
Nendel, Max; Streicher, Jan Maximilian

Working Paper

An axiomatic approach to default risk and model
uncertainty in rating systems

Center for Mathematical Economics Working Papers, No. 725

Provided in Cooperation with:
Center for Mathematical Economics (IMW), Bielefeld University

Suggested Citation: Nendel, Max; Streicher, Jan Maximilian (2023) : An axiomatic approach to default
risk and model uncertainty in rating systems, Center for Mathematical Economics Working Papers,
No. 725, Bielefeld University, Center for Mathematical Economics (IMW), Bielefeld,
https://nbn-resolving.de/urn:nbn:de:0070-pub-30052929

This Version is available at:
https://hdl.handle.net/10419/324291

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:0070-pub-30052929%0A
https://hdl.handle.net/10419/324291
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


725
September 2023

An axiomatic approach to default risk and
model uncertainty in rating systems

Max Nendel and Jan Streicher

Center for Mathematical Economics (IMW)
Bielefeld University
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competitiveness, and an improvement in credit decisions. For a general introduction to

credit risk modeling, we refer to Bluhm et al. [8] and Lando [30]. We also refer to Guo

et al. [26] for an axiomatic study of credit rating criteria.

The focus of a rating is on the probability of default (PD), which refers to the credit-

worthiness of the borrower, and not to credit-specific terms, such as exposure at default

(EaD) or loss given default (LGD). Nevertheless, all three terms play an important role

in the context of default risk, are included in the calculation of expected losses (EL)

and risk-weighted assets (RWAs), and are therefore part of supervisory requirements

for risk-differentiated capital backing. Since rating systems are mathematical statistical

models that transform a borrower’s default-relevant characteristics into a statement of

creditworthiness, they are subject to model risks and model uncertainties, which can

lead to major discrepancies in credit risk management if neglected. Additionally, the

European Banking Authority’s (EBA) guidelines on PD and LGD estimation (EBA-

GL-2017-16) [20] serve to reduce fluctuations in risk parameters, and focus on modeling

techniques used in the estimation of risk parameters. In particular, the PD estimation

in low-default portfolios is a subtle issue, cf. Pluto and Tasche [37] and Tasche [41].

In the aftermath of the subprime mortgage crisis, the topic of model uncertainty

or Knightian uncertainty has become increasingly significant for financial institutions

and found its way into regulatory requirements in various forms. As a consequence,

this classical and already very prominent topic in economic theory has received even

more attention in the literature on theoretical economics, mathematical finance, and

actuarial sciences. Model uncertainty appears in the economic literature, for example,

in the context of preference relations, cf. Gilboa and Schmeidler [25] and Maccheroni

et al. [33], general equilibrium theory, cf. Beissner and Riedel [4], insurance pricing, cf.

Castagnoli et al. [13], Nendel et al. [35], and Wang et al. [44], as well as hedging and

no-arbitrage conditions, see, for instance, Bouchard and Nutz [9] and Burzoni et al.

[12]. However, to the best of our knowledge, a detailed study of model uncertainty in

credit risk management is not present in the literature.

This paper therefore aims to provide a decision-theoretic foundation for the treat-

ment of default risk and model uncertainty in rating systems. While the work of Guo

et al. [26] focuses on an axiomatic study of credit rating criteria, including, among oth-

ers, generalized PD criteria, our axiomatic approach introduces the notion of a default

risk measure, which aims to provide a more general perspective on PDs, and allows to

include, for example, model uncertainty in the form of worst-case PDs and distorted

PDs, warning signals, and default risk arising from regulatory risk measures. In par-

ticular, we explore the use of generalized versions of PDs in the context of credit risk,

but do not aim to identify relevant criteria for credit ratings. In contrast to monetary

risk measures, cf. Artzner et al. [3], Frittelli and Rosazza Gianin [23], and Föllmer and

Schied [22], and nonlinear expectations, cf. Coquet et al. [16] and Peng [36], default

risk measures do not behave linearly along constants but only take the values zero (no

default) or one (default) for constant functions.

Throughout, we consider a set C of customers, i.e., a set of bounded measurable

functions on a given measurable space (Ω,F) containing all constant functions. A de-

fault risk measure ϱ is a monotone functional that assigns to each customer X ∈ C a

default risk ϱ(X) ∈ [0, 1]. Here, positive values of X represent a negative total cash flow

or, loosely speaking, a default. In a first step, we show that every default risk measure

can be extended from the set C to the space Bb of all bounded measurable functions,
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cf. Theorem 10. The extension procedure is constructive, and shows how default risk

can be assigned consistently to new customers based on a financial institution’s stock

of existing clients.

In a second step, we consider tail risk measures related to default risk measures. As

noted by Liu and Wang [32], the consideration of tail risk, i.e., the risk beyond a given

threshold, is crucial in today’s financial regulation. We also refer to Bignozzi et al. [7]

for a generalization of the value at risk that depends on the size of potential losses in

the form of quantile-based risk measures, to Fadina et al. [21] for an axiomatic study

of quantiles, and to Burzoni et al. [11] for a study of adjusted expected shortfall. In

Section 3, we show that each default risk measure induces its own notion of a value at

risk, and establish a ono-to-one relation between default risk measures and so-called

generalized quantile functions. For particular choices of default risk measures, e.g.,

distorted PDs and worst-case PDs, we provide explicit representations of the related

value at risk. We point out that our notion of a generalized quantile function follows a

different philosophy than the notion of a tail risk measure introduced by Liu and Wang

[32].

A key property of the PD is that it is specified only by the states of the world where a

negative total cash flow is realized, independent of the amount of capital given liquidity

or illiquidity. In mathematical terms, this means that the PD ofX is the same as the PD

of 1{X>0}. In Section 4, we characterize default risk measures that have this property,

and connect them to Choquet capacities, cf. Dellacherie and Meyer [18]. In this context,

the notions of default scaling invariance, liquidity invariance, and illiquidity invariance

play a fundamental role. Using continuity properties of Choquet integrals, we derive

sufficient and necessary conditions for default risk measures to admit a representation

via probability measures or, in other words, as worst-case PDs.

For the calculation of RWAs, the concept of a margin of conservatism (MoC) is

used, in practice, to quantify the amount of model uncertainty. The regulatory need to

consider model uncertainty regarding default risks by calculating a MoC that reflects

the expected range of estimation errors can be found in Article 179 (f) or, PD-specific,

in Article 180 (e) of the CRR [17], among others. In Section 6, we characterize default

risk measures that are given in terms of a MoC or, equivalently, as distorted PDs.

The characterization generalizes the fact that law-invariant capacities on an atomless

probability space can be represented as distorted probabilities, cf. Wang et al. [44],

where this result is established in the context of insurance premia that are given as

Choquet integrals and Amarante and Liebrich [1] for a detailed study of distortion risk

measures, i.e., law-invariant and comonotonically additive risk measures.

Moreover, we establish a connection between distorted PDs and worst-case PDs or,

equivalently, the margin of conservatism and a suitable set of probability measures,

based on the Kusuoka representation of law-invariant risk measures, cf. Kusuoka [29],

and the well-known Fréchet-Hoeffding bounds for joint distributions, cf. Burgert and

Rüschendorf [10], which also play a fundamental role for the collapse to the mean of

law-invariant risk functionals, cf. Bellini et al. [5] and Liebrich and Munari [31].

In Section 7, we use the results on distorted PDs in a case study on capital require-

ments as demanded by current regulations. There, we discuss the impact of model

uncertainty in rating systems on financial institutions’ RWAs. Since, from a regulatory

perspective, model uncertainty only has to be considered for unexpected losses and not
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for expected losses (EL), ironically, a high degree of model uncertainty can actually re-

duce the amount of capital requirement for badly rated customers, since it transforms

unexpected losses into expected ones. We refer to Example 53 for the details.

The rest of the paper is organized as follows. In Section 2, we define the notion

of a default risk measure, illustrate the definition in several examples, and state our

extension result for default risk measures (Theorem 10). The link between default risk

measures and generalized quantile functions is discussed in Section 3. Section 4 is

devoted to default risk measures that are given only in terms of default scenarios, see

Theorem 31. Section 5 contains several results on robust representations as worst-case

PDs. In Section 6, we focus on law-invariant risk measures and distorted PDs. There,

we connect distortion functions with certain properties to sets of absolutely continuous

probability measures based on the value at risk and expected shortfall of probability

densities. In Section 7, we discuss capital requirements for rating systems, and illustrate

the impact of different default risk measures on the amount of financial institutions’ risk

weighted assets. In Appendix A, we provide a short proof for a characterization of exact

capacities and distorted probabilities, cf. Aouani and Chateauneuf [2] and Kadane and

Wassermann [28]. The proofs of Section 2 are contained in Appendix B. The proofs

of Section 3 can be found in Appendix C. The proofs of Section 4 are collected in

Appendix D. The proofs of Section 5 are given in Appendix E and the proofs of Section

6 in Appendix F.

2. Default Risk Measures: Definition and Examples

In this section, we introduce the concept of a default risk measure, which is strongly

motivated by the probability of default (PD) as a prime example. Like monetary risk

measures, default risk measures are monotone functionals defined on suitable sets of

measurable functions, cf. [22]. However, they exhibit a completely different behaviour

along constants.

Throughout, let (Ω,F) be a measurable space and Bb = Bb(Ω,F) denote the space

of all bounded measurable functions Ω → R. We consider a set C ⊂ Bb, containing

the set of all constant functions. A function X ∈ C can be interpreted as a customer

of a financial institution with −X(ω) being the sum of all financial flows (earnings,

spendings, and maturities combined) at the end of the respective observation period if

a scenario ω ∈ Ω is realized. Thus, positive values of X resemble a negative sum of all

financial flows, which we will, loosely speaking, refer to as a default. Choosing this, in

comparison to the literature on monetary risk measures, inverted sign convention leads

to an easier exposition since it avoids confusion arising from repeated sign changes on

several occasions. As in the theory of monetary risk measures, we do not differentiate

between a real constant m ∈ R and the constant function X : Ω → R with X(ω) = m

for all ω ∈ Ω, and write X = m, thinking of it as cash. For X,Y ∈ Bb, we write X ≤ Y

if X(ω) ≤ Y (ω) for all ω ∈ Ω. Moreover, we define

infX := inf
ω∈Ω

X(ω) and supX := sup
ω∈Ω

X(ω) for all X ∈ Bb.

Additionally, for X ∈ Bb, we consider the standard decomposition X = X+−X− with

X+ := X1{X>0} and X− := −X1{X<0}.

For any two real numbers x, y ∈ R, we use the notation x ∨ y := max{x, y} and

x ∧ y := min{x, y}. In a similar fashion, we write X ∨ Y and X ∧ Y for the pointwise
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maximum and minimum of X,Y ∈ Bb, respectively. Throughout, we use the following

slightly modified notion of a (monetary) risk measure, and refer to [22] for a detailed

discussion on this topic.

Definition 1. We say that a map R : Bb → R is a (monetary) risk measure if

(i) R(X) ≤ R(Y ) for all X,Y ∈ Bb with X ≤ Y ,

(ii) R(0) = 0 and R(X +m) = R(X) +m for all X ∈ Bb and m ∈ R.

We now introduce the central object of our study.

Definition 2. A map ϱ : C → [0, 1] is called a default risk measure if

(i) ϱ(X) ≤ ϱ(Y ) for all X,Y ∈ C with X ≤ Y ,

(ii) ϱ(0) = 0 and ϱ(m) = 1 for all m ∈ R with m > 0.

Thinking of PDs, the respective properties seem to be very canonical. For instance,

comparing two customers it is obvious that the one with the higher total cash flow in

all scenarios exhibits a lower risk of default (Property (i)). Moreover, for all X ∈ C

with X ≤ 0,

0 ≤ ϱ(X) ≤ ϱ(0) = 0,

i.e., if all obligations can be payed in any scenario the customer’s default risk will be

zero, and a constant negative total cash flow (m > 0) leads at least to an unlikely

repayment, and hence to a sure default (Property (ii)). Although Property (i) in the

definition of a default risk measure is analogous to the monotonicity of monetary risk

measures, Property (ii) is substantially different from the standard cash additivity or

translation invariance. To that end, consider a default risk measure ϱ : Bb → [0, 1] and

observe that

ϱ(X − supX) = 0 for all X ∈ Bb.

By definition, neither convexity nor positive homogeneity (of degree 1) are meaningful

properties for default risk measures, since

ϱ(λ) = 1 > λ = λϱ(1) for all λ ∈ (0, 1).

We thus observe that the properties of monetary risk measures differ substantially from

those of default risk measures despite the similarity of their very general definitions.

Nevertheless, there is the possibility to construct default risk measures from monetary

risk measures as the following example illustrates.

Example 3 (Default risk measure defined by a monetary risk measure). Given a mon-

etary risk measure R : Bb → R as in Definition 1, we are able to construct a default

risk measure via

ϱ(X) := R
(
1{X>0}

)
for all X ∈ Bb.

For X,Y ∈ Bb with X ≤ Y , we have 1{X>0} ≤ 1{Y >0}, so that

0 ≤ R
(
1{X>0}

)
≤ R

(
1{Y >0}

)
≤ 1.

Moreover, ϱ(0) = R
(
1∅
)
= R(0) = 0 and ϱ(m) = R(1) = 1 for all m ∈ R with m > 0.

We continue with several examples of default risk measures, and begin with the most

prominent one.

Example 4 (Probability of default). We fix a reference probability measure P on F ,

and consider the probability of default (PD), given by

PDP(X) := P(X > 0) for all X ∈ Bb.
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If the probability measure P is discrete, this default risk measure could be interpreted

as a mapping to common rating classes. Clearly, PDP satisfies all properties of a default

risk measure. For X,Y ∈ Bb with X ≤ Y , {X > 0} ⊂ {Y > 0}, so that

0 ≤ P(X > 0) ≤ P(Y > 0) ≤ 1.

Furthermore, PDP(0) = P(∅) = 0 and PDP(m) = P(Ω) = 1 for all m ∈ R with m > 0.

Building on this example, we can also consider the case, where model uncertainty is

taken into account via a distortion function.

Example 5 (Distorted PD). Again, we fix a reference probability measure P on F .

Due to a lack of data, bad data quality, or changing economic environments, the consid-

eration of uncertainties in form of a margin of conservatism (MoC) becomes more and

more important for financial institutions. Since such model uncertainties are part of any

model, including rating models, it is possible that the reference probability measure P
is not the ‘precise’ probability measure that represents the default risk of costumers

over a one-year time horizon. We therefore consider a nondecreasing distortion function

T : [0, 1] → [0, 1] with T (0) = 0 and T (1) = 1. We define

ϱ(X) := T
(
P(X > 0)

)
= T

(
PDP(X)

)
for all X ∈ Bb.

In this case, the distortion function T can be regarded as a benchmark for model

uncertainty, and the margin of conservatism is given by

MoC(p) :=
T (p)

p
− 1 for all p ∈ (0, 1].

Clearly, the two properties of a default risk measure carry over from the classical PD, cf.

Example 4, to the distorted PD for any probability measure P and any nondecreasing

distortion function T : [0, 1] → [0, 1] with T (0) = 0 and T (1) = 1.

Apart from distorting a reference probability measure as in the previous example,

there is also the possibility of incorporating model uncertainty via worst-case consider-

ations among sets of probability measures.

Example 6 (Worst-case PD). In order to properly account for uncertainties w.r.t.

model specifications, it is often necessary to consider various models at the same time.

This becomes particularly relevant, if the models have different sets of measure zero,

since then one model neglects certain events that occur with positive probability under

a different model. We therefore consider the following generalization of Example 4. Let

P be a nonempty set of probability measures and

ϱ(X) := sup
Q∈P

Q(X > 0) = sup
Q∈P

PDQ(X) for all X ∈ Bb.

As before, the properties (i) and (ii) have been shown for classical PDs in Example 4,

and remain valid when taking the supremum over PDs. Following [2], we will see that,

in many cases, distorted PDs allow for a representation as worst-case PDs and vice

versa, see Section 6.

Up to now, all examples for default risk measures have been of the form

ϱ(X) = ϱ
(
1{X>0}

)
for all X ∈ Bb, (1)

i.e., ϱ(X) only depends on the set where X ∈ Bb is larger than zero, completely

independent of its values. Thinking of PDs from rating systems, this is a very desir-

able property, since it implies that the financial institution is only interested in the
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customers’ ability to pay their dues. In Section 4, we derive sufficient and necessary

conditions for default risk measures in order to satisfy (1). The following two examples

show that, however, not every default risk measure needs to allow for such a repre-

sentation as it is also possible to define default risk measures that depend on specific

values of X, for instance, using a warning signal that leads to a more conservative risk

assessment.

Example 7 (Warning signal). Consider two default risk measures ρ0 and ρc with

ρ0 ≤ ρc, i.e., ρ0 is less conservative then ρc. The idea is that ρc acts as a warning signal

if scenarios are possible where the loss exceeds a given maximum level. For X ∈ Bb

and γ > 0, we define

ϱγ(X) :=

{
ϱ0(X), ϱc

(
X − 1

γ

)
= 0,

ϱc(X), ϱc
(
X − 1

γ

)
> 0.

Thus, for γ > 0, we change from ϱ0 to the more conservative default risk measure ϱc
when the potential loss exceeds the level 1

γ under ϱc. We observe that

lim
γ→0

ϱγ(X) = ϱ0(X) for all X ∈ Bb.

In fact, ϱγ(X) = 0 = ϱ0(X) for all X ∈ Bb with X ≤ 0, and ϱc(X − supX) = 0 for all

X ∈ Bb with supX > 0. A concrete choice for ϱc and ϱ0 are, for example, ϱ0 = PDP
and ϱc(x) = supQ∈P PDQ(X) (worst-case PD) for all X ∈ Bb, where P is a nonempty

set of probability measures containing P. For example, it is conceivable that customers,

for whom the possible loss exceeds the limit 1
γ , might exhibit additional risk factors

that increase their probability of default.

At first glance, the following example is reminiscent of Example 6, in which the worst-

case PD was considered. As an additional criterion, the risk of X ∈ Bb, described by a

monetary risk measure, determines how many models are considered in the calculation

of the supremum.

Example 8 (Increasing conservatism). Let P be a set of probability measures on F ,

R : Bb → R be a monetary risk measure, and α : P → [0,∞) with infQ∈P α(Q) = 0.

For X ∈ Bb, let ϱ(X) := 0 if R(X) ≤ 0 and

ϱ(X) := sup
{
PDQ(X)

∣∣Q ∈ P, α(Q) ≤ R(X)
}

if R(X) > 0,

i.e., the larger the risk associated to X ∈ Bb, the more models are taken into account,

when assessing the default risk. In this case, α(Q) measures the degree of confidence

that the model Q ∈ P is the ’correct’ model, where α(Q) = 0 corresponds to maximal

confidence. The (monetary) risk measure R can be interpreted as the outcome of some

internal risk assessment. Since, by assumption, infQ∈P α(Q) = 0, it follows that{
PDQ(X)

∣∣Q ∈ P, α(Q) ≤ R(X)
}
̸= ∅ for all X ∈ Bb with R(X) > 0.

In particular, ϱ(X) ∈ [0, 1] for all X ∈ Bb and ϱ(m) = 1 for all m ∈ R with m > 0. For

X,Y ∈ Bb with X ≤ Y , it follows that R(X) ≤ R(Y ) and PDQ(X) ≤ PDQ(Y ) for all

Q ∈ P, so that ϱ(X) ≤ ϱ(Y ).

After some examples have been discussed, we now turn our focus on extensions of

a given default risk measure ϱ : C → [0, 1] from the set of existing customers C to the

space Bb of all bounded measurable functions. We start with following definition.

Definition 9. Let ϱ : C → [0, 1] be a default risk measure and F : Bb → R.
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a) We say that F is monotone if F (X) ≤ F (Y ) for all X,Y ∈ Bb with X ≤ Y .

b) We say that F is compatible with ϱ if F (0) = 0 and, for X,Y ∈ C, F (X−Y ) ≤ 0

implies that ϱ(X) ≤ ϱ(Y ).

Theorem 10. Let ϱ : C → [0, 1] be a default risk measure and F : Bb → R be monotone

and compatible with ϱ. Then, ϱF : Bb → R, given by

ϱF (X) := inf
{
ϱ(X0)

∣∣X0 ∈ C, F (X −X0) ≤ 0
}

for all X ∈ Bb,

defines a default risk measure on Bb with ϱF (X) = ϱ(X) for all X ∈ C.

The previous theorem shows that any default risk measure ϱ on C can be extended to

a default risk measure on Bb. Assume that a financial institution has a set C of existing

customers and a default risk measure ϱ, which represents a rating system, assigning

to each customer a rating class in the form of a probability of default. If the financial

institution now aims to allocate new customers, which are characterized by different

or additional risk factors, within the existing rating classes, this is possible with the

extension procedure described in Theorem 10. Due to the construction of ϱF , no new

rating classes are introduced and the monotone function F : Bb → R might resemble

an internal risk measurement procedure. Here, the compatibility condition, which may

not seem very intuitive at first, entails a comparison in the risk assessment between

new and existing customers.

A particularly interesting choice for a monotone map F : Bb → R, as in Theorem

10, is given by the choice F (X) := supX for all X ∈ Bb. This leads to the default risk

measure

ϱsup(X) := inf
{
ϱ(X0)

∣∣X0 ∈ C, X ≤ X0

}
for all X ∈ Bb,

which is akin to the idea of superhedging. Note that this choice of F is compatible

with every default risk measure ϱ : C → [0, 1]. Furthermore, this choice of an extension

leads to the most conservative default risk measure which is consistent with ϱ as the

following corollary indicates.

Corollary 11. Let ϱ : C → [0, 1] be a default risk measure. Then, for every default risk

measure ϱ : Bb → [0, 1] with ϱ(X0) = ϱ(X0) for all X0 ∈ C, it holds

ϱ(X) ≤ ϱsup(X) for all X ∈ Bb.

Another interesting example is given by the case, where C consists of only constant

functions and F is a monetary risk measure, e.g., the expected value with respect to a

probability measure P on F . This case is discussed in the following example.

Example 12 (Binary default risk measure). Let R : Bb → R be a monetary risk

measure. For X ∈ Bb, let

ϱ(X) := inf
{
1(0,∞)(m)

∣∣m ∈ R, R(X −m) ≤ 0
}
.

Then, for all X ∈ Bb,

ϱ(X) =

{
0, if R(X) ≤ 0,

1, otherwise.

Since ϱ only takes two values, it is an almost trivial example of a default risk measure,

which, however, has some surprising properties in terms of acceptance sets and its

related value at risk, cf. Section 3, below.
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3. Additional properties and value at risk

Recall that a monetary risk measure R : Bb → R is uniquely determined by its

acceptance set

AR :=
{
X ∈ Bb

∣∣R(X) ≤ 0
}

and, given a probability measure P on (Ω,F), the value at risk (VaR) at level α ∈ (0, 1)

is given by

VaRα
P(X) := inf

{
m ∈ R

∣∣P(X −m > 0) ≤ α
}
.

For a default risk measure ϱ : Bb → [0, 1], the condition ϱ(X) ≤ 0 implies that X ∈ Bb

exhibits no default risk whatsoever, so that an acceptance set similar to the one of

a monetary risk measure is not meaningful for default risk measures. In this context,

it is worth noting that default risk is not expressed in monetary units. In particular,

default risk measures are not cash additive. Having the PD with respect to a probability

measure P in mind as a prime example for a default risk measure, and looking at its

connection to the VaR, a different approach seems more natural. The aim of this section

is to formalize this relation between PD and VaR, and transfer it to general default risk

measures. In view of Theorem 10, we focus on the case C = Bb throughout this section,

and start with the following definition, which is central for the subsequent discussion.

Definition 13. Let ϱ : Bb → [0, 1] be a default risk measure and α ∈ (0, 1). For

X ∈ Bb, let

VaRα
ϱ (X) := inf

{
m ∈ R

∣∣ ϱ(X −m) ≤ α
}
.

Then, VaRα
ϱ is called the ϱ-value at risk at level α.

For default risk measures, we consider the following additional properties.

Definition 14. Let ϱ : Bb → [0, 1] be a default risk measure.

a) We say that ϱ is quasi-convex if

ϱ(λX + (1− λ)Y ) ≤ ϱ(X) ∨ ϱ(Y ) for all λ ∈ [0, 1] and X,Y ∈ Bb.

b) We say that ϱ is scaling invariant if

ϱ(X) = ϱ(λX) for all λ > 0 and X ∈ Bb. (2)

We point out that quasi-convexity and scaling invariance, i.e., positive homogeneity

of degree zero, are well-known properties in theoretical economics and mathematical

finance. In the context of credit risk, scaling invariance has appeared in [26] in a dif-

ferent setting under the name nominal-invariance. In the economic literature, positive

homogeneity of degree zero or, simply, homogeneity is also known under the name scale

independence, see for example [38, 39].

Proposition 15. Let ϱ : Bb → [0, 1] be a default risk measure.

a) For all α ∈ (0, 1), VaRα
ϱ is a monetary risk measure, cf. Definition 1.

b) ϱ can be recovered from the family (VaRα
ϱ )α∈(0,1) via

ϱ(X) = inf
({

α ∈ (0, 1)
∣∣ VaRα

ϱ (X) ≤ 0
}
∪ {1}

)
. (3)

c) ϱ is scaling invariant if and only if VaRα
ϱ is positively homogeneous for all

α ∈ (0, 1).

d) ϱ is quasi-convex if and only if VaRα
ϱ is convex for all α ∈ (0, 1).
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Remark 16. Although a default risk measure ϱ : Bb → R is never convex, there are

default risk measures that are quasi-convex. An example for such a default risk measure

is given by

ϱ(X) :=

{
0, if R(X) ≤ 0,

1, else,
for all X ∈ Bb,

where R : Bb → R is a monetary risk measure in the sense of Definition 1. Then, for

X ∈ Bb and m ∈ R, ϱ(X −m) ≤ 0 if and only if R(X) ≤ m. Hence,

VaRα
ϱ (X) = R(X) for all α ∈ (0, 1).

By Proposition 15 d), ϱ is quasi-convex if and only if R is convex. Moreover, by Propo-

sition 15 c), ϱ is scaling invariant if and only if R is positively homogeneous.

Thinking of the family (VaRα
ϱ )α∈(0,1) for a default risk measure ϱ, leads to the fol-

lowing definition.

Definition 17. A generalized quantile function is a family (Rα)α∈(0,1), where

(i) Rα : Bb → R is a monetary risk measure for each α ∈ (0, 1), cf. Definition 1,

(ii) Rβ(X) ≤ Rα(X) for all X ∈ Bb and α, β ∈ (0, 1) with α ≤ β,

(iii) for all α ∈ (0, 1) and X ∈ Bb,

Rα(X) = sup
β∈(α,1)

Rβ(X).

Remark 18. For each default risk measure ϱ : Bb → [0, 1], the family
(
VaRα

ϱ

)
α∈(0,1) is

a generalized quantile function. The properties (i) and (ii) are immediate consequences

of Proposition 15 a) and the definition of the family
(
VaRα

ϱ

)
α∈(0,1), respectively. We

prove (iii) by contradiction. To that end, let α ∈ (0, 1) and X ∈ Bb, and suppose that

VaRα
ϱ (X) > sup

β∈(α,1)
VaRβ

ϱ (X).

Then, there exists some m ∈ R with

VaRα
ϱ (X) > m > VaRβ

ϱ (X) for all β ∈ (α, 1),

which implies that α < ϱ(X−m) ≤ β for all β ∈ (α, 1), and thus leads to contradiction.

The following theorem together with Proposition 15 b) and the previous remark

shows that there is a one-to-one relation between default risk measures and generalized

quantile functions.

Theorem 19. Let (Rα)α∈(0,1) be a generalized quantile function and

ϱ(X) := inf
({

α ∈ (0, 1)
∣∣Rα(X) ≤ 0

}
∪ {1}

)
.

Then, ϱ : Bb → [0, 1] is a default risk measure and Rα = VaRα
ϱ for all α ∈ (0, 1).

Proposition 20. Let ϱ : Bb → [0, 1] be a default risk measure and P be a nonempty

set of probability measures. Then, the following are equivalent:

(i) For all X ∈ Bb,

ϱ(X) = sup
P∈P

P(X > 0).

(ii) For all X ∈ Bb and all α ∈ (0, 1),

VaRα
ϱ (X) = sup

P∈P
VaRα

P(X). (4)
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Remark 21.

a) In [43, Proposition 4.6], it is shown that the worst-case value at risk, given by

(4), is comonotonically additive. More generally, [14, Corollary 1] implies that

VaRα
ϱ is comonotonically additive if ϱ(X) = ϱ

(
1{X>0}

)
for all X ∈ Bb, i.e., ϱ

is given by a capacity c : F → [0, 1], cf. Section 5 below. In fact, [14, Corollary

1] states that, for every α ∈ (0, 1), there exists a capacity cα : F → [0, 1] such

that VaRα
ϱ is given by the Choquet integral w.r.t. cα, i.e.,

VaRα
ϱ (X) =

∫
X dcα for all X ∈ Bb, (5)

see Section 5 below for a definition of the Choquet integral. Clearly, if VaRα
ϱ

satisfies (5), it is positively homogeneous for all α ∈ (0, 1), so that ϱ is scaling

invariant by Proposition 15 c). The natural question arises if a representation

of VaRα
ϱ in terms of (5) for all α ∈ (0, 1) already implies that ϱ is given by a

capacity as well. We provide a negative answer to this question in part b).

b) Let P be a probability measure on (Ω,F), and assume that there exists some

event A ∈ F with p := P(A) ∈ (0, 1). Choosing, in the situation of Remark

16, R = EP as the expected value under P, it follows that VaRα
ϱ = EP, so that

VaRα
ϱ satisfies (5) for all α ∈ (0, 1). However, for X := 1

p1A− 1
1−p1Ac , it follows

that

EP(X) = 0 ̸= 1 = EP(X
+),

so that ϱ(X) = 0 ̸= 1 = ϱ(X+). Hence, by Theorem 31 below, ϱ is not given by

a capacity.

Proposition 22. Let ϱ : Bb → [0, 1] be a default risk measure, P a probability measure,

and T : [0, 1] → [0, 1] a nondecreasing and lower semicontinuous function with T (0) = 0

and T (1) = 1. Then, the following are equivalent:

(i) For all X ∈ Bb,

ϱ(X) = T
(
P(X > 0)

)
.

(ii) For all X ∈ Bb and all α ∈ (0, 1),

VaRα
ϱ (X) = VaR

T−1(α)
P (X), (6)

where T−1(a) := inf{b ∈ (0, 1) |T (b) > a} for all a ∈ (0, 1).

We conclude this section with two examples for generalized quantile functions arising

in the context of regulatory risk measures and their resulting default risk measures.

Example 23. Let P : F → [0, 1] be a probability measure.

a) We consider the expected shortfall

ESαP(X) :=
1

α

∫ α

0
VaRλ

P(X) dλ of X ∈ Bb at level α ∈ (0, 1).

Then, ESαP : Bb → R defines a monetary risk measure for each α ∈ (0, 1), and

ESβP(X) ≤ ESαP(X) for all X ∈ Bb and α, β ∈ (0, 1) with α ≤ β. Moreover, by

the monotone convergence theorem, Property (iii) in the definition of a general-

ized quantile function is satisfied. Then, the default risk measure ϱ : Bb → [0, 1]

related to the generalized quantile function (ESαP)α∈(0,1) is given by

ϱ(X) := inf
({

α ∈ (0, 1)
∣∣ ESαP(X) ≤ 0

}
∪ {1}

)
for all X ∈ Bb.
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Let X ∈ Bb with X ̸= 0. First, observe that

ϱ(X) = 1 if and only if EP(X) =

∫ 1

0
VaRλ

P(X) dλ ≥ 0.

If E(X) < 0, then the continuity of the map [0, 1] → R, α 7→
∫ α
0 VaRλ

P(X) dλ

implies that

ϱ(X) = inf

{
α ∈ (0, 1)

∣∣∣∣ 1α
∫ α

0
VaRλ

P(X) dλ ≤ 0

}
= inf

{
α ∈ [0, 1)

∣∣∣∣ ∫ α

0
VaRλ

P(X) dλ = 0

}
.

In particular, by Theorem 19 and Proposition 20 with P = {P},

ϱ(X) ≥ P(X > 0) = PDP(X) for all X ∈ Bb,

i.e., ϱ is a more conservative default risk measure than PDP.

b) For X ∈ Bb and α ∈ (0, 1), we consider the α-expectile, given by

ExpαP(X) := inf
{
m ∈ R

∣∣ (1− α)EP[(X −m)−]− αEP[(X −m)+] ≤ 0
}
.

Then, ExpαP : Bb → R is a monetary risk measure for all α ∈ (0, 1). By the

monotone convergence theorem, for all X ∈ Bb,

αEP
[(
X − ExpαP(X)

)+]
= (1− α)EP

[(
X − ExpαP(X)

)−]
.

In particular, Exp
1/2
P (X) = EP(X). Since the map (0, 1) → (0,∞), α 7→ 1−α

α is

decreasing and continuous, the properties (ii) and (iii) of a generalized quantile

function follow. Let X ∈ Bb and

ϱ(X) := inf
({

α ∈ (0, 1)
∣∣ ExpαP(X) ≤ 0

}
∪ {1}

)
.

Then, ϱ(X) = 1 if and only if X ≥ 0 P-a.s and P(X > 0) > 0. Moreover,

ϱ(X) = 0 if and only if X ≤ 0 P-a.s. In all other cases, i.e., if ϱ(X) ∈ (0, 1),

then ϱ(X) is given by the unique solution ϱ(X) := α∗ ∈ (0, 1) to the equation

α∗EP(X
+) = (1− α∗)EP(X

−).

4. Representation via capacities

After discussing first characteristics, generalizations of the VaR, and different exam-

ples for default risk measures, we now aim for equivalent conditions for default risk

measures to admit a representation of the form

ϱ(X) = ϱ
(
1{X>0}) for all X ∈ Bb. (7)

This representation allows to describe the default risk measure ϱ via its related ca-

pacity, given by c(A) := ϱ(1A) for A ∈ F . This description allows to derive explicit

representations of ϱ as worst-case PDs and distorted PDs in Section 5 and Section 6,

respectively.

In the following, we discuss a slightly weaker notion of scaling invariance for default

risk measures.

Definition 24. We say that a default risk measure ϱ : Bb → R is default scaling

invariant if

ϱ(X) = ϱ(λX) for all λ > 0 and X ∈ Bb with X ≥ 0.
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Default risk measures that are not default scaling invariant can depend, for example,

on the maximum possible default. This applies, for example to the default risk measure

in Example 7, where a warning signal γ must be exceeded by supX in order to switch to

a more conservative default risk measure. Another example for a default risk measure

that is not default scaling invariant is given in Example 8.

From an economic point of view, default scaling invariance means that the default

risk does not change if all potential losses, i.e., X(ω) > 0 are multiplied with a positive

constant. Hence, for a given customer X ≥ 0, we are not interested how high this

customer defaults, which would be the case in Example 7, but rather if they default or

not. All scenarios in which the customer cannot pay a due at the end of the observation

period are equivalent to the scenarios in which the due multiplied by λ > 0 cannot be

paid. Certainly, therefore, it is a necessary condition in order to obtain the desired

representation (7).

Remark 25. Before we provide sufficient and necessary conditions for ϱ to have the

form (7), we first discuss various properties of ϱ that will appear at a later stage in this

section.

a) Let ϱ : Bb → [0, 1] be a default scaling invariant default risk measure. Then, for all

X ∈ Bb,

ϱ(X) ≤ ϱ
(
1{X>0}

)
, (8)

Indeed, for X ∈ Bb with X ≤ 0, ϱ(X) ≤ ϱ(0) = ϱ
(
1{X>0}

)
. On the other hand, if

X ∈ Bb with supX > 0, the default scaling invariance of ϱ yields that

ϱ(X) ≤ ϱ(X+) ≤ ϱ
(
(supX)1{X>0}

)
= ϱ
(
1{X>0}

)
.

Condition (8) states that, under the mild assumption of default scaling invariance,

the most conservative choice of a default risk measure ϱ is a representation via a

capacity.

b) To see that scaling invariance, in particular, default scaling invariance is not enough

to come up with the representation ϱ(X) = ϱ
(
1{X>0}

)
for all X ∈ Bb, we again pick

up Example 12, where a default risk measure was defined by means of a monetary

risk measure R. Let P be a probability measure on F , and consider the case R(X) =

EP(X) for all X ∈ Bb, where EP( · ) denotes the mean value under P. Then, the

default risk measure in Example 12 is scaling invariant by Remark 16. However, the

default risk measure very much depends on both the positive and negative values

of X ∈ Bb as soon as there exists an event A ∈ F with P(A) ∈ (0, 1). In fact, let

A ∈ F with p := P(A) ∈ (0, 1) and define

X := 1A − 2p

1− p
1Ac .

Then,

EP(X) = P(A)− 1 + p

1− p
· P(Ac) = −1 < 0,

so that ϱ(X) = 0. On the other hand, P(X > 0) = P(A) = p > 0, which implies

that ϱ
(
1{X>0}

)
= 1. Nevertheless, in Proposition 26 below, we will see that, up

to certain continuity requirements, default scaling invariance implies the equality

ϱ(X) = ϱ
(
1{X>0}

)
for all X ∈ Bb with X ≥ 0. Later we seek for additional

properties of ϱ such as ϱ(X) = ϱ(X+) for all X ∈ Bb.
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c) In order to explain why additional continuity assumptions are needed in Proposition

26 below, we regard, for a given probability measure P on F , the default risk measure

ϱ : Bb → [0, 1], given by

ϱ(X) :=

{
1, if P({X > ε}) = 1 for some ε > 0,
P({X>0})

2 , otherwise.

As such ϱ is default scaling invariant and does not depend on the part, whereX ∈ Bb

is less or equal to 0. However, if (Ω,F ,P) is atomless and X ∈ Bb is uniformly

distributed on [0, 1] under P, then

P
(
X ∈ (0, ε)

)
= ε > 0 for all ε > 0,

so that

ϱ(X) =
1

2
̸= 1 = ϱ

(
1{X>0}

)
.

The following proposition clarifies this elementary example.

Proposition 26. Let ϱ : Bb → [0, 1] be a default scaling invariant default risk measure.

a) For all X ∈ Bb with X ≥ 0,

ϱ(X) ≤ ϱ
(
1{X>0}

)
≤ inf

ε>0
ϱ
(
X + ε1{X>0}

)
. (9)

b) For all X ∈ Bb with X ≥ 0,

sup
ε>0

ϱ
(
1{X>ε}

)
≤ ϱ(X) ≤ ϱ

(
1{X>0}

)
. (10)

The previous proposition shows that default scaling invariance together with ϱ(X) =

ϱ(X+), for all X ∈ Bb, implies that the default risk measure can be represented via a

capacity except for some additional continuity properties. The inequality in part a) is

quite mild from a theoretical perspective, because reducing a customer’s cash flows by

an amount of money ε > 0 in scenarios, where the customer is defaulting anyways, has

no impact on the default scenarios. In contrast to this, the continuity assumption

sup
ε>0

ϱ
(
1{X>ε}

)
= ϱ
(
1{X>0}

)
for all X ∈ Bb

is not for free since, in mathematical terms, it requires some mild form of continuity

from below for the related capacity. From an economic point of view, however, it is

quite intuitive since ε > 0 can be chosen arbitrarily small, e.g., in such a way that it

falls below the smallest possible amount of money. A theoretical increase in capital

by 10−10 euros should not change the default risk of the respective customer. This

motivates to introduce the following definition.

Definition 27. Let ϱ : Bb → [0, 1] be a default risk measure. We say that ϱ is illiquidity

invariant, if, for all m > 0 and X ∈ Bb with X ≥ 0,

ϱ(X) = ϱ
(
X +m1{X>0}

)
.

In other words, illiquidity invariance means that customers that are in default or,

loosely speaking, illiquid remain illiquid if their debt due increases or their capital

decreases in the sense that their default risk does not change. The following proposition

establishes a first connection between illiquidity invariance, default scaling invariance,

and a representation via indicator functions.

Proposition 28. Let ϱ : Bb → [0, 1] be a default risk measure. Then, the following

statements are equivalent.
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(i) ϱ is default scaling invariant and

ϱ(X) = inf
ε>0

ϱ(X + ε1{X>0}) for all X ∈ Bb with X ≥ 0.

(ii) ϱ is illiquidity invariant.

(iii) For all X ∈ Bb with X ≥ 0,

ϱ(X) = ϱ
(
1{X>0}

)
.

In analogy to Definition 27, we speak of liquidity invariance, when the default risk

remains the same if capital is added in scenarios where the customer is able to make

all payments due.

Definition 29. Let ϱ : Bb → [0, 1] be a default risk measure. We say that ϱ is liquidity

invariant, if, for all m > 0 and X ∈ Bb with X ≥ 0,

ϱ(X) = ϱ
(
X −m1{X=0}

)
.

Lemma 30. Let ϱ : Bb → [0, 1] be a default risk measure. Then, the following condi-

tions are equivalent.

(i) ϱ(X) = ϱ(X+) for all X ∈ Bb.

(ii) ϱ(X) = ϱ
(
X −m1{X≤0}

)
for all m > 0 and X ∈ Bb.

(iii) ϱ is liquidity invariant.

In the context of risk functionals, Property (i) in Lemma 30 (with a different sign

convention) is known under the names surplus invariance, cf. [24], loss dependence, cf.

[15], and excess invariance, cf. [40]. A combination of Proposition 28 and Lemma 30

leads to the following theorem, which is the main result of this section.

Theorem 31. Let ϱ : Bb → [0, 1] be a default risk measure. Then, the following condi-

tions are equivalent.

(i) For all X ∈ Bb,

ϱ(X) = ϱ
(
1{X>0}

)
.

(ii) ϱ is default scaling invariant with

ϱ(X) = ϱ(X+) = inf
ε>0

ϱ
(
X + ε1{X>0}

)
for all X ∈ Bb.

(iii) ϱ is liquidity invariant and illiquidity invariant.

To get a link to Section 5, where the focus lies on the related capacities and their

Choquet integrals, we introduce the notion of submodularity for default risk measures.

In theoretical economics, submodularity is a classical property, which is closely related

to substitute goods, cf. [42].

Definition 32. Let C be a sublattice of Bb, which contains all constant functions. A

default risk measure ϱ : C → [0, 1] is called submodular if

ϱ(X ∧ Y ) + ϱ(X ∨ Y ) ≤ ϱ(X) + ϱ(Y ) for all X,Y ∈ C.

The natural question arises, whether submodularity is a sensible notion for default

risk measures. For classical PDs, we have equality, i.e.,

PDP(X ∧ Y ) + PDP(X ∨ Y ) = PDP(X) + PDP(Y ) for all X,Y ∈ Bb.

Moreover, submodularity is given for certain classes of distorted PDs, for instance, if

the distortion function is concave, see Section 6.
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Remark 33. Let C be a sublattice of Bb, which contains all constant functions, and

ϱ : C → [0, 1] be a submodular default risk measure. Then,

ϱ(X) = ϱ(X+) for all X ∈ C.

In fact, let X ∈ C. The submodularity of ϱ together with 0 ∈ C implies that

ϱ(X+) + ϱ(−X−) ≤ ϱ(X).

Since −X− ≤ 0, it follows that ϱ(−X−) = 0 by the defining properties of a default risk

measure. Therefore,

ϱ(X) ≤ ϱ(X+) = ϱ(X+) + ϱ(−X−) ≤ ϱ(X).

As a consequence of Theorem 31 and Remark 33, we obtain the following corollary.

Corollary 34. Let ϱ : Bb → [0, 1] be a submodular default risk measure. Then, the

following statements are equivalent.

(i) ϱ is illiquidity invariant.

(ii) For all X ∈ Bb,

ϱ(X) = ϱ
(
1{X>0}

)
.

5. Choquet integrals and robust representations

In Section 4, we discussed equivalent conditions for a default risk measure ϱ : Bb →
[0, 1] in order to be the form (7). Building on this representation, the aim of this section

is to connect default risk measures with Choquet integrals and monetary risk measures

and use this connection to attain a representation for ϱ via probability measures. Recall

that a capacity is a map c : F → [0, 1] with c(∅) = 0, c(Ω) = 1, and c(A) ≤ c(B) for all

A,B ∈ F with A ⊂ B. We start with the following observation.

Remark 35. Let ϱ : Bb → [0, 1] be a default risk measure. Then, we can define a

capacity c : F → [0, 1] by

c(A) := ϱ (1A) for all A ∈ F . (11)

By definition of a default risk measure,

c(∅) = c(1∅) = ϱ(0) = 0 and c(Ω) = c(1Ω) = ϱ(1) = 1.

Moreover, for all A,B ∈ F with A ⊂ B,

c(A) = ϱ (1A) ≤ ϱ (1B) = c(B)

due to the monotonicity of ϱ. For X ∈ Bb, the Choquet integral with respect to c is

defined as ∫
X dc :=

∫ 0

−∞

(
c({X > s})− 1

)
ds+

∫ ∞

0
c({X > s}) ds.

Although the Choquet integral is, in general, not a linear functional, it defines a mon-

etary risk measure R : Bb → R via

R(X) :=

∫
X dc for all X ∈ Bb.

By definition of the Choquet integral, the monetary risk measure R is positively homo-

geneous, i.e., R(λX) = λR(X) for all X ∈ Bb and λ > 0. If ϱ satisfies (7), then

ϱ(X) = R
(
1{X>0}

)
for all X ∈ Bb,
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which leads to the following proposition.

Proposition 36. Let ϱ : Bb → [0, 1] be a default risk measure. Then, the following two

statements are equivalent.

(i) For all X ∈ Bb,

ϱ(X) = ϱ
(
1{X>0}

)
.

(ii) There exists a positively homogeneous monetary risk measure R : Bb → R, cf.

Definition 1, with

ϱ(X) = R
(
1{X>0}

)
for all X ∈ Bb.

Let ϱ : Bb → [0, 1] be a default risk measure, which satisfies (7). Then, ϱ is submod-

ular if and only if the related capacity c : F → [0, 1], given by (11), is 2-alternating,

i.e.,

c(A ∪B) + c(A ∩B) ≤ c(A) + c(B) for all A,B ∈ F .

A well-known fact is that a capacity is 2-alternating if and only if the related Cho-

quet integral defines a coherent risk measure. We recall that a monetary risk measure

R : Bb → R is coherent if and only if there exists a nonempty set P of finitely additive

probability measures such that

R(X) = sup
Q∈P

EQ(X) for all X ∈ Bb,

cf. [22]. In this case, we obtain the robust representation

ϱ(X) =

∫
1{X>0} dc = sup

Q∈P
EQ(1{X>0}) = sup

Q∈P
Q(X > 0) for all X ∈ Bb. (12)

We now investigate additional continuity properties for ϱ that guarantee a repre-

sentation via countably additive probability measures. In the sequel, for a sequence

(Xn)n∈N ⊂ Bb and X ∈ Bb, we write Xn ↗ X or Xn ↘ X as n → ∞ if Xn ≤ Xn+1 or

Xn ≥ Xn+1 for all n ∈ N and X(ω) = limn→∞Xn(ω) for all ω ∈ Ω, respectively.

Proposition 37. Let ϱ : Bb → [0, 1] be a default risk measure with ϱ(X) = ϱ
(
1{X>0}

)
for all X ∈ Bb and c(A) := ϱ(1A) for all A ∈ F . Then, the following statements are

equivalent.

(i) ϱ is continuous from below, i.e., for every sequence (Xn)n∈N ⊂ Bb with Xn ↗
X ∈ Bb as n → ∞,

ϱ(X) = lim
n→∞

ϱ (Xn) .

(ii) For every sequence (An)n∈N ⊂ F with An ⊂ An+1 for all n ∈ N

c

( ⋃
n∈N

An

)
= lim

n→∞
c(An).

(iii) For every sequence (Xn)n∈N ⊂ Bb with Xn ↗ X ∈ Bb as n → ∞,∫
X dc = lim

n→∞

∫
Xn dc.

Unfortunately, even if ϱ is submodular, continuity from below of ϱ is, in general,

not a sufficient condition in order to guarantee a representation via countably additive

probability measures on Bb as the following example shows.

Example 38. Let P : B → [0, 1] be the Lebesgue measure defined on the Borel σ-

algebra B of the closed interval Ω := [0, 1] and F be the power set of Ω. Let L denote
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the space of all bounded B-measurable functions Ω → R and

R(X) := inf{EP(X0)|X0 ∈ L, X0 ≥ X}.

Then, by [19, Proposition 2.2 and Lemma 3.6], R is a coherent risk measure, which is

continuous from below and the maximal extension of EP to Bb. Consider the capacity

c : F → [0, 1], given by

c(A) := R(1A) for all A ∈ F ,

and ϱ(X) := c({X > 0}) for all X ∈ Bb. Let Q : F → [0, 1] be a finitely additive

probability with

EQ(X) ≤ R(X) for all X ∈ Bb. (13)

Then, for all X ∈ Bb with X ≥ 0,∫
X dc =

∫ ∞

0
c({X > s}) ds ≥

∫ ∞

0
Q({X > s}) ds = EQ(X).

Moreover, for X ∈ L with X ≥ 0,∫
X dc =

∫ ∞

0
c({X > s}) ds =

∫ ∞

0
P({X > s}) ds = EP(X).

Hence, by the maximality of R, it follows that
∫
X dc ≤ R(X) for all X ∈ Bb. We have

therefore shown that R(X) =
∫
X dc for all X ∈ Bb. In particular, ϱ is submodular.

On the other hand, assuming the continuum hypothesis, by [6, Satz 1C], there exists

not a single countably additive probability measure Q : F → [0, 1] with (13). In fact,

with a similar construction, using a probability measure which is different from the

Lebesgue measure, one can avoid invoking the continuum hypothesis, see [19, Example

3.7] for further details.

If, however, ϱ is a distorted PD, which is submodular, continuity from below is a

sufficient condition in order to allow for a representation in terms of countably additive

probability measures as the following remark discusses.

Remark 39. Let P be a probability measure of F and T : [0, 1] → [0, 1] be a nonde-

creasing function with T (0) = 0 and T (1) = 1. Let ϱ : Bb → [0, 1] be given by

ϱ(X) = T
(
PDP(X)

)
for all X ∈ Bb,

and assume that ϱ is submodular, so that c : F → [0, 1], A 7→ ϱ(1A) is a 2-alternating

capacity.

a) Assume that T is left-continuous or, equivalently, lower semicontinuous, i.e.,

T (p) = sup
q∈(0,p)

T (q) for all p ∈ (0, 1].

Then, by Proposition 37, the Choquet integral w.r.t. c is a coherent and law-invariant

risk measure, which is continuous from below. Hence, by [22, Theorem 4.33], there

exists a set of countably additive and (w.r.t. P) absolutely continuous probability

measures P on F with

ϱ(X) = sup
Q∈P

PDQ(X) for all X ∈ Bb.

b) Now, assume that (Ω,F ,P) is atomless. Then, the Choquet integral w.r.t. c is a

coherent and law-invariant risk measure on an atomless probability space. By [27,

Theorem 2.1], it follows that the Choquet integral w.r.t. c is continuous from below.

Hence, by [22, Theorem 4.33], there exists a set of countably additive and (w.r.t. P)



DEFAULT RISK MEASURES 19

absolutely continuous probability measures P on F with

ϱ(X) = sup
Q∈P

PDQ(X) for all X ∈ Bb.

If Ω is a Polish space and F is the Borel σ-algebra, we have the following charac-

terization for general submodular default risk measures on the space Lb of all bounded

lower semicontinuous functions Ω → R.

Proposition 40. Let Ω be a Polish space and ϱ : Lb → [0, 1] be a submodular default

risk measure with

ϱ(X) = ϱ
(
1{X>0}

)
for all X ∈ Lb with X ≥ 0. (14)

Then, the following statements are equivalent.

(i) ϱ is continuous from below, i.e.,

ϱ(X) = lim
n→∞

ϱ(Xn)

for every sequence (Xn)n∈N ⊂ Lb with Xn ↗ X ∈ Lb as n → ∞.

(ii) There exists a nonempty set P of probability measures on (Ω,F) such that

ϱ(X) = sup
Q∈P

Q(X > 0) for all X ∈ Lb.

Remark 41. Let ϱ : Bb → [0, 1] be a default risk measure. Then, continuity from above

in the sense that

ϱ(X) = lim
n→∞

ϱ(Xn)

for every sequence (Xn)n∈N ⊂ Bb with Xn ↘ X ∈ Bb as n → ∞, is not a sensible

property. Considering a sequence (Xn)n∈N ⊂ Bb defined by Xn = 1
n , it follows that

ϱ(Xn) = 1, while ϱ(0) = 0. However, by (12), it is enough to express the Choquet

integral via a set of (countably additive) probability measures. We can therefore weaken

the requirement of continuity from above and obtain the following proposition.

Proposition 42. Let ϱ : Bb → [0, 1] be a default risk measure with ϱ(X) = ϱ
(
1{X>0}

)
for all X ∈ Bb and c(A) := ϱ(1A) for all A ∈ F . Then, the following statements are

equivalent.

(i) For every sequence (Xn)n∈N ⊂ Bb with Xn ↘ 0 as n → ∞ and all ε > 0,

lim
n→∞

ϱ (Xn − ε) = 0.

(ii) For every sequence (An)n∈N ⊂ F with An+1 ⊂ An for all n ∈ N and
⋂

n∈NAn = ∅,

lim
n→∞

ϱ (1An) = 0.

(iii) For every sequence (Xn)n∈N ⊂ Bb with Xn ↘ 0 as n → ∞,

lim
n→∞

∫
Xn dc = 0.

If ϱ is additionally submodular, either of these conditions implies that there exists a

nonempty set P of probability measures on (Ω,F) with

ϱ(X) = max
Q∈P

Q(X > 0) for all X ∈ Bb.

Example 43. Let P be a probability measure on F and T : [0, 1] → [0, 1] be nonde-

creasing with T (0) = 0 and T (1) = 1. Then, the default risk measure ϱ : Bb → [0, 1],
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given by

ϱ(X) := T
(
PDP(X)

)
for all X ∈ Bb,

satisfies Property (ii) in Proposition 42 if infp>0 T (p) = 0. In case there exists a sequence

(An)n∈N ⊂ F with ∅ ̸= An+1 ⊂ An for all n ∈ N and
⋂

n∈NAn = ∅, this is also a

necessary condition for ϱ to satisfy Property (ii) in Proposition 42 using the continuity

from above of P.

6. Law-invariant default risk measures and distorted PDs

Let C be a set of customers C ⊂ Bb, which contains the set of all constant functions,

and satisfies 1{X>0} ∈ C for all X ∈ C. In this section, we fix a reference probability

measure P on F , and specialize on law-invariant default risk measures ϱ : C → [0, 1], i.e.,

ϱ(X) = ϱ(Y ) wheneverX ∈ C and Y ∈ C have the same distribution under P. In rating

systems, customers in the same rating class are considered to be statistically identical

in terms of their default behaviour. Hence, when choosing a default risk measure in

order to quantify the probability of default including uncertainty, it makes sense to

require law-invariance. Since customers are usually divided into rating classes and not

every default probability is realized, we also consider the case where (Ω,F ,P) is not

atomless. We start with several characterizations of law-invariance, which do not hinge

on the standard assumption of an atomless probability space, before we switch to an

atomless setting in order to derive finer properties and representations of law-invariant

default risk measures.

In the sequel, we say that a function T : [0, 1] → [0, 1] is a distortion function if

T (0) = 0 and T (1) = 1. The following theorem adopts an argument from Wang et al.

[44, Proof of Theorem 2], and provides a characterization of distorted PDs.

Theorem 44. Let ϱ : C → [0, 1] be a default risk measure. Then, the following state-

ments are equivalent.

(i) ϱ is law-invariant and ϱ(X) = ϱ
(
1{X>0}

)
for all X ∈ C.

(ii) There exists a distortion function T : [0, 1] → [0, 1] with

ϱ(X) = T
(
PDP(X)

)
for all X ∈ C.

A natural question that arises is whether the distortion function T in Theorem 44 is

nondecreasing or, in other words, if the default risk measure ϱ : C → [0, 1] is consistent

with P, i.e.,

ϱ(X) ≤ ϱ(Y ) for all X,Y ∈ C with PDP(X) ≤ PDP(Y ).

This property is very natural since one would expect the default risk of X to be smaller

than the default risk of Y if the PD of X is smaller than the PD of Y . In the situation

of Theorem 44, it is, however, possible that the distortion function T is not monotone

as the following simple example shows.

Example 45. Let Ω = {0, 1}, F be the power set, and C consist of all constants and

the two functions X := 1{0} and Y := 1{1}. Assume that

0 < p := P(X > 0) < P(Y > 0) =: q < 1 and 0 < ϱ(Y ) < ϱ(X) < 1.

Then ϱ is a default risk measure, which satisfies Property (i) in Theorem 44 but, for

any distortion function T : [0, 1] → [0, 1] with

ϱ(Z) = T
(
PDP(Z)

)
for all Z ∈ C,
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it follows that T (p) = ϱ(X) > ϱ(Y ) = T (q), so that T is not monotone.

We now aim towards a characterization in terms of a nondecreasing distortion func-

tion. The proof of Theorem 10 indicates that the set

P :=
{
p ∈ [0, 1]

∣∣∃X ∈ C : P(X > 0) = p
}
. (15)

plays a fundamental role for the monotonicity of the distortion function.

Definition 46. We say C contains an ordered subset if there exists a family
(
Xp

)
p∈P

with PDP(Xp) = p for all p ∈ P and {Xp > 0} ⊂ {Xq > 0} for all p, q ∈ P with p ≤ q.

Clearly, if (Ω,F ,P) is atomless and C = Bb, then C contains an ordered subset.

Theorem 47. Let ϱ : C → [0, 1] be a default risk measure, and assume that C contains

an ordered subset. Then, the following statements are equivalent.

(i) ϱ is law-invariant and ϱ(X) = ϱ
(
1{X>0}

)
for all X ∈ C.

(ii) There exists a nondecreasing distortion function T : [0, 1] → [0, 1] with

ϱ(X) = T
(
PDP(X)

)
for all X ∈ C.

Remark 48. Under the assumptions of Theorem 47, including one of the equivalences,

the default risk measure ϱ can be extended to a law-invariant default risk measure

ϱ : Bb → [0, 1] by means of the distortion function T . The extension ϱ is given by

ϱ(X) := T
(
PDP(X)

)
for all X ∈ Bb.

Obviously, ϱ(X) = ϱ(X) for all X ∈ C and ϱ is a default risk measure, cf. Example 5.

Note that a default risk measure can, in general, not be extended using a nonmonotone

distortion function as in Example 45. This can be seen by considering, for example,

the set Ω = {0, 1, 2} together with the power set F and C consisting of X := 1{0},

Y := 1{1} and all constant functions. Let P(X > 0) = 0.5, P(Y > 0) = 0.3, ϱ(X) = 0.5,

ϱ(Y ) = 0.7, and T : [0, 1] → [0, 1] be a distortion function with

ϱ(Z) = T
(
PDP(Z)

)
for all Z ∈ C.

Then, for U := 1{1,2}, it follows that P(U > 0) = 0.5 = P(X > 0). Hence,

T
(
PDP(U)

)
= T (0.5) = ϱ(X) = 0.5 < 0.7 = ϱ(Y )

despite the fact that Y ≤ U .

Remark 49. We recall some well-known facts about distorted probabilities, cf. [22].

For the reader’s convenience, we provide short proofs of some of the statements collected

in this remark in the Appendix A. In the following, let T : [0, 1] → [0, 1] be a distortion

function.

a) A well-known fact is that the capacity c : F → [0, 1], given by

c(A) := T
(
P(A)

)
for all A ∈ F . (16)

is 2-alternating if T is concave. If (Ω,F ,P) is atomless, also the converse state-

ment holds, cf. [22, Section 4.6].

b) A capacity c : F → [0, 1] is called exact if there exists a set of countably additive

probability measures P on F with

c(A) = sup
Q∈P

Q(A) for all A ∈ F .
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It is well-known that the distorted probability c : F → [0, 1], given by (16), is

an exact capacity if, for all p, q ∈ (0, 1) with p < q,

T (p)

p
≥ T (q)− T (p)

q − p
≥ 1− T (q)

1− q
. (17)

If (Ω,F ,P) is atomless, also the converse holds true, cf. [2]. In this case,

T (p) = sup
Q∈P

∫ 1

1−p
qQ(s) ds for all p ∈ [0, 1], (18)

where qQ denotes the quantile function of the density dQ
dP , see, e.g., [22, Lemma

4.60]. In particular,

MoC(p) =
T (p)

p
− 1 = sup

Q∈P
ES1−p

P
(
dQ
dP
)
− 1 for all p ∈ (0, 1],

where, for α ∈ (0, 1] and Q ∈ P, ESαP
(
dQ
dP
)
:= 1

1−α

∫ 1
α qQ(s) ds denotes the

expected shortfall of the density dQ
dP with confidence level α. Note that (17) is,

for example, satisfied if T is concave, and observe that (17) implies that the

function T is nondecreasing and absolutely continuous as soon as

inf
p∈(0,1]

T (p) = 0. (19)

Recall that a monotone function is a.e. differentiable and that absolute conti-

nuity of T implies that

T (p) =

∫ p

0
T ′(s) ds for all p ∈ [0, 1],

where T ′ denotes the weak derivative of T . Moreover, (17) implies that

MoC(q) ≤ MoC(p) for all p, q ∈ (0, 1] with p ≤ q.

In fact, assume that (17) is satisfied, and let p, q ∈ (0, 1]. If p = q, the statement

is trivial, and if p < q,

T (p) qp − T (p)

q − p
=

T (p)

p
≥ T (q)− T (p)

q − p
,

which yields that T (p) qp ≥ T (q).

We conclude this section with the following characterization of the minorants of

distorted PDs, which can be found in a similar yet different form in [22, Theorem 4.79].

Proposition 50. Let T : [0, 1] → [0, 1] be a distortion function, which satisfies (17)

and (19), and Q be a probability measure on F . If∫ p

0
qQ(1− s) ds ≤ T (p) for all p ∈ [0, 1], (20)

then

PDQ(X) ≤ T
(
PDP(X)

)
for all X ∈ Bb. (21)

If (Ω,F ,P) is atomless, also the converse holds true.

Remark 51. Consider the situation of Proposition 50. In view of Remark 49, a suf-

ficient condition for (20) and thus (21) to be satisfied is that qQ(1 − p) ≤ T ′(p) for

a.a. p ∈ (0, 1). That this is, however, not a necessary condition, can easily be seen by
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considering T (p) =
√
p for all p ∈ [0, 1] and Q = P. Then, qP(1−p) = 1 for all p ∈ (0, 1)

and T ′(p) = 1
2
√
p < 1 for all p ∈

(
1
4 , 1
)
. However,

T (p) =
√
p ≥ p =

∫ p

0
qP(1− s) ds.

7. A Case Study on Capital Requirements for Financial Institutions

In this section, we link our axiomatic study of default risk measures to financial

institutions’ capital requirements accounting for model uncertainty. According to the

guidelines of the European Banking Authority [20], the PDs of a rating system are

calibrated to a ‘best estimate’ level without using systematically conservative input

values for the calculation. Those PDs are then used in the risk-oriented group manage-

ment, among others. In order to establish the connection between model uncertainty

and capital requirements, we are guided by Article 179 (f) and Article 180 (e) of the

CRR [17] that determine that an appropriate margin of conservatism, reflecting the

expected range of estimation errors, must be formed for the ‘best estimate’ PD of the

rating system.

Usually, one differentiates between the expected loss (EL) and unexpected losses,

which are covered by risk-weighted assets (RWAs). According to CRR Article 153 [17],

the dependence of RWAs on the probability of default including model uncertainty is

described by the function RWA: [0, 1] → R≥0, via RWA(0) = 0, RWA(1) = 1, and

RWA(p) := 1.06 · 12.5 · EaD · LGD

(
N

(
G(p)−

√
R(p) ·G(0.999)√
1−R(p)

)
− p

)
(22)

with

R(p) := 0.12 · 1− e−50p

1− e−50
+ 0.24 ·

(
1− 1− e−50p

1− e−50

)
for all p ∈ (0, 1),

where N is the cumulative distribution function of the standard normal distribution,

G denotes the inverse distribution function of the standard normal distribution, and R

can be seen as a correlation factor.1 On a practical level, a frequent choice for the PD

including model uncertainty is the ‘best-estimate’ PD of the rating system multiplied

with suitable a margin of conservatism (1 + MoC as a multiplier). In order to get a

better understanding for the RWA formula, we briefly explain the terms EaD and LGD.

The exposure at default (EaD) can be seen as the amount of credits of a borrower at

the time of its default, for instance 1 million. The loss given default (LGD) on the

other hand is the height of the loss in relation to the amount of exposure at the time

of default, i.e., it is a number between 0 and 1.

Risk-weighted assets are essential for financial institutions’ capital requirements,

since they must hold at least 8% of RWAs as equity capital. Hence, they play an

important role for financial institutions’ risk provisions. In comparison to the expected

loss (EL), which is calculated as the product of ‘best-estimate’ PD, LGD, and EaD.

RWAs focus on unexpected losses from exposures, which show different characteristics

compared to expected losses.

In Figure 1, we see the dependence of RWAs on p, where we assume the EaD to be

1 and the LGD to be 0.4. The standardization of setting the EaD as 1 is also referred

1For simplicity, we assume the effective maturity M in Article 153 of the CRR [17] to be equal to 1.
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Figure 1. RWA dependence on PD

to as risk weight (RW) in Article 153 of the CRR [17]. We observe that the function

is not monotonically increasing with respect to the probability of default p ∈ [0, 1] –

a characteristic that applies, e.g., to expected losses. This property is not surprising

since for very high PDs the loss is expected and thus the unexpected loss becomes

smaller (for the same exposure). Nonetheless, this could potentially lead to problems

concerning risk provisions as we will see in Example 53 below.

In the following examples, we now focus on a concrete rating system consisting of 22

rating classes and regard two distinct methods of quantifying model uncertainties. Our

aim is to analyze the effect of different default risk measures on capital requirements.

For the calculation of capital requirements corresponding to RWAs, the PD including

the MoC (hence including model uncertainty) is used. In general, a common problem

occurring in the course of a model estimation is the lack of sufficient data. As a conse-

quence, the model is sometimes estimated on pooled data, using combined information

of many financial institutions in order to attain a higher validity.

There are of course several ways to specify a margin of conservatism. On the one

hand, it is conceivable to calculate a MoC that is constant for all rating classes, since

uncertainties cannot always be precisely quantified and the total data provides a more

stable result for the entire rating system. However, on the other hand, the highly

different amount of data per rating class strongly suggests that the uncertainty of the

model should depend on the rating class as well. In the following examples, we compare

the influence of these different approaches on capital requirements.

To display the 22 rating classes, we fix a discrete probability measure P and the

reference default risk measure PDP(X) := P(X > 0). To express the variable model

uncertainty, which, loosely speaking, will be referred to as the ‘true’ model uncertainty,
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we use a distorted PD (which is a default risk measure according to 5), where the

distortion function T : [0, 1] → [0, 1] is assumed to be nondecreasing with T (0) = 0 and

T (1) = 1, and the margin of conservatism is given by

MoC(p) =
T
(
p
)

p
− 1 for all p ∈ (0, 1].

If we allowed T to be decreasing on a subinterval of [0, 1], then ϱ(X) := T
(
PDP(X)

)
is, in general, no default risk measure, cf. Example 45.

From a practical point of view, the exclusion of decreasing functions T in not a big

restriction, since it would imply that there are at least two neighboring rating classes

k and k + 1 with corresponding PDs denoted by pk and pk+1 such that T (pk) is larger

than T (pk+1). Assuming, for example, that the PD of two neighboring rating classes

grows by the factor 1.5, i.e., pk+1 = 1.5 · pk, we would attain the inequality

MoC(pk) =
T
(
pk
)

pk
− 1 >

T
(
pk+1

)
pk

− 1 = 1.5 ·
T
(
pk+1

)
pk+1

− 1 = 1.5 ·MoC(pk+1) + 0.5,

where the uncertainty of the rating classes k and k + 1 is expressed by MoC(pk) and

MoC(pk+1), respectively. If, for instance, MoC(pk+1) = 0.2, then MoC(pk) > 0.8, which

implies a significantly larger uncertainty in rating class k both in relative and absolute

numbers. Such a difference between two rating classes neither seems to be realistic nor

is observed in practice.

Example 52 (Monotonically decreasing uncertainty with respect to the rating class).

In this example, we focus on a model where the ‘true’ uncertainty decreases with

increasing rating classes, i.e., for two arbitrary rating classes k and k + 1 with PDs pk
and pk+1, respectively, we have

MoC(pk) ≥ MoC(pk+1).

Note that this is consistent with the choice of a distortion function T that satisfies (17),

which we will assume throughout the remainder of this example. As a consequence,

the distorted PD has a representation over probability measures, which is not unusual

since the lack of defaults in the ‘good’ rating classes typically makes it very difficult to

adequately estimate a PD – thus the uncertainty here is very high. In the intermediate

rating classes, there are both a lot of customers and defaults. The set of very ‘bad’

customers is often smaller but most of the defaults occur there implying a higher

validity.

In Figure 2, we depict three different functions. The green function is just the identity

function, the dashed blue line is the model uncertainty where a constant MoC is used

for all rating classes, and the orange line describes the uncertainty through the function

T (p) = p +
√
p−p
40 for p ∈ [0, 1], which represents a ‘small’ perturbation of the identity

expressing the ‘true’ uncertainty of the model per rating class. We observe that

T (pk) > pk
(
1 +MoCconstant

)
for k ≤ 8

and

T (pk) < pk
(
1 +MoCconstant

)
for k > 8.

To illustrate the impact of different uncertainties on RWAs, we consider the quotient

between RWAs with model uncertainty and RWAs without model uncertainty once with

variable uncertainty and then with a constant uncertainty per rating class. In other
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Figure 2. PDs per rating class including and excluding uncertainty

words, the quotient tells us with which factor the capital requirement grows per rating

class due to uncertainty.

Unsurprisingly, the described factor in Figure 3 is larger for the variable uncertainty

in the rating classes 1 to 8. For the other rating classes, it is the other way around. In

this case, we can conclude that a higher model uncertainty leads to more RWAs and

thus a higher amount of capital requirement. As a result, we could have a scenario where

a financial institution uses the model uncertainty with a constant MoC to calculate its

risk provisions. If the institution has customers primary in the good rating classes then

it would not have enough capital requirement, again assuming that the ‘true’ model

uncertainty is expressed by T . On the other hand, an institution with customers in

bad rating classes would have a larger amount of capital requirement than necessary

by regulation, thus leading to a possible competitive disadvantage.

Example 53 (Nonmonotonic uncertainty per rating class). In a second example, we

focus on a rating model that is estimated only on customers that are in good or middle

rating classes. Thus, the uncertainty for bad rating classes is high since the calibration

function has to be extrapolated on it without direct information from backtesting or

benchmarking data. Such constellations can appear in low default portfolios where,

historically, no ‘bad’ customers have been observed yet. Nonetheless, it could happen

that some customers will be classified in bad rating classes in the future and, in that

case, the accuracy of the extrapolation and its uncertainty cannot be neglected.

Again, the distortion function T expresses the ‘true’ degree of uncertainty, and is

assumed to be nondecreasing. Hence, the ‘true’ uncertainty of the model again depends

on the rating classes and peaks on both the very good and the very bad classes. The

distortion function T can explicitly be constructed in such a way that the orange line

lies above the dashed blue line for the rating classes 1 to 4 and 18 to 22.
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Figure 3. RWA growth due to uncertainty

Eye-catching is the fact that, for the rating classes from 20 to 22, the growth of RWAs

caused by uncertainty is smaller when, instead of the constant MoC, the distortion

function T is used although the uncertainty here is much higher. This can be explained

by recalling the property of RWAs of not being monotonically increasing with respect

to the PD (including uncertainty) since the unexpected loss gets smaller for very high

PDs. However, regarding capital requirements, model uncertainty is only considered for

RWAs and not for ELs. So, in contrast to the regulatory intention to increase equity

capital by considering model uncertainty, for those rating classes (20 to 22) the capital

requirement is de facto smaller when higher model uncertainty is taken as a basis.

Appendix A. Distorted probabilities

Throughout this section, let (Ω,F ,P) be a probability space and T : [0, 1] → [0, 1]

with T (0) = 0 and T (1) = 1. Moreover, let

c(A) := T
(
P(A)

)
for all A ∈ F .

The following lemma can be found, e.g., in [22]. For the reader’s convenience, we provide

a short proof.

Lemma 54. The capacity c is 2-alternating if T is concave. If (Ω,F ,P) is atomless,

also the converse is true.

Proof. First assume that T is concave, and let A,B ∈ F . Since P(A ∩ B) ≤ P(A) ≤
P(A ∪B), there exists some λ ∈ [0, 1] such that

P(A) = λP(A ∪B) + (1− λ)P(A ∩B).

Since P(A) + P(B) = P(A ∪B) + P(A ∩B), it follows that

P(B) = (1− λ)P(A ∪B) + λP(A ∩B).
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Figure 4. PDs per rating class including and excluding uncertainty

Figure 5. RWA growth due to uncertainty

Hence, the concavity of T implies that

T
(
P(A)

)
+ T

(
P(B)

)
≥ T

(
P(A ∪B)

)
+ T

(
P(A ∩B)

)
.
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Now, assume that (Ω,F ,P) is atomless and that c is 2-alternating. By Remark 39

b), there exists a set P of countably additive and (w.r.t. P) absolutely continuous

probability measures with∫
X dc = sup

P∈P
EP(X) for all X ∈ Bb.

Let p, q ∈ [0, 1] with p ≤ q. Since (Ω,F ,P) is atomless, there exist A1, A2 ∈ F with

P(A1) = p, P(A2) = q, and A1 ⊂ A2. Let ε > 0 and X := 1A1 +1A2 . Then, there exists

some Q ∈ P with

c(A1) + c(A2) =

∫
X dc ≤ EQ(X) + ε = Q(A1) +Q(A2) + ε.

Since Q(A1) ≤ c(A1) and Q(A2) ≤ c(A2), it follows that c(A1) ≤ Q(A1) + ε and

c(A2) ≤ Q(A2) + ε. By [22, Lemma 4.60], for all λ ∈ [0, 1],

T
(
(1− λ)p+ λq

)
≥
∫ 1

1−(1−λ)p−λq
qQ(s) ds ≥ (1− λ)

∫ 1

1−p
qQ(s) ds+ λ

∫ 1

1−q
qQ(s) ds

≥ (1− λ)c(A1) + λc(A2)− ε = (1− λ)T (p) + λT (q)− ε,

where, in the second step, we used the fact that the map [0, 1] → R, t 7→
∫ 1
1−t qQ(s) ds

is concave. □

Remark 55. By [2, Lemma 3.1], the function T satisfies (17) if and only if

T (p) = sup
i∈I

Ti(p) for all p ∈ [0, 1], (23)

where I is a nonempty set and Ti : [0, 1] → [0, 1] is concave with Ti(0) = 0 and Ti(1) = 1

for all i ∈ I. In this case, the supremum in (23) is in fact a maximum.

Using Lemma 54, we can prove the following result from [2], see also [28].

Lemma 56. The capacity c is exact if T satisfies (17). If (Ω,F ,P) is atomless, also

the converse is true.

Proof. First assume that T satisfies (17). Then, by Remark 55, T (p) = supi∈I Ti(p) for

all p ∈ [0, 1], where I is a nonempty set and Ti : [0, 1] → [0, 1] is concave with Ti(0) = 0

and Ti(1) = 1 for all i ∈ I. By Lemma 54, for each i ∈ I, there exists a nonempty set

Pi of countably additive probability measures with

Ti

(
P(A)

)
= sup

Q∈Pi

Q(A) for all A ∈ F .

Let P :=
⋃

i∈I Pi. Then,

T
(
P(A)

)
= sup

i∈I
Ti

(
P(A)

)
= sup

i∈I
sup
Q∈Pi

Q(A) = sup
Q∈P

Q(A) for all A ∈ F .

Now, assume that (Ω,F ,P) is atomless and that c is exact. Let P be a nonempty set

of countably additive probability measures with

T
(
P(A)

)
= sup

Q∈P
Q(A) for all A ∈ F .

Then, By Remark 39 and [22, Lemma 4.60],

T (p) = sup
Q∈P

∫ 1

1−p
qQ(s) ds for all p ∈ [0, 1].
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Since the map [0, 1] → R, t 7→
∫ 1
1−t qQ(s) ds is concave for all Q ∈ P, it follows that T

satisfies (17) by Remark 55. □

Remark 57. Alternatively, Lemma 54 and Lemma 56 can also be proved without

invoking the Kusuoka representation of law-invariant risk measures. In this case, one

uses the fact that, for every probability measure Q, which is absolutely continuous

w.r.t. P, every set C ∈ F with P(C) > 0, and every λ ∈ (0, 1), there exists a set A ∈ F
with A ⊂ C, P(A) = λP(C), and Q(A) ≥ λQ(C). In fact, let

t := inf

{
s > 0

∣∣∣∣P({dQ
dP > s

}
∩ C

)
≤ λP(C)

}
.

Since (Ω,F ,P) is atomless, there exists a set B ∈ F with B ⊂
{
dQ
dP = t

}
and

P
((

B ∪
{

dQ
dP > t

})
∩ C

)
= λP(C) > 0.

Then, for A :=
(
B ∪

{
dQ
dP > t

})
∩ C,

Q(C) ≤ tP(C \A) +Q(A) ≤ P(C \A)

P(A)
EP

(
1A

dQ
dP

)
+Q(A)

≤ P(C)

P(A)
Q(A) =

Q(A)

λ
.

Note that P(C \A) = (1− λ)P(C) and Q(C \A) ≤ (1− λ)Q(C).

Appendix B. Proofs of Section 2

Proof of Theorem 10. We first show that ϱF (X) = ϱ(X) for all X ∈ C. In order to do

so, let X ∈ C. Since F (X − X) = F (0) = 0, it follows that ϱF (X) ≤ ϱ(X). On the

other hand, ϱ(X) ≤ ϱ(X0) for all X0 ∈ C with F (X − X0) ≤ 0, and we obtain that

ϱ(X) ≤ ϱF (X). Since C contains all constants, we have already verified Property (ii)

in Definition 2 for ϱF . In order to prove Property (i), let X,Y ∈ Bb with X ≤ Y . Since

F is monotone,{
X0 ∈ C

∣∣F (X −X0) ≤ 0
}
⊂
{
X0 ∈ C

∣∣F (Y −X0) ≤ 0
}
,

which implies that ϱF (X) ≤ ϱF (Y ). □

Proof of Corollary 11. Let X ∈ Bb. Since

ϱ(X) ≤ ϱ(X0) = ϱ(X0) for all X0 ∈ C with X ≤ X0,

it follows ϱ(X) ≤ ϱsup(X). □

Appendix C. Proofs of Section 3

Proof of Proposition 15. In order to prove part a), let α ∈ (0, 1). Then,

ϱ(X −m) ≤ ϱ(Y −m) for all m ∈ R and X,Y ∈ Bb with X ≤ Y.

Hence, VaRα
ϱ (X) ≤ VaRα

ϱ (Y ). Since ϱ(0) = 0, it follows that VaRα
ϱ (0) = 0. Moreover,

by definition of VaRα
ϱ , VaR

α
ϱ (X +m) = VaRα

ϱ (X) +m for all X ∈ Bb and m ∈ R. We

have therefore shown that VaRα
ϱ is a monetary risk measure.

Next, we prove part b). To that end, let X ∈ Bb. First assume that ϱ(X) = 1. Then,

VaRα
ϱ (X) > 0 for all α ∈ (0, 1), so that

inf
({

α ∈ (0, 1)
∣∣ VaRα

ϱ (X) ≤ 0
}
∪ {1}

)
= 1 = ϱ(X).
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Next, assume that ϱ(X) < 1. Then, for all α ∈ (0, 1), VaRα
ϱ (X) ≤ 0 if and only if

ϱ(X) ≤ α. Hence,

inf
({

α ∈ (0, 1)
∣∣ VaRα

ϱ (X) ≤ 0
}
∪ {1}

)
= ϱ(X).

We proceed with the proof of part c). If VaRα
ϱ is positively homogeneous for all α ∈

(0, 1), then ϱ is scaling invariant by part b). On the other hand, if ϱ is scaling invariant,

then, for all α ∈ (0, 1), X ∈ Bb, and λ > 0,{
m ∈ R

∣∣ ϱ(λX −m) ≤ α
}
=
{
λm ∈ R

∣∣ ϱ(X −m) ≤ α
}
.

Hence, for all α ∈ (0, 1), X ∈ Bb, and λ > 0, it follows that

VaRα
ϱ (λX) = λVaRα

ϱ (X).

It remains to prove part d). If ϱ is quasi-convex, it follows that the level set

Aα := {X ∈ Bb | ϱ(X) ≤ α}

is convex for all α ∈ (0, 1). Hence, by [22, Proposition 4.7],

VaRα
ϱ (X) := inf{m ∈ R |X −m ∈ Aα}, for X ∈ Bb,

defines a convex risk measure for all α ∈ (0, 1). Next, assume that VaRα
ϱ is convex for

all α ∈ (0, 1). Then, for all α ∈ (0, 1), λ ∈ (0, 1), and X,Y ∈ Bb with ϱ(X) ≤ α and

ϱ(Y ) ≤ α, it follows that

VaRα
ϱ

(
λX + (1− λ)Y

)
≤ λVaRα

ϱ (X) + (1− λ)VaRα
ϱ (Y ) ≤ 0,

so that, by part b),

ϱ
(
λX + (1− λ)Y

)
≤ α.

This shows that ϱ is quasi-convex. □

Proof of Theorem 19. Let X,Y ∈ Bb with X ≤ Y . Since Rα(X) ≤ Rα(Y ) for all

α ∈ (0, 1), it follows that ϱ(X) ≤ ϱ(Y ). Moreover, Rα(0) = 0 for all α ∈ (0, 1), so

that ϱ(0) = 0. On the other hand, for all m ∈ R with m > 0, Rα(m) = m > 0 for all

α ∈ (0, 1). Therefore, {
α ∈ (0, 1)

∣∣Rα(X) ≤ 0
}
∪ {1} = {1}

and it follows that ϱ(X) = 1. We have therefore shown that ϱ is a default risk measure.

It remains to show the equality Rα = VaRα
ϱ for all α ∈ (0, 1). To that end, let

α ∈ (0, 1) and X ∈ Bb. First, observe that

ϱ
(
X −Rα(X)

)
≤ α.

Hence, VaRα
ϱ (X) ≤ Rα(X). Now, let β ∈ (α, 1) and m ∈ R with ϱ(X − m) ≤ α.

Then, Rβ(X − m) ≤ 0, which implies that Rβ(X) ≤ m. Taking the supremum over

all β ∈ (α, 1) and the infimum over all m ∈ R with ϱ(X − m) ≤ α, it follows that

Rα(X) ≤ VaRα
ϱ (X). □

Proof of Proposition 20. The implication (ii)⇒ (i) follows from Proposition 15 b), once

we have shown that (i) implies (ii). To that end, let X ∈ Bb and α ∈ (0, 1). Then, for

all m ∈ R with

sup
P∈P

P(X > m) = ϱ(X −m) ≤ α,
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it follows that m ≥ VaRα
P(X) for all P ∈ P. This implies that

sup
P∈P

VaRα
P(X) ≤ VaRα

ϱ (X).

Now, let ε > 0 and

m := sup
P∈P

VaRα
P(X) + ε.

Then, for all P ∈ P, P(X > m) ≤ α. This implies that

VaRα
ϱ (X) ≤ m = sup

P∈P
VaRα

P(X) + ε.

Taking the limit ε ↓ 0, the claim follows. □

Proof of Proposition 22. Again, the implication (ii)⇒ (i) follows from Proposition 15

b), once we have shown that (i) implies (ii). To that end, let X ∈ Bb and α ∈ (0, 1).

Then, for all m ∈ R with

T
(
P(X > m)

)
= ϱ(X −m) ≤ α,

it follows that P(X > m) ≤ T−1(α). Now, let m ∈ R with P(X > m) ≤ T−1(α). Since

T is lower semicontinuous, it follows that

T
(
P(X > m)

)
≤ α.

Hence, {
m ∈ R

∣∣ϱ(X −m) ≤ α
}
=
{
m ∈ R

∣∣P(X > m) ≤ T−1(α)
}
.

Taking the infimum, both, on the left and the right-hand side, the claim follows. □

Appendix D. Proofs of Section 4

Proof of Proposition 26. Let X ∈ Bb with X ≥ 0. In Remark 25 a), we have already

seen that ϱ(X) ≤ ϱ(1{X>0}). On the other hand, for all ε > 0,

ϱ
(
X + ε1{X>0}

)
≥ ϱ
(
ε1{X>0}

)
= ϱ
(
1{X>0}

)
and, using again Remark 25 a),

ϱ(X) ≥ ϱ
(
X1{X>ε}

)
≥ ϱ
(
ε1{X>ε}

)
= ϱ
(
1{X>ε}

)
.

The proof is complete. □

Proof of Proposition 28. We start with the implication (i)⇒ (ii). Let m > 0 and X ∈
Bb with X ≥ 0. Then, ϱ(X) ≤ ϱ

(
X +m1{X>0}

)
. Moreover, for every λ ∈ (0, 1),

ϱ
(
X +m1{X>0}

)
= ϱ
(
λX + λm1{X>0}

)
≤ ϱ
(
X + λm1{X>0}

)
.

Therefore, by assumption,

ϱ
(
X +m1{X>0}

)
≤ inf

λ∈(0,1)
ϱ
(
X + λm1{X>0}

)
= ϱ(X).

In order to prove the implication (ii)⇒ (i), let X ∈ Bb with X ≥ 0 and λ > 0. If X = 0

or λ = 1, it follows that ϱ(λX) = ϱ(X). Therefore, assume that supX > 0 and λ ̸= 1.

First, we consider the case, where λ > 1. Then, λX ≥ X, so that ϱ(λX) ≥ ϱ(X).

Moreover, λX ≤ X+(λ−1) supX1{X>0}. Defining m := (λ−1) supX, it follows that

ϱ(λX) ≤ ϱ
(
X +m1{X>0}

)
= ϱ(X).

Now, let λ < 1. Then, ϱ(λX) ≤ ϱ(X). On the other hand,

X ≤ λX + (1− λ)(supX)1{X>0} = λX + (1− λ)(supX)1{λX>0}.
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Therefore, defining m := (1− λ) supX, we find that

ϱ(X) ≤ ϱ
(
λX +m1{λX>0}

)
= ϱ(λX).

By Proposition 26, (i) implies (iii) and, trivially, (iii) implies (i). □

Proof of Lemma 30. Trivially, (i)⇒ (ii) and (ii)⇒ (iii). In order to prove the remaining

implication (iii)⇒ (i), let X ∈ Bb. Then, X ≤ X+ and therefore ϱ(X) ≤ ϱ(X+). If

X ≥ 0, then X = X+ and it follows that ϱ(X) = ϱ(X+). Therefore, assume that

infX < 0 and define m := − infX. Then,

X+ −m1{X+=0} = X+ −m1{X≤0} ≤ X.

By assumption, we obtain that

ϱ(X+) = ϱ
(
X+ −m1{X+=0}

)
≤ ϱ(X).

□

Appendix E. Proofs of Section 5

Proof of Proposition 36. The implication (i)⇒ (ii) follows from Remark 35 and the

implication (ii)⇒ (i) is trivial. □

Proof of Proposition 37. Clearly, (iii) implies (ii). The implication (ii)⇒ (i) follows di-

rectly from the fact that, for any sequence (Xn)n∈N ⊂ Bb with Xn ↗ X ∈ Bb as

n → ∞, {Xn > 0} ⊂ {Xn+1 > 0} for all n ∈ N and⋃
n∈N

{Xn > 0} = {X > 0}.

It remains to prove the implication (i)⇒ (iii). Let (Xn)n∈N ⊂ Bb and X ∈ Bb with

Xn ↗ X as n → ∞. By potentially adding ∥X1∥∞ to X and Xn for all n ∈ N and

using the fact that the Choquet integral is a monetary risk measure, we may w.l.o.g.

assume that X1 ≥ 0. Then, using the monotone convergence theorem,

lim
n→∞

∫
Xn dc = lim

n→∞

∫ ∞

0
ϱ(Xn − s) ds =

∫ ∞

0
ϱ(X − s) ds =

∫
X dc.

The proof is complete. □

Proof of Proposition 40. Clearly (ii) implies (i). We prove the nontrivial implication

(i)⇒ (ii). Let O denote the set of all open subsets of Ω and c(B) := ϱ(1B) for all

B ∈ O. Since ϱ is submodular with (14), it follows that

ϱ(X) = c
(
{X > 0}

)
for all X ∈ Lb.

The continuity from below of ϱ implies that c
(⋃

n∈NBn

)
= limn→∞ c(Bn) for all se-

quences (Bn)n∈N ⊂ O with Bn ⊂ Bn+1 for all n ∈ N. The statement now follows from

[34, Corollary 2.6]. □

Proof of Proposition 42. We first prove the implication (i)⇒ (iii). Let (Xn)n∈N ⊂ Bb

with Xn ↘ 0 as n → ∞. Using the monotone convergence theorem,

lim
n→∞

∫
Xn dc = lim

n→∞

∫ ∞

0
ϱ(Xn − s) ds = 0.

Clearly, (iii) implies (ii), and it remains to prove that (ii) implies (i). To that end,

observe that, for every sequence (Xn)n∈N ⊂ Bb with Xn ↘ 0 as n → ∞ and ε > 0,
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{Xn+1 > ε} ⊂ {Xn > ε} for all n ∈ N and
⋂

n∈N{Xn > ε} = ∅. Hence,

lim
n→∞

ϱ (Xn − ε) = lim
n→∞

ϱ
(
1{Xn>ε}

)
= 0.

The representation via (countably additive) probability measures now follows from the

standard theory on coherent risk measures, cf. [22]. □

Appendix F. Proofs of Section 6

Proof of Theorem 44. Clearly, (ii) implies (i). For the other implication, let

P :=
{
p ∈ [0, 1]

∣∣∃X ∈ C : P(X > 0) = p
}

Thus, for any p ∈ P , there exists some Xp ∈ C with P (Xp > 0) = p and, by our global

assumption on C, Ip := 1{Xp>0} ∈ C. For p ∈ [0, 1], we define

T (p) := ϱ(Iqp) with qp := sup
(
[0, p] ∩ P

)
.

As a result T (p) = ϱ(Ip) for all p ∈ P . In particular, T (0) = 0 and T (1) = 1. Let

X ∈ C and pX := PDP(X) = P(X > 0). Then, by assumption,

ϱ(X) = ϱ
(
1{X>0}

)
= ϱ(IpX ) = T (pX) = T

(
PDP(X)

)
.

□

Proof of Theorem 47. In view of Theorem 44, we only have to prove that the distortion

function in (ii) is nondecreasing. To that end, assume that ϱ(X) = T
(
PDP(X)

)
for all

X ∈ C with a distortion function T : [0, 1] → [0, 1]. Let p, q ∈ P . Since C contains an

ordered subset, there exist X,Y ∈ C with PDP(X) = p, PDP(Y ) = q, and {X > 0} ⊂
{Y > 0}. Due to the monotonicity of ϱ, it follows that

T (p) = ϱ(X) = ϱ
(
1{X>0}

)
≤ ϱ
(
1{Y >0}

)
= ϱ(Y ) = T (q).

The proof is complete. □

Proof of Proposition 50. First assume that Q satisfies (20). Then,

T (p) ≥
∫ p

0
qQ(1− s) ds =

∫ 1

1−p
qQ(s) ds for all p ∈ [0, 1].

Therefore, using [22, Lemma 4.60],

T
(
PDP(X)

)
≥
∫ 1

1−PDP(X)
qQ(s) ds ≥ PDQ(X) for all X ∈ Bb.

On the other hand, if (Ω,F ,P) is atomless and Q satisfies (21), it follows from (18)

that

T (p) ≥
∫ 1

1−p
qQ(s) ds =

∫ p

0
qQ(1− s) ds for all p ∈ [0, 1].

□
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