experiment 1: Results in Lenient Sample

Here, we present the results for the lenient sample of the Investment Experiment 1,

featuring 265 participants who solved at least one of the example screens.
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(a) Distribution of decision-level naive weights
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Figure B.9: Decision-level naive weights in the lenient sample of the Investment Experi-
ment 1. Panel (a) plots the distribution of naive weights λ calculated as specified in Equation
2, using the lenient sample of the Investment Experiment 1 with 265 participants. Panel (b)
plots average naive weights.
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(a) Histogram of signed probability guesses.
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(b) Mean probability guesses for "The CEO is key".

Figure B.10: Beliefs in the Lenient Sample of the Investment Experiment 1. In Panel (a)
beliefs are converted into the direction of the more likely model, so that 65 corresponds to
the Bayesian probability. Panel (b) plots mean probability guesses for the model "The CEO
is key". The figure is based on the lenient sample of the Investment Experiment 1 with 265
participants.
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Figure B.11: Distribution of subject-medians of the consistent hovering shares in the
lenient sample of the Investment Experiment 1. The figure plots the distribution of the
share of time that respondents spent looking at the values of the signal-consistent model,
using the lenient sample of the Investment Experiment 1 with 265 participants. Only the
median consistent share for each participant is plotted.

Table B.3: Company Bids in the Lenient Sample of the Investment Experiment 1

Dependent variable: Company Bids

Sample: LowComplexity HighComplexity Pooled
(1) (2) (3)

Rational Benchmark 0.432*** 0.363*** 0.432***
(0.052) (0.065) (0.052)

Naive Benchmark 0.596*** 0.674*** 0.596***
(0.043) (0.056) (0.043)

Rational B. × HighComplexity -0.070
(0.083)

Naive B. × HighComplexity 0.078
(0.071)

R2 0.915 0.905 0.910

Observations 1056 1064 2120

The table presents OLS regressions of respondents’ company bids on the rational and naive
benchmarks as detailed in Section 3.1. The table is based on the lenient sample of the Invest-
ment Experiment 1. Column (1) uses observations from the LowComplexity treatment, column
(2) from the HighComplexity treatment, and column (3) from both. Stars highlight significant
differences from 0 with * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Standard errors are
clustered on the subject level.
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Table B.4: Beliefs and Recall in the Lenient Sample of the
Investment Experiment 1

Dependent variable: Probability Guess Correct Recall

Sample: Pooled Pooled
(1) (2)

Constant 67.915*** 0.955***
(1.515) (0.018)

HighComplexity 0.629 0.023
(2.237) (0.022)

R2 0.000 0.004

Observations 265 265

The table presents OLS regressions using the lenient sample of the
Investment Experiment 1. In column (1), the dependent variable is
the probability guess for the likely state. Column (2) uses a dummy
for whether respondents correctly recall the more likely model. All
columns use observations from both the HighComplexity and Low-
Complexity conditions. Stars highlight significant differences from 0
with * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Standard errors
are clustered on the subject level.
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Figure B.12: The relationship between decisions and immediate beliefs in the lenient
sample of the Investment Experiment 1. The figure shows a binned scatterplot using the
lenient sample of the Investment Experiment 1 with 265 participants. It has the probability
guess that "The CEO is key" is the more likely model on the horizontal axis, and the decision
weight γ as defined in Equation 3 on the vertical axis. The lines show LOWESS regressions
based on all datapoints.
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B.4 Investment Experiment 1: Results in Full Sample

Here, we present the results for the full sample of the Investment Experiment 1, featuring

all 400 participants.
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(b) Mean decision-level naive weights

Figure B.13: Decision-level naive weights in the full sample of the Investment Experiment
1. Panel (a) plots the distribution of naive weights λ calculated as specified in Equation 2,
using the full sample of the Investment Experiment 1 with 400 participants. Panel (b) plots
average naive weights.
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Table B.5: Company Bids in the Full Sample of the Investment Experiment 1

Dependent variable: Company Bids

Sample: LowComplexity HighComplexity Pooled
(1) (2) (3)

Rational Benchmark 0.598*** 0.551*** 0.598***
(0.053) (0.057) (0.053)

Naive Benchmark 0.463*** 0.423*** 0.463***
(0.043) (0.055) (0.043)

Rational B. × HighComplexity -0.047
(0.078)

Naive B. × HighComplexity -0.040
(0.069)

R2 0.888 0.816 0.854

Observations 1600 1600 3200

The table presents OLS regressions of respondents’ company bids on the rational and naive
benchmarks as detailed in Section 3.1. The table is based on the full sample of the Investment
Experiment 1. Column (1) uses observations from the LowComplexity treatment, column (2)
from the HighComplexity treatment, and column (3) from both. Stars highlight significant dif-
ferences from 0 with * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Standard errors are
clustered on the subject level.
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Figure B.14: Distribution of subject-medians of the consistent hovering shares in the
full sample of the Investment Experiment 1. The figure plots the distribution of the share
of time that respondents spent looking at the values of the signal-consistent model, using
the full sample of the Investment Experiment 1 with 400 participants. Only the median
consistent share for each participant is plotted.
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(a) Histogram of signed probability guesses.
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(b) Mean probability guesses for "The CEO is key".

Figure B.15: Beliefs in the full sample of the Investment Experiment 1. In Panel (a)
beliefs are converted into the direction of the more likely model, so that 65 corresponds to
the Bayesian probability. Panel (b) plots mean probability guesses for the model "The CEO
is key". The figure is based on the full sample of the Investment Experiment 1 with 400
participants.
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Table B.6: Beliefs and Recall in the Full Sample of the In-
vestment Experiment 1

Dependent variable: Probability Guess Correct Recall

Sample: Pooled Pooled
(1) (2)

Constant 67.319*** 0.945***
(1.259) (0.016)

HighComplexity -0.092 0.030
(1.958) (0.020)

R2 0.000 0.006

Observations 400 400

The table presents OLS regressions using the full sample of the In-
vestment Experiment 1. In column (1), the dependent variable is
the probability guess for the likely state. Column (2) uses a dummy
for whether respondents correctly recall the more likely model. All
columns use observations from both the HighComplexity and Low-
Complexity conditions. Stars highlight significant differences from 0
with * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Standard errors
are clustered on the subject level.
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Figure B.16: The relationship between decisions and beliefs in the full sample of the
Investment Experiment 1. The figure shows a binned scatterplot using the full sample of
the Investment Experiment 1 with 400 participants. It has the probability guess that "The
CEO is key" is the more likely model on the horizontal axis, and the decision weight γ as
defined in Equation 3 on the vertical axis. The lines show LOWESS regressions based on all
datapoints.
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B.5 Investment Experiment 2: Results in Lenient Sample

Here, we present the results for the lenient sample of the Investment Experiment 2,

featuring 430 participants who solved at least one of the example screens.
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Figure B.17: Decision-level naive weights in the lenient sample of the Investment Ex-
periment 2. Panel (a) plots the distribution of naive weights λ calculated as specified in
Equation 2, using the lenient sample of the Investment Experiment 2 with 430 participants.
Panel (b) plots average naive weights.

74



0.0 0.2 0.4 0.6 0.8 1.0
Subject-median consistent hovering share

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

Distribution of Consistent Hovering Share
LowComplexity
HighComplexity

Figure B.18: Distribution of subject-medians of the consistent hovering shares in the
lenient sample of the Investment Experiment 2. The figure plots the distribution of the
share of time that respondents spent looking at the values of the signal-consistent model,
using the lenient sample of the Investment Experiment 2 with 430 participants. Only the
median consistent share for each participant is plotted.

Table B.7: Company Bids in the Lenient Sample of the Investment Experiment 2

Dependent variable: Company Bids

Sample: LowComplexity HighComplexity Pooled
(1) (2) (3)

Rational Benchmark 0.500*** 0.283*** 0.500***
(0.045) (0.043) (0.045)

Naive Benchmark 0.532*** 0.715*** 0.532***
(0.038) (0.039) (0.038)

Rational B. × HighComplexity -0.218***
(0.062)

Naive B. × HighComplexity 0.183***
(0.054)

R2 0.891 0.904 0.898

Observations 1744 1696 3440

The table presents OLS regressions of respondents’ company bids on the rational and naive
benchmarks as detailed in Section 3.1. The table is based on the lenient sample of the Invest-
ment Experiment 2. Column (1) uses observations from the LowComplexity treatment, column
(2) from the HighComplexity treatment, and column (3) from both. Stars highlight significant
differences from 0 with * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Standard errors are
clustered on the subject level.
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(a) Histogram of signed probability guesses.
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(b) Mean probability guesses for "The CEO is key".

Figure B.19: Beliefs in the lenient sample of the Investment Experiment 2. In Panel (a)
beliefs are converted into the direction of the more likely model, so that 65 corresponds to
the Bayesian probability. Panel (b) plots mean probability guesses for the model "The CEO
is key". The figure is based on the lenient sample of the Investment Experiment 2 with 430
participants.
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Table B.8: Beliefs and Recall in the Lenient Sample of the
Investment Experiment 2

Dependent variable: Probability Guess Correct Recall

Sample: Pooled Pooled
(1) (2)

Constant 69.656*** 0.973***
(1.096) (0.011)

HighComplexity -1.464 -0.020
(1.843) (0.018)

R2 0.002 0.003

Observations 430 430

The table presents OLS regressions using the lenient sample of the
Investment Experiment 2. In column (1), the dependent variable is
the probability guess for the likely state. Column (2) uses a dummy
for whether respondents correctly recall the more likely model. All
columns use observations from both the HighComplexity and Low-
Complexity conditions. Stars highlight significant differences from 0
with * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Standard errors
are clustered on the subject level.
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Figure B.20: The relationship between decisions and beliefs in the lenient sample of the
Investment Experiment 2. The figure shows a binned scatterplot using the lenient sample
of the Investment Experiment 2 with 430 participants. It has the probability guess that "The
CEO is key" is the more likely model on the horizontal axis, and the decision weight γ as
defined in Equation 3 on the vertical axis. The lines show LOWESS regressions based on all
datapoints.
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B.6 Baseline Confidence: Results in Lenient Sample

Here, we present the results for the lenient sample of the Baseline Confidence Experi-

ment, featuring 445 participants who solved at least one of the example screens.
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Figure B.21: Decision-level naive weights in the lenient sample of the Baseline Confi-
dence Experiment. Panel (a) plots the distribution of naive weights λ calculated as specified
in Equation 2, using the lenient sample of the Baseline Confidence Experiment with 445
participants. Panel (b) plots average naive weights.
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Figure B.22: Distribution of subject-medians of the consistent hovering shares in the
lenient sample of the Baseline Confidence Experiment. The figure plots the distribution of
the share of time that respondents spent looking at the values of the signal-consistent model,
using the lenient sample of the Baseline Confidence Experiment with 445 participants. Only
the median consistent share for each participant is plotted.

Table B.9: Company Value Guesses in the Lenient Sample of Baseline Confidence
Experiment

Dependent variable: Company Value Guess

Sample: LowComplexity HighComplexity Pooled
(1) (2) (3)

Rational Benchmark 0.490*** 0.227*** 0.490***
(0.048) (0.037) (0.048)

Naive Benchmark 0.560*** 0.793*** 0.560***
(0.040) (0.033) (0.040)

Rational B. × HighComplexity -0.263***
(0.060)

Naive B. × HighComplexity 0.233***
(0.052)

R2 0.912 0.932 0.922

Observations 1760 1800 3560

The table presents OLS regressions of respondents’ company value guesses on the rational and
naive benchmarks as detailed in Section 3.1. The table is based on the lenient sample of the
Baseline Confidence Experiment. Column (1) uses observations from the LowComplexity treat-
ment, column (2) from the HighComplexity treatment, and column (3) from both. Stars high-
light significant differences from 0 with * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Stan-
dard errors are clustered on the subject level.
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(a) Histogram of signed probability guesses.
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(b) Mean probability guesses for "The CEO is key".

Figure B.23: Beliefs in the lenient sample of the Baseline Confidence Experiment. In
Panel (a) beliefs are converted into the direction of the more likely model, so that 65 corre-
sponds to the Bayesian probability. Panel (b) plots mean probability guesses for the model
"The CEO is key". The figure is based on the lenient sample of the Baseline Confidence Ex-
periment with 445 participants.
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Table B.10: Beliefs and Recall in the Lenient Sample of the
Baseline Confidence Experiment

Dependent variable: Probability Guess Correct Recall

Sample: Pooled Pooled
(1) (2)

Constant 67.759*** 0.936***
(1.315) (0.017)

HighComplexity 3.814** 0.033
(1.787) (0.020)

R2 0.010 0.006

Observations 445 445

The table presents OLS regressions using the lenient sample of the
Baseline Confidence Experiment. In column (1), the dependent vari-
able is the probability guess for the likely state. Column (2) uses
a dummy for whether respondents correctly recall the more likely
model. All columns use observations from both the HighComplexity
and LowComplexity conditions. Stars highlight significant differences
from 0 with * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Standard
errors are clustered on the subject level.
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Figure B.24: The relationship between decisions and beliefs in the lenient sample of the
Baseline Confidence Experiment. The figure shows a binned scatterplot using the lenient
sample of the Baseline Confidence Experiment with 336 participants. It has the probability
guess that "The CEO is key" is the more likely model on the horizontal axis, and the decision
weight γ as defined in Equation 3 on the vertical axis. The lines show LOWESS regressions
based on all datapoints.
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Figure B.25: Average value guess confidence in the lenient sample of the Baseline Con-
fidence Experiment. The figure plots the average confidence that respondents had in their
company value guesses, using the lenient sample of the Baseline Confidence study with 445
participants.
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B.7 Incentivized Confidence: Results in Lenient Sample

Here, we present the results for the lenient sample of the Incentivized Confidence Ex-

periment, featuring 281 participants who solved at least one of the example screens.

LowComplexity HighComplexity
Treatment

0

1

2

3

4

5

6

Va
lu

e 
Gu

es
s C

on
fid

en
ce

Value Guess Confidence (Bet) by Treatment

LowComplexity HighComplexity
Treatment

0

10

20

30

40

50

60

70

80

Va
lu

e 
Gu

es
s C

on
fid

en
ce

Value Guess Confidence (Probability) by Treatment

Figure B.26: Average value guess confidence in the lenient sample of the Incentivized
Confidence Experiment. The top figure plots the average incentivized confidence measure,
while the bottom figure plots the non-incentivized measure, both using the lenient sample
of the Incentivized Confidence study with 281 participants.
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Figure B.27: Decision-level naive weights in the lenient sample of the Incentivized Confi-
dence Experiment. Panel (a) plots the distribution of naive weights λ calculated as specified
in Equation 2, using the lenient sample of the Incentivized Confidence Experiment with 281
participants. Panel (b) plots average naive weights.
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Figure B.28: Distribution of subject-medians of the consistent hovering shares in the le-
nient sample of the Incentivized Confidence Experiment. The figure plots the distribution
of the share of time that respondents spent looking at the values of the signal-consistent
model, using the lenient sample of the Incentivized Confidence Experiment with 281 partic-
ipants. Only the median consistent share for each participant is plotted.

Table B.11: Company Value Guesses in the Lenient Sample of the Incentivized
Confidence Experiment

Dependent variable: Company Value Guess

Sample: LowComplexity HighComplexity Pooled
(1) (2) (3)

Rational Benchmark 0.518*** 0.451*** 0.518***
(0.063) (0.071) (0.062)

Naive Benchmark 0.564*** 0.591*** 0.564***
(0.050) (0.062) (0.050)

Rational B. × HighComplexity -0.067
(0.094)

Naive B. × HighComplexity 0.027
(0.079)

R2 0.909 0.885 0.897

Observations 1096 1152 2248

The table presents OLS regressions of respondents’ company value guesses on the rational and
naive benchmarks as detailed in Section 3.1. The table is based on the lenient sample of the
Incentivized Confidence Experiment. Column (1) uses observations from the LowComplexity
treatment, column (2) from the HighComplexity treatment, and column (3) from both. Stars
highlight significant differences from 0 with * for p < 0.10, ** for p < 0.05, *** for p < 0.01.
Standard errors are clustered on the subject level.
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(a) Histogram of signed probability guesses.
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(b) Mean probability guesses for "The CEO is key".

Figure B.29: Beliefs in the lenient sample of the Incentivized Confidence Experiment. In
Panel (a) beliefs are converted into the direction of the more likely model, so that 65 corre-
sponds to the Bayesian probability. Panel (b) plots mean probability guesses for the model
"The CEO is key". The figure is based on the lenient sample of the Incentivized Confidence
Experiment with 281 participants.
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Table B.12: Beliefs and Recall in the Lenient Sample of the
Incentivized Confidence Experiment

Dependent variable: Probability Guess Correct Recall

Sample: Pooled Pooled
(1) (2)

Constant 68.139*** 0.964***
(1.676) (0.016)

HighComplexity 1.714 0.002
(2.626) (0.022)

R2 0.002 0.000

Observations 281 281

The table presents OLS regressions using the lenient sample of the
Incentivized Confidence Experiment. In column (1), the dependent
variable is the probability guess for the likely state. Column (2) uses
a dummy for whether respondents correctly recall the more likely
model. All columns use observations from both the HighComplexity
and LowComplexity conditions. Stars highlight significant differences
from 0 with * for p < 0.10, ** for p < 0.05, *** for p < 0.01. Standard
errors are clustered on the subject level.
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Figure B.30: The relationship between decisions and beliefs in the lenient sample of
the Incentivized Confidence Experiment. The figure shows a binned scatterplot using the
lenient sample of the Incentivized Confidence Experiment with 281 participants. It has the
probability guess that "The CEO is key" is the more likely model on the horizontal axis, and
the decision weight γ as defined in Equation 3 on the vertical axis. The lines show LOWESS
regressions based on all datapoints.
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C Model Framework

We present a simple model that can generate the key results of our experiments. The

model is an augmented and simplified version of Bordalo, Gennaioli, Lanzani, and Shleifer

(2025) and formalizes the construction of a mental representation of the decision prob-

lem. This process is shaped both by bottom-up and top-down attention. Upon presenta-

tion of a decision-problem, a bottom-up process of cue-dependent memory determines

which of the currently stored mental representation is top of mind. Then, in a top-down

process, the agent decides whether they want to further simplify this representation.

C.1 Setup

The model closely follows our experimental environment. There are two models of the

world that can explain how company values are determined, i.e. m ∈ {A, B}. While only

one model is correct, ex-ante there is a 50-50 chance of each model being correct. After

observing a noisy but informative signal, the Bayesian posterior is given by π = Pr(m =

A) = 0.65, i.e. we assume without loss of generality that A is the model that is more likely

to be correct.

C.2 Representations

When faced with a decision (action, confidence or belief elicitation), the agent forms a

mental representation of decision problem. We assume that at any moment t the agent

holds a database (a finite set) of representations

Rt =
�

ri = (π̂(ri), V contextri
)
	

The scalar π̂(ri) stores the probability attached to model A, while V contextri
collects the

contextual features of the environment in which r was formed, including the type of

decision (action, confidence or belief elicitation).

Given a decision problem, the agent forms a mental representation, which we model

as a two stage process. The first stage is based on bottom-up attention and similarity

based recall (Bordalo, Gennaioli, Lanzani, and Shleifer (2025)), while the second stage

is a top-down attention decision of whether or not to simplify the representation that
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was recalled in the first stage.

First Stage: Bottom-Up Similarity Based Recall. When a decision screen with cue

vector ξ is displayed, the agent retrieves the stored representations based on the simi-

larity of the contextual features V contextr and ξ. In particular, the recall probability p(r)

for a given representation is given by the relative similarity of its contextual features to

the cue:

p(r) =
S
�

ξ, V contextr

�

∑

r ′∈Rt

S
�

ξ, V contextr ′

�
, (5)

where S(·, ·) is the similarity kernel and Rt is the current set of stored representations.

Second Stage: Top-Down Simplification Decision. After retrieving a non-trivial rep-

resentation r with 0.5 ≤ π̂(r) < 1 the agent may keep it as it is or collapse it into a

simplified version that sets π̂= 1.

Optimal Action Given a Posterior π. For the case of actions (value estimates) let us

first characterize the optimal estimate given some fixed representation. Under the bina-

rised scoring rule with prize P the agent’s utility is

um(a) = (1 − (
am
100 −

a
100)

2)× u(P),

when the true model is m ∈ {A, B} and am is the company value guess provided by model

m. Hence the expected utility from guess a is

Em∼π[um(a)] = (1−
1

10000

�

π (aA− a)2 + (1−π)(aB − a)2
�

)× u(P).

Because P and the constant are irrelevant for the maximisation, the agent chooses the a

that minimises π(aA− a)2 + (1−π)(aB − a)2, yielding

a∗(π) = π aA+ (1−π) aB.

Complexity and Cognitive Cost. Decisions differ in their level of computational com-

plexity c ∈ {;, low,high}. Here, ; means negligible complexity. We set c = high for

company-value guesses in our high-complexity treatment, c = low for company-value
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guesses in the low-complexity treatment, and c = ; for the confidence and belief elic-

itations. Recall that we label the models so that the relevant posterior always satisfies

π≥ 0.5 (i.e. model A is the more likely one), so that simplifying means collapsing to full

certainty π = 1. Accordingly, we specify the cognitive cost of acting on belief π under

complexity level c as

K(c,π) = (1−π)κc

where we assume

κ; = 0< κlow < κhigh and κlow <
∆U(0.65)
1− 0.65

< κhigh,

where

∆U(π) = Em∼π

�

um(a
∗(π))
�

−Em∼π

�

um(a
∗(1))
�

is the utility cost of simplifying the representation due to loss of precision in the company

value guess if the belief for model A is π. Thus, for company-value guesses, a broad

representation is more costly than a simplified one, with a larger gap under high than

low complexity, while for confidence and belief screens with c = ; no cost difference

arises.

Utility Comparison for Simplification. Given a stored representation r with implied

belief π̂(r) and complexity level c, maintaining the broad representation yields

Em∼π̂(r)

�

um

�

a∗(π̂(r))
��

− K
�

c, π̂(r)
�

,

whereas collapsing to certainty (π= 1) yields

Em∼π̂(r)

�

um

�

a∗(1)
��

− K(c, 1).

Hence, the agent simplifies if and only if

K(c, π̂(r))− K(c, 1)> Em∼π̂(r)

�

um

�

a∗(π̂(r))
��

− Em∼π̂(r)

�

um

�

a∗(1)
��

=∆U
�

π̂(r)
�

,

i.e. the cognitive-cost saving K(c, π̂(r))−K(c, 1) exceeds the expected-utility loss∆U
�

π̂(r)
�

.

Because K(;, π̂(r))−K(;, 1) = 0, simplifying on the confidence and belief screens (c = ;)
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would reduce expected utility without any cost-saving. Hence the agent never simplifies

under c = ;.

Using and Storing Representations. Once a representation has been formed and used

to guide a decision, it is added to the database of representations. V contex t
r of such a

representation contains the contextual features of the decision problem in which it was

used.

C.3 Timeline of the Experiment

Before stating our predictions, let us briefly recap the timeline of the experiment. Re-

spondents first read the instructions and observe the signal about which model is more

likely to be correct. We assume that this induces the default representation

r initial = (0.65, V contextinitial ), R0 = {r initial}.

We assume that V contextinitial contains features relating to the general setup of the environment,

in particular the two models, signal structure and received signal.

After going through the instructions, respondents provide the company value guesses,

state their decision confidence and then finally their beliefs about which model is correct.

C.4 Predictions

C.4.1 Estimation of Company Values

Predictions. In the high-complexity condition, respondents will simplify the initial rep-

resentation to π̂= 1 and choose a∗ = aA. In the low-complexity condition, they will keep

π̂= 0.65 and choose a∗ = 0.65 aA+ 0.35 aB.

Proof. Since R0 = {r initial}, participants must decide whether or not to collapse that

single representation. Hence they form

rguess =







(1, V context
guess ) if K(c, 0.65)− K(c, 1)>∆U(0.65),

(0.65, V context
guess ) otherwise.
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Substituting K(c,π) = (1 − π)κc shows that simplification occurs exactly when (1 −

0.65)κc > ∆U(0.65). By assumption (1− 0.65)κlow < ∆U(0.65) < (1− 0.65)κhigh, hence

only high-complexity agents collapse to π= 1, yielding the stated actions.

C.4.2 Confidence

Predictions. Assuming that the reported confidence for π̂ = 1 exceeds that for π̂ =

0.65, on average, respondents in the high-complexity condition will report higher confi-

dence than those in the low-complexity condition.

Proof. Confidence is assessed within the formed mental representation. On the confi-

dence screen, the set of available representations is R1 = {r initial, rguess}. We assume the

prompt ’How certain are you that your answer is within 10 percentage points of the best

possible guess?’ makes the guess context more salient, so

S(ξconfidence, V context
guess )> S(ξconfidence, V context

initial ).

Therefore the most likely case is that rguess is retrieved. Because c = ; on this screen, no

further simplification occurs, so high-complexity subjects retain π̂= 1 and low-complexity

subjects retain π̂ = 0.65. By the assumption that higher stored π̂ yields higher reported

confidence, high-complexity subjects report greater confidence.

If r initial is retrieved instead, once again no simplification occurs because of c = ; and

participants in both conditions report a low confidence associated with π̂= 0.65.

C.4.3 Belief

Predictions. Simplification in the action space might not carry over to the belief space.

The most likely outcome is that respondents in both complexity conditions will state

their belief as π̂ = 0.65. Respondents in the high-complexity condition may exhibit a

greater tendency to state the simplified belief of π̂= 1.

Proof. On the belief screen, R2 = {r initial, rguess, rconfidence}. We assume the prompt ’Which

of the two rules generated correct company value estimates?’ explicitly echoes the orig-
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inal signal description, so

S(ξbelief, V context
initial )>max
�

S(ξbelief, V context
guess ), S(ξbelief, V context

confidence)
	

.

Thus the most likely case is that r initial is retrieved. As c = ; here too, no collapse occurs

and the stated belief is π̂= 0.65 in both complexity conditions.

If rguess or rconfidence are retrieved instead, once again no simplification occurs be-

cause of c = ;. For respondents in the high-complexity condition this implies π̂(rguess) =

π̂(rconfidence) = 1, while under low complexity π̂(rguess) = π̂(rconfidence) = 0.65.

D Instructions

D.1 Introduction

D.1.1 Welcome Screen and Attention Check
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D.1.2 General Instructions

D.1.3 Bonus Information
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D.2 Company Value Guesses

D.2.1 Instructions
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D.2.2 Comprehension Questions
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D.2.3 Example Decision Screens for Selecting Restricted Sample
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D.2.4 Treatment Assignment - HighComplexity
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D.2.5 Treatment Assignment - LowComplexity

D.2.6 Determining the Correct Rule
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D.2.7 Timeline - HighComplexity

D.2.8 Timeline - LowComplexity
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D.2.9 Drawing the Signal
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D.2.10 Signal Screen - CEO is key
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D.2.11 Signal Screen - Products are crucial

D.2.12 Signal Check
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D.2.13 Decision Screen - HighComplexity

The formulas and variable realizations were displayed upon hovering over the respective

text.
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D.2.14 Decision Screen - LowComplexity

The pre-calculated company value estimates were displayed upon hovering over the re-

spective text.
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D.3 Beliefs

D.3.1 Instructions
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D.3.2 Decision Screen
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D.3.3 Confidence Elicitation

D.3.4 Direct Recall
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