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Abstract

Star variables, such as potential output and the neutral real interest rate, are fundamen-
tal to economic policymaking but challenging to identify due to their latent nature. Buncic,
Pagan, and Robinson (2023) highlight the difficulty of identifying star variables within short
macroeconomic models, which typically contain more shocks than observable variables. To
address this challenge, we propose an indirect inference method that assesses identification
by examining how changes in these latent variables impact the behavior of observable eco-
nomic data. Specifically, we simulate data from structural economic models, summarize
their behavior using simplified statistical descriptions (VAR models), and evaluate the con-
sistency between simulated and actual data. If the star variables are identifiable, even small
deviations in their specifications will result in significant rejections in our indirect inference
test. Applying our method to a standard three-equation New Keynesian model and the
widely used Laubach-Williams model, we demonstrate that modest inaccuracies in specify-
ing star variables clearly increase rejection rates. These results support the identification of
star variables and indicate that indirect inference provides a reliable method to assess their
identification in structural macroeconomic models.
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real rate, potential output.
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1 Introduction

Key macroeconomic models frequently incorporate so-called “star” variables—latent equi-
librium values of essential indicators such as potential output, the neutral real interest rate,
and equilibrium inflation. These star variables are central to macroeconomic policymaking,
helping central banks and economic analysts determine appropriate policy stances. Despite
their significance, these latent variables pose substantial estimation challenges because they are
inherently unobservable. Influential frameworks, such as that by Laubach and Williams (2003),
illustrate how the neutral real interest rate depends critically on unobserved structural shocks,
highlighting the inherent difficulty of accurately identifying these key macroeconomic variables.

The complexity of identifying star variables has been explored from various perspectives
in recent literature. For instance, Schmitt-Grohe and Uribe (2022) provide alternative struc-
tural formulations for linking star variables with model shocks, suggesting the sensitivity of star
variables to the underlying assumptions. Furthermore, Buncic, Pagan, and Robinson (2023)
emphasize that when macroeconomic models are ”short” —meaning that there are more struc-
tural shocks than observed economic variables—accurate identification becomes particularly
challenging. In such settings, common estimation techniques like the Kalman filter may lead
to estimates of star variables that differ significantly from their true underlying processes, com-
promising the reliability of policy implications drawn from these estimates.

Motivated by these critical issues, this paper proposes a novel approach using indirect infer-
ence to address the identification challenges of star variables within structural macroeconomic
models. Rather than relying solely on direct methods that attempt to recover star variables
from structural shocks, we evaluate identification by observing how even minor inaccuracies
in specifying these latent processes alter the simulated behavior of observable economic indi-
cators. Specifically, we simulate data from structural models and summarize their behaviors
through reduced-form VAR models, subsequently comparing these simulated outcomes to actual
economic data.

Our indirect inference approach employs a robust Wald test to measure the discrepancies
between the simulated and empirical reduced-form dynamics. If star variables are genuinely
identifiable within the structural model, slight deviations from the true specification should

result in statistically significant differences in observed behavior, leading to higher rejection



rates in our indirect inference tests.

We apply this procedure to two widely-used macroeconomic models: the standard three-
equation New Keynesian framework and the influential Laubach-Williams (2003) model of the
neutral real interest rate. Our empirical results strongly indicate that even minor inaccuracies
in specifying star variables significantly increase rejection rates, confirming robust identification.
Thus, indirect inference emerges as a powerful diagnostic tool that reliably tests and validates
the identification of star variables.

The remainder of this paper proceeds as follows. Section 2 details our indirect inference
identification methodology, emphasizing its effectiveness in addressing both narrow and weak
identification issues. Section 3 illustrates the application of our procedure through empirical
examinations of the three-equation New Keynesian model and the Laubach-Williams model.
Section 4 provides an explanation for why star variables can be identified using indirect inference.

Finally, Section 5 concludes, highlighting key findings and policy implications.

2 Identification via Indirect Inference

Indirect inference is a powerful framework for both model evaluation and the identification
of macroeconomic models. The approach compares features of an auxiliary model—usually a
reduced-form VAR—estimated from both simulated and actual data. Let ar denote the esti-
mates obtained from the actual observable data and ag(6y) the estimates from N bootstrapped
samples generated by the structural model with parameter vector 8y. The average simulated
estimate is ag(fp). The difference between the data-based and simulation-based descriptors is

summarized using the Wald statistic:

WS = (ar — as(00)) W~ (60) (ar — as(60)),

where, following Guerron-Quintana et al. (2017) and Le et al. (2016, 2019), the weighting

matrix is given by

1 N

N
_ v ) _ 1
W(6y) = N ; (as —as) (as —as)", with ag= N ;as.

Under standard regularity conditions, WS is asymptotically distributed as x?(r), where 7



is the number of elements in ar. Detailed steps involved in computing the Wald statistic can
be found in Le et al. (2016) and Minford et al. (2016, 2018).

If a structural macroeconomic model is accurately specified, the characteristics of the aux-
iliary model generated from simulated data will closely match those derived from actual eco-
nomic observations. As a result, the true model will only be rejected at the nominal significance
level—for instance, a rejection rate around 5

This indirect inference framework extends naturally to assessing model identification, in-
cluding the identification of latent star variables. Following the approach outlined by Le et al.
(2017), we define identification as the ability of a structural macroeconomic model to produce a
unique reduced-form representation not shared by any other specification of the star variables.
Thus, failure of identification implies the existence of at least one alternative specification ca-
pable of generating the identical reduced form.

Since star variables are latent and unobservable, our identification approach evaluates the
impact of slight inaccuracies in specifying these variables on observable economic outcomes.
Specifically, we employ Monte Carlo simulations to generate large numbers of data samples
from the structural model and summarize their reduced-form dynamics using VAR models. We
then compare these simulated VAR characteristics with those estimated from actual economic
data.

In large samples, VAR coefficients estimated from the simulated data converge closely to
their true underlying values. Consequently, if the structural model accurately specifies the star
variables, the rejection rate of the model under indirect inference testing should align closely
with the nominal significance level (e.g., 5%). However, any small deviation from the correct
specification of star variables should produce significant differences in the VAR-based behavior,
resulting in higher rejection rates.

The specific steps of our numerical implementation are as follows: first, we generate numer-
ous samples from the correctly specified structural model using Monte Carlo methods. Next,
we estimate VAR models from these simulated samples to characterize their reduced-form be-
havior based on observed economic variables. We then construct alternative structural models
by systematically altering the specification of the star variables. Finally, we apply a Wald test

to evaluate whether the discrepancies between these alternative models and the actual data sig-



nificantly exceed the nominal rejection rate. If such deviations produce notably higher rejection
rates, we conclude that the star variables are robustly identified.

Our procedure follows these steps:

1. Monte Carlo Sampling: Generate a large number of samples from the true macroeconomic

model via Monte Carlo simulation.

2. VAR Coefficient Distribution: Compute the distribution of VAR coefficients implied by

these samples using a VAR estimated on the observed variables.

3. Test Size Verification: Validate the testing procedure by comparing the simulated VAR
descriptions with historical data at the 95% confidence level, ensuring that the test’s

nominal size is correct.

4. Alternative DSGE Models: Construct alternative DSGE models by systematically falsify-

ing the star variables.

5. Wald Test Application: Apply the Wald test to each alternative structural model using the
full set of simulated samples, and record the rejection rate at the nominal 5% significance

level.

6. Identification Assessment: If no alternative model can replicate the nominal rejection
frequency (i.e., if any deviation from the true structural model leads to significantly higher
rejection rates), we conclude that the star variables are identified. In line with Canova
and Sala (2009), a well-identified model exhibits a clear increase in the rejection rate as

one moves away from the true specification.

In the Monte Carlo simulation presented below, we perform 5,000 simulations. For each
simulation, 500 bootstrap resamples are generated, and the sample size is set to T' = 200, which

is typical in macroeconomic studies.

3 Application to the Identification of the Neutral Real Rate

We now apply our procedure to two popular models that have been used to estimate the

neutral real rate.



3.1 Three-Equation New Keynesian Model

The first model is a three-equation New Keynesian framework featuring a labor-only produc-
tion function, an IS curve derived from the utility and consumption equations, a Calvo Phillips
curve, and a Taylor rule, with no government spending or taxation. The model is specified as

follows:

T =wEm + Ay —yp) Fen, w<l, (1)
1

Yt = Eryri1 — = (Tt - Etﬂt+1> + eyt, (2)

re = (r{ +7) +v(m—7)+ 0y — i) + e, (3)

eit = pi€it—1 +eir, (I=my,r).

In this model, there are two star variables: potential output, y;, and the neutral real rate, r; ,

with target inflation 7 treated as constant. The observed output is given by

yr = ALy = A(sz + €a,t) =y + Aeay,

where e, is a productivity shock following a unit root process, e, = €q¢—1 + €at, and L
represents potential labor input (so that y; corresponds to potential output). The neutral rate
ry is defined as the value of r; for which y; = y;.

Because the model contains four shocks but only three observed variables, it is underidenti-
fied (i.e., a "short” system). Buncic, Pagan, and Robinson (2023) argue that the star variables
cannot be uniquely identified using only the three observed variables. To assess whether the
neutral real rate r; and potential output y; can be inferred, we employ indirect inference.

This model is a simple DSGE specification. In general, DSGE models, including the widely

used Smets and Wouters (2007) US model, have the form (possibly after linearization):

AoEixip1 = A1z + Bz, (4)

2t = Rzpq + &4,

where z; contains the endogenous variables and z; the exogenous variables. The exogenous

variables may be observable or unobservable and are represented by an autoregressive process



with disturbances ;. Under the conditions of Fernandez-Villaverde et al. (2007), the solution

to this model can be represented by a VAR of the form

—F +G |, (5)

2t 2t—1 &t

Here, & represents innovations. (For further details, see the Dynare program of DJuillard (2001)
which effectively solves the DSGE model in (4) into the VAR form of (5).) Indirect inference is

based on observable endogenous variables z; and an auxiliary model.

Identification via Indirect Inference

To test whether the star variables are identified, we perturb the parameters #* and A by
2% and the variance of e, (denoted o) by 102%, thereby generating falsified data. If the star
variables are identifiable, the indirect inference test should reject these falsified specifications,
with the rejection rate increasing as % increases.

For the auxiliary VAR model used in the indirect inference test, we estimate a three-variable
VAR of order 1 using the observed variables (y;, ¢, m¢) and include the variance of the VAR
residuals. This yields a total of 12 parameters in the Wald statistic (denoted ar), which serves
as the basis for model comparison. Le et al. (2016) demonstrated that using 12 parameters
strikes an optimal balance, providing sufficient power for the test without making it excessively
sensitive to small specification errors.

The results are reported in Table 1. First, for data simulated from the true model (0% false-
ness), the rejection rate of the indirect inference test is approximately 5% across all scenarios,
confirming that the test has the correct size. When the productivity parameter A and the vari-
ance of the productivity shock o, are perturbed, the rejection rate increases substantially. For
example, with a 5% perturbation, the rejection rate reaches 100%, strongly indicating that the
star variables are well identified through the labor and output generation processes. Notably,
when both parameters are simultaneously falsified by 3%, the rejection rate approaches 100%,
further reinforcing this identification.

In practical scenarios, parameters must be estimated, potentially leading to lower rejection

rates and weaker identification. To address this concern, we re-estimate the two parameters,



A and o, for each simulated sample using indirect inference (while holding other structural
parameters fixed at their true values), and then conduct the identification test. The results, re-
ported in the final column of Table 1, indicate that estimation only marginally affects rejection
rates compared to scenarios without re-estimation. The primary reason is that indirect infer-
ence provides unbiased parameter estimates, as demonstrated by Meenagh et al. (2019, 2024).
Consequently, the estimated values of A and o, remain close to their true values, resulting in
rejection rates similar to those obtained without re-estimation.

Table 1 — Rejection Rates for NK 3eq Model
Degree of Falseness A O All  All*

0 0.055 0.055 0.055 0.055
1 0.074 0.088 0.123 0.113
3 0.399 0.663 0.982 0.969
) 0.954 0.999 1.000 1.000
7 0.999 1.000 1.000 1.000
10 1.000 1.000 1.000 1.000
15 1.000 1.000 1.000 1.000
20 1.000 1.000 1.000 1.000

Note: “All” denotes falsifying all parameters. “All*” de-
notes falsifying all parameters, with re-estimation of these
parameters.

Alternatively, we test for identification by modifying the equation for potential labor input.

We introduce a random component into the potential labor equation:

where [; is drawn from N(0,0;), with o; corresponding to the variance of the observed labor
variable [. We then increase the variance o; by 102% to generate falsified data.

Table 2 presents the results. Even with a small perturbation (1 % false), the test rejects the
model 8% of the time, confirming that the star variables remain identifiable. As the variance of
the random component increases, the rejection rate rises sharply. When the falseness reaches

7%, the rejection rate hits 100%, providing strong evidence of star variable identification.

Why Can the Star Variables Be Identified Using Indirect Inference?

Identification of the star variables r* and y* via indirect inference arises from their critical

role in shaping the observed variables’ reduced-form dynamics. Any alteration in the specifica-



Table 2 — Rejection Rates for NK 3eq Model — False Star Variable

Degree of Falseness Rejection Rate

0 0.054
1 0.080
3 0.146
) 0.812
7 1.000
10 1.000
15 1.000
20 1.000

tion of these latent processes directly influences the behavior of the model’s observable variables,
which are summarized by the auxiliary VAR. Thus, even minor perturbations in the equations
governing the star variables lead to discrepancies between the simulated and observed auxiliary
statistics. These discrepancies, detected as elevated rejection rates by the indirect inference test,
reveal that the reduced-form behavior uniquely encodes the underlying structural dynamics of

the star variables.

3.2 LM Neutral Real Rate Model

One of the most influential models of the neutral real rate r} over the past two decades
is that of Laubach and Williams (2003, hereafter LW). Various extensions of the LW model
exist in the literature and are widely used by central banks and policy institutions. Holston,
Laubach, and Williams (2017, HLW) provide an updated version using a somewhat different

formulation of the Phillips curve equation, estimated over a longer sample period.

The HLW model is specified as follows:

2 2
* * 1 *
Yt =y + Zlay,i (ytfi - yt_i> + §a Z(thi - Tt_i> + 0181, (6)
1=

i=1
= by (ytfl - yf_1) + bpmi—1 4 (1 = br)T—2,4 + 02e2, (7)
Az = o3e3;, (8)
Ay = gi-1 + 04ca, 9)
Agy = o565, (10)
ri =49+ 2z, or Ar] =d4oses + o3e3:. (11)

Here, y; (100 times the log of real GDP) represents real GDP, y; denotes potential GDP, r,



is the real interest rate, and r} is the neutral real rate. The model also incorporates evolving
processes for trend growth g; and other determinants z;, which jointly affect r}.

The HLW model can be represented in a standard state-space form:

Measurement :  y; = Ax; + HE, + R1/2€ty, (12)

State: & =F& , + QY% (13)
where y; = [y, T, X¢ = [Ye—1, Ye—2, Tt—1, Tt—2, Te—1, Te—2,4]', and
/

* * *
& =Yl Yi_1, Yieas Gi—1, Gt—2, Zi—1, Z1—2]

Moreover, the matrix A is defined as

and H is given by

1 —Qy1 —0y2 —2a, —2a, _%r _a2r
H=
The model features five shocks, 7;; = o;e;¢ for i = 1,...,5, with standard deviations {o;}?_;;

the error terms {e;;} have unit variances. All relevant model parameters are taken from HLW
and are documented in the associated GitHub repository of Buncic, Pagan, and Robinson
(2023)!. Although HLW primarily focuses on estimating r; (as defined in the equation above),
trend growth g¢; is also estimated.

Since the model contains five shocks but only two observed variables, it is underidentified.
According to the star recovery procedure proposed by Buncic, Pagan, and Robinson (2023), the

neutral real rate cannot be uniquely identified from the model and the observed data.

!We thank Buncic, Pagan, and Robinson (2023) for providing their codes to replicate the results
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Identification via Indirect Inference

Using indirect inference, we test whether the neutral real rate is identifiable. The neutral

real rate equation is expressed in differenced form:

Arf = 4oses + 03€3¢.

To falsify the neutral real rate, we perturb either the variance of g; (i.e., o5) or the variance
of z; (03). In our Monte Carlo simulation, we randomly perturb three parameters by 10z%
to generate falsified data. If the star variable is identifiable, the indirect inference test should
reject the falsified specification, with the rejection rate increasing as % increases.

For the auxiliary VAR model used in the indirect inference test, we estimate a two-variable
VAR of order 2 using the two observed variables (y; and ), including the variance of the
VAR residuals. This results in a total of 10 parameters in the Wald statistic used for model
comparison.

Table 3 — Rejection Rates for HLW Model
Degree of Falseness o5 o3 All All*

0 0.050 0.050 0.050 0.050
1 0.056 0.166 0.108 0.091
3 0.122 0.468 0.482 0.456
5 0.246 0.522 0.994 0.971
7 0.580 0.654 1.000 1.000
10 0.938 0.866 1.000 1.000
15 0.996 0.944 1.000 1.000
20 1.000 1.000 1.000 1.000

Note: “All” denotes falsifying all parameters. “All*” de-
notes falsifying all parameters, with re-estimation of these
parameters.

The results presented in Table 3 indicate that for the data simulated from the true model
(0% falseness), the indirect inference test rejection rate remains consistently around the nominal
level of 5%, confirming correct test size. When parameters o3 and o5 are individually perturbed
by 2%, the rejection frequency rises rapidly—reaching about 60% at a falseness level of x = 7%
and surpassing 90% at x = 15%. Furthermore, when both parameters are simultaneously
falsified, the rejection rate approaches nearly 100% for falseness levels of x = 5% or higher,
clearly indicating strong identification of the star variables.

We also consider a scenario where the parameters o3 and o5 are re-estimated via indirect in-

11



ference prior to conducting the identification test. The results, shown in the last column of Table
3, indicate that re-estimation has a minimal impact on the rejection rates. This outcome is con-
sistent with indirect inference being an unbiased estimator, ensuring that parameter estimates
remain close to their true data-generating values, and thus leaving the rejection frequencies
largely unchanged.

An alternative approach to testing identification is to introduce a random component into
the neutral real rate equation:

* —
Ty =gt + 2t + T,

where 7, is drawn from N(0,0,) with o, being the variance of the observed variable r. By
perturbing o, by 2%, we generate falsified data for further testing.

Table 4 — Rejection Rates for HLW Model — False Star Variable

Degree of Falseness Rejection Rate

0 0.050
1 0.098
3 0.140
5 0.160
7 0.282
10 0.552
15 0.904
20 0.994

The results in Table 4 confirm that the star variables remain identifiable. Even with a small
random perturbation, the test rejects the model 9.8% of the time. As the variance of the random
component increases, the rejection rate rises sharply, reaching 100% at a falseness level of 20%.

Why Can the Star Variables Be Identified Using Indirect Inference?

Expanding the relations in (12) and (13) and rearranging the terms yields

Yt Yi +ay1 (ytfl - yf_l) + ay2 (Z/H - y;tk—2)

+%ar<[7“t71 —dcgi—1 — z—1] + [r—2 — 4cgi—2 — thz]) +o1e1

Tt by (ye—1 — yj_1) + bami—1 + (1 — br) T4 + 02e2s

12



Ay Gt—1 + 044

Agia| = 05E5t—1 : (15)
| Az | | o3E31 |
With r} = 4g; + 2, we obtain:
AT: = 4ose5: + 03634 (16)

These equations show that y; directly affects y; and indirectly influences ;. Moreover, the state
equations indicate that changes in 7}, g¢, or z; modify the latent states, which in turn affect the
observed data. Thus, the indirect inference test is capable of capturing these structural changes

and confirming identification.

3.3 Star Variables Identification Using Indirect Inference

It may seem surprising that, although direct estimation of star variables from the under-
lying shock processes does not yield unique identification, these variables can nonetheless be
identified indirectly through their impact on the model’s VAR reduced form. Our Monte Carlo
experiments illustrate this point. The key insight is that the reduced-form behavior of the model
- reflecting its entire causal structure - embeds information about the star variables. In other
words, the response of the observed variables to shocks is influenced not only by the shocks
themselves but also by how the model is specified, including the equations that determine the
star processes.

A direct estimate of the star variables’ behavior in response to shocks would capture both
the shock effects and the overall model specification, making it impractical to invert the reduced-
form coefficients analytically, as these are complex nonlinear functions of the underlying struc-
tural parameters. Indirect inference circumvents this difficulty by simulating the structural
model to generate a reduced form that matches the one observed in the data. In an identified
model, only the true structural specification will reproduce the data’s reduced form. Therefore,
the specification of the star variables is confirmed by its unique effect on the reduced-form

coefficients.

13



4 Star Identification

How can the star variables be recovered in practice? Implicit in our indirect inference
approach is the idea that one systematically explores alternative model specifications until the
simulated auxiliary model closely aligns with the observed data. This iterative process resembles
standard model specification searches—provided the underlying structural model is identified,
the correct specification of the star variables can, in principle, be recovered.

Several practical methods exist to estimate star variables, each suitable under different
circumstances. One prominent method is the use of a Time-Varying Parameter (TVP) VAR, as
exemplified by Lubik and Matthes (2015). They estimate a TVP-VAR involving the growth rate
of real GDP, the PCE inflation rate, and the real interest rate (as in Laubach and Williams, 2003)
to capture evolving dynamics in these macroeconomic indicators. Another approach involves
incorporating Stochastic Volatility (SV) into the estimation procedure. Incorporating SV is
common in contemporary macroeconomic models, as it better captures evolving uncertainty but
may complicate shock recovery and thus potentially obscure the identification of star variables.
Beyer and Milivojevic (2023) illustrate this by explicitly modeling stochastic volatility when
estimating the neutral real rate for 50 countries. Additionally, smooth-transition models provide
another avenue for recovering star variables. For instance, Okimoto (2019) employs a smooth-
transition approach to model star variables, which allows for finite but multiple regime changes,
thus addressing challenges typically associated with short systems and enhancing the recovery
of latent processes.

In essence, our indirect inference procedure serves as an initial diagnostic step, testing the
identification of star variables by evaluating if small perturbations from the true specification
significantly increase rejection rates. Once identification is confirmed, indicated by high test
power even for minor deviations, practitioners can confidently employ these estimation tech-

niques to recover the star variables.

5 Conclusion

In this paper, we propose an indirect inference framework to evaluate the identification and

recoverability of star variables in structural macroeconomic models. Using Monte Carlo simula-
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tions, we demonstrate that even small perturbations in the specifications of critical star variable
processes, such as potential output and the neutral real rate, result in rejection frequencies sig-
nificantly higher than nominal levels. These findings strongly indicate that the reduced-form
behavior of a correctly specified DSGE model uniquely captures its underlying star variable
dynamics.

Our contribution is twofold. First, we establish a robust numerical procedure combining
Monte Carlo simulations, VAR-based auxiliary model estimation, and Wald tests. This ap-
proach allows us to differentiate between narrowly identified models and those that exhibit
robust identification. Second, we apply this methodology to two prominent frameworks: a stan-
dard three-equation New Keynesian model and the widely cited Laubach and Williams (2003)
model. In both cases, our results confirm that even minor deviations from the true specifica-
tion produce significantly higher rejection rates, thus affirming the unique recoverability of star
variables.

The implications of our findings are relevant for researchers and policymakers alike. Given
the importance of star variables like potential output and the neutral real rate in macroeconomic
policy decisions, reliable identification methods are crucial. Our indirect inference approach
serves as a rigorous diagnostic tool, complementing traditional identification checks and aiding

in robust model selection.
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Appendix A: Parameters in Monte Carlo Simulations

Table 5 — Parameters of the True Model Used in the New Keynesian 3-Equation Model
Parameter Value Parameter Value

w 0.7640 p, 0.8867
o 3.4550 pr 0.7999
A 0.0997 p, 0.8383
p 0.4029 o, 0.52
~y 1.1624 o, 0.14
n 0.8830 o, 0.24
A 161 o, 0.45

Table 6 — Parameters of the True Model Used in the LW03 Model
Parameter Value Parameter Value

al 1517 o 0.387
az -0.572 o9 0.731
ar -0.098 o3 0.323
by 0.043 o4 0.605
1.068 o5 0.0255
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