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Abstract: The analysis of optimal risk sharing has been thus far largely re-

stricted to non-expected utility models with concave utility functions, where con-

cavity is an expression of ambiguity aversion and/or risk aversion. This paper

extends the analysis to α-maxmin expected utility, Choquet expected utility, and

Cumulative Prospect Theory, which accommodate ambiguity seeking and risk

seeking attitudes. We introduce a novel methodology of quasidifferential calculus

of Demyanov and Rubinov (1986, 1992) and argue that it is particularly well-

suited for the analysis of these three classes of utility functions which are neither

concave nor differentiable. We provide characterizations of quasidifferentials of

these utility functions, derive first-order conditions for Pareto optimal allocations

under uncertainty, and analyze implications of these conditions for risk sharing

with and without aggregate risk.
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1 Introduction

The expected utility hypothesis, with risk aversion and common beliefs, leads

to clear-cut results on optimal risk sharing with and without aggregate risk.

Motivated by the evidence – empirical and experimental – that expected utility

fails to properly describe people’s preference in many situations involving risk

or uncertainty, the analysis of optimal risk sharing has been extended in the

last two decades to non-expected utility models such as the multiple-prior model

of Gilboa and Schmeidler (1989), the variational preferences of Maccheroni et

al. (2006), the smooth ambiguity model of Klibanoff et al. (2005), the Knightian

uncertainty model of Bewley (1986), the Choquet (non-additive) expected utility

model of Schmeidler (1989), and others.1 An important assumption in many of

these extensions has been concavity of the utility functions. Concavity implies

that preferences exhibit ambiguity aversion and risk aversion.

Ambiguity seeking and risk seeking are two broad behavioral phenomena that

have strong empirical support. The most popular models in applied and theo-

retical research that accommodate ambiguity seeking and mixed attitude toward

ambiguity are the α-maxmin expected utility (α-MEU), the smooth ambigu-

ity model with non-concave “second-order” utility, the Choquet expected utility

(CEU) with non-convex capacity, and the Cumulative Prospect Theory (CPT)

of Tversky and Kahneman (1992). The utility functions of these models are non-

concave, and – with exception of the smooth model – non-differentiable. This

renders the standard methods of differential calculus and convex analysis inap-

plicable to the analysis of optimal risk sharing.

This paper develops a novel methodology for studying (first-order) optimality

conditions for utility functions under uncertainty that are neither concave nor

differentiable. The methodology is based on quasidifferential calculus advanced

in the 1980’s by V. Demyanov and A. Rubinov and others; see Demyanov and

Rubinov (1986, 1992). We argue that it is particularly well-suited for α-MEU,

CEU, and CPT utility functions, and superior to the occasionally used subdif-

ferential of Clarke (1983).2 We provide characterizations of the quasidifferentials

of these three classes of utility functions, derive first-order conditions for optimal

risk sharing, and analyze their implications.

Quasidifferential calculus focuses on directional derivatives, and can be seen

1We review the literature on optimal risk sharing at the end of this section.
2See Ghirardato and Siniscalchi (2012).
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as an extension of sub- and superdifferential calculus of convex analysis (see Rock-

afellar (1970)) beyond concave and convex functions. It is well known that the

directional derivative is a linear function of the directional vector for a (Gateaux)

differentiable function. For a concave function, the directional derivative is a

sublinear function3 of the directional vector, while for a convex function, it is

superlinear. In quasidifferential calculus, the directional derivative is represented

as the sum of a sublinear function and a superlinear function. There is a pair of

convex sets – identified in a non-unique way4 – such that the sublinear part is the

support function (maximum) of one set and the superlinear part is the negative

support function (minimum) of the second set. The two sets are called superdif-

ferential and subdifferential because they coincide with those of convex analysis

for concave and convex functions, respectively. Examples of quasidifferentiable

functions include concave and convex functions, their linear combinations, and

maxima and minima of arbitrary collections of differentiable functions.

Important results of quasidifferential calculus are statements of first-order con-

ditions for unconstrained and constrained optimization problems. For example,

the necessary first-order condition for unconstrained maximum of a quasidifferen-

tiable function on an open set is that the negative of the subdifferential is a subset

of the superdifferential. It is a unified statement of the known first-order con-

ditions for differentiable, concave, and convex functions; see Section 2. A strict

form of this condition, which requires that the negative of the subdifferential is

a subset of the interior of the superdifferential, is a sufficient condition for local

maximum. First-order conditions – necessary, and sufficient – for constrained

optimization problems have similar statements featuring Lagrange multipliers.

Quasidifferential calculus is an alternative to the method of generalized sub-

differential of Clarke (1983).5 Both methods provide first-order conditions in

optimization problems. A drawback of the Clarke subdifferential is its lack of

additivity. The subdifferential of a sum of two functions need not be equal to the

sum of subdifferentials – it is merely a subset thereof. For example, the α-MEU

function is a sum of maximum and minimum functions, but there is no known

characterization of the Clarke subdifferential of it. In contrast, the basic rules of

3A function is sublinear (superlinear) if it is subadditive (superadditive, respectively) and

positively homogeneous.
4Sub- and superdifferentials are identified up to an equivalence class of a relation between

pairs of convex sets that we introduce in Section 2. All results for quasidifferentiable functions

hold independently of the choice of sub- and superdifferentials unless explicitly stated.
5We discuss the relationship between these two methods in details in Section 2.1.
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differentiation – in particular, additivity – continue to hold for quasidifferentia-

tion; see Appendix B.

In the first part of the paper, we show that utility functions of α-MEU, CEU,

and CPT models, all with arbitrary utility-of-wealth functions, are quasidiffer-

entiable, and we derive their quasidifferentials. The α-MEU model is a general-

ization of the multiple-prior expected utility in a way that the utility function

is a weighted sum of minimum and maximum of expected utilities over a set

of priors.6 Relative weight between the minimum and the maximum provides

a parametrization of attitudes toward ambiguity. The maximum term, which

stands for the ambiguity-seeking attitude, leads typically to non-concavity of the

resulting utility function. The quasidifferential of an α-MEU function consists

of the superdifferential equal to the minimizing probabilities scaled by marginal

utilities of wealth and the subdifferential equal to the maximizing probabilities

scaled by the marginal utilities. Thus the superdifferential is the same as for the

multiple-prior expected utility with a concave utility-of-wealth function.

The CEU model takes the form of the Choquet integral of a utility-of-wealth

function with respect to a capacity (or non-additive probability measure). While

a convex capacity reflects ambiguity aversion and a concave capacity reflects

ambiguity seeking, a general capacity leads to mixed ambiguity attitude. The

CEU function with non-convex capacity is typically non-concave. We show that

the CEU function with arbitrary capacity is quasidifferentiable, and derive its

quasidifferential by making use of a representation of the Choquet integral by

the Möbius inverse of a capacity. An important special case of the CEU model

is the Rank-Dependent Expected Utility (RDEU) model of Quiggin (1982) and

Yaari (1987) where the capacity is a distortion of the reference probability mea-

sure. Convexity of the distortion implies convexity of the resulting capacity, and

hence ambiguity aversion. Similarly, concavity of the distortion implies ambiguity

seeking. In applications of the RDEU model, the most important is an inverse

S-shaped distortion function which is neither convex nor concave. It reflects

overweighting the worst and the best outcomes, which has been documented in

empirical work; see Wakker (2010, Chapter 7). We present a novel representation

of an RDEU function with inverse S-shaped distortion as a weighted sum of min-

imum and maximum of expected utility functions with different sets of beliefs for

minimum and maximum, and show that its quasidifferential takes a similar form

to the quasidifferential of an α-MEU function.

6See Ghirardato et al. (2004).
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The CPT model postulates a utility function that is a sum of two RDEU

functions – one for gains and one for losses – so as to accommodate reference de-

pendence of preferences. In the most popular formulation, distortion functions of

the RDEU’s are inverse S-shaped and the utility-of-wealth function is convex over

losses and concave over gains. Convexity over losses reflects risk-seeking behavior

in regard to losses. We show that the CPT utility function with inverse S-shaped

distortions and a convex-concave utility-of-wealth function is quasidifferentiable,

and we present a method of deriving its quasidifferential.

The second part of the paper is concerned with optimal risk sharing for qua-

sidifferentiable utility functions. An important result is a statement of first-order

necessary conditions for an interior Pareto optimal allocation for general quasid-

ifferentiable utility functions. They require that for every profile of vectors in the

subdifferentials at an optimal allocation there exists a profile of vectors in the su-

perdifferentials such that, for every agent, the sum of sub- and superdifferentials

is a scale-multiple of the same vector. These conditions are an extension of the

standard first-order conditions on marginal rates of substitution for differentiable

functions and the more general conditions for concave or convex functions. We

provide a statement of sufficient first-order conditions for local Pareto optima as

well.

Several interesting implications emerge when our first-order necessary con-

ditions are applied to the α-MEU model. If the utility-of-wealth functions are

concave, then every Pareto optimal allocation with α-MEU functions is an op-

timal allocation for expected utility functions with the same utility-of-wealth

functions and heterogeneous beliefs taken from the agents’ sets of priors. For

small sets of priors, this is a significant restriction on allocations that can be

optimal. Further, we show that there cannot exist a risk-free Pareto optimal

allocation in no-aggregate-risk economy unless the sets of priors have non-empty

intersection, that is, unless there is a common prior. Pareto optimal allocations

with RDEU functions with inverse S-shaped distortions have similar properties

as with the α-MEU. We analyze the first-order conditions of Pareto optimality

for the CEU and the CPT models as well.

The paper is organized as follows. Section 2 introduces quasidifferential cal-

culus and provides a discussion of the relationship with the method of Clarke

(1983). In Section 3 we analyze quasidifferentiability of α-MEU, CEU, RDEU

and CPT utility functions. We present the first-order conditions for Pareto opti-

mal allocations in Section 4, and derive some implications for the utility functions
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of Section 3. Section 5 contains concluding remarks. The appendix consists of

three parts: Part A contains proofs omitted from Sections 3 and 4. Part B

provides some useful results of quasidifferential calculus, and part C contains a

discussion of the class of capacities of Jaffray and Philippe (1997) introduced in

Section 3.

Related literature: There is vast empirical and experimental literature doc-

umenting heterogeneous attitudes toward ambiguity. Trautmann and van de

Kuilen (2015) survey evidence from Ellsberg-style experiments. Bossaerts et al.

(2010) and Ahn et al. (2014) find evidence of heterogeneous attitudes toward

ambiguity in an asset market experiment hypothesizing that subjects follow the

α-MEU model.

Properties of efficient allocations for preferences that exhibit ambiguity aver-

sion have been extensively studied in the literature over the past two decades.

Billot et al. (2001) show that if agents with concave multiple-prior expected util-

ities have at least one prior in common and there is no aggregate risk, then all

interior Pareto optimal allocations are risk free. Rigotti et al. (2008) extend that

result to other models of convex preferences under ambiguity. Ghirardato and

Siniscalchi (2018) study optimal risk sharing with no aggregate risk assuming

supportability of preferred sets at risk-free consumption plans instead of convex-

ity. Even this weaker assumption excludes ambiguity seeking in most models

of preferences under ambiguity. General properties of efficient allocations when

there is aggregate risk, such as comonotonicity and measurability with respect to

aggregate endowment, have been studied in Chateauneuf et al. (2000) and Dana

(2004) for CEU functions with convex capacities, and in Strzalecki and Werner

(2011) for general concave utility functions including multiple-prior utilities, vari-

ational preferences, and the smooth ambiguity model. Werner (2021) considers

participation in risk sharing among agents with multiple-prior expected utilities,

and shows that agents with the highest ambiguity (i.e., the largest sets of pri-

ors) and low risk aversion are most likely to hold risk-free consumption in any

Pareto optimal allocation. de Castro and Chateauneuf (2011) and Strzalecki and

Werner (2011) explore efficient risk sharing among ambiguity averse agents when

the aggregate risk is unambiguous.

It should be noted that the results of this paper on optimal risk sharing with

mixed attitudes toward ambiguity and risk are rather modest in comparison to the

aforementioned results for convex preferences. In particular, only the necessity
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part of the elegant result of Billot et al. (2001) extends to our setting.7 This

appears to be an inevitable consequence of dealing with non-convex preferences.

First-order necessary conditions for Pareto optimal allocations without dif-

ferentiability can be found in Rigotti et al. (2008) for concave utility functions.

Those conditions are stated in terms of subjective beliefs but can alternatively

be stated in terms of the standard superdifferential of convex analysis, as in

Aubin (1998). Ghirardato and Siniscalchi (2018) provide first-order conditions

for interior Pareto optimal allocations without concavity using the Clarke sub-

differential. The difficulty in applying this result to α-MEU or CEU functions

is that there is no known characterization of the Clarke subdifferential of these

functions. First-order conditions for Pareto optimal allocations with production

in terms of the Clarke normal cone instead of the subdifferential can be found in

Khan and Vohra (1987) and Bonnisseau and Cornet (1988).

There has been some recent interest in general equilibrium theory and wel-

fare theorems in economies with non-convex preferences. Araujo et al. (2018)

study existence of an equilibrium in complete markets under uncertainty when

a subset of agents have convex utility functions while the remaining agents have

concave utility functions. Araujo et al. (2017) study efficient allocations when

there is aggregate risk, continuum of states, and a subset of agents have convex

utility functions. They show that (strongly) risk averse agents have comono-

tone consumption plans in efficient allocations. Richter and Rubinstein (2015)

introduce methods of abstract geometric convexity to general equilibrium theory

and extend the welfare theorems by replacing the assumption of convexity in the

standard sense by abstract convexity. They provide examples of economies with

non-convexities in the standard sense – mostly with indivisible goods – where the

extended general equilibrium theory applies.

2 Quasidifferential Calculus

Quasidifferential calculus is an extension of sub- and superdifferential calculus

beyond convex and concave functions. We present basic concepts and results

that will be used later.

Let f : X → R be a real-valued function on an open subset X of RS. Function

f is said to be directionally differentiable at x ∈ X in the direction of x̂ ∈ RS if

7The sufficiency part extends for locally optimal allocations; see Section 4.
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the limit

f ′(x; x̂) = lim
t→0+

f(x+ tx̂)− f(x)

t
, (1)

exists. If the limit exists for every direction x̂ ∈ RS, then f is directionally

differentiable at x. If f is Gateaux differentiable, then the directional derivative

f ′(x; x̂) is the scalar product ∇f(x)x̂, where ∇f(x) ∈ RS is the gradient vector.

A function f is said to be quasidifferentiable at x if it is directionally differ-

entiable and, furthermore, there exist two compact and convex sets A and B in

RS such that

f ′(x; x̂) = max
z∈A

x̂z + min
z∈B

x̂z (2)

for every x̂ ∈ RS. Relation (2) is a representation of the directional derivative

by the sum of a sublinear function and a superlinear function. Sets A and B in

this representation are not unique. For example, the pair8 [A−S,B+S] satisfies

(2) for every convex and compact set S as well. More generally, any two pairs of

convex and compact sets [A,B] and [A′, B′] give the same representation as long

as9

A−B′ = A′ −B. (3)

Equation (3) induces an equivalence relation among pairs of convex and compact

sets in RS. Equivalence classes of that relation are in one-to-one correspondence

to sums of sublinear and superlinear functions on RS; see Demyanov and Rubinov

(1986). We refer to relation (3) as DR-equivalence.10 Any pair of sets [A,B] from

the DR-equivalence class satisfying (2) is denoted by ∂f(x) for A and ∂̄f(x) for

B, and written as

Df(x) = [∂f(x), ∂̄f(x)].

A function f is said to be subdifferenitiable at x if it is quasidifferentiable and

the superdifferential ∂̄f(x) is a singleton set for some DR-equivalent represen-

tation of the quasidifferential Df(x). A subdifferentiable function has sublinear

directional derivative. Every convex function is subdifferentiable at every x with

8Recall the set addition A + B = {a + b : a ∈ A, b ∈ B} and subtraction A − B = {a − b :

a ∈ A, b ∈ B}.
9Note that (2) can be written as f ′(x; x̂) = sA(x̂)− s−B(x̂), where sA denotes the support

function of the set A. Pairs [A,B] and [A′, B′] satisfy (3) if and only if sA−B′(x̂) = sA′−B(x̂)

for every x̂ ∈ RS . This can equivalently be written as sA(x̂)− s−B(x̂) = sA′(x̂)− s−B′(x̂) for

every x̂ ∈ RS . Thus (2) holds for [A,B] if and only if it holds for [A′, B′].
10See Pallaschke and Urbanski (1994) for an extensive discussion of the relation of DR-

equivalence and the problem of minimal representation of an equivalence class.
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∂f(x) being the subdifferential in the sense of convex analysis (and zero superdif-

ferential). Similarly, f is superdifferenitiable at x if it is quasidifferentiable and

the subdifferential ∂f(x) is a singleton set for some representation of Df(x).

The directional derivative of a superdifferenitiable function is superlinear. Every

concave function is superdifferentiable, with ∂̄f(x) being the superdifferential of

convex analysis. If the quasidifferential Df(x) has a representation with single-

ton sets as sub- and superdifferentials, then f is Gateaux differentiable at x. Any

pair of vectors (d, d̄) such that d+ d̄ = ∇f(x) is the quasidifferential of f at x.

For later use, we demonstrate now that a maximum function over a compact

set of parameters is subdifferentiable. Let ϕ be defined by

ϕ(x) = max
y∈Y

f(x, y), (4)

where f is continuous in (x, y) and continuously differentiable in x. The set Y ⊂
Rn is compact. Note that function ϕ may be neither convex nor concave.

Let ϕ∗(x) denote the set of maximizers in (4) at x. It follows from the Dan-

skin’s envelope theorem that the directional derivative of ϕ is

ϕ′(x, x̂) = max
y∗∈ϕ∗(x)

∇xf(x, y∗)x̂, (5)

for every x̂, where ∇xf denotes the gradient of f with respect to x. Equation (5)

implies that ϕ is quasidifferentiable with subdifferential given by

∂ϕ(x) = co{∇xf(x, y∗) : y∗ ∈ ϕ∗(x)}, (6)

where co denotes the convex hull, and zero superdifferential. Therefore ϕ is

subdifferentiable at x.

Summing up, the class of quasidifferentiable functions includes differentiable,

concave, convex functions, and maxima and minima of differentiable functions.

Sums, scale multiples, and compositions of quasidifferentiable functions are qua-

sidifferentiable. Further, maxima and minima of finite collections of quasidifferen-

tiable functions are quasidifferentiable as well. Most of the rules of differentiation

continue to hold for quasidifferentiation; see Appendix B.

Necessary first-order conditions for solutions to optimization problems can be

nicely stated for quasidifferentiable function. For example, the necessary condi-

tion for the unconstrained maximum x∗ of a quasidifferentiable function f on RS

is

−∂f(x∗) ⊂ ∂̄f(x∗),
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which can be equivalently expressed as that for every z ∈ ∂f(x∗) there exists

z̄ ∈ ∂̄f(x∗) such that z + z̄ = 0. The necessary condition for unconstrained

minimum is −∂̄f(x∗) ⊂ ∂f(x∗), with interchanged roles of the sub- and superdif-

ferentials. These are unified statements of the standard first-order conditions for

differentiable, concave, and convex functions. Strict forms of these conditions

– with ∂̄f(x∗) replaced by its interior for a maximum, and ∂f(x∗) replaced by

its interior for a minimum – are sufficient for local solutions. Note that these

first-order conditions do not depend on the choice of DR-equivalent pairs of sets

for sub- and superdifferentials.

Necessary first-order conditions for constrained maximization of a quasidiffer-

entiable function can be found in Demyanov and Dixon (1986) for various types

of constraints. To illustrate, we present a first-order condition for maximization

of a quasidifferentiable utility function f subject to the budget constraint. The

budget set is B(p) = {x ∈ RS
+| px ≤ pe}, where p ∈ RS

+ is a vector of prices

and e is an endowment. The necessary condition for a strictly positive solution

x∗ ∈ RS
++ is

−∂f(x∗) ⊂ ∂̄f(x∗)− {λp| λ ≥ 0}. (7)

This can be equivalently stated as that for every z ∈ ∂f(x∗) there exists z̄ ∈
∂̄f(x∗) and a multiplier λ∗ ≥ 0 such that z+ z̄ = λ∗p. Condition (7) with ∂̄f(x∗)

replaced by its interior is sufficient for a local constrained maximum. The relative

simplicity of condition (7) stems from the fact that the constraint function px is

linear and therefore differentiable.

2.1 Clarke Subdifferential and Quasidifferential

The quasidifferential is related to, but different from the Clarke (1983) subdif-

ferential. While quasidifferential calculus is concerned with representation of the

standard (Dini) directional derivative (1), Clarke’s theory introduces extensions

of the directional derivative called Clarke lower and upper directional derivatives.

The Clarke upper and lower directional derivatives of a Lipschitz continuous func-

tion f at x in the direction of x̂ are defined, respectively, as

f ′+(x; x̂) = lim sup
y→x,t↘0

f(y + tx̂)− f(x)

t
, and f ′−(x; x̂) = lim inf

y→x,t↘0

f(y + tx̂)− f(x)

t
.

The Clarke subdifferential of f at x is

∂CLf(x) = co
{

lim
k→∞
∇f(xk) : xk → x, xk ∈ T (f)

}
,

10



where T (f) ⊂ RS is the set of points of differentiability of f . It holds

f ′+(x; x̂) = max
z∈∂CLf(x)

x̂z, and f ′−(x; x̂) = min
z∈∂CLf(x)

x̂z. (8)

Therefore the upper directional derivative is a sublinear function while the lower

is superlinear. Since f ′−(x; x̂) ≤ f ′(x; x̂) ≤ f ′+(x; x̂), for every x and x̂ (see

Demyanov and Rubinov (1986, p. 74)), it follows that

min
z∈∂CLf(x)

x̂z ≤ f ′(x; x̂) ≤ max
z∈∂CLf(x)

x̂z. (9)

Thus, the Clarke subdifferential provides a sublinear majorization and a superli-

nar minorization of the directional derivative. The quasidifferential provides an

exact representation in equation (2). If function f is convex or concave, then the

Clarke subdifferential is equal to, respectively, the sub- or superdifferential of f.

As mentioned in the introduction, the Clarke subdifferential lacks additivity.

Further, the envelope theorem, such as (6), has merely an approximate statement

for the Clarke subdifferential.

3 Quasidifferentiable Utility Functions

Uncertainty is described by a finite set of states S. The set of all subsets of S

is denoted by Σ, and ∆ is the probability simplex on (S,Σ). There is a single

consumption good. State contingent consumption plans (or acts) are vectors in

RS
+.

3.1 α-Maxmin Expected Utility

The α-MEU function is defined as

V (x) = αmin
P∈P

EP [v(x)] + (1− α) max
P∈P

EP [v(x)], (10)

for x ∈ RS
+, where P ⊆ ∆ is a (closed and convex) set of probability priors,

v : R+ → R is a utility index, and α ∈ [0, 1].11 We assume throughout that v is

11Axiomatizations of the α-MEU representation have been provided for special sets of priors

by Gul and Pesendorfer (2015) and Chateauneuf et al. (2007), and – for general sets – by Frick

et al. (2020) in the setting of two preference relations: subjectively rational, and objectively

rational. α-MEU functions of Gul and Pesendorfer (2015) and Chateauneuf et al. (2007) are

also CEU functions, and will be discussed in Section 3.2.
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strictly increasing. The relative weight α is a parameter of ambiguity attitude.

If α = 1, function V is the ambiguity-averse multiple-prior expected utility of

Gilboa and Schmeidler (1989). If α = 0, V is the ambiguity-seeking multiple-

prior expected utility.

There is an apparent similarity between the α-MEU representation (10) and

the representation (2) of a directional derivative in quasidifferential calculus. In-

deed, an α-MEU function is the sum of superlinear function αminP∈P EP [·] and

sublinear (1− α) maxP∈P EP [·] applied to the utility vector v(x). It follows that

the α-MEU representation is determined up to DR-equivalence relation (3), and

hence the parameter α and the set of priors P are typically non-unique.12 More

precisely, two pairs (α,P) and (α′,P ′) give the same utility function V in (10) if

and only if the pair of sets [αP , (1− α)P ] is DR-equivalent to [α′P ′, (1− α′)P ′].
Proposition 1 in Frick et al. (2020) provides necessary and sufficient conditions

for DR-equivalence of such pairs of sets.

Let Pmin(x) ⊂ P be the closed and convex subset of priors for which the

minimum expected utility of x is attained in (10). That is,

Pmin(x) = arg min
P∈P

EP [v(x)]. (11)

Similarly, let

Pmax(x) = arg max
P∈P

EP [v(x)]. (12)

The following proposition establishes quasidifferentiability of α-MEU func-

tions and derives its quasidifferential.

Proposition 1: The α-MEU function V is quasidifferentiable on RS
++ for every

convex and compact P ⊂ ∆, every α ∈ [0, 1], and every continuously differentiable

utility index v. The sub- and superdifferentials of V at x ∈ RS
++ are13

∂V (x) = (1− α)v′(x)Pmax(x), (13)

and ∂̄V (x) = αv′(x)Pmin(x). (14)

Proof: To demonstrate quasidifferentiability of the α-MEU function V, it

suffices to show (by Proposition B.1.1) that the two summands are quasidif-

ferentiable. The second summand, (1 − α) maxP∈P EP [v(x)], is the maximum

over a compact set of continuously differentiable functions. By the results of

12The fact that α-MEU often has a non-unique parametric specification (α,P) has been

pointed out in Siniscalchi (2006).
13We use the notation v′(x)Pmax(x) for the set {z ∈ RS : zs = v′(xs)P (s), P ∈ Pmax(x)}.
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Section 2, it is quasidifferentiable. Its quasidifferential is the subdifferential

(1 − α)v′(x)Pmax(x) and zero superdifferential; see equation (6). The first sum-

mand, αminP∈P EP [v(x)], is the minimum over a compact set of continuously

differentiable functions. By the same argument, it is quasidifferentiable with the

superdifferential αv′(x)Pmin(x) and zero subdifferential. This implies (13) and

(14). 2

It follows that the quasidifferential of the α-MEU function can be written as

DV (x) = v′(x)
[
(1− α)Pmax(x), αPmin(x)

]
.

Clearly, if the sets Pmin(x) and Pmax(x) are singletons, or DR-equivalent to sin-

gletons, then V is (Gateaux) differentiable at x.

The ambiguity-averse multiple-prior expected utility with α = 1 is superdif-

ferentiable with ∂̄V (x) = v′(x)Pmin(x) and ∂V (x) = {0}. The ambiguity-seeking

multiple-prior expected utility with α = 0 is subdifferentiable with ∂V (x) =

v′(x)Pmax(x) and ∂̄V (x) = {0}.

3.2 Choquet Expected Utility

Non-additive probabilities provide another way for preferences under uncertainty

to accommodate different attitudes toward ambiguity. The mathematical concept

to describe non-additive probabilities is a capacity. A capacity is a set function

µ : Σ→ [0, 1] such that µ(∅) = 0, µ(S) = 1, and µ(A) ≤ µ(B) for every A ⊂ B,

A,B ∈ Σ. The Choquet expected utility (CEU) with utility index v : R+ → R is

defined as the Choquet integral of v under µ, that is,

Eµ[v(x)] =
S∑
k=1

v(x(k))
[
µ({s : xs ≥ x(k)})− µ({s : xs ≥ x(k−1)})

]
, (15)

where x(k) denotes the k-th highest consumption level from among all xs. An

axiomatization of CEU has been provided by Schmeidler (1989).

An important feature of the CEU representation is rank-dependence of weights

assigned to utilities of consumption in different states; see Wakker (2010, Chapter

10). A decision weight assigned to v(xs) in (15) depends on the ranking of xs

among all states. Note that those weights add up to one. Different attitudes

toward ambiguity can be described in the CEU model by different properties of

the capacity. As shown by Schmeidler (1989) and discussed later in this section, a

convex capacity reflects ambiguity aversion while a concave one reflects ambiguity
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seeking. Capacities that are neither convex nor concave reflect mixed ambiguity

attitudes. For an additive capacity,14 CEU is the standard expected utility, and

reflects ambiguity neutrality.

A useful concept for establishing quasidifferentiability of a CEU function is

the Möbius inverse of a capacity µ. This is a set function mµ : Σ→ R such that

µ(A) =
∑

{B∈Σ:B⊂A}

mµ(B). (16)

The set function mµ satisfies (i) mµ(∅) = 0, (ii)
∑

B∈Σ mµ(B) = 1, and (iii)

mµ({s}) ≥ 0 for all s ∈ S. It can be obtained as

mµ(A) =
∑
B⊆A

(−1)|A|−|B|µ(B) (17)

for every A ∈ Σ, where |A| denotes the number of states in A. Equations (16) and

(17) define a one-to-one mapping between capacities and set functions satisfying

conditions (i) - (iii). A capacity with positive Möbius inverse is called belief

function. Belief functions have been extensively studied in Dempster (1967) and

in the theory of evidence of Shafer (1976). A capacity is a belief function if and

only if it is totally monotone.15

The Choquet integral (15) can be expressed using the Möbius inverse as

Eµ[v(x)] =
∑
A∈Σ

mµ(A) min
s∈A

v(xs); (18)

see Gilboa and Schmeidler (1994, Section 4). Let ∆A denote the set of all proba-

bility measures on (S,Σ) with the support on A. Equation (18) can be re-written

as

Eµ[v(x)] =
∑
A∈Σ

mµ(A) min
P∈∆A

EP [v(x)].

As in (11), let ∆A
min(x) denote the subset of ∆A for which the minimum of ex-

pected utility of x is attained. That is,

∆A
min(x) = arg min

P∈∆A
EP [v(x)]. (19)

Further, let Σ+
µ ( Σ−µ ) denote the subset of the set of events Σ on which the

Möbius inverse of µ is positive (negative, respectively). We have the following

14A capacity µ is additive if µ(A∪B) = µ(A)+µ(B) for every A,B ∈ Σ such that A∩B = ∅.
15A capacity is totally monotone if µ(∪ni=1Ai) ≥

∑
I⊂{1,..,n}(−1)|I|+1µ(∩i∈IAi) for every

A1, . . . , An ∈ Σ and every n.
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Proposition 2: The CEU function Eµ[v(x)] is quasidifferentiable on RS
++ for

every capacity µ and every differentiable16 utility index v. The quasidifferential

[∂Eµ[v(x)], ∂̄Eµ[v(x)]] at x ∈ RS
++ is given by

∂Eµ[v(x)] = v′(x)
∑
A∈Σ−µ

mµ(A)∆A
min(x), (20)

and ∂̄Eµ[v(x)] = v′(x)
∑
A∈Σ+

µ

mµ(A)∆A
min(x). (21)

Proof: The function Eµ[v(x)] is the finite sum of minimum functions; see

equation (18). It follows from Corollary B.1 in Appendix B that the summand

mins∈A v(xs) in equation (18) is quasidifferentiable with the quasidifferential equal

to v′(x)[0,∆A
min(x)]. Using the rules of quasidifferential calculus for sums of func-

tions (see Appendix B) we obtain Proposition 2. 2

Proposition 2 implies that a CEU function is differentiable at every injective

x ∈ RS
+, that is, xs 6= xs′ for every s 6= s′. Indeed, if x is injective, then ∆A

min(x)

is a singleton for every A ∈ Σ. Further, it implies that if the Möbius inverse of

µ is positive, i.e., µ is a belief function, then CEU is superdifferentiable. If the

Möbius inverse is negative except for singletons (i.e., mµ(A) ≥ 0 for every A with

|A| ≥ 2), then it is subdifferentiable. Indeed, if Σ+
µ consists of singletons, then

the superdifferential of (21) is a single vector.

There are some capacities for which CEU functions have an α-MEU represen-

tation. First, we consider convex and concave capacities. A capacity is convex

(or supermodular) if

µ(A ∪B) + µ(A ∩B) ≥ µ(A) + µ(B) (22)

for every A,B ∈ Σ. It is concave (or submodular) if the reverse inequality holds

in (22). Every belief function is convex. Every capacity whose Möbius inverse is

negative except for singletons is concave. The Choquet integral with respect to

a convex capacity is

Eµ[v(x)] = min
P∈core(µ)

EP [v(x)], (23)

where core(µ) = {P ∈ ∆ : P (A) ≥ µ(A),∀A ∈ Σ}
16Since the proof relies on the envelope theorem of Appendix B for a finite set of functions

instead of the result of Section 2, the assumption of continuous differentiability from Proposition

1 can be weakened to differentiability.
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is the core of µ; see Gilboa and Schmeidler (1994). By Proposition 1, it is su-

perdifferentiable with the superdifferential equal to v′(x)Pmin(x) for P = core(µ).

Similarly, the Choquet integral with respect to a concave capacity is

Eµ[v(x)] = max
P∈core(µ̄)

EP [v(x)], (24)

where µ̄ is the conjugate capacity defined by µ̄(A) = 1−µ(Ac), where Ac = S \A.
It is subdifferentiable with subdifferential v′(x)P̄max(x) for P̄ = core(µ̄).

Capacities as convex combinations of convex capacities and their concave

conjugates have been introduced by Jaffray and Philippe (1997). For a capacity

µα defined by

µα = αµ+ (1− α)µ̄ (25)

where µ is a convex capacity and α ∈ [0, 1], the CEU function is

Eµα [v(x)] = α min
P∈core(µ)

EP [v(x)] + (1− α) max
P∈core(µ)

EP [v(x)], (26)

that is, the α-MEU function with core(µ) as the set of priors. Examples of Jaffray

and Philippe capacities are the Hurwicz capacity of Gul and Pesendorfer (2015)

and the neo-additive capacity of Chateauneuf et al. (2007); see Appendix C.

We conclude this section with an example of a parametric set of capacities for

which the quasidifferential of the CEU can be obtained either from Proposition

1 or Proposition 2.

Example 1: Consider a capacity µ on three states given by µ({s}) = η, µ({s, s′}) =

3η, for s 6= s′, where 0 ≤ η ≤ 1
3
. One can verify that the capacity µ is convex for

every η ≤ 1
5
. The core of µ is

core(µ) = {P ∈ ∆ : P (s) ≥ η, P (s) + P (s′) ≥ 3η, ∀s, s′, s 6= s′} .

The core is non-empty for every η ≤ 2
9
. It is a hexagon for η < 1

5
, and a triangle

for 1
5
≤ η ≤ 2

9
. The Möbius inverse of µ is

mµ({s}) = η, mµ({s, s′}) = η, mµ(S) = 1− 6η, ∀s, s′, s 6= s′.

It is positive for every η ≤ 1
6
.

Let us consider the risk-free consumption plan x̄ = (1, 1, 1) and the linear

utility v(z) = z. If η ≤ 1
5

and µ is convex, then Eµ[x] is superdifferentiable and

the superdifferential at x̄ equals the core of µ, by Proposition 1.

The quasidifferential of Eµ[x] at x̄ can be derived using Proposition 2 for

every η ≤ 1
3
. The set of minimizing probabilities ∆A

min(x̄) at x̄ is equal to ∆A
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for every A ⊂ S. If η ≤ 1
6
, then the set Σ− of events with negative Möbius

inverse is empty and the subdifferential (20) is zero. Let ∆s,s′ be the set of

probabilities with support on two states s and s′. The superdifferential (21)

equals ηx̄ + η{∆1,2 + ∆1,3 + ∆2,3} + (1 − 6η)∆. It can be shown that this set

is equal to the core of µ. If 1
6
< η ≤ 1

5
, then Σ− consist of the event S and

the subdifferential is non-zero and equal to (1 − 6η)∆. The superdifferential is

ηx̄+η{∆1,2 +∆1,3 +∆2,3}. It can be shown that this pair of sets is DR-equivalent

to the pair [0, core(µ)] resulting from Proposition 1.

If 1
5
< η, then capacity µ is not convex. The quasidifferential of Eµ[x] at x̄

is, by Proposition 2, the pair of sets [(1− 6η)∆, ηx̄ + η{∆1,2 + ∆1,3 + ∆2,3}] – a

symmetric triangle, and a symmetric hexagon. 2

3.3 Rank-Dependent Expected Utility

The Rank-Dependent Expected Utility (RDEU) model is a special case of the

CEU model with the capacity being a distorted probability measure. For a ref-

erence (subjective) probability measure π on Σ and a probability distortion (or

weighting) function w : [0, 1] → [0, 1], assumed strictly increasing and satisfying

w(0) = 0 and w(1) = 1, the distorted probability µw is a capacity defined by

µw(A) = w(π(A)), for all A ∈ Σ. (27)

An RDEU is the Choquet integral of a utility index v with respect to µw, that is,

VRD(x) =
S∑
i=1

v(x(i))
[
w(π({(1), . . . , (i)}))− w(π({(1), . . . , (i− 1)}))

]
, (28)

where x(k) is the k-th highest consumption level from among all xs. Proposition 2

implies that the RDEU is quasidifferentiable for every differentiable utility index

v.

The feature of the RDEU model which distinguishes it from the general CEU

model is probabilistic sophistication, that is, distribution invariance under the

reference probability measure π. Properties of the distortion function in RDEU

correspond to certain behavioral phenomena just like properties of the capacity

in CEU. For example, convexity of a distortion function w, which amounts to w

being relatively flat for low values of probability and steep for high values, implies

underweighting the best outcomes and overweighting the worst outcomes. It

reflects pessimism. The resulting capacity µw is convex, and the RDEU function
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can be expressed as an ambiguity-averse multiple-prior utility (23) with µ = µw.

Similarly, concavity of w reflects optimism. The resulting capacity µw is concave,

and RDEU is an ambiguity-seeking multiple-prior utility (24) with µ̄ = µ̄w.

Empirical investigations of the RDEU model point out to inverse S-shaped

distortion functions; see Wakker (2010, Chapter 7). An inverse S-shaped function

is concave on an interval [0, B] and convex on [B, 1] for some inflection point

B ∈ [0, 1]. It reflects overweighting the worst and the best outcomes. It plays

an important role in the Cumulative Prospect Theory. An example of an inverse

S-shaped distortion is the normalized power function of Tversky and Kahneman

(1992). It is given by

w(p) =
pr

(pr + (1− p)r) 1
r

, (29)

with parameter r ∈ [0, 1], and is shown in the left panel of Figure 1.

We show that an arbitrary inverse S-shaped distortion can be written as a lin-

ear combination of a convex, a concave, and an identity (or unit) distortions. This

leads to a representation of the RDEU function similar to an α-MEU function,

and a simple expression for the quasidifferential of RDEU.

Let w be any inverse S-shaped distortion function with inflection point B

where 0 ≤ B ≤ 1. The said decomposition of w is

w = η0w0 + η1w1 − η id, (30)

where w0 is a concave distortion, w1 is a convex distortion, and id is the identity

function id(p) = p. Coefficients η0, η1 and η are positive with η = w′(B) and

η0 +η1−η = 1. Figure 1 illustrates this decomposition while a detailed derivation

with exact expressions for η0 and η1 is provided in Appendix A.

The decomposition of the distorted capacity µw implied by (30) is µw =

η0µw0 + η1µw1 − ηπ. Applying (23) and (24) of Section 3.2, we obtain

Proposition 3: For every inverse S-shaped and differentiable distortion w, every

π ∈ ∆, and every differentiable utility index v, the RDEU function VRD has a

representation

VRD(x) = η0 max
P∈P0

EP [v(x)] + η1 min
P∈P1

EP [v(x)]− ηEπ[v(x)], (31)

where P0 = core(µ̄w0) and P1 = core(µw1). Further, VRD is quasidifferentiable at

every x ∈ RS
++, and the quasidifferential [∂VRD(x), ∂̄VRD(x)] is given by

∂VRD(x) = v′(x)η0P0
max(x), (32)

and ∂̄VRD(x) = v′(x)
[
η1P1

min(x)− ηπ
]
. (33)
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Figure 1: Decomposition of the inverse S-shaped distortion function w of (29)

with parameter r = 0.61 and inflection point B ≈ 0.48. The linear function l is

used to construct distortions w0 and w1 in (30).

3.4 Cumulative Prospect Theory

The Cumulative Prospect Theory (CPT) of Tversky and Kahneman (1992) is a

refinement of the RDEU model to accommodate reference dependence of pref-

erences. The CPT differentiates between gains and losses, and permits different

risk attitudes over gains and losses. The utility index v : R → R is concave

over gains and convex over losses. Further, there are two probability distortion

functions – one for gains and one for losses – both inverse S-shaped which reflects

overweighting extreme outcomes.

Gains and losses in the CPT model are defined relative to a reference point x̄ ∈
RS

+. For an arbitrary consumption plan x ∈ RS
+, gains are (x− x̄)+ = (x− x̄)∨ 0,

and losses are (x − x̄)− = (x − x̄) ∧ 0. The CPT utility function VCP , with a

reference probability measure π ∈ ∆, two distortion functions w+ for gains and

w− for losses, and a utility index v, is the sum of two RDEUs. That is

VCP (x) = V +
RD(x) + V −RD(x) = Eµw+ [v((x− x̄)+)] + Eµ̄w− [v((x− x̄)−)], (34)

where the Choquet integrals are from (28). Note that the RDEU function over

losses in (34) is taken with respect to the conjugate capacity µ̄w− of distortion

function w−. Thus the decision weight assigned in Eµ̄w− [v((x − x̄)−)] to a loss-

outcome x(i), with x(i)−x̄ < 0, is w−(π({(i), . . . , (S)}))−w−(π({(i+1), . . . , (S)})).
Tversky and Kahneman (1992) specification of distortion functions w+ and

w− takes the form of inverse S-shaped normalized-power functions of (29) with

parameters r+ = 0.61 for w+ and r− = 0.69 for w−. Note that the conjugate w̄−
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is inverse S-shaped, as well. The utility index is the power function

v(z) =

zb if z ≥ 0

−θ(−z)b, if z < 0.
where b ∈ (0, 1] and θ > 1. (35)

It is concave over gains and convex over losses. This induces risk aversion for

gains and risk seeking for losses. The parameter θ reflects loss aversion; see

Wakker (2010, Chapter 8). Kahneman and Tversky (1979) found that parameters

b = 0.88 and θ = 2.25 fit the experimental data best.

The power function is “problematic” (see Wakker (2010, p. 267)) because of

infinite derivative at zero. This leads to problems in studying loss aversion, but

also makes it not suitable for the study of optimal choices. We shall assume that

the utility index v is differentiable for every z 6= 0 and has a well-defined right-

and left-hand derivatives at zero. An example of such a function occasionally

used in the CPT is the shifted power function

v(z) =


(1+z)b

b
− 1

b
if z ≥ 0

−θ (1−z)b
b

+ θ
b
, if z < 0.

(36)

with b ∈ (0, 1] and θ > 1; see Wakker (2010, p. 271). It is concave on gains,

convex on losses, and superdifferentiable at zero.

The following proposition, proved in Appendix A, establishes quasidifferen-

tiability of CPT utility function with inverse S-shaped distortion functions.

Proposition 4: For every inverse S-shaped and differentiable distortions w+ and

w−, every probability measure π on Σ, and every utility index v that is differen-

tiable on R \ {0} and has well-defined right- and left-hand derivatives at 0, the

CPT utility function VCP is quasidifferentiable.17

The quasidifferential of the CPT utility function in Proposition 4 can be de-

rived using representation (31) of the RDEU functions V +
RD(x) and V −RD(x) and

the rules of quasidifferential calculus of Appendix B. Because of non-differentiability

of gains and losses at zero, expressions for quasidifferentials of V +
RD(x) and V −RD(x)

are more complex than those in Proposition 3. We omit exact derivations. For

consumption plans that involve strictly positive gains in every state or strictly

17Proposition 4 can be extended to CPT utility functions with arbitrary distortions. The

argument relies on the representation (18) of the Choquet integrals in the definition of RDEU

functions V +
RD(x) and V −RD(x). These functions can be represented as weighted sums of minimum

functions, and therefore are quasidifferentiable.
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positive losses in every state, the quasidifferential of the CPT utility function is

the quasidifferential of the respective RDEU summand; see Section 3.3.

4 Pareto Optimal Allocations

We consider the setting with I agents whose preferences over state-contingent

consumption plans in RS
+ are described by strictly increasing utility functions Vi.

The aggregate endowment of the economy is e ∈ RS
+. Recall that an allocation

{xi}, where xi ∈ RS
+ for every i, is feasible if

∑I
i=1 xi ≤ e. A feasible allocation

is Pareto optimal if there is no other feasible allocation {x̃i} such that Vi(x̃i) ≥
Vi(xi) with at least one strict inequality. Since the utility functions need not

be concave, Pareto optimal allocations cannot be characterized as solutions to

the problem of maximizing a weighted sum of individual utilities subject to the

feasibility constraint. Instead, we consider the problem of maximizing one agent’s

utility subject to constraints on other agents’ utilities and feasibility. Choosing

agent 1 without loss of generality, we have

max
{xi}∈RSI+

V1(x1) (37)

subject to Vi(xi) ≥ v̄i, i = 2, . . . , I,
I∑
i=1

xi ≤ e,

for some bounds v̄i ∈ R. Every allocation solving (37) is Pareto optimal. Con-

versely, every Pareto optimal allocation is a solution to (37) for some bounds v̄i.

The following necessary first-order conditions for a Pareto optimal allocation are

derived from (37).

Proposition 5: Suppose that utility functions Vi are quasidifferentiable. If

{xi} is an interior Pareto optimal allocation, then for every profile {zi} with

zi ∈ ∂Vi(xi) there exist a corresponding profile {z̄i} with z̄i ∈ ∂̄Vi(xi), positive

multipliers λi ∈ R+, and a positive vector q ∈ RS
+, not all zero, such that

λi[z̄i + zi] = q, (38)

for every i. Further, the complementary slackness conditions hold.18

Proof: The result follows from Proposition 1.1 in Gao (2000a). A statement of

it, and details of the derivation can be found in Appendix A. 2

18Those are λi(Vi(xi) − v̄i) = 0 for i = 2, . . . I and qs(
∑I
i=1 xi,s − es) = 0 for s = 1, . . . , S.

We omit the slackness conditions from all subsequent refinements of Proposition 5.
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A strict form of the first-order condition (38) is sufficient for local Pareto

optimality. An allocation is locally Pareto optimal if it cannot be improved

upon by a feasible allocation that lies in a small neighborhood of that allocation

for every agent. The strict form of (38) requires that for every profile {zi} with

zi ∈ ∂Vi(xi) there exist a profile {z̄i} with z̄i ∈ int∂̄Vi(xi), and positive multipliers

λi and a positive vector q ∈ RS
+, not all zero, such that (38) holds. The result

follows from Proposition 3.1 in Gao (2000b).

If every utility function Vi is differentiable at xi, then the first-order condi-

tion (38) states that λi∇Vi(xi) = q for the gradient vector ∇Vi(xi), for every

i, which is the standard condition of common marginal rates of substitution. If

every function Vi is concave, so that the quasidifferential has the representation

[0, ∂̄Vi(x)] with zero subdifferential, then condition (38) states that there exist a

profile {z̄i} with z̄i ∈ ∂̄Vi(x) such that λiz̄i = q. This is the standard necessary

and sufficient condition for Pareto optimality of an interior allocation for concave

utility functions; see Aubin (1998).

In the reminder of this section we present statements of Proposition 5 special-

ized to all agents with α-MEU or all with RDEU, and discussions of applications

to CEU and CPT. Settings with mixed utility functions can be easily analyzed

using those results.

4.1 Optimal Allocations with α-MEU Utilities

Suppose that agents have α-MEU functions with agent-specific weights αi ∈ [0, 1]

and sets of priors Pi ⊂ ∆, assumed closed and convex. Utility indexes vi : R+ →
R are strictly increasing and continuously differentiable. Using Propositions 1

and 5, we obtain

Proposition 6: If {xi} is an interior Pareto optimal allocation with α-MEU

functions, then for every profile of beliefs {P i} with P i ∈ P imax(xi) there exist a

corresponding profile of beliefs {P̄i} with P̄i ∈ P imin(xi), strictly positive multipli-

ers λi ∈ R+, and a positive vector q ∈ RS
+, q 6= 0, such that for every i

λiv
′
i(xi)[αiP̄i + (1− αi)P i] = q. (39)

If αi = 1 for every i, so that agents have ambiguity-averse multiple-prior expected

utilities, then condition (39) says that

λiv
′
i(xi)P̄i = q, (40)
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for every i, for some profile of beliefs {P̄i} with P̄i ∈ P imin(xi). Rigotti et al. (2008)

show that condition (40) is necessary and sufficient for Pareto optimality of an

interior allocation with ambiguity-averse multiple-prior expected utilities with

concave utility indexes. Proposition 6 shows that it remains necessary without

concavity. A strict version of (40) with P̄i ∈ intP imin(xi) for every i is sufficient for

local Pareto optimality with arbitrary ambiguity-averse multiple-prior expected

utilities.

Proposition 6 implies that every interior Pareto optimal allocation with α-

MEU functions with concave utility indexes is Pareto optimal for expected utility

functions with heterogeneous beliefs taken from the agents’ sets of priors.

Corollary 1: Suppose that vi is concave for every i. If {xi} is an interior Pareto

optimal allocation with α-MEU functions, then there exists a profile of beliefs

{Pi} with Pi ∈ Pi such that the allocation {xi} is Pareto optimal with expected

utilities EPi [vi(x)].

Proof: For arbitrary beliefs P̄i and P i satisfying (39), define probability mea-

sures Pi = αiP̄i + (1−αi)P i. Note that Pi ∈ Pi. The allocation {xi} satisfies the

first-order conditions of Pareto optimality for expected utilities with beliefs Pi.

Because of concavity of vi, those conditions are sufficient and hence the allocation

is Pareto optimal. 2

For small sets of priors with non-empty intersection, the set of Pareto optimal

allocations with heterogeneous beliefs taken from those sets is a limited set of

allocations. Another corollary to Proposition 6 establishes the necessity of a

common prior for the existence of a risk-free Pareto optimal allocation. Of course,

there can be a risk-free allocation only if the aggregate endowment is risk free,

that is, there is no aggregate risk.

Corollary 2: If there exists an interior risk-free Pareto optimal allocation with

α-MEU functions, then
I⋂
i=1

Pi 6= ∅. (41)

Proof: Let {xi} be an interior risk-free Pareto optimal allocation and let Pi ∈ Pi
be as defined in the proof of Corollary 1. Since xi is state-independent, the first-

order condition

λiv
′
i(xi)Pi = q

implies that Pi = P, and hence P ∈ Pi for every i. Therefore (41) holds. 2
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In the absence of concavity of α-MEU functions, the common prior condition

(41) is clearly not sufficient for Pareto optimality of risk-free allocations. However,

the strict version of (41) – i.e., int
⋂I
i=1Pi 6= ∅ – is sufficient for local Pareto

optimality of risk-free allocations. Billot et al. (2000) show that condition (41) is

necessary and sufficient for all Pareto optimal allocations with concave ambiguity-

averse multiple-prior expected utilities to be risk free if there is no aggregate

risk. Rigotti et al. (2008) extend that result to general convex, ambiguity-averse

preferences.19

The next corollary shows limitations to the possibility of subdifferentiability

of α-MEU functions at a Pareto optimal allocation. Recall from Section 2 that

a function is subdifferentiable at x if its quasidifferential has a representation

with zero superdifferential. An α-MEU function with α = 0 is subdifferentiable

everywhere and has a set-valued subdifferential equal to the set of priors at any

risk-free consumption plan.

Corollary 3: Let {xi} be an interior Pareto optimal allocation with α-MEU func-

tions. If there are two or more agents whose utility functions are subdifferentiable

at their respective consumption plans xi, then these functions are differentiable

at xi.

Corollary 3 implies that, for any interior Pareto optimal allocation {xi}, there

can be at most one agent i whose α-MEU function is subdifferentiable but not

differentiable at xi. Further, if there are at least two agents with ambiguity-

seeking α-MEU functions with αi = 0 and there is no aggregate risk, then no

Pareto optimal allocation can be risk free.

4.2 Optimal Allocations with CEU, RDEU, and CPT Utilities

First-order conditions for Pareto optimal allocations with CEU, RDEU, and CPT

utilities can be obtained from Proposition 5 using the formulas for sub- and

superdifferentials of Section 3. For CEU functions, these are equations (20) and

(21) of Proposition 2. If agents’ capacities are Jaffray and Philippe capacities

(25), then CEU functions are α-MEU, and the results of Section 4.1 can be

applied.

For the important class of RDEU functions with inverse S-shaped distortions,

Proposition 3 established their representation as weighted sums of minimum and

maximum of expected utilities over two different sets of beliefs. The first-order

19See Ghirardato and Siniscalchi (2018) for further extensions.
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conditions for an interior Pareto optimal allocation are similar to conditions (39)

for α-MEU utilities. They are

λiv
′
i(xi)

[
η0,iP̄i + η1,iP i − ηiπ

]
= q, (42)

for every i, where P̄i ∈ P1,i
min(xi), P i ∈ P0,i

max(xi), and π is the reference probability

measure. The sets of beliefs P1,i
min(xi) and P0,i

max(xi), as well as scalars η0,i, η1,i,

and ηi are from Proposition 3. Corollary 1 of Section 4.1 can be extended to

RDEU functions with inverse S-shaped distortions. We have

Corollary 4: Suppose that vi is concave for every i. If {xi} is an interior Pareto

optimal allocation with RDEU functions with differentiable and inverse S-shaped

distortion functions, then there exists a profile of beliefs {Pi} with Pi ∈ η0,iP0,i +

η1,iP1,i−ηiπ such that the allocation {xi} is Pareto optimal with expected utilities

EPi [vi(x)].

CPT utility functions are sums of rank-dependent expected utilities of gains

and losses. Quasidifferentiability of CPT utilities has been established in Propo-

sition 4. For Pareto optimal allocations that involve strictly positive gains in

every state for every agent, the first-order conditions are those for gain RDEU

functions; see equation (42). The same holds for optimal allocations with losses

in every state, if such allocations exist.

We conclude this section with an example of Pareto optimal allocations in an

Edgeworth box with CPT utilities.

Example 2: There are two agents and two states. The aggregate endowment

is e = (6, 6). Agents have the same CPT utility function with reference belief

π = (1
2
, 1

2
), state-dependent reference point for gains and losses x̄ = (2, 1), and

utility index v of the form (35) with parameters b = 1
8

and θ = 2, where the latter

reflects loss aversion. To simplify, we abstract from distortion of probabilities,20

that is, we take w+ = w− = id. The resulting CPT utility function is non-concave

and non-differentiable.

Figure 2 shows the Edgeworth box under consideration. Indifference curves

are plotted for six different utility levels for each agent. They have kinks on the

borderlines between gains and losses, and are (locally) concave in the regions of

losses in both states. Pareto optimal allocations in the shaded rectangle between

(2, 1) and (4, 5), where both agents experience gains in both states, look like

20Nonlinear distortion functions would lead to kinks in indifference curves on the 45o-degree

line in Figure 2.
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Figure 2: Edgeworth box with CPT utility functions.

typical optimal allocations for differentiable and concave utility functions. One

such allocation is the equal-sharing allocation in the center of the box. Further,

there are Pareto optimal allocations such as {(1.4, 1), (4.6, 5)} near the bottom-

left corner and the corresponding one near the top-right corner where one of the

agents experiences losses. The utility function of that agent is not differentiable

and her indifference curve has a kink with non-convex upper-contour set. Allo-

cations where one agent’s consumption is the reference point are Pareto optimal

and points of non-differentiability as well. The first-order conditions of Pareto

optimality for these allocations are the conditions of Proposition 5 for quasidif-

ferentiable utility functions.

Note that even though utility functions in this example are non-differentiable

on a small set (of measure zero) of points, those points are of critical importance

for optimal allocations. 2

5 Concluding Remarks

We introduced the methodology of quasidifferential calculus to the analysis of op-

timality conditions for non-differentiable and non-concave utility functions aris-

ing in contemporary decision theory. Quasidifferential calculus offers transparent
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statements of first-order optimality conditions in a way that unifies and extends

the well-known conditions for differentiable, concave, and convex functions. We

argued that it is better suited for α-MEU, CEU, RDEU, and CPT utility func-

tions than the alternative method of the Clarke subdifferential.

We presented first-order conditions for Pareto optimal allocations under un-

certainty for these utility functions. The results lead to interesting implications

concerning optimal risk sharing with quasidifferentiable utilities. For example, a

necessary condition for the existence of risk-free Pareto optimal allocation in an

economy with no aggregate risk and arbitrary α-MEU functions is that the sets

of priors have non-empty intersection.

The α-MEU and CEU models are often considered in settings of infinitely

many states. Since quasidifferential calculus has been developed in general Ba-

nach spaces of functions (see Pallaschke and Rolewicz (1997)), the results of this

paper can be extended to infinite state spaces. We leave technical details of such

extensions for future research.

A Proofs

Proof of Proposition 3: Let w be an inverse S-shaped distortion function

with inflection point B where 0 ≤ B ≤ 1. We define the affine function l(p) =

(1−η1)+ηp with parameters η = w′(B) and η1 = 1−w(B)+Bw′(B); see the left

panel in Figure 1. Set η0 = l(1) = w′(B) +w(B)−Bw′(B). We define distortion

functions w0 and w1 as

w0 =
1

η0

·
(
1[0,B)w + 1[B,1]l

)
and w1 =

1

η1

·
(
1[0,B)l + 1[B,1]w − (1− η1)

)
; (43)

see the middle and the right panels in Figure 1.

It can be easily seen that (30) holds. This implies that µw = η0µw0+η1µw1−ηπ,
which in turn leads to

VRD(x) = η0Eµw0
[v(x)] + η1Eµw1

[v(x)]− ηEπ[v(x)]. (44)

Since the distortion w0 is concave, we have

Eµw0
[v(x)] = max

P∈P0
EP [v(x)] (45)

where P0 = core(µ̄w0) is the core of the conjugate capacity µ̄w0 . Similarly, since

the distortion w1 is convex we have

Eµw1
[v(x)] = min

P∈P1
EP [v(x)] (46)
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where P1 = core(µw1) is the core of capacity µw1 .

Substituting equations (45) and (46) in (44) yields the representation (31).

Quasidifferentiability of VRD and equations (32) and (33) follow from Corollary

B.1 and the rules of quasidifferential calculus of Appendix B. Corollary B.1 can

be applied because the sets P0 and P1 are cores of convex distortions, and hence

convex polytopes. 2

Proof of Proposition 4: Let us consider first the RDEU function Eµw+ [v((x−
x̄)+)] for gains. If w+ is inverse S-shaped, then the gain-RDEU function has the

max-plus-min representation (31) of Proposition 3 with sets P0
+ = core(µ̄w+

0
) and

P1
+ = core(µw+

1
). If function v is strictly increasing, differentiable for z 6= 0,

and has well-defined right- and left-hand derivatives at 0, then the gain func-

tion v((z− z̄)+) for z ∈ R is quasidifferentiable because it is the maximum of two

quasidifferentiable functions v(z− z̄) and 0. It is in fact subdifferentiable; see Sec-

tion 2.21 The function EP [v((x− x̄)+)] is the sum of quasidifferentiable functions,

hence it is quasidifferentiable for every P ∈ ∆. Further, the minimum function

minP∈P1
+
EP [v((x − x̄)+)] and the maximum function maxP∈P0

+
EP [v((x − x̄)+)]

are quasidifferentiable as well. This follows from Proposition B.3 in Appendix B

because the sets P0
+ and P1

+ are convex polytopes.

The same arguments apply to the loss RDEU function Eµ̄w− [v((x− x̄)−)] with

the only difference that the loss v((z− z̄)−) is superdifferentiable as the minimum

two quasidifferentiable functions.22 2

Proof of Proposition 5: Let fi : Rn → R for i = 0, . . . ,m be quasidifferen-

tiable. Consider the following constrained maximization problem:

max
x

f0(x) (47)

subject to fi(x) ≥ 0, i = 1, . . . ,m (48)

Proposition A.1 [Gao (2000a)]: If x∗ is a solution to (47), then for every profile

{zi} with zi ∈ ∂fi(x∗), there exist a corresponding profile {z̄i} with z̄i ∈ ∂̄fi(x∗)
and positive multipliers λi ∈ R+, i = 0, . . . , n, not all zero, such that

m∑
i=0

λi[z̄i + zi] = 0, (49)

21The subdifferential ∂v((z− z̄)+) of the gain function is v′(z− z̄) for z > z̄, 0 for z < z̄, and

the interval [0, v′+(0)] for z = z̄, where v′+(0) is the right-hand derivative at 0.
22The superdifferential ∂̄v((z − z̄)−) of the loss function is v′(z − z̄) for z < z̄, 0 for z > z̄,

and the interval [0, v′−(0)] for z = z̄, where v′−(0) is the left-hand derivative at 0.
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and λifi(x
∗) = 0 for every i ≥ 1.

We note that the multiplier λi may depend on the selected profile {zi} with

zi ∈ ∂fi(x̄). Proposition A.1 is an extension of the Fritz John’s first-order con-

ditions for differentiable functions in non-linear programming; see Takayama

(1985). Neither Proposition A.1 nor John’s result require a constrained qual-

ification condition known from the Kuhn-Tucker theorems, but they feature a

multiplier on the objective function that could be zero. We apply Proposition

A.1 to the Pareto problem (37). The function es −
∑I

i=1 xi,s of the feasibility

constraint in state s is differentiable. Using q ∈ RS
+ for the vector of multipliers

of feasibility constraints, we obtain the first-order conditions (38). 2

Proof of Corollary 3: If α-MEU function Vi is subdifferentiable, then the

pair of sets [(1−α)Pmax(xi), αPmin(xi)] is DR-equivalent to [Ai, 0] for some com-

pact and convex set Ai. It can be easily seen that Ai ⊂ P .
In order to prove the first part, let i and j be the two agents whose utility func-

tions are subdifferentiable with respective subdifferentials v′i(xi)Ai and v′j(xj)Aj,

and zero superdifferentials. To simplify the exposition, we disregard agents other

than i and j in our arguments. In particular, a Pareto optimal allocation for I

agents is Pareto optimal for any pair of agents.

Proposition 6 says that for any selection of ai ∈ Ai and aj ∈ Aj, there exist

multipliers λi and λj, and vector q such that

v′i(xi)ai = λiq and v′j(xj)aj = λjq. (50)

Let us consider arbitrary a′i ∈ Ai. We shall prove that a′i = ai. Applying Propo-

sition 6 to the pair a′i ∈ Ai and aj ∈ Aj, there exist λ′i, λ
′
j, and q′ such that

v′i(xi)a
′
i = λ′iq

′ and v′j(xj)aj = λ′jq
′. (51)

Using the equations for agent j in (50) and (51), it follows that vectors q and

q′ are scale-multiples of each other, that is q′ = (λ′j/λj)q. This implies that ai

and a′i are scale-multiples of each other. Since they both lie in the probability

simplex ∆, they must be equal. Therefore the subdifferential Ai is a singleton

and Vi is differentiable at xi. The same argument with reversed roles for i and j

shows that the set Aj must be singleton. This concludes the proof. 2
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B Rules of Quasidifferential Calculus

The quasidifferential of a function is a pair of compact and convex sets. We

define first some algebraic operations on pairs of sets. Let A,B,C,D be convex

and compact sets in RS. The operations of addition and multiplication by a

scalar are defined as follows:

[A+ C,B +D] = [A,B] + [C,D] and c[A,B] =

[cA, cB] if c ≥ 0

[cB, cA], if c < 0.

The rules of quasidifferentiation are extensions of the well-known rules of the

classical differential calculus. A more detailed and systematic account can be

found in Demyanov and Rubinov (1992), Chapters 10-12.

Proposition B.1: Suppose that functions fk : RS
+ → R are quasidifferentiable

at x ∈ RS
+ for every k = 1, . . . ,m. Let Dfk(x) = [∂fk(x), ∂̄fk(x)] be the quasidif-

ferential of fk and ak ∈ R for k = 1, . . . ,m. The following rules hold:

1. (Sum) Let f =
∑m

k=1 akfk. Then f is quasidifferentiable at x, and

Df(x) =
m∑
k=1

akDfk(x).

2. (Product) Let f = f1 · f2. Then f is quasidifferentiable at x and

Df(x) = f1(x)Df2(x) + f2(x)Df1(x).

Proof of Proposition B.1: Part (1) follows from Theorem 10.2 (i) and (ii)

in Demyanov and Rubinov (1986). For part (2), see Theorem 10.2 (iii). 2

Theorem 12.2 of Demyanov and Rubinov (1986) provides an exact formula

for the quasidifferential of a composition of two quasidifferentiable functions.

We reproduce it in Proposition B.2. Note that the chain rule for the Clarke

subdifferential calculus yields only upper bounds on the Clarke subdifferential of

the composition; see Section 2.1 in Clarke (1983).

Proposition B.2: Suppose that functions fk : RS
+ → R are quasidifferentiable

at x ∈ RS
+ for each k = 1, . . . ,m. If function g : Rm → R is uniformly quasidif-

ferentiable23 at y = (f1(x), . . . , fm(x)), then the composition V : RS
+ → R defined

23I.e., g is (a.) uniformly directionally differentiable at y and (b.) quasidifferentiable at

y. (a.) holds for instance if g is Lipschitz continuous around y; see Proposition 3.4, p.29, in

Demyanov and Rubinov (1986).
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by

V (x) = g(f1(x), . . . fm(x))

is quasidifferentiable at x, and

∂V (x) =

{
m∑
k=1

(zk + zk)wk− zkγk− zkγk : w ∈ ∂g(y), zk ∈ ∂fk(x), zk ∈ ∂̄fk(x)

}
,

∂̄V (x) =

{
m∑
k=1

(zk + zk)wk + zkγk + zkγk : w ∈ ∂̄g(y), zk ∈ ∂fk(x), zk ∈ ∂̄fk(x)

}
.

where γ, γ ∈ Rm are arbitrary vectors such that γ ≤ ∂g(y) ∪ (−∂̄g(y)) ≤ γ.

The next result is taken from Demyanov and Rubinov (1992), Theorem 2.2.

Proposition B.3: Suppose that functions fk : RS
+ → R are quasidifferentiable

at x ∈ RS
+ for every k = 1, . . . ,m. Let

ϕ(x) = max
k=1,...,m

fk(x), and ψ(x) = min
k=1,...,m

fk(x)

and ϕ∗(x) = arg max
k
fk(x), and ψ∗(x) = arg min

k
fk(x).

Then ϕ and ψ are quasidifferentiable at x, and

(i) Dϕ(x) =

co
 ⋃
k∈ϕ∗(x)

(
∂fk(x)−

∑
i∈ϕ∗(x)\k

∂̄fi(x)
) ,

∑
k∈ϕ∗(x)

∂̄fk(x)


(52)

(ii) Dψ(x) =

 ∑
k∈ψ∗(x)

∂fk(x), co

 ⋃
k∈ψ∗(x)

(
∂̄fk(x)−

∑
i∈ψ∗(x)\k

∂fi(x)
)
 . (53)

Corollary B.1: If every function fk is differentiable, then

Dϕ(x) = [co {∇fk(x) : k ∈ ϕ∗(x)} , {0}] (54)

Dψ(x) = [{0}, co {∇fk(x) : k ∈ ψ∗(x)}] . (55)

Proof: If fk is differentiable for every k, then we can set ∂fk(x) = ∇fk(x) and

∂̄fk(x) = 0 in equation (52) of Proposition B.3, and this results in (54). If we set

∂̄fk(x) = ∇fk(x) and ∂fk(x) = 0 in equation (53), we obtain (55). 2

We proved in Section 2 that results similar to (54) and (55) hold for an

arbitrary family of continuously differentiable functions; see (6).
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C Jaffray and Philippe Capacities

A special case of a Jaffray and Philippe capacity (25) is the Hurwicz capacity; see

Gul and Pesendorfer (2015). It obtains when the convex capacity µ is taken as

inner capacity µπ associated with a probability measure π on an algebra F ⊂ Σ

of subsets of states (generated by a partition of S). This capacity is defined by

µπ(A) = max
B⊂A,B∈F

π(B), A ∈ Σ. (56)

By Proposition 2.4 in Denneberg (1994), µπ is a convex capacity. The core of µπ

is the set of all probability measures on Σ that coincide with π on F .24 That is

core(µπ) = {P ∈ ∆ : P (A) = π(A),∀A ∈ F} . (57)

The resulting CEU function is an α-MEU with the set of priors (57), and is the

Hurwicz expected utility.

Another special case of a Jaffray and Philippe capacity is the neo-additive

capacity. It obtains when µ in (25) is taken as δπ + (1 − δ)µN , where π ∈ ∆

is an arbitrary probability measure, µN is the null capacity, and δ ∈ [0, 1]; see

Chateauneuf et al. (2007) and Eichberger et al. (2011). The null capacity is

defined by µN(A) = 0 for every A ∈ Σ, A 6= S and µN(S) = 1. The core of

capacity δπ + (1 − δ)µN is the set δπ + (1 − δ)∆. The CEU in (26) for a neo-

additive capacity µneoα can be written as

Eµneoα [v(x)] = δEπ[v(x)]+(1−δ)
[
αmin
P∈∆

EP [v(x)] + (1− α) max
P∈∆

EP [v(x)]

]
. (58)
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