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A Stylized model

Recursive equilibria typically imply a Markovian law of motion for the micro and macro
states of the same form as that followed by ηit and Zt in Equations (1) and (3). Hence,
our framework can be interpreted as providing reduced forms for heterogeneous agents
models with aggregate shocks. This section illustrates this with a stylized model.

Setup. Consider an overlapping generations version of Krusell and Smith (1998). The
economy is populated by a continuum of households and firms. Households live for H
periods with certainty. Let Nht be the mass of households aged h = 1, . . . ,H during period
t. Thus, N1t is the mass of households who enter the economy in t, NHt is the mass who
leave at the end of t, and Nht = Nh−1,t−1. Firms live forever and have mass J.
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There is an exogenous aggregate state zt that will drive both households’ employment
and firms’ productivity—and therefore innovations to zt will be a mix of labor supply and
TFP shocks. The aggregate state zt follows an AR(1) with serially independent innovations,

zt = Φzt−1 + Vt, Vt ∼ N(0, σ2
V). (A.1)

Households. Household i inelastically supplies skill sit = eηit+εit to firms in exchange for
the market wage wt. It begins period t with assets ait which lends to firms in exchange for
the market interest rate rt, and it consumes cit. If xit is the age of household i at time t, its
labor income is ỹit = wtsit = wte

ηit+εit with permanent and transitory components

ηit = ρηi,t−1 + βzt + uit, uit ∼ N(0, σ2
u), ηi,t−xit+1 ∼ N(µinit, σ

2
init),

εit ∼ N(0, σ2
ε).

(A.2)

Micro shocks (uit, εit) are i.i.d. across i and over t. The household’s budget constraint is

cit + ai,t+1 = ỹit + (1 + rt)ait,

with cit, ai,t+1 ≥ 0 and ai,t−xit+1 = 0 (households are born with no wealth).
Then, individual state variables are (ait, ηit, εit). As noted by Krusell and Smith (1998),

however, because wt and rt are determined in equilibrium (see (A.4) below) the state vector
for the household problem should also include the aggregate zt and the distribution of
individual states in the population. Let µht be the time-t joint distribution of assets and
skill components (ait, ηit, εit) for households of age h and let us collect all the age-specific
distributions in µt = {µ1t, . . . , µHt}.

Consumption and asset paths solve a finite-horizon sequential problem with value

v(ait, ηit, εit, zt, µt, xit) = max E

 H−xit∑
ℓ=0

δℓU(ci,t+ℓ)

∣∣∣∣∣∣∣ ηit, εit, zt, µt, xit

 ,
where the maximization is over stochastic consumption and asset plans that satisfy the
budget constraints. Optimal choices are given by two age-dependent policy functions,

cit = gc(ait, ηit, εit, zt, µt, xit),

ai,t+1 = ga(ait, ηit, εit, zt, µt, xit) = wte
ηit+εit + (1 + rt)ait − gc(ait, ηit, εit, zt, µt, xit).

(A.3)
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Firms. Firm j hires labor Lt( j) and rents capital Kt( j) in perfectly competitive markets, and
produces final goods via the constant-returns-to-scale technology, Yt( j) = F(Kt( j), eztLt( j)).
Profit maximization leads to conditions wt = eztFl(Kt/e

ztLt, 1) and rt = Fk(Kt/e
ztLt, 1) − dk

with Lt =
∫

J
Lt( j) dj and Kt =

∫
J
Kt( j) dj the total amounts of labor and capital demanded

by the firm sector, Fl and Fk the marginal products, and dk the depreciation rate.

Market clearing. In equilibrium, firms’ demand for labor and capital meets households’
supply of skills and assets, that is,

Lt = St ≡

H∑
h=1

Nht

∫
eη+ε dµht(a, η, ε), Kt = At ≡

H∑
h=1

Nht

∫
a dµht(a, η, ε),

Substituting into the conditions for profit maximization, we get the pricing functions

wt = eztFl(At/e
ztSt, 1) = w(zt, µt),

rt = Fk(At/e
ztSt, 1) − dk = r(zt, µt).

(A.4)

A recursive equilibrium for this economy is given by the policy functions in (A.3) and
the pricing functions in (A.4), reflecting optimal behavior of households and firms, and
market clearing. Given the laws of motion for exogenous macro and micro states (A.1)
and (A.2), the recursive equilibrium implies a functional law of motion for µt:

µt+1 = Π(µt, zt+1, zt).

Semi-structural reduced form and atomicity. Denote ηit = (ηit, εit, cit, ait) and Zt = (zt, µt).
The equilibrium from the stylized model can be represented as

ηit = Qη(ηi,t−1,Zt,Zt−1,uit),

Zt = QZ(Zt−1,Vt),
(A.5)

for some functions Qη and QZ, where the micro shocks are uit = (uit, εit) and the macro
shock is the innovation Vt in (A.1). This is a multivariate (or, more precisely, a functional)
version of Equations (1) and (3).1

A key insight from representation (A.5) is that it embodies the atomicity assumption;

1See Arellano and Bonhomme (2017) for a related point.
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see Assumption 3. Specifically, Zt is independent of the micro shock uit, for each individual
i, even though Zt itself contains the full distribution of micro states driven by those shocks.
The explanation lies in the iidness of uit over i coupled with the household population
being a continuum, which allows the law of large numbers to operate.

A difficulty with the macro side of (A.5) is that it is high-dimensional. Many structural
approaches rely on approximating µt by a finite-dimensional summary, often given by a
small collection of moments or quantiles.2 In our semi-structural reduced-form approach,
enriching the macro state variable Zt (and the macro measurement system Wt) along those
lines appears as a promising avenue to account for the role of general equilibrium effects
from the dynamics of micro distributions. This is in addition to including in Zt variables
that are informative about additional shocks and shifts in policy. In that sense, the class
of models that can be represented as (A.5) is wide and the main appeal of our approach is
that it may be possible to identify and estimate economically-relevant parameters without
the need to fully specify preferences, expectations formation, technology, frictions, etc.

B Identification

Proof of Proposition 1. Let sW, sZ and se be the spectral density matrices of Wt, Zt and et—all
well-defined by Assumption 1. By Gaussianity, the distribution of {Wt} is identified if and
only if sW is identified. For all ω ∈ [−π, π], the equation sW(ω) = ΛsZ(ω)Λ′ + sE(ω) has a
unique solution {Λ, sZ(ω), sE(ω)} under (a) and (b) by the steps in the proof of Geweke and
Singleton (1981, Proposition 2). Hence, sZ is identified and by Gaussianity so is QZ. □

Proof of Proposition 2. The argument follows from a simplified version of Almuzara (2020,
Proposition 1) without heterogeneity. Fix t and r such that t < r < t + S − 1 and consider

fyr−1,yr,yr+1|x,t
(y
−
, y, y+|x) =

∫
fyr−1|ηr,x,t

(y
−
|η, x) fyr,ηr|x,t

(y, η|x) fyr+1|ηr,x,t
(y+|η, x) dη.

2Examples are Krusell and Smith (1998), Reiter (2009), Winberry (2018) and Bayer and Luetticke (2020).
In our stylized model, although Zt is infinite-dimensional, it is stochastically singular as the only source of
randomness is Vt. Moreover, in the income process, µt only enters through the market wage wt:

yit = ln(ỹit) = ln w(zt, µt) + ηit + εit.

Under stationarity, we can write ln w(zt, µt) = w({Vt−ℓ}ℓ≥0) for some transfer function w(·). Subsuming this
term into ηit, one can think of the empirical specification in our paper as capturing in a parsimonious way
the composite effect (both direct and through equilibrium) of shocks {Vt}.
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This defines an integral operator equation that can be solved applying the diagonalization
method of Hu and Schennach (2008). By (a) and (b), the operator equation and its spectral
decomposition are well defined. Moreover, by the reasoning in Almuzara (2020, Remark
1), uniqueness of the decomposition is ensured by the normalization Et

[
yir

∣∣∣ ηir, xir
]
= ηir

where the subindex t indicates the expectation is an integral against the subpanel-specific
density fyr|ηr,x,t

.3 This analysis delivers identification of fyr−1|ηr,x,t
, fyr,ηr|x,t

and fyr+1|ηr,x,t
from

where the CDF Fη,r can be pinned down.
It follows that there is a known injective mapping from the observables ({Wt+s}

S−1
s=0 ,F

S
t )

to ({Wt+s}
S−1
s=0 , {Fη,t+s,t}

S−2
s=2 ) for each t. Hence, the latter is measurable with respect to the

former and P
S

is identified from PS. □

Proof of Proposition 3. Take r such that Fzr|W
S
t

is complete. For any η̃, η, x, and W,

E
[

Fη,r,t(η̃|η, x)
∣∣∣ WS

t =W
]
= E

[
P
(
ηir ≤ η̃

∣∣∣ηi,r−1 = η, xir = x, ωt

) ∣∣∣∣ WS
t =W

]
= E

[
P
(
ηir ≤ η̃

∣∣∣ηi,r−1 = η, xir = x,Zr,Zr−1,Gr

) ∣∣∣∣ WS
t =W

]
= E

[
P
(
ηir ≤ η̃

∣∣∣ηi,r−1 = η, xir = x,Zr,Zr−1

) ∣∣∣∣ WS
t =W

]
,

where the second line uses the fact thatωt encompasses (Zr,Zr−1,Gτ) and Assumption 2(b),
while the third uses independence between (Zr,Zr−1) and Gr given WS

t = (Wt, ...,Wt+S−1),
which comes from Assumption 1(b).

The previous equation can be written more explicitly as

E
[

Fη,r,t(η̃|η, x)
∣∣∣ WS

t =W
]
=

∫
Z

2
Fηr|ηr−1,xr,zr

(η̃|η, x,Zt,Zt−1) fzr|W
S
t
(Zt,Zt−1|W) d(Zt,Zt−1).

HereZ denotes the support of Zt and Fηr|ηr−1,xr,zr
is the CDF of ηir given (ηi,r−1, xir,Zr,Zr−1).

Now, the object on the left is identified by Proposition 2 and the density fzr|W
S
t

is identified
under Proposition 1. The only unknown in the equation above is Fηr|ηr−1,xr,zr

.
LetW be the support of Wt. Define the integral operators

[
Lηr|ηr−1,xr,W

S
t
h1

]
(η̃, η, x) =

∫
W

S
E
[

Fη,r(η̃|η, x)
∣∣∣ WS

t =W
]

h1(W) dW,[
Lzr|W

S
t
h1

]
(Zt,Zt−1) =

∫
W

S
fzr|W

S
t
(Zt,Zt−1|W) h1(W) dW,

3The completeness condition needed for this to work is assumed to hold relative to the space of absolutely
integrable functions on the relevant domain, as in Hu and Schennach (2008).
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[
Lηr|ηr−1,xr,zr

h2

]
(η̃, η, x) =

∫
Z

2
Fηr|ηr−1,xr,zr

(η̃|η, x,Zt,Zt−1) h2(Zt,Zt−1) d(Zt,Zt−1),

so that our main equation is equivalent to (see Carrasco, Florens, and Renault, 2007)

Lηr|ηr−1,xr,W
S
t
= Lηr|ηr−1,xr,zr

Lzr|W
S
t
. (B.1)

By our previous discussion, Lηr|ηr−1,xr,W
S
t

and Lzr|W
S
t

are known to the researcher. Since Fzr|W
S
t

is complete, Lzr|W
S
t

has a right inverse and Equation (B.1) has solution

Lηr|ηr−1,xr,zr
= Lηr|ηr−1,xr,W

S
t
L−1

zr|W
S
t
.

which uniquely determines Fηr|ηr−1,xr,zr
. It follows that Qη in (1) is identified. □

C Estimation

Below we provide additional information about the estimation strategy outlined in Section
4. Section C.1 spells out the moments implied by our model. Section C.2 summarizes the
simulation-based techniques used in the E step of Algorithm 1. Section C.3 develops the
asymptotic analysis. Finally, Section C.4 discusses our bootstrap approach to inference.

C.1 Moment conditions

Our model implies two types of infeasible complete-data moments that pin down θ and
δt = (δinit,t, {δε,t+s}

S−1
s=0 ). We specify them explicitly for the parameter vector θwhich contains

vec{Θ(uℓ)} for ℓ = 1, . . . ,L together with θlo and θup.
Write νu(ω) = u − 1{ω < 0 }. For nodes u = u1, . . . ,uL, we will use the orthogonality

conditions from quantile regression (Koenker and Bassett, 1978),

mqr
it (θ,u) =

t+S−1∑
τ=t+1

[
ψ(ηi,τ−1, xiτ) ⊗ φ(Zτ,Zτ−1)

]
× νu

(
ηiτ − ψ(ηi,τ−1, xiτ)

′Θ(u)φ(Zτ,Zτ−1)
)
.

For the tails we will use the orthogonality conditions from exponential regression,

mlo
it (θ) =

t+S−1∑
τ=t+1

ψlo(ηi,τ−1,Zτ,Zτ−1, xiτ) × 1
{
ηiτ < ψ(ηi,τ−1, xiτ)

′Θ(u1)φ(Zτ,Zτ−1)
}
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×

[
ψ(ηi,τ−1, xiτ)

′Θ(u1)φ(Zτ,Zτ−1) − ηiτ − exp
(
ψlo(ηi,τ−1,Zτ,Zτ−1, xiτ)

′θlo

) ]
,

mup
it (θ) =

t+S−1∑
τ=t+1

ψup(ηi,τ−1,Zτ,Zτ−1, xiτ) × 1
{
ηiτ > ψ(ηi,τ−1, xiτ)

′Θ(uL)φ(Zτ,Zτ−1)
}

×

[
ηiτ − ψ(ηi,τ−1, xiτ)

′Θ(uL)φ(Zτ,Zτ−1) − exp
(
ψup(ηi,τ−1,Zτ,Zτ−1, xiτ)

′θup

) ]
.

Thus, letting ȳS
it = {yi,t+s, xi,t+s}

S−1
s=0 , η̄S

it = {ηi,t+s}
S−1
s=0 and Z̄S

t = {Zt+s}
S−1
s=0 , the moment conditions

mθ(θ; ȳS
it, η̄

S
it, Z̄

S
t ) arise from stacking the conditions mqr

it (θ,uℓ) for ℓ = 1, . . . ,L together with
mlo

it (θ) and mup
it (θ). At the true parameter value θ0, we obtain

E
[

mθ

(
θ0; ȳS

it, η̄
S
it, Z̄

S
t

) ]
= 0dim(θ)×1.

The moments mδ(δt; ȳS
it, η̄

S
it) associated to δt are also a combination of quantile and

exponential regression orthogonality conditions. At the true value δ0t,

E
[

mδ

(
δ0t; ȳS

it, η̄
S
it

) ]
= 0dim(δt)×1.

C.2 Techniques for posterior sampling

Macro posterior: Kalman recursions. Our analysis relies on the macro linear state-space
model (3) where the observable vector Wt = ΛZt+et has nW = 5 entries: GDP, consumption,
investment, the unemployment rate and hours worked, all transformed and dentrended
as explained in Section 5.1. The data are quarterly and span the period 1960Q1-2019Q4.

We model the univariate state Zt and each entry in Et as AR(2) processes:

Zt = Φ1Zt−1 + Φ2Zt−2 + σVVt,

e jt = ϕ j1e j,t−1 + ϕ j2e j,t−2 + σE, jν jt, j = 1, . . . ,nW,

where Vt, ν1t, . . . , νnw,t
are i.i.d. standard normal and mutually independent. Moreover, as

stated in the text, we normalize the entry of Λ that corresponds to GDP to unity so that Zt

is measured in units of GDP per capita relative to its low-frequency trend.
We perform estimation of parametersλ = (Λ,Φ1,Φ2, σV, {ϕ j1, ϕ j2, σE, j}

nW
j=1) and filtering of

latent variables Zt, {e jt}
nW
j=1 jointly via Gibbs sampling using (i) a flat prior on the parameters

and (ii) a diffuse prior on the initial conditions of the latent variables.
The Gibbs sampling for our linear state-space model is a standard technique that builds
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on the following conditional distributions:

(a) Given {Wt,Zt}, the distribution of parameters can be written in terms of easy-to-draw
multivariate normal and inverse gamma random variables.

(b) Given parameters, the distribution of {Zt, {e jt}
nW
j=1} is multivariate normal and can be

efficiently sampled from using the algorithm of Durbin and Koopman (2002).

We alternate between (a) and (b) for a total of 12,000 draws, burning in the first 2,000.
We then retain 1 in 2 parameter draws (5,000 in total) and 1 in 20 latent variable draws (500
in total). We set λ̂ to the median of the parameter draws and we use each latent variable
draw in a different iteration of Algorithm 1 for Step 1(i). Inspection of parameter and latent
variable paths (available in our replication package) suggests very good convergence.

Micro posterior: Sequential Monte Carlo. Step 1(ii) in Algorithm 1 requires sampling,
for each i and t, the distribution of {ηi,t+s}

S−1
s=0 conditional on {yi,t+s, xi,t+s,Zt+s}

S−1
s=0 taking Qη,

Qε,t and Qinit,t (evaluated at certain parameter values θ, δε,t and δinit,t) as given. We do so
by Sequential Monte Carlo.4

The measurement equation for the problem is yi,t+s = ηi,t+s + εi,t+s for s = 0, . . . ,S − 1
with state variable ηi,t+s, a first-order Markov process. Let Xi,t+s = (xi,t+s,Zt+s,Zt+s−1)′.

To implement Sequential Monte Carlo, we need two distinct proposal distributions
with densities qinit,t(ηit|yit, xit) and qη(ηi,t+s|ηi,t+s−1, yi,t+s,Xi,t+s) from which to draw particles.
We discuss the calibration of qinit,t and qη below. We also use fη, finit,t and fε,t to denote the
densities associated to the quantile functions Qη, Qinit,t and Qε,t.

The Sequential Monte Carlo algorithm generates K particles {{ηk
i,t+s}

K
k=1}

S−1
s=0 as follows:

(s = 0) ◦ If yit is missing:

* Draw independent particles {ηk
it}

K
k=1 from the unconditional density finit,t.

* Set the weights {wk
it}

K
k=1 to wk

it = 1.

◦ If yit is not missing:

* Draw independent particles {ηk
it}

K
k=1 from the proposal, ηk

it ∼ qinit,t(·|yit, xit).

4See Creal (2012) for a review of Sequential Monte Carlo methods and Arellano, Blundell, Bonhomme,
and Light (2023) for an application to models with time-varying latent variables.

8



* Set the weights {wk
it}

K
k=1 to

wk
it =

finit,t(η
k
it|xit) · fε,t(yit − η

k
it|xit)

qinit,t(η
k
it|yit, xit)

.

◦ If ESSt = 1/
∑K

k=1(wk
it)

2 < ESS, resample particles from the discrete distribution
supported on {ηk

it}
K
k=1 with probabilities proportional to {wk

it}
K
k=1.

(s > 0) ◦ If yi,t+s is missing:

* Draw particles {ηk
i,t+s}

K
k=1 from the conditional density fη(·|η

k
i,t+s−1,Xi,t+s).

* Set the weights {wk
i,t+s}

K
k=1 to wk

i,t+s = wk
i,t+s−1.

◦ If yi,t+s is not missing:

* Draw particles {ηk
i,t+s}

K
k=1 from the proposal, ηk

i,t+s ∼ qη(·|η
k
i,t+s−1, yi,t+s,Xi,t+s).

* Set the weights {wk
i,t+s}

K
k=1 to

wk
i,t+s = wk

i,t+s−1 ×
fη(η

k
i,t+s|η

k
i,t+s−1,Xi,t+s) · fε,t(yi,t+s − η

k
i,t+s|xi,t+s)

qη(η
k
i,t+s|η

k
i,t+s−1, yi,t+s,Xi,t+s)

.

◦ If ESSt+s = 1/
∑K

k=1(wk
i,t+s)

2 < ESS, resample particles.

This algorithm can be efficiently vectorized over k and parallelized across units i. We
use K = 5, 000 particles, choosing one of them at random (with weights {wk

i,t+S}
K
k=1) at the

end of the algorithm as the draw η̄S
it( j) = {ηi,t+s( j)}S−1

s=0 in Step 1(ii) of Algorithm 1. We also
set ESS = K/4 as the threshold for resampling.

We calibrate the proposals as follows. We take qinit,t(ηit|yit, xit) to be the density of ηit

conditional on (yit, xit) implied by the model

yit = ηit + εit, εit ∼ N(0, s2
ε),

ηit = ψinit(xit)
′binit,t + uit, uit ∼ N(0, s2

init),

where ψinit is the same vector of basis functions used for Qinit,t and we update binit,t, s
2
init, s

2
ε

by least squares in each iteration of Algorithm 1. The proposal then becomes

qinit,t(ηit|yit, xit) = N(µinit,t(yit, xit), ω
2
init),

µinit,t(yit, xit) = (1 − ϕinit)ψinit(xit)
′binit,t + ϕinityit with ϕinit = s2

init/(s
2
init + s2

ε),
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ω2
init = (1/s2

init + 1/s2
ε)
−1.

For qη(ηi,t+s|ηi,t+s−1, yi,t+s,Xi,t+s) we use the density of ηi,t+s conditional on (ηi,t+s−1, yi,t+s,Xit)
implied by the model

yi,t+s = ηi,t+s + εi,t+s, εi,t+s ∼ N(0, s2
ε),

ηi,t+s = ψη(ηi,t+s−1,Xi,t+s)
′bη + ui,t+s, ui,t+s ∼ N(0, s2

η),

where ψη(ηi,t+s−1,Xi,t+s) = ψ(ηi,t+s−1, xi,t+s) ⊗ φ(Zt+s,Zt+s−1) contains the basis functions used
for Qη and we update bη, s

2
η by least squares in each iteration too. The proposal is then

qη(ηi,t+s|ηi,t+s−1, yi,t+s,Xi,t+s) = N(µη(ηi,t+s−1, yi,t+s,Xi,t+s), ω
2
η),

µη(ηi,t+s−1, yi,t+s,Xi,t+s) = (1 − ϕη)ψη(ηi,t+s−1,Xi,t+s)
′bη + ϕηyi,t+s with ϕη = s2

η/(s
2
η + s2

ε),

ω2
η = (1/s2

η + 1/s2
ε)
−1.

As a practical matter, to ensure thorough exploration of the tails of the micro posterior,
we switch from normal to Laplace (with the same location and scale) below the 2.5 and
above the 97.5 percentiles of the proposal distributions.

C.3 Asymptotic approximations

We develop next the large sample properties of θ̂ and the plug-in estimator γ̂ = γ(θ̂). Our
asymptotic analysis assumes Nt,T→∞ with S fixed. The data generating process (DGP)
is given by Assumptions 1, 2, and 3 with the flexible parametric specification in (7), (8)
and (9), with regularity conditions.5 In Algorithm 1, when J is fixed, θ̂ depends not just
on the data but on the realizations of latent variables drawn in the E step. In practice, J is
set to a large number to reduce the influence of simulation noise and starting values. In
light of that, here we focus on the limit case J→∞.6

5As discussed in the text, we hold the dimension of the basis functions (i.e., ψ, φ, ψinit, ψε, ψlo, ψup, etc.)
and L fixed. Alternatively, these could be viewed as tuning parameters that grow with the sample size in a
nonparametric sieve approach (Newey, 1997; Chen, 2007) but we leave that for future research.

6Analyses of the fixed-J case for cross-sectional and short-panel setups can be found in Nielsen (2000)
and Arellano and Bonhomme (2016).
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Thus, we view the estimator as the (approximate) solution to

1
T

T∑
t=1

Mθ,t(θ̂, δ̂t, λ̂) = 0,

Mδ,t(θ̂, δ̂t, λ̂) = 0, t = 1, . . . ,T.

where Mθ,t(θ, δt, λ) =
∫ [

N−1
t

∑
i∈It

∫
mθ(θ, ȳS

it, η̄
S, Z̄S) f (η̄S

|ȳS
it, Z̄

S, θ, δt) dη̄S
]

f (Z̄S
|W, λ) dZ̄S

and Mδ,t(θ, δt, λ) =
∫ [

N−1
t

∑
i∈It

∫
mδ(δ, ȳ

S
it, η̄

S) f (η̄S
|ȳS

it, Z̄
S, θ, δt) dη̄S

]
f (Z̄S
|W, λ) dZ̄S.

Doing a Taylor expansion to the two equations above and using Dpq,t to denote a matrix
of first derivatives of Mp,t for p = θ, δwith respect to q = θ, δ, λwhere each row is evaluated
at a possibly different intermediate value between (θ̂, δ̂t, λ̂) and the true value (θ0, δ0t, λ0),

√

T(θ̂ − θ0) =

 1
T

T∑
t=1

(Dθδ,tD
−1
δδ,tDδθ,t +Dθθ,t)


−1

×

 1
√

T

T∑
t=1

Mθ,0t +
1
√

T

T∑
t=1

Dθδ,tD
−1
δδ,tMδ,0t +

 1
T

T∑
t=1

(Dθδ,tD
−1
δδ,tDδλ,t +Dθλ,t)

 · √T(̂λ − λ0)


where Mp,0t =Mp,t(θ0, δ0t, λ0) for p = θ, δ. Assuming that our parametric model is correctly
specified and standard regularity conditions on λ̂, one can show that

1
T

T∑
t=1

(Dθδ,tD
−1
δδ,tDδθ,t +Dθθ,t)

p
−−−−→ Dθθ,0,

1
T

T∑
t=1

(Dθδ,tD
−1
δδ,tDδλ,t +Dθλ,t)

p
−−−−→ Dθλ,0,

where Dθθ,0 and Dθλ,0 are two fixed matrices and Dθθ,0 is non-singular.
One can also apply a central limit theorem to the scaled averages to show that

√

T


T−1 ∑T

t=1 Mθ,0t

T−1 ∑T
t=1 Dθδ,tD

−1
δδ,tMδ,0t

λ̂ − λ0

 d
−−−−→ N(0,Ω0)

for some symmetric, positive semi-definite matrixΩ0. Collecting all pieces, the asymptotic
distribution of θ̂ follows from Slutsky, whereas that of γ̂ follows from the delta method.
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C.4 Bootstrap approach

The asymptotic analysis suggests that a parametric bootstrap approach can be justified for
statistical uncertainty quantification. It also highlights the role of the omitted aggregate
factor Gt and the need to account for the cross-sectional dependence that such factors may
induce. In addition, some objects of interest are primarily identified by cross-sectional
variation. A key advantage of the parametric bootstrap is that it allows us to replicate
the unit-level dependence caused by sampling the same units into different subpanels, a
natural feature in our time series of panels framework.

Omitted aggregate factors. We model the cross-sectional dependence as follows. We let
Gt = (Gη,t,Gε,t,Ginit,t)

′ where entries are i.i.d. uniformly distributed on (0, 1) and mutually
independent. Then, we assume the micro-level errors in our model are

uit = Φ
(
cηΦ

−1(Gη,t) +
√

1 − c2
ηΦ
−1(ũit)

)
,

vit = Φ

(
cεΦ

−1(Gε,t) +
√

1 − c2
εΦ
−1(ṽit)

)
,

νi,t0
= Φ

(
cinitΦ

−1(Ginit,t0
) +

√
1 − c2

initΦ
−1(ν̃i,t0

)
)
,

where ũit, ṽit, ν̃i,t0
are i.i.d. uniformly distributed on (0, 1) and mutually independent. The

parameters cη, cε and cinit are pinned down by the common variability in the micro-level
errors—e.g., ĉη = [T−1 ∑T

t=1(
∑

i∈It
Φ−1(uit)/Nt)

2]1/2 consistently estimates cη as T,Nt → ∞.
Given estimates θ̂, {δ̂t}

T
t=1 and λ̂, we estimate cη, cε and cinit by performing steps 1(i) and

1(ii) of Algorithm 1, computing the implied ranks uit, vit and νi,t0
, and using them as above

(we repeat this for 100 iterations, averaging the parameter paths across iterations).

Unit overlap. The time series of panels data structure allows the same unit to be part
of different subpanels. Because our model is biennial, it already specifies the cross-panel
dependence if the year gap between two subpanels is even: apply Equation (1) recursively.

When the same unit i appears in consecutive odd- and even-year panels (denoted t and
t′) we assume the following for the micro-level errors net of their common component:

(
Φ−1(ũit) Φ

−1(ũit′)
)′
∼ N

0,

 1 dη
dη 1

 ,
12



(
Φ−1(ṽit) Φ

−1(ṽit′)
)′
∼ N

0,

 1 dε
dε 1

 ,
(
Φ−1(ν̃it) Φ

−1(ν̃it′)
)′
∼ N

0,

 1 dinit

dinit 1

 .
We estimate the parameters dη, dε and dinit within the same algorithm described above for
cη, cε and cinit. To this end, we use the correlation of the idiosyncratic components of the
ranks across any two consecutive years.

Implementation. Given estimates of (cη, cε, cinit, dη, dε, dinit), it is easy to obtain bootstrap
samples that reflect the estimated degrees of cross-sectional and unit-level dependence.
The following procedure reproduces the repetition and overlap patterns in the data:

1) Simulate the time series of aggregate factors {Gη,t,Gε,t,Ginit,t}
T
t=1.

2) For each unit i determine the first (t0) and last (t1) period in the dataset. Next,

(i) draw the path of idiosyncratic shocks {ũit, ṽit, ν̃it}t0≤t≤t1
imposing the correlations

dη, dε and dinit across consecutive periods;

(ii) combine aggregate and idiosyncratic factors to obtain {uit, vit, νit}t0≤t≤t1
imposing

the cross-sectional dependence implied by cη, cε and cinit;

(iii) for the first two periods, use Qinit,t and νit to generate ηit;

(iv) for every other period, use Qη and uit to generate ηit;

(v) for all periods, use Qε,t and vit to generate εit;

(vi) form yit = ηit + εit for all t0 ≤ t ≤ t1.

3) Assign the data to the appropriate unit and time cell.
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D Additional empirical results

This appendix expands on three sets of empirical results. Figure D.1 reports our nonlinear
measure of aggregate risk exposure β(u, η,Zt,Zt−1, x) along quantiles of the rank u and past
persistent income η, as well as averaged over η. This complements Figure 6 in the text.
The main nonlinearity in the figure is the increase in exposure to aggregate shocks during
recessions and its decline during expansions. This form of aggregate state dependence at
the micro level is not captured by linear models and plays a paramount role in macro risk
calculations, as discussed in Section 7.
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FIGURE D.1. Nonlinear exposure to aggregate shocks.
Note: We report the aggregate risk exposure β(u, η,Zt,Zt−1, x) by quantile of the shock u = uit and of past
persistent income η = ηi,t−1 (upper panels), or averaged across η = ηi,t−1 (lower panels). Here, age x = xit is
averaged out, Zt−1 = Z̃ss and Zt is a recession Z̃r, the steady state Z̃ss or an expansion Z̃e (see Section 5.1).
Shaded areas in the lower panels represent 90% pointwise confidence bands.

Figure D.2 displays estimates of dispersion and kurtosis, together with their differences
between recessions and expansions. This complements Figure 7 in the text that documents
the cyclical pattern of skewness. We find a slight increase in the dispersion and decrease
in the kurtosis of persistent income shocks in recessions compared to expansions, but they
are generally not statistically non-zero. Although different in methodology and data, our
results are in line with the findings in Guvenen, Ozkan, and Song (2014).
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FIGURE D.2. Measures of dispersion and kurtosis.
Note: The first and third rows report the dispersion disp(η,Zt,Zt−1, x) and kurtosis kurt(η,Zt,Zt−1, x) defined
in footnote 8 by past persistent income η = ηi,t−1 where age x = xit is averaged out, Zt−1 = Z̃ss and Zt is a
recession Z̃r, the steady state Z̃ss or an expansion Z̃e (see Section 5.1). The second and fourth rows show the
gaps between recession and expansion. Shaded areas represent 90% confidence bands.
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E Additional material on impulse response analysis

This appendix expands Section 6 in various directions. We relate impulse responses to
derivatives with respect to some macro and micro shocks in Section E.1. We characterize
analytically the link between impulse responses, nonlinear persistence and exposure to
aggregate shocks in Section E.2. Sections E.3, E.4 and E.5 contain additional results.

E.1 Perturbations and shocks

Having defined impulse responses using perturbations of state variables in the main text,
we can next relate them to derivatives with respect to certain macro and micro shocks,
which we will denote Ṽt and ũi,t−1. In other words, there is a duality relation between
deterministic perturbations of state variables and the stochastic disturbances that embody
macro and micro sources of income risk. More specifically,

IRFηZ(h; δ) =
E
[
ηi,t+h

∣∣∣ ηi,t−1, Ṽt = δ,Zt−1

]
− E

[
ηi,t+h

∣∣∣ ηi,t−1, Ṽt = 0,Zt−1

]
δ

,

IRFηη(h, δ) =
E
[
ηi,t+h−1

∣∣∣ ũi,t−1 = δ, ηi,t−2,Zt,Zt−1

]
− E

[
ηi,t+h−1

∣∣∣ ũi,t−1 = 0, ηi,t−2,Zt,Zt−1

]
δ

and, for infinitesimal changes,

IRFηZ(h) =
∂E

[
ηi,t+h

∣∣∣ ηi,t−1, Ṽt,Zt−1

]
∂Ṽt

, IRFηη(h) =
∂E

[
ηi,t+h−1

∣∣∣ ũi,t−1, ηi,t−2,Zt,Zt−1

]
∂ũi,t−1

.

The implied shocks are given by

Ṽt = g (QZ(Zt−1,Vt)) − g(Zb),

ũi,t−1 = g
(
Qη(ηi,t−2,Zt−1,Zt−2,ui,t−1)

)
− g(ηb),

and lead to the representations

Zt = QZ(Zt−1,Q
−1
Z [Zt−1, g

−1(g(Zb) + Ṽt)]),

ηi,t−1 = Qη(ηi,t−2,Zt−1,Zt−2,Q
−1
η [ηi,t−2,Zt−1,Zt−2, g

−1(g(ηb) + ũi,t−1)]).

These representations are local to the benchmark values and to the normalization rule g.
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E.2 Impulse responses, nonlinear persistence and aggregate exposures

To get some intuition on the role of nonlinearities in shaping impulse responses we look
at the derivative-based definitions. First, by recursive substitution on Equation (3), let

Zt+h = qZ,h(Vh−1
t+1 ,Zt) =

h−1∑
ℓ=0

ΦℓΣ1/2
V Vt+h−ℓ + Φ

hZt, h = 0, 1, . . . (E.1)

Combining Equations (13) with (E.1), we have for h = 1, 2, . . .

qη,h(uh
it,V

h−1
t+1 , ηi,t−1,Zt,Zt−1) = Qη

(
qη,h−1(uh−1

it ,Vh−2
t+1 , ηi,t−1,Zt,Zt−1), . . .

qZ,h(Vh−1
t+1 ,Zt), qZ,h−1(Vh−2

t+1 ,Zt),ui,t+h

)
,

with the recursion beginning at qη,0(uh
it,V

h−1
t+1 , ηi,t−1,Zt,Zt−1) = Qη

(
ηi,t−1,Zt,Zt−1,uit

)
.

It will also be useful to define the following random variables:

ρit = ρ(uit, ηi,t−1,Zt,Zt−1), βit = β(uit, ηi,t−1,Zt,Zt−1), γit = γ(uit, ηi,t−1,Zt,Zt−1),

where, similarly to ρ and β, the nonlinear measure γ is

γ(uit, ηi,t−1,Zt,Zt−1) =
∂Qη(ηi,t−1,Zt,Zt−1,uit)

∂Zt−1
.

In particular, ρit and βit are the values of the nonlinear persistence and household exposure
to aggregate shocks defined in Section 2 for a given realization of micro and macro state
variables and shocks, andγit measures the nonlinear exposure of the persistent component
of income to the lagged macro variable Zt−1.

The impulse responses of the macro state using our methodology is

IRFZZ(h) = lim
δ→0

E
[

Zt+h

∣∣∣ Zt = Zb + ∆(δ)
]
− E

[
Zt+h

∣∣∣ Zt = Zb
]

δ
= Φh

×

{
g′(Zb)

}−1
.

Next, taking derivatives and exchanging the order of differentiation and integration,

IRFηZ(h) = E

 h∑
ℓ=0

βi,t+h−ℓΦ
h−ℓ

 ℓ−1∏
j=0

ρi,t+h− j


∣∣∣∣∣∣∣ ηi,t−1 = η

b,Zt,Zt−1

 × {
g′(Zb)

}−1

17



+ E

 h−1∑
ℓ=0

γi,t+h−ℓΦ
h−ℓ−1

 ℓ−1∏
j=0

ρi,t+h− j


∣∣∣∣∣∣∣ ηi,t−1 = η

b,Zt,Zt−1

 × {
g′(Zb)

}−1
,

IRFηη(h) = E

 h∏
ℓ=1

ρi,t+h−ℓ

∣∣∣∣∣∣∣ ηi,t−1 = η
b,Zt,Zt−1

 × {
g′(ηb)

}−1
.

The expressions for IRFZZ(h), IRFηZ(h) and IRFηη(h) have two parts: The first is independent
of the rule g, whereas the second part is independent of the horizon h. Hence the first part
sets the dynamic propagation of uncertainty and is fully determined by the macro state
persistence parameter Φ, the nonlinear persistence measure ρit and the micro elasticities
to macro shocks βit and γit. They generalize the dynamic transmission patterns from the
linear homogeneous income process, ηit = ρηi,t−1 + βZt + γZt−1 + uit, for which

IRFηZ(h) =

β h∑
ℓ=0

Φh−ℓρℓ + γ
h−1∑
ℓ=0

Φh−ℓ−1ρℓ
 × {

g′(Zb)
}−1
,

IRFηη(h) = ρh
×

{
g′(ηb)

}−1
,

by introducing dependence on the potential history of future shocks.
The second part fixes the scale of the IRF and is determined by the rule g. For example,

g′(z) is one for the unit rule and the conditional density of the state being perturbed at
the benchmark value for the rank rule. It follows that, for infinitesimal perturbations, all
IRFs are scaled versions of unit-rule IRFs, which in turn reflect nonlinear persistence and
micro exposures to macro shocks.

The derivation offers insights into the relationship between the persistence of macro
and micro shocks. Empirically, we find low persistence of macro shocks (IRFηZ(h) roughly
proportional to IRFZZ(h) indicating a short-lived response) but high persistence of micro
shocks (IRFηη(h) decays slowly). These patterns raise the question of whether a nonlinear
dynamic common factor restriction analogous to that of linear partial adjustment models
(Griliches, 1961, 1967; Sargan, 1964, 1980) holds. Specifically, if

γi,t+1 = −ρi,t+1βit, (E.2)

then

IRFηZ(h) = E
[
βi,t+h

∣∣∣ ηi,t−1 = η
b,Zt,Zt−1

]
IRFZZ(h).
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Constructing a test of this functional restriction is beyond the scope of our paper, but a look
at our estimates does not offer conclusive evidence in its favor. For example, according to
the point estimates for disposable income, the average γi,t+1 is around -1, the average ρi,t+1

is around 0.92 and the average βit is 1.3 in a typical recession, 0.6 in steady state and 0.2
in an mild expansion. The three quantities also vary substantially over the distribution
of past persistent income and micro ranks. All of this suggests a departure from the
dynamic common factor restriction (E.2), the size of which depends on macro and micro
state variables.

E.3 Additional IRF figures: comparison to MBC shocks

Figure E.1 compares the IRF of each entry in Wt to shock Vt from our baseline specification
(red, diamonds) against the IRFs to the MBC shock of Angeletos, Collard, and Dellas (2020)
obtained by targeting the unemployment rate FEVD (blue, circles).
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FIGURE E.1. IRFs of Wt to Vt and MBC shock
Note: We show IRFs of Wt to the following: the Vt shock from our baseline model (red, diamonds), the MBC
shock from Angeletos et al. (2020) (blue, circles), a Vt shock from a dynamic factor model with a Minnesota
prior (green, squares), and an MBC shock from a 5-variable VAR(2) with a flat prior (yellow, crosses).

The takeaway from Figure E.1 is that the two approaches generally agree on the relative
impact among variables and the cumulative impact over the first two years, but they differ
on their distribution over time. Specifically, our baseline specification places a larger share
of the impact on the first year compared to the original MBC shock.

While the discrepancy is small relative to the statistical uncertainty around the IRFs,
part of it can be attributed to the choice of prior. In our case, the dynamic factor structure
already achieves, without further penalization, adequate dimension reduction. Instead,
the 10-variable VAR(2) underlying the original MBC shock IRFs is based on a Minnesota
prior. This choice is understandable, but penalizes deviations from unit roots that may bias
the estimated persistence upward. To explore the issue, Figure E.1 shows two additional
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estimates: IRFs obtained from a dynamic factor model under a Minnesota prior (green,
squares), and IRFs for an MBC-type shock from a small 5-variable VAR(2) on Wt under a
flat prior (gold, crosses).7 Consistent with our claim, the former mimics the persistence of
the original MBC responses while the latter matches our baseline closely. But reassuringly,
the small-model MBC shock and our Vt shock are highly correlated as seen in Figure E.2.
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FIGURE E.2. Vt and MBC shocks
Note: We plot posterior median estimates of Vt from our baseline (red, diamonds) and the MBC shock from
a 5-variable VAR(2) model with a flat prior (gold, crosses). Red areas indicate NBER-dated recessions.

It follows from the preceding discussion that pinning down the persistence in macro
IRFs is empirically difficult. However, our main results are robust to this feature. Because
there is very little filtering uncertainty about Zt, the choice of prior has practically no effect
on the estimation of the income process, and objects such as ρ(·), sk(·) and β(·) remain the
same. Higher persistence in Zt produces slower decay in IRFηZ(h) compared to Figure 8
and slightly larger costs of aggregate risk compared to Figure 11, but these results cannot
be distinguished statistically from our baseline.8

E.4 Additional IRF figures: local projection estimates

In Figure E.3 we report estimates of macro impulse responses (multiplied by−1 to emulate
the trajectory after a negative shock) obtained by panel local projections. To be concrete,
for each horizon h, we regress yi,t+h on Zt controlling for yi,t−1, Zt−1, a second-order Hermite

7For the factor model we set lag lengths to 4 and calibrate the prior to E
[
Φℓ

]
= E

[
ϕ jℓ

]
= 1{ ℓ = 1 } and

Var
(
Φℓ

)
= Var

(
ϕ jℓ

)
= 0.5/ℓ2. For the MBC shock, we target the unemployment rate FEVD.

8These robustness checks are available in our replication package.
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polynomial on age xit and unit fixed effects. We compute the t-LAHR confidence intervals
proposed by Almuzara and Sancibrián (2024) to assess statistical precision.
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FIGURE E.3. Local projection estimates of macro impulse responses
Note: Panels (a), (b) and (c) display IRFs of yit to a negative macro shock for different income definitions: Zt

is scaled by the standard deviation of log GDP per capita for comparability with the IRFs in the main text.
Shaded areas are 90% t-LAHR pointwise confidence bands.

One advantage of this exercise is that pooling the household-level data from the time
series of panels allows us to measure the average impulse responses at the annual (rather
than biennial) frequency. This reveals a significant response to macro shocks on impact
(h = 0) and in the first year following the shock (h = 1).9 On the other hand, although
these responses correspond to yit, not to ηit, the estimates are quantitatively similar to the
ones in Figure 8, with larger responses for male earnings compared to disposable income.

E.5 Additional IRF figures: positive shocks

Figure E.4 shows responses to positive macro and micro perturbations, complementing
Figure 8 (panels (b) to (d)) and Figure 10. For the estimates of IRFηZ on the upper panels we
apply a positive perturbation to Zt around the steady state benchmark Zb = Z̃ss calibrated
to δ = σV with σ2

V = Var( Zt

∣∣∣ Zt−1 ). This emulates a mild expansionary aggregate shock.
The implied trajectory for Zt (annualized and scaled to log GDP per capita) is the mirror
image of panel (d) in Figure 8, and we refer the reader to the main text to get a sense of
the macro implications of the underlying experiment.

For the estimates of IRFηη on the lower panels we apply a negative perturbation δ that
implies a 10% increase in ηi,t−1. Similar to Figure 10, we hold Zt and Zt−1 at their steady
state value Z̃ss and multiply responses by 0.1 for ease of interpretation.

9The figure is also indicative of some overshooting for h = 3, 4, 5, albeit not statistically significant.
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The main takeaway from the figure is that, as in our analysis of negative perturbations,
macro responses are short-lived while micro responses are more persistent. The difference
with the negative-shock case is that IRFηZ displays a stronger overshooting effect (i.e., the
response crossing the zero line) after h = 2, particularly for disposable income.
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(c) disposable income
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FIGURE E.4. Macro and micro impulse responses to positive shocks
Note: Panels (a), (b) and (c) display IRFs of ηit to positive macro (upper panel) and micro (lower panel)
shocks for different income measures with Zb

t = Zt−1 = Z̃ss and ηb
i,t−1 set to the 10th (low), 50th (middle) and

90th (high) percentiles of the persistent income distribution. Shaded areas are 90% confidence bands.
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