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Abstract 

Climate change impacts farms’ risk profiles and farms’ expected returns; yet farms seem to be 

reluctant to invest into adaption measures. Previous literature suggests that delayed adaptation is due 

to the real option nature of such investments: irreversibility, flexibility in timing, and (economic) 

uncertainty. We test these theoretical considerations by empirically examining irrigation uptake 

among Danish farms. We consider production inefficiency, market and weather risk, and experienced 

climate extremes as determinants of irrigation adoption behavior. Our analysis uses a panel of 1,104 

farm-level observations from the FADN for 2007–2020 combined with weather, climate and price data. 

We model farms’ persistent inefficiency using a 4-component stochastic frontier; a panel logit 

quantifying the effects of inefficiency, climate extremes, and price and weather volatility on adoption. 

Our results align with predictions from real options theory: higher market uncertainty lowers adoption 

rates, whereas exposure to extreme drought increases the probability of investing. Results also suggest 

that crop-market signals matter, suggested by higher adoption rates under greater potato price 

volatility, indicating anticipatory investment when upside price risk is salient. We find that higher farm-

level efficiency is associated with a lower propensity to invest, pointing either to substitution toward 

other risk-management or yield-enhancing strategies, or to less binding water constraints on already 

efficient farms. Our current results therefore suggest that additional policy initiatives may be required 

to foster adaptation levels adequate for expected climate change development. 
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Introduction 
Climate change alters weather conditions, translating into changes in a farm’s risk profile and 

production efficiency, in turn influencing expectations on future farming returns. Farms can and should 

react to these changes by adapting farming structures to better cope with changed risk profiles, such 

as crop choices, irrigation uptake or expansion, or termination of farm branches (Challinor et al., 2014). 

Despite these the well-documented vulnerability of farming systems, threatening global food security, 

adaptation reluctance, and barriers to adaption need to be overcome (IPCC, 2022).  

Most of the adaptations imply substantial changes in the farming business and require investments. 

Such investment decisions have to be made under climatic and economic uncertainty affecting future 

returns and their distribution (e.g., Antle and Capalbo, 2010; Reilly and Schimmelpfennig, 2000). This 

includes (i) scientific uncertainty of how an observed slow change to the climate (e.g., radiative forcing 

under a given scenario) manifests itself in more frequent and severe weather extremes, and 

uncertainty about the climate’s sensitivity to changes in the atmospheric composition; and (ii) socio-

economic uncertainty regarding the difficulties in forecasting uncertainty, the impacts of climatic 

change, and society’s reactions (Heal and Millner, 2014). Climatic uncertainty is highly dynamic over 

time, which means that decision-makers can update their knowledge through learning (Quiggin, 2008), 

making flexibility in the timing of adaptations central. Typically, adaptations are (partially) irreversible, 

i.e., investment costs cannot be (fully) recovered, and flexibility in timing offers an option value (Regan 

et al., 2015; Guthrie, 2019; Ginbo, Di Corato and Hoffmann, 2021). Delaying adaptation can thus be 

beneficial (Wesseler and Zhao, 2019). This makes the real options approach suitable to investigate 

farms irrigation uptake (Wreford, Dittrich and van der Pol, 2020; Ginbo, Di Corato and Hoffmann, 

2021).  

In this paper, we investigate Danish farms’ irrigation uptake to test the central hypothesis of the real 

options approach that farms’ reluctance to adopt irrigation can be explained by weather and 

production risk, and experienced climate extremes. By expanding a real options model (Dixit and 

Pindyck, 1994) to incorporate productive inefficiency, economic uncertainty, and weather shocks, we 

hypothesize that farms hesitate to adopt irrigation under expected uncertainty in economic returns, 

whereas farms are more likely to adopt irrigation if climate extremes were experienced. We explicitly 

acknowledge that the farms’ net returns depend on production efficiency via profit (Kumbhakar, 2001; 

Pieralli, Hüttel and Odening, 2017). That is, farms will delay irrigation uptake if they operate efficiently 

in their current system.  

Irrigation is an important example of a farm-level adaptation which mitigates yield and quality losses 

in drought periods in European agriculture (Webber et al., 2016), especially as the likelihood of drought 

periods will increase. To test the hypothesis, our empirical procedure rests on three steps: (i) we assign 

climate and weather data from the European Climate Assessment Dataset to 1,104 Danish farms 

sampled from the Farm Accountancy Data Network (FADN) during 2007-2020 at NUTS-2; (ii) we 

estimate farm-specific persistent inefficiency using a 4-component stochastic frontier model; (iii) we 

run a panel-data logit model to quantify the impact of farm inefficiency, climate extreme events, price, 

and weather volatility on farms’ probability to adopt irrigation. 

Most previous real option studies on irrigation investments are based on simulations with normative 

character and demonstrate that adaptation reluctance can be explained by costly reversibility, 

uncertainty of future returns under climate change and economic risk, and managerial flexibility 

(Michailidis and Mattas, 2007; Carey and Zilberman, 2002; Seo et al., 2008; Zhang, Wang and Li, 2018). 

The majority of studies focus on single sources of uncertainty such as output or water prices or are 

weather-related, while multiple sources of uncertainty, or the complexity of uncertainty related to 

climatic change and potential interactions, seem to be rarely modeled explicitly (Ginbo et al., 2021). 
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Exceptions include joint modeling of price and yield uncertainty in simulations in farms’ irrigation 

investment decisions (Heumesser et al., 2012). Empirical studies with the aim to test hypotheses from 

the real options approach appear missing in the field of irrigation uptake or new water saving irrigation 

technology adoption.  

The Farm Adaptation Model  
We expand a traditional real options model that covers economic uncertainty from investments (see 

Dixit and Pindyck, 1994) and incorporate implications of farm productivity (Pieralli, Hüttel and 

Odening, 2017; Lambarraa, Stefanou and Gil, 2016), weather-related production risk (Reilly and 

Schimmelpfennig, 2000), and perceived weather shocks from climate extremes (Lee and Zhao, 2021) 

on farms’ optimal irrigation investment timing.  

The farm’s technology is modelled as a function of weather and productivity levels. Irrigation uptake 

can reduce weather-related productive inefficiency 𝑢, and thus future volatility of production 𝜎𝑢. The 

farm’s return function from the investment considers uncertainty in future prices for crops produced 

with irrigation 𝑝𝑡, energy, and water prices needed for irrigation 𝑞𝑡. These are assumed to follow a 

stochastic process with respective volatility terms 𝜎𝑝 and 𝜎𝑞. The value of the irrigation uptake 

(investment) can be summarized by the discounted net differences between the expected profits with 

(1) and without (0) irrigation:  

𝑉𝑡
01(𝑝𝑡, 𝑞𝑡 , 𝑤𝑡 , 𝑢𝑡

0, 𝑢𝑡
1, 𝜎𝑢,0, 𝜎𝑢,1) = 𝐸 ∫ [𝜋𝑡+𝑠

1 − 𝜋𝑡+𝑠
0 ]

∞

0

exp(−𝑟𝑠) 𝑑𝑠 (1) 

(𝑢𝑡
0, 𝑢𝑡

1) denotes a set of productivity terms corresponding to each production system depending on 

weather realizations 𝑤𝑡, other production input prices relevant for generating profits, and 𝑟 the 

discount rate. The core result of the real options model is that the adaptation investment will not be 

optimal when the expected return from irrigation uptake 𝑉𝑡
01 is greater than the irreversible 

investment costs 𝐶1. The net return 𝑉𝑡
01 − 𝐶1 must exceed the option value 𝑂𝑉01. This option value 

“of waiting” represents the gain of delaying the investment to gather more information and learn 

about future operational profit under an uncertain future climate. Farm decision-makers will invest if: 

𝑉𝑡
01(𝑝𝑡 , 𝑞𝑡, 𝑤𝑡 , 𝑢𝑡

0, 𝑢𝑡
1, 𝑎𝑡) > 𝐶1 + 𝑂𝑉01(𝜎𝑝, 𝜎𝑞). (2) 

If the option value increases as market uncertainties (𝜎𝑝, 𝜎𝑞) increase, this leads to observed 

adaptation reluctance. If, however, the weather-induced variability of production without irrigation is 

higher, including severe weather shocks from climate extremes, this increases the value of the 

investment and incentivizes adaptation. Under a high productive efficiency of the non-adapted 

systems, the model predicts delayed adaptation.  

In the empirical model, we distinguish between transient productive inefficiency, which differs by 

production system, and time persistent productive inefficiency, which is typically attributed to farm 

management and does not depend on the production technology. As we only observe the same farm 

in the irrigated or non-irrigated system, a counterfactual measure of productive transient inefficiency 

would be needed. As this is not available, we use farms’ persistent inefficiency before adaptation in 

the empirical framework.  

To test the model’s predictions, we relate measures for the core real option variables—future 

economic and weather volatility, persistent productive inefficiency—and a set of control variables, 

e.g., location specificities. These are summarized in 𝑍 determining farms’ probability for irrigation 
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uptake 𝑃[𝑑𝑖𝑡
𝑖𝑟𝑟  = 1|𝑍] where 𝑑𝑖𝑡

𝑖𝑟𝑟  denotes an indicator variable that equals one in the period where a 

farm has taken up irrigation. This is modelled as a panel logit model.  

Background, data and variables 

The Danish crop farming sector 
Denmark’s agricultural sector is a cornerstone of its economy and land use, with about two-thirds of 

its area devoted to farming (Statistics Denmark, 2025b). Danish crop farms operate on average 75 ha; 

full-time farms average at around 200 ha (European Commission, 2021). Main cultivated crops include 

cereals, rapeseed, sugar beets, and potatoes, with the latter usually exhibiting a high demand for 

irrigation (European Commission, 2021). Among potato-growing farms, around 50% their income 

comes from potatoes (European Commission, 2024). 

Soil conditions vary to some extent across the country. The dominant soil types are moraine-derived 

clay loams in the eastern regions (Zealand, Funen). These clay-rich soils are naturally fertile, with high 

nutrient-holding capacity and water retention, making them particularly suitable for intensive arable 

farming. The western regions (Jutland) exhibit high shares of potato and fodder production, where less 

fertile sandy soils prevail. Sandy soils are more prone to leaching, and require higher levels of 

fertilization and irrigation to sustain comparable yields (Damme and Andersen, 2018; Thomsen, 1986). 

Since 2000, Denmark has experienced notable shifts in climate patterns with warmer temperatures 

and longer growing seasons. Precipitation levels remained, however, fairly stable averaging between 

900 and 1100mm annually in the western region, and 500-600 mm annually in the eastern region (DMI, 

2025). Downside weather risks increased notably after 2000 with more frequent droughts (e.g., 2011 

and 2018) and heatwaves (e.g., 2018 and 2019), and heavy rainfall events (e.g., 2011) also increased 

(DMI, 2025).  

As a result of higher temperatures, shifting precipitation patterns, and increased (spring) drought 

frequencies, irrigation has been noted as beneficial for crop farming in nearly all years after 2000 

(Damme and Andersen, 2018). Shares of irrigated land have increased since 2000, averaging around 

9% of the total agricultural area in 2021 (World Bank, 2025). Climate change impacts are expected to 

further increase needs for irrigation (DANVA, 2008; Seidenfaden et al., 2022). 

 

Farm-level data and variables 
We base our analysis on data from the Farm Accountancy Data Network (FADN) (European 

Commission, 2024) for Denmark covering 2007-2020. We consider crop farms according to the FADN 

classification and include specialist COP farms (cereals, oilseeds, and protein crops), specialist general 

field crop farms, and mixed crop farms. We restrict the sample to farms with at least three consecutive 

annual observations. We remove farms with unobserved crop outputs or arable land use, and farms 

with more than 10% income from tourism in at least one sample year.  

We use the share of irrigated land to identify farms’ uptake of irrigation. The dummy variable 𝑑𝑖𝑡
𝑖𝑟𝑟  

indicates whether farm 𝑖′𝑠 share of irrigated land in period 𝑡 is zero (𝑑𝑖𝑡
𝑖𝑟𝑟 = 0), or greater than zero 

(𝑑𝑖𝑡
𝑖𝑟𝑟 = 1). Farms with irrigation throughout their observed period are excluded from the sample. 

Thus, we divide the sample into “never irrigating farms” (𝑑𝑖𝑡
𝑖𝑟𝑟 = 0 ∀𝑡), and farms with “irrigation 

uptake” (𝑑𝑖𝑡
𝑖𝑟𝑟 = 1 in some period). For the latter, we consider only farms that start irrigation during 

their observation period but show at least two consecutive years with no irrigated land.  
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This selection results in 5,233 observations (𝑁𝑇) of 1,104 farms, with on average 3.7 years in the 

sample (see Table 1), where 98 farms adopted irrigation; 1,006 farms never irrigated. The uptake of 

irrigation is nearly uniformly distributed after 2009, with a pronounced spike in 2012 potentially as a 

response to the 2011 drought (no uptake is observed before due to the required two years without 

irrigation). The share of irrigated land for the whole sample increases steadily over the observation 

period from around 3% (2007) to around 11% (2020). For farms that adopt irrigation, shares of irrigated 

lands range between 40% and 50% in most periods. 

The resulting sample shows characteristics similar to full-time farms in Denmark (Statistics Denmark, 

2025a) with average farms sizes above 200 ha. Crop farms taking up irrigation tend to be larger than 

never irrigating farms in terms of utilized arable land (Table 1), with corresponding higher labor inputs, 

farm capital and material expenditures.  

Table 1: Descriptive statistics by irrigation uptake, mean values averaged over all obs., monetary values in nominal terms  

Variable Never irrigating (𝑁𝑛𝑖𝑟𝑟 = 1,006)  Irrigation uptake (𝑁𝑖𝑟𝑟 = 98) 

 Mean SD  Mean SD 

Labor (AWU) 1.778 1.856  2.633 2.182 
Average farm capital (T€) 1,439.53 1,858.20  1,855,245 1,865,256 
Arable land (ha) 207.88 228,76  276.47 297.08 
Materials (T€) 62.61 82.36  113.48 139.89 

𝑁𝑇  4,807   426  
Note: Data from the Farm Accountancy Data Network FADN (European Commission, 2024). Detailed descriptive statistics 
cannot be reported due to data privacy protection. AWU denotes agricultural work units. T€ denotes thousand Euros. 

 

Irrigation investment costs can vary substantially, for instance, if water storage and infrastructure 

investments are also needed. Moreover, costs depend on irrigation technology, which remains 

unobserved by us. To consider a farm’s observed potential investment cost for irrigation uptake (𝐶1), 

we use the change in average farm capital before and after the uptake. We therefore run an auxiliary 

regression using the change in the average farm capital per hectare as the dependent variable. The 

independent variables include the adaptation investment dummy variable (𝑑𝑖𝑡
𝑖𝑟𝑟) interacted with a 

trend variable to capture intertemporal price changes, the farm size, and the farm size change in terms 

of UAA. Using the prediction of the per-hectare farm capital change for the different time trend 

realizations, our estimates correspond to 900-1400€/ha capital change due to an investment in 

irrigation (𝐶𝑡
1). We also consider the variance of the pre-irrigation revenues from cropping as a 

measure of the productivity variance without irrigation (𝜎𝑞). 

 

Weather data and variables 
To acknowledge the role of weather realization for crop farm production, we use weather and climate 

data from the European Climate Assessment Dataset (Cornes et al., 2018). We assign climate and 

weather information to a farm using the observed location at the NUTS-2 level by spatially averaging 

observed weather over a 0.25° grid (Wimmer and Finger, 2025).  

We use the average and the minimum monthly de Martonne drought index (Martonne, 1942) for each 

farm (lagged in time by one year) to capture drought months :  

𝑑𝑀𝐼 =
𝑃

𝑇+10
, (3) 
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where 𝑃 is the total daily precipitation, and 𝑇 is the daily mean temperature. Therefore, lower (higher) 

dMI values refer to drier (wetter) conditions. We average daily dMIs over the months of the growing 

season (April – August) to obtain average monthly drought indices for each NUTS-2 region. We 

calculate the average 𝑑𝑀𝐼 within a year ( 𝑑𝑀𝐼̅̅ ̅̅ ̅̅
𝑡) and retrieve the minimum monthly average 𝑑𝑀𝐼 

(𝑑𝑀𝐼min ).  

We also acknowledge that, besides gradual changes in the climate, extreme events under climate 

change may play an important role to stimulate adaptation decision (Berrang-Ford, Ford and Paterson, 

2011; Füssel, 2007). We acknowledge such climate extremes through indicator variables for the severe 

droughts in 2011 and 2018. The variables, 𝑃𝑜𝑠𝑡 2011 𝑑𝑟𝑜𝑢𝑔ℎ𝑡 and 𝑃𝑜𝑠𝑡 2018 𝑑𝑟𝑜𝑢𝑔ℎ𝑡 equal one in 

the year after the drought to relate adaptation decisions to extreme event occurrence.  

Descriptive statistics for the weather indicators (see Table 2) show only minor differences between 

never irrigating farms and farms taking up irrigation in terms of the dMI drought indicators. Mean 

values for the post-drought dummy variables suggest, however, higher uptake of irrigation in the years 

following the drought events. 

Table 2: Descriptive statistics of weather variables by farm type  

Variable Never irrigating (𝑁𝑛𝑖𝑟𝑟 = 1,006)  Irrigation uptake (𝑁𝑖𝑟𝑟 = 98) 

 Mean SD  Mean SD 

Average 𝐷𝑀𝐼𝑡−1 2.507 0.539  2.821 0.519 
Min 𝐷𝑀𝐼𝑡−1 0.972 0.504  1.028 0.482 
Post 2011 drought 0.057   0.235  
Post 2018 drought 0.058   0.071  
. 

 

Price data and volatility variables 
We approximate output market price volatility using monthly crop prices from (Statistics Denmark, 

2025a). Due to unavailable potato price data in the observations period, we use corresponding data 

for the German Federal State of Schleswig-Holstein, neighboring Denmark (AMI, 2025).  

Using prices 𝑝𝑐𝑚 for crop 𝑐 in month 𝑚 (𝑚 = 1, … , 𝑀 = 12), we calculate the price volatility for crop 

𝑐 in year 𝑡 as 

𝜎𝑐𝑡 =
1

𝑀 − 1
∑(𝑝𝑐𝑚 −

𝑚

  𝑝𝑐𝑚̅̅ ̅̅ ̅), 
(4) 

with  𝑝𝑐𝑚̅̅ ̅̅ ̅ denoting the average price for 𝑐 in year 𝑡.  

We calculate a farm-specific price volatility for each period as the sum of crop price volatilities for 

𝐶 (𝑐 = 1, … , 𝐶) crops weighted by the farm’s corresponding crop share, 𝑠ℎ𝑎𝑟𝑒𝑖𝑡𝑐, such that: 

𝜎𝑖𝑡 = ∑ 𝜎𝑐𝑡 × 𝑠ℎ𝑎𝑟𝑒𝑖𝑡𝑐

𝑐

 (5) 

We consider the main crops cultivated by the sampled farms, i.e., wheat, rape, oats, barley, and 

potatoes. Other crops–corresponding to around 20% of the arable land use in our sample–form a 

residual category. For the residual category, we use the average price of rye and triticale, for which 

our sample contains no detailed land use information. 
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In the empirical modelling, we indicate economics risks using the lagged volatility of farms’ output 

prices, 𝜎𝑖𝑡−1 and the lagged price volatility of potatoes 𝜎𝑐=𝑃𝑜𝑡𝑎𝑡𝑜𝑒𝑠,𝑡−1. To capture market risks, we 

additionally rely on farm-specific variances of the per-hectare income from cropping calculated over 

the periods without irrigation.  

Descriptive statistics for the respective variables (Table 3) indicate some differences between the two 

farm types. In particular, observations taking up irrigation in period 𝑡 show notably higher potato price 

volatility in the year before the uptake. 

Table 3: Descriptive statistics of output price volatility by farm type 

Variable Never irrigating (𝑁𝑛𝑖𝑟𝑟 = 1,006)  Irrigation uptake (𝑁𝑖𝑟𝑟 = 98) 

 Mean SD  Mean SD 

Crop price vol. 𝜎𝑖𝑡−1 0.013 0.011  0.018 0.016 
Potato price vol. 𝜎𝑃𝑜𝑡,𝑖𝑡−1 0.007 0.038  0.035 0.069 
. 

 

Empirical Model 
We estimate farm-level inefficiency using a stochastic frontier approach. We estimate technical 

efficiency using a 4-component stochastic model (Colombi et al., 2014; Kumbhakar, Lien and Hardaker, 

2014), 

yit = 𝛼0 + 𝑓(𝑥𝑖𝑡 , 𝛽) + 𝜖𝑖𝑡 = 𝛼0 + 𝑓(𝑥𝑖𝑡 , 𝛽) + 𝜏𝑖 − 𝑎𝑖 − 𝜈𝑖𝑡 + 𝜀𝑖𝑡, (6) 

with 𝑦𝑖𝑡  denoting farm 𝑖‘s output in period 𝑡. 𝑓(𝑥) denotes the production function with inputs 𝑥𝑖𝑡. 

The composed error term 𝜖𝑖𝑡 summarizes all deviations from the production function due to: 

unobserved farm heterogeneity, 𝜏𝑖; farm 𝑖’s persistent time-invariant inefficiency, 𝑎𝑖; farm 𝑖’s transient 

inefficiency for period 𝑡, 𝜈𝑖𝑡; and random shocks to the production, 𝜀𝑖𝑡.  

To estimate farms’ productive inefficiency prior to the technology change by irrigation uptake, we use 

only farms’ observations without observed irrigation (i.e., periods of adoption are excluded). We 

employ a Cobb-Douglas functional form with total crop output in monetary terms as a measure of crop 

farm output 𝑦𝑖𝑡. As inputs, we use total arable and grassland of the farm (land input, 𝑥1), the total 

agricultural work units (labor input, 𝑥2), average annual farm capital (capital input, 𝑥3), and the sum 

of expenditures for crop protection, fertilizer, seeds, and energy (material input, 𝑥4). We differentiate 

farm types using the FADN classification (TF14, see DG Agriculture and Rural Development, 2020 for 

details) differentiating between specialist COP farms, general crop farms, and mixed crop farms. 

Monetary variables are deflated to 2015 values using the agricultural producer price index for Denmark 

(Eurostat, 2022).  

We add a linear-quadratic time trend variable, 𝑡 and 𝑡2, to accommodate technical change as shifts in 

the production function in our study period. We assume that all four error components are random 

and homoscedastic, independent of each other, and independent of the input choices. We further 

assume that 𝜏𝑖~𝑖𝑖𝑑 𝑁(0, 𝜎𝜏
2), 𝑎𝑖~𝑖𝑖𝑑 𝑁+(0, 𝜎𝑎

2), 𝜈𝑖𝑡~𝑖𝑖𝑑 𝑁+(0, 𝜎𝜈
2), and 𝜀𝑖~𝑖𝑖𝑑 𝑁(0, 𝜎𝜀

2) (Colombi et 

al., 2014).  

To estimate the determinants of irrigation uptake, 𝑃[𝑑𝑖𝑡
𝑖𝑟𝑟  = 1|𝑍𝑖𝑡], we use a random effects logit 

model (Pieralli, Hüttel and Odening, 2017). Estimates of the farms’ persistent productive inefficiency 

𝑎𝑖̂ enter 𝑍𝑖𝑡  in this binary model. The model is:  
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𝑃[𝑑𝑖𝑡
𝑖𝑟𝑟  = 1|𝑍𝑖𝑡] =

1

1 + exp(−𝑍𝑖𝑡
′ 𝜉 − 𝜇𝑖)

, 
(7) 

where 𝜉 is a vector of parameters associated with explanatory variables 𝑍𝑖𝑡; 𝜇𝑖  is a vector of 

unobserved farm-specific intercepts assumed to be random (Chamberlain, 1980).  

In the empirical model, 𝑍𝑖𝑡  contains the variables reflecting our theoretical considerations for the real 

options approach and additional contextual variables: approximated investment cost 𝐶𝑡
1, lagged input 

and output price volatility 𝜎𝑖𝑡−1 and 𝜎𝑐=𝑃𝑜𝑡𝑎𝑡𝑜𝑒𝑠,𝑡−1, and the productive inefficiency of the farms’ 

production system without irrigation, 𝑎𝑖̂. We model weather and climate influence through the de 

Martonne drought index as average annual 𝑑𝑀𝐼̅̅ ̅̅ ̅̅  and the minimum 𝑑𝑀𝐼min  of the lagged period.  

We run all calculations in R 4.2.3. Equation (6) is estimated with the R-package npsf (Badunenko, 

Mozharovskyi and Kolomiyetseva, 2020) using maximum simulated likelihood (Filippini and Greene, 

2016) due to advantages in statistical efficiency compared to multi-step procedures (Lien, Kumbhakar 

and Alem, 2018). Point estimates of farms’ persistent efficiency scores are obtained using the JMLS 

estimator (Jondrow et al., 1982) such that 𝑎𝑖̂ = exp(−𝐸[𝑎𝑖│𝜖𝑖 ])  with 𝜖𝑖 denoting the composed error 

term. We estimate equation (7) using the random effects logit estimator by Bates et al. (2015). 

 

Results and Discussion 
The stochastic frontier analysis shows parameter estimates for the production function in line with the 

expectations (see Table 4, top): we find positive marginal effects for labor, capital, land, and materials. 

Standard errors are generally small; as indicated by one-sided confidence intervals, most coefficient 

estimates are statistically significant at the 95% level based on a z-test assuming random sampling. 

Coefficients for labor and capital show large standard errors, which could be explained by the high 

correlation between land, capital and labor inputs (Pearson correlation >0.65 in all cases). We observe 

positive technical change for the whole observation period with a slow down towards the end of the 

observation period. At identical input levels, we find higher output potentials for mixed crop farms and 

general crop farms compared to specialist COP farms. 

The positive estimate of log(√𝜎𝑢/𝜎𝑣) indicates that inefficiency is present in the model, i.e., 𝜎𝑢
2 > 𝜎𝑣

2. 

Descriptive statistics of persistent and transient efficiency scores (see Table 4, bottom) underline 

notable efficiency differences between farms with average persistent efficiency scores of around 70%, 

ranging between 18% and 87%. Transient inefficiency averages at similar levels. We note that a 

translog specification leads to qualitatively identical results with Pearson correlations coefficients 

above 0.9 for estimates of the transient and the persistent inefficiency, respectively. 
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Table 4: Parameter estimates, standard errors (SE) and 95% confidence intervals of the Stochastic Frontier Analysis (N=4,307) 

 Estimate  SE 95% CI 

(Intercept) 4.1536  0.1205 [3.6774, 4.2564] 

log(Labor) 0.0145  0.0169 [-0.1055, -0.0035] 

log(Capital) 0.0001  0.0105 [0.0339, 0.0821] 

log(Land) 0.5497  0.0183 [0.5104, 0.6448] 

log(Materials) 0.4902  0.0138 [0.4555, 0.5245] 

Trend 0.0774  0.0038 [0.0107, 0.0393] 

Trend²  -0.0035  0.0002 [-0.0014, -0.0002] 

TF14: General crop farm 0.1029  0.0131 [0.0663, 0.1337] 

TF14: Mixed crop farm 0.3310  0.0315 [0.1873, 0.3519] 

log(√𝜎𝑢/𝜎𝑣) 0.6983  0.0205 [0.6581, 0.7385] 

log(𝜎) -1.0874  0.0171 [-1.1209, -1.0539] 

log(𝜎𝑣
2) -1.8161  0.1374 [-2.0854, -1.5468] 

log(𝜎𝑢
2) -0.8270  0.0785 [-0.9809, -0.6731] 

       Persistent inefficiency Transient inefficiency Overall 

       Min 0.180  0.170  0.031 

       Q25 0.698  0.684  0.483 

       Q50 0.736  0.717  0.524 

       Q75 0.764  0.743  0.555 

       Max 0.868  0.892  0.701 

 

The results for the logit model are summarized in Table 5. We find that farms with higher persistent 

efficiency have a lower probability for irrigation adoption, which is in line with the theoretical 

considerations and empirical evidence (e.g., Pieralli, Hüttel and Odening, 2017).  

We find farms with higher expenditures on energy and water per hectare have a higher probability to 

invest into irrigation. Conversely, we find that higher output price volatility reduces the likelihood of 

irrigation investment. However, higher price volatility specifically for potatoes in the previous year 

increases the probability of investment. Farms may potentially anticipate higher gains from the 

investment and from potato productions specifically. Our model specification may not fully capture 

this interplay, and the anticipated production volatility reducing effect of irrigation may correlate with 

potato price volatility. No meaningful effect size is found for the volatility measure in per-hectare crop 

income.  

In the periods after the strong droughts in 2011 and 2018, we find positive effects on our dependent 

variable, suggesting that extreme events may trigger adaptation. We note that the estimated effect 

for 2018 is small and shows high statistical uncertainty. For the drought related measures, minimum 

DMI and average DMI, results are mixed: Less severe droughts in the previous period, indicated by 

higher values of 𝑑𝑀𝐼min,t−1, decrease the probability of adoption. This effect is, however, outweighed 

to some extent by the estimates for the average DMI in the previous period,  𝑑𝑀𝐼̅̅ ̅̅ ̅̅
𝑡−1. 
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Table 5: Regression results of the random effects logit regression, dependent variable 𝑑𝑖𝑡
𝑖𝑟𝑟  

 Estimate  SE   

Constant -1.051  1.773 [-4.526, 2.424] 

Persistent efficiency without irrigation (𝑎𝑖̂) -6.023  1.568 [-9.096, -2.950] 
Lagged farms size (𝑈𝐴𝐴𝑡−1) 0.001  0.0004 [0.001, 0.002] 
Lagged irrigation investment costs (𝐼𝑡−1) × 10−2 0.002  0.001 [-0.002, 0.002 
Lagged crop price volatility (𝜎𝑖𝑡) -146.282  37.832 [-220.433, -72.131] 
Lagged potato price volatility (𝜎𝑐=𝑃𝑜𝑡𝑎𝑡𝑜𝑒𝑠,𝑡−1). 40.765  9.208 [22.717, 58.813] 
Variance of crop income without irrigation -0.295  0.33 [-0.942, 0.352] 
Energy costs per hectare without irrigation 0.016  0.003 [0.010, 0.022] 

 𝑑𝑀𝐼̅̅ ̅̅ ̅̅
𝑡−1 0.922  0.325 [0.285, 1.559] 

𝑑𝑀𝐼min,t−1 -0.935  0.355 [-1.631, -0.239] 
2012 dummy (post 2011 drought dummy)  1.801  0.391 [1.035, 2.567] 
2019 dummy (post 2018 drought dummy) 0.188  0.657 [-1.100, 1.476] 
2014-2020 dummy (post fertilization reform) -0.219  0.742 [-1.673, 1.235] 

Observations   4,170   

Log Likelihood 
 

 -
348.422 

  

Akaike Inf. Crit.   722.844   
Bayesian Inf. Crit.   805.208   

 

Concluding Remarks  
Our results lend some support for the presence of a real option in the adoption of irrigation. Our results 

suggest that increasing market uncertainties, indicated by higher price volatilities, reduce the 

likelihood to invest into adaptation. The variability of agronomic weather conditions, indicated by the 

de Martonne drought index, may likewise foster the adaptation investment, since weather shocks 

related to climate extremes seem to play a role (Lee and Zhao, 2021). In line with previous empirical 

evidence (e.g., Pieralli, Hüttel and Odening, 2017; Lambarraa, Stefanou and Gil, 2016), we also find 

later adaptation under high productive efficiency of the non-adapted system. 

Our results suggest that the increasing uncertainty under an uncertain future climate can discourage 

farmer adaptation investments into irrigation. In line with the real option theory, our results 

underscore that uncertainty in the economic dimension (e.g., output price variation) may cause 

reluctance to adapt due to the beneficial value of waiting for additional market signals to learn about 

future operational profit under an uncertain future climate. Reluctance to adapt jeopardizes, however, 

farms resilience by causing avoidable losses due to climate change. 

For policymakers, our results underscore the need to further incentivize adaptation and strengthen 

farms’ climate resilience. Potential policy measures may not only address the investment into irrigation 

itself, but focus on a combination of measures to reduce farms’ vulnerability to risks associated with 

climate change. For instance, policies supporting investments into water storage to enable irrigation, 

also after consecutive drought periods (Ebers et al., 2023), may increase the attractiveness of irrigation 

investments. Drought-resistant varieties may likewise lower drought risk exposure while reducing the 

operating expenditures of irrigating (Foulkes, Scott and Sylvester-Bradley, 2002). Ultimately, weather 

insurances may reduce farms’ financial risk exposure by offsetting risks at the farm level; however, 

without physical compensation for output losses (Bucheli, Dalhaus and Finger, 2021). 

We recognize that our results might be preliminary as they are most likely affected by several 

shortcomings to be addressed. First, the spatial resolution of farm locations at the NUTS-2 level hinders 
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a direct assignment of local weather and climate conditions at farm locations. We plan to increase the 

precision of this assignment using a probabilistic spatial downscaling approach aiming for information 

at the NUTS-3 municipality level (Kempen et al., 2011; Hartig et al., 2023). Second, while the de 

Martonne drought index provides a traceable measure for drought occurrence, it is sensitive to 

precipitation relative to temperature, and ignores soil and hydrological properties (Paltineanu C. et al., 

2007). Based on more precise farm locations, additional measures for weather, climate, and drought, 

such as soil moisture indices, are thus considered (Zeri et al., 2022). Surface soil moisture and the soil 

water index, provided by Copernicus for our spatial and temporal scale, are considered for this end 

(e.g., Bauer-Marschallinger et al., 2019). Third, and relatedly, our inefficiency estimation omits the role 

of weather realizations for farm-level efficiency estimates. Our estimates may be improved by 

accounting for weather realizations in the variance terms for the transient inefficiency. Fourth, our 

current model specification disregards expectations about future price development of farms’ output 

and relies on a noisy measure of irrigation investment costs. Adding price trend variables obtained 

through fitting stochastic processes to observed price data may address this issue. For the investment 

costs, more sophisticated models analyzing farm capital development as well as information for 

irrigation investments outside of FADN should be considered. And fifth, our model disregards strategic 

interactions of adaptation investment decisions (e.g., Narita and Quaas, 2014). To better account for 

local determinants of irrigation, such as the depletion of underground water, one should account for 

local shares of irrigation, and to acquire locally-specific information on irrigation water availability and 

respective prices. 

  



 

12 
 

 

References 
AMI (2025). Monthly potato prices for Schleswig-Holstein. 

Antle, J. M. and Capalbo, S. M. (2010). Adaptation of Agricultural and Food Systems to Climate Change: 

An Economic and Policy Perspective. Applied Economic Perspectives and Policy 32(3): 386–416. 

Badunenko, O., Mozharovskyi and Kolomiyetseva, Y. (2020). npsf: Nonparametric and Stochastic 

Efficiency and Productivity. 

Bates, D., Mächler, M., Bolker, B. and Walker, S. (2015). Fitting Linear Mixed-Effects Models Using 

{lme4}. Journal of Statistical Software 67(1): 1--48. 

Bauer-Marschallinger, B., Freeman, V., Cao, S., Paulik, C., Schaufler, S., Stachl, T., Modanesi, S., Massari, 

C., Ciabatta, L., Brocca, L. and Wagner, W. (2019). Toward Global Soil Moisture Monitoring With 

Sentinel-1: Harnessing Assets and Overcoming Obstacles. IEEE Transactions on Geoscience and 

Remote Sensing 57(1): 520–539. 

Berrang-Ford, L., Ford, J. D. and Paterson, J. (2011). Are we adapting to climate change? Global 

Environmental Change 21(1): 25–33. 

Bucheli, J., Dalhaus, T. and Finger, R. (2021). The optimal drought index for designing weather index 

insurance. European Review of Agricultural Economics 48(3): 573–597. 

Carey, J. M. and Zilberman, D. (2002). A Model of Investment under Uncertainty: Modern Irrigation 

Technology and Emerging Markets in Water. American Journal of Agricultural Economics 84(1): 

171–183. 

Challinor, A. J., Watson, J., Lobell, D. B., Howden, S. M., Smith, D. R. and Chhetri, N. (2014). A meta-

analysis of crop yield under climate change and adaptation. Nature Climate Change 4(4): 287–291. 

Chamberlain, G. (1980). Analysis of Covariance with Qualitative Data. The Review of Economic Studies 

47(1): 225. 

Colombi, R., Kumbhakar, S. C., Martini, G. and Vittadini, G. (2014). Closed-skew normality in stochastic 

frontiers with individual effects and long/short-run efficiency. Journal of Productivity Analysis 

42(2): 123–136. 

Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M. and Jones, P. D. (2018). An Ensemble 

Version of the E-OBS Temperature and Precipitation Data Sets. Journal of Geophysical Research: 

Atmospheres 123(17): 9391–9409. 

Damme, L. ten and Andersen, M. N. (2018). The cross- and net-irrigation requirements of crops and 

model farms with different root zone capacities at ten locations in Denmark 1990-2015: DCA 

Report 12. University of Arhus. 

DANVA (2008). Effects of future climate change on water resources in Denmark, Dansk Vand- og 

Spildevandsforening. 

DG Agriculture and Rural Development (2020). A to Z FADN Methodology. European Commission. 

Dixit, A. K. and Pindyck, R. S. (1994). Investment under uncertainty. Princeton, New Jersey, Chichester, 

West Sussex: Princeton University Press. 

DMI (2025). Nedbør og sol i Danmark. Copenhagen: Danish Meteorological Institute. 

Ebers, N., Stupak, N., Hüttel, S., Woelfert, M. and Müller-Thomy, H. (2023). Potenzialabschätzung von 

technischen Wasserspeicheroptionen, Bewässerungsansätzen und ihrer Umsetzbarkeit. Thünen 

Institut. 



 

13 
 

European Commission (2021). Statistical Factsheet Denmark, DG Agriculture and Rural Development. 

Brussels. 

European Commission (2024). Farm Accountancy Data Network, DG Agriculture and Rural 

Development. https://agridata.ec.europa.eu. 

Eurostat (2022). Price indices of agricultural products, output (2005 = 100) - annual data. 

Filippini, M. and Greene, W. (2016). Persistent and transient productive inefficiency: a maximum 

simulated likelihood approach. Journal of Productivity Analysis 45(2): 187–196. 

Foulkes, M., Scott, R. and Sylvester-Bradley, R. (2002). The ability of wheat cultivars to withstand 

drought in UK conditions: formation of grain yield. The Journal of Agricultural Science 138(2): 153–

169. 

Füssel, H.-M. (2007). Adaptation planning for climate change: concepts, assessment approaches, and 

key lessons. Sustainability Science 2(2): 265–275. 

Ginbo, T., Di Corato, L. and Hoffmann, R. (2021). Investing in climate change adaptation and mitigation: 

A methodological review of real-options studies. Ambio 50(1): 229–241. 

Guthrie, G. (2019). Real options analysis of climate-change adaptation: investment flexibility and 

extreme weather events. Climatic Change 156(1-2): 231–253. 

Hartig, M., Seifert, S., Haunert, J.-H. and Hüttel, S. (2023). Improving Geographical Accuracy of 

Agricultural Data. GeWiSoLa Annual Conference (https://doi.org/10.13140/RG.2.2.16530.43202). 

Heal, G. and Millner, A. (2014). Reflections: Uncertainty and Decision Making in Climate Change 

Economics. Review of Environmental Economics and Policy 8(1): 120–137. 

Heumesser, C., Fuss, S., Szolgayová, J., Strauss, F. and Schmid, E. (2012). Investment in Irrigation 

Systems under Precipitation Uncertainty. Water Resources Management 26(11): 3113–3137. 

IPCC (2022). Summary for policymakers. Climate Change 2014: Mitigation of Climate Change. 

Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel 

on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, 

USA. 

Kempen, M., Elbersen, B. S., Staritsky, I., Andersen, E. and Heckelei, T. (2011). Spatial allocation of 

farming systems and farming indicators in Europe. Agriculture, Ecosystems & Environment 142(1-

2): 51–62. 

Kumbhakar, S. C. (2001). Estimation of Profit Functions When Profit Is Not Maximum. American Journal 

of Agricultural Economics 83(1): 1–19. 

Kumbhakar, S. C., Lien, G. and Hardaker, J. B. (2014). Technical efficiency in competing panel data 

models: a study of Norwegian grain farming. Journal of Productivity Analysis 41(2): 321–337. 

Lambarraa, F., Stefanou, S. and Gil, J. M. (2016). The analysis of irreversibility, uncertainty and dynamic 

technical inefficiency on the investment decision in the Spanish olive sector. European Review of 

Agricultural Economics 43(1): 59–77. 

Lee, S. and Zhao, J. (2021). Adaptation to climate change: Extreme events versus gradual changes. 

Journal of Economic Dynamics and Control 133: 104262. 

Lien, G., Kumbhakar, S. C. and Alem, H. (2018). Endogeneity, heterogeneity, and determinants of 

inefficiency in Norwegian crop-producing farms. International Journal of Production Economics 

201: 53–61. 

Martonne, E. de (1942). Nouvelle Carte Mondiale de L'Indice d'Aridité. Annales de Géographie 51(288): 

241–250. 



 

14 
 

Michailidis, A. and Mattas, K. (2007). Using Real Options Theory to Irrigation Dam Investment Analysis: 

An Application of Binomial Option Pricing Model. Water Resources Management 21(10): 1717–

1733. 

Narita, D. and Quaas, M. F. (2014). Adaptation to Climate Change and Climate Variability: Do It Now or 

Wait and See? Climate Change Economics 05(04): 1450013. 

Paltineanu C., Tanasescu N., Chitu E. and Mihailescu I.F. (2007). Relationships between the De 

Martonne aridity index and water requirements of some representative crops: A case study from 

Romania. International Agrophysics 21(1): 81–93. 

Pieralli, S., Hüttel, S. and Odening, M. (2017). Abandonment of milk production under uncertainty and 

inefficiency: the case of western German Farms. European Review of Agricultural Economics 44(3): 

425–454. 

Quiggin, J. (2008). Uncertainty and Climate Change Policy. Economic Analysis and Policy 38(2): 203–

210. 

Regan, C. M., Bryan, B. A., Connor, J. D., Meyer, W. S., Ostendorf, B., Zhu, Z. and Bao, C. (2015). Real 

options analysis for land use management: Methods, application, and implications for policy. 

Journal of Environmental Management 161: 144–152. 

Reilly, J. and Schimmelpfennig, D. (2000). Irreversibility, uncertainty, and learning: Portraits of 

adaptation to long-term climate change. Climatic Change 45(1): 253–278. 

Seidenfaden, I. K., Sonnenborg, T. O., Stisen, S. and Kidmose, J. (2022). Quantification of climate change 

sensitivity of shallow and deep groundwater in Denmark. Journal of Hydrology: Regional Studies 

41: 101100. 

Seo, S., Segarra, E., Mitchell, P. D. and Leatham, D. J. (2008). Irrigation technology adoption and its 

implication for water conservation in the Texas High Plains: a real options approach. Agricultural 

Economics 38(1): 47–55. 

Statistics Denmark (2025a). Agricultural and horticultural economy - Quantities and prices. 

Copenhagen. 

Statistics Denmark (2025b). Cropland statistics. Copenhagen. 

Thomsen, P. C. (1986). Irrigation demand and utilization of irrigation water on sandy soils in Denmark. 

Agricultural Water Management: 49–60. 

Webber, H., Gaiser, T., Oomen, R., Teixeira, E., Zhao, G., Wallach, D., Zimmermann, A. and Ewert, F. 

(2016). Uncertainty in future irrigation water demand and risk of crop failure for maize in Europe. 

Environmental Research Letters 11(7): 74007. 

Wesseler, J. and Zhao, J. (2019). Real Options and Environmental Policies: The Good, the Bad, and the 

Ugly. Annual Review of Resource Economics 11(1): 43–58. 

Wimmer, S. and Finger, R. (2025). Productivity dispersion and persistence in European agriculture. 

American Journal of Agricultural Economics: 1–28. 

World Bank (2025). Agricultural irrigated land (% of total agricultural land). World Bank. 

Wreford, A., Dittrich, R. and van der Pol, T. D. (2020). The added value of real options analysis for 

climate change adaptation. WIREs Climate Change 11(3). 

Zeri, M., Williams, K., Cunha, A. P. M. A., Cunha‐Zeri, G., Vianna, M. S., Blyth, E. M., Marthews, T. R., 

Hayman, G. D., Costa, J. M., Marengo, J. A., Alvalá, R. C. S., Moraes, O. L. L. and Galdos, M. V. (2022). 

Importance of including soil moisture in drought monitoring over the Brazilian semiarid region: An 

evaluation using the JULES model, in situ observations, and remote sensing. Climate Resilience and 

Sustainability 1(1). 



 

15 
 

Zhang, S., Wang, X. and Li, H. (2018). MODELING AND COMPUTATION OF WATER MANAGEMENT BY 

REAL OPTIONS. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION 14(1): 81–103. 


