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Abstract

Berge equilibrium offers an alternative to Nash equilibrium in game theory, emphasizing coop-
erative stability rather than individual optimization. Despite recent interest, a systematic study of
Berge equilibria in finite normal form games is still lacking, with fundamental questions like existence
remaining open. This paper characterizes Berge equilibria through a polynomial system of equa-
tions, enabling computational algebra and algebraic geometry methods to analyze them. Algorithms
based on Gröbner bases determine the existence and computation of Berge equilibria. Furthermore,
we show that the set of games admitting completely mixed Berge equilibria is contained within a
determinantal variety, whose dimension we explicitly bound from above.

Keywords: Berge equilibrium, Algebraic Methods in Economics, Gröbner Bases
JEL Subject Classification: C72, C02, C63

1 Introduction
The notion of Berge equilibrium is an interesting alternative to the prevalent Nash equilibrium in game
theory. Unlike Nash equilibrium, which is based on the idea that no player can unilaterally improve
their own payoff, Berge equilibrium focuses on cooperative stability in non-cooperative games. Berge
equilibrium captures a more altruistic or benevolent decision-making process, where each player supports
others rather than acting selfishly.

While the notion has found applications in various papers recently (e.g. Ünveren, Donduran, and
Barokas (2023), Haller (2024), Graziano, Pesce, and Platino (2024)), a systematic study of Berge equilibria
in finite normal form games is lacking so far. In particular, even the basic issue of existence remains open.

In this paper, we characterize Berge equilibria in all finite games by a suitable polynomial system of
equations, making it amenable to methods from computational algebra and algebraic geometry.

Using methods from computational algebra, we provide algorithms for generic games that decide
whether a Berge equilibrium exists, and, if so, compute all Berge equilibria with the help of Gröbner
basis techniques.

Using algebraic geometry, we demonstrate that the set of games capable of admitting completely mixed
Berge equilibria forms a subset of a determinantal variety. We compute the dimension of this variety,
providing an upper bound on the dimension of games possessing completely mixed Berge equilibria. For
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games with more than two players, completely mixed Berge equilibria exist only in a relatively low-
dimensional set of games. For N -player games with two actions per player, less than 50% of games admit
such equilibria.

Our paper contributes to the growing body of literature that applies tools from algebraic geometry
to game theory. Despite their potential, computational algebra methods are rarely utilized in economics.
Recently, Gröbner bases theory has been fruitfully applied in different areas, such as in General Equi-
librium Theory for the analysis of the equilibrium conditions in markets (see Kubler and Schmedders
(2010)), in Econometrics to address the global identification problem in dynamic stochastic general equi-
librium (DSGE) models (see Kocięcki and Kolasa (2023)) and in Game Theory for the computation of
all Nash equilibria in games with polynomial payoff functions (see Datta (2010)).

Over the past decade, the concept of Berge equilibrium has gained increasing attention as a plausible
alternative to Nash equilibrium for modeling diverse socioeconomic behaviors in strategic interactions
(Colman, Corner, Musy, and Tazdait (2011), Larbani and Zhukovskii (2017), Haller (2024)). Several
studies have sought to establish sufficient conditions for the existence of pure strategy Berge equilibria
(Abalo and Kostreva (2004, 2005); Nessaha, Larbani, and Tazdaitb (2007)). Notably, Colman, Corner,
Musy, and Tazdait (2011) show that in N -person games, Berge equilibria form a subset of Nash equilibria
that are common to all permutations of the game. Musy, Pottier, and Tazdait (2012) reformulate the
existence theorem from Colman, Corner, Musy, and Tazdait (2011) without relying on Nash equilibrium,
introducing the concept of best support from co-players and defining Berge equilibria as the intersection
of best support correspondences. Further developments include Courtois, Nessah, and Tazdait (2017),
which provides existence conditions and computational methods for two refinements of Berge equilibrium:
Berge–Vaisman and Berge–Nash equilibrium. From a computational standpoint, Corley and Kwain (2015)
proposes an algorithm using the disappointment matrix to compute all pure strategy Berge equilibria
in N -person normal-form games. The only known method addressing mixed strategy Berge equilibria is
presented in Sawicki, Pykacz, and Bytner (2021), which develops an algorithm for identifying all Berge
equilibria—both pure and mixed—in N -person games with two strategies per player. A comprehensive
literature review on Berge equilibria in static normal-form games can be found in Larbani and Zhukovskii
(2017). Our approach extends this line of research by establishing generalized existence conditions for
pure strategy Berge equilibria that encompass and go beyond the results in Corley and Kwain (2015) and
Nessaha, Larbani, and Tazdaitb (2007); see Remark 2.7.

The paper is structured as follows. The next section provides the polynomial characterization of Berge
equilibria. Section 3 outlines the algebraic techniques employed in our analysis and provides examples
that illustrate the application of Gröbner basis methods. Section 4 introduces the concept of (Berge)
regular games, while Section 5 presents algorithms for computing all Berge equilibria, when they exist.
Within the class of all games, Section 6 characterizes the subset of a determinantal variety that contains
all regular games admitting completely mixed Berge equilibria. The last section concludes.

2 Polynomial Characterization of Berge equilibria
We consider a finite normal form game, following the notation of Datta (2010). The set of players is
denoted by I = {1, . . . , N}. Each player i has a finite set of pure strategies Si = {si0, . . . , sidi

} with
|Si| = di + 1 ≥ 2. S =

∏
i∈I Si is the set of pure strategy profiles with cardinality DS := |S| =∏

i∈I(di + 1). Player i has the payoff function ui : S −→ R. The game in normal form is written as
G =

(
I, (Si)i∈I , (ui)i∈I

)
.

In the following we write [di] = {0, 1, . . . , di} and set D =
∑

i∈I di; in particular, it holds
∑

i∈I |Si| =∑
i∈I(di + 1) = D +N .
The set Σi of mixed strategies of player i is the set of all functions σi : Si −→ [0, 1] such that∑di

j=0 σi(sij) = 1. We write σij = σi(sij). We let Σ =
∏

i∈I Σi be the set of strategy profiles. We let
I−i = I \ {i}, Σ−i =

∏
j∈I−i

σj and we call an element of Σ−i a (−i)-strategy profile. We denote by σ−i

the image of σ ∈ Σ under the projection π−i onto Σ−i; further, we let D−i =
∏N

j=1,j ̸=i[dj ]. Player i’s
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expected payoff from a strategy profile σ = (σ1, . . . ,σN ) ∈ Σ is given by

ui(σ) =
∑

s1∈S1

. . .
∑

sN∈SN

ui(s1, . . . , sN )σ1(s1) · . . . · σN (sN ).

We also introduce the notation σj
−i := σ1j1 . . . σi−1,ji−1σi+1,ji+1 . . . σNjN for the probability that the

coalition (−i) plays the profile sj−i under σ−i, and we write

uj
i (σi, s

j
−i) :=

di∑
ji=0

ui(siji , s
j
−i)σi(siji) =

di∑
ji=0

ui(siji , s
j
−i)σiji (1)

for the expected payoff of player i when the coalition (−i) uses the pure strategies sj−i =
(s1j1 , . . . , si−1,ji−1 , si+1,ji+1 , . . . , sNjN ).

A strategy profile σ∗ = (σ∗
1 , . . . ,σ

∗
N ) is said to be a Berge equilibrium if for each player i ∈ I it holds

ui(σ
∗
i , σ

∗
−i) ≥ ui(σ

∗
i , σ−i)

for each (−i)-strategy profile σ−i ∈ Σ−i.

We characterize (mixed and pure) Berge equilibria as the nonnegative solutions to certain polynomial
systems (system (2) of Proposition 2.1 or system (7) of Proposition 2.4 below). As players of coalition −i
try to maximize player i’s utility, we start with a typical Kuhn–Tucker-like characterization of optimal
strategies.

Proposition 2.1 The strategy profile

σ = (σ1, . . . ,σN ) ∈ RD+N ,

where
σi := (σi0, . . . , σidi

) for each i ∈ I,

is a Berge equilibrium if and only if there exists

v = (v1, . . . ,vN ) ∈ RN ,

where vi = (vji | j ∈ D−i), such that (σ,v) satisfies the following system of polynomial equations
vji + uj

i (σi, s
j
−i) = v0i + u0

i (σi, s
0
−i) for each i ∈ I and j ∈ D−i \ {0}

σj
−iv

j
i = 0 for each i ∈ I and j ∈ D−i∑di

j=0 σij = 1 for each i ∈ I,

(2)

and σij ≥ 0 and vji ≥ 0 for each i ∈ I and for each j ∈ D−i.

All proofs can be found in the appendix.
As one can see from the second condition in (2), the variables vji are the complementary slackness

variables for the optimization of coalition −i given a possible −i-strategy profile j. In particular, they
characterize the support of the possibly (semi–)mixed equilibrium −i-strategy profile σj

i .
Preferences that admit an expected utility representation are invariant under positive affine transfor-

mations. It is thus no surprise that Berge equilibria are preserved by positive affine transformations of
payoff functions. We record this fact in the following remark.

Remark 2.2 Let ui, i ∈ I, be the payoff functions of a given game G =
(
I, (Si, ui)i∈I

)
and let σ be a

Berge equilibrium of G. By Proposition 2.1, there exists v ∈ RN such that system (2) holds, and σij ≥ 0

and vji ≥ 0 for each i ∈ I and for each j ∈ D−i. We consider a new game G̃ =
(
I, (Si, ũi)i∈I

)
defined

by some affine transformations ũi of the payoff functions ui, that is ũi = αiui + βi, where αi, βi ∈ R,
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αi > 0, for each i ∈ I. We prove that G̃ and G have the same Berge equilibria. Let wi = αivi ≥ 0, for
each i ∈ I. It is straightforward to verify that (2) is equivalent to the following system

wj
i + αiu

j
i (σi, s

j
−i) = w0

i + αiu
0
i (σi, s

0
−i) for each i ∈ I and j ∈ D−i \ {0}

σj
−iw

j
i = 0 for each i ∈ I and j ∈ D−i∑di

j=0 σij = 1 for each i ∈ I.

(3)

In the game G̃, we consider the expected payoff of player i when the coalition −i uses the pure strategies
sj−i and the probability of sj−i being played under σ−i, that is

ũj
i (σi, s

j
−i) =

di∑
ji=0

ũi(siji , s
j
−i)σiji = αiu

j
i (σi, s

j
−i) + βi

di∑
ji=0

σiji , (4)

for each i ∈ I and j ∈ D−i. Plugging (4) into system (3) we get
wj

i + ũj
i (σi, s

j
−i) = w0

i + ũ0
i (σi, s

0
−i) for each i ∈ I and j ∈ D−i \ {0}

σj
−iw

j
i = 0 for each i ∈ I and j ∈ D−i∑di

j=0 σij = 1 for each i ∈ I.

Applying Proposition 2.1, it follows that σ is a Berge equilibrium of G̃.

Observe that according to Proposition 2.1, the computation of Berge equilibria requires solving an
overdetermined system with many more equations than free variables if there are more than two players.

Remark 2.3 We count the number of equations and unknowns of system (2). The first line of (2) yields∑N
i=1

∏N
j=1,j ̸=i(dj +1)−N equations; the second line yields

∑N
i=1

∏N
j=1,j ̸=i(dj +1) equations; finally, the

third line leads to N equations. All in all, system (2) is made up of

2

N∑
i=1

N∏
j=1,j ̸=i

(dj + 1) (5)

equations. Regarding the unknowns, the vector σ has
∑N

j=1(dj +1) =
∑N

j=1 dj +N components, whereas
v is made up of

∑N
i=1

∏N
j=1,j ̸=i(dj+1) elements, so that the number of variables involved in system (2) is

N∑
i=1

N∏
j=1,j ̸=i

(dj + 1) +

N∑
j=1

dj +N. (6)

For N = 2, the number of equations of system (2), which is 2(d1 + d2 + 1) equals the number of its
unknowns. For N > 2, system (2) is overdetermined, having many more equations than unknowns;
indeed,

2

N∑
i=1

N∏
j=1,j ̸=i

(dj + 1) =

N∑
i=1

N∏
j=1,j ̸=i

(dj + 1) +

N∑
i=1

N−1∑
k=0

∑
K⊆{1,...,N}\{i},|K|=k

∏
j∈K

dj


>

N∑
i=1

N∏
j=1,j ̸=i

(dj + 1) +N + (N − 1)

N∑
j=1

dj

>

N∑
i=1

N∏
j=1,j ̸=i

(dj + 1) +

N∑
j=1

dj +N.
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If each player has the same number of pure strategies, that is di = d for each i ∈ I, then from (5)
and (6) it follows that system (2) is made up by 2N(d + 1)N−1 equations in N(d + 1)((d + 1)N−2 + 1)
unknowns. The difference between the number of equations and the number of unknowns is

N(d+ 1)((d+ 1)N−2 − 1)

{
= 0 if N = 2

> 0 if N > 2.

In the following, we provide alternative conditions to find Berge equilibria simply by solving a poly-
nomial system in the variables σ, thus eliminating the complementary slackness variables.

Proposition 2.4 The strategy profile

σ = (σ1, . . . ,σN ) ∈ RD+N ,

where
σi := (σi0, . . . , σidi

) for each i ∈ I,

is a Berge equilibrium if and only if the following conditions hold:

(i) σ is a positive solution of the following system of polynomial equations{
σj
−ip

j
i (σ) = 0 for each i ∈ I and j ∈ D−i∑di

j=0 σij = 1 for each i ∈ I,
(7)

where, for each i ∈ I,

p0i (σ) :=
∑

j∈D−i,j ̸=0 σ
j
−i(u

j
i (σi, s

j
−i)− u0

i (σi, s
0
−i))

pji (σ) := p0i (σ) + (u0
i (σi, s

0
−i)− uj

i (σi, s
j
−i)), for each j ∈ D−i \ {0},

(8)

are polynomial functions of degree N ;

(ii) pji (σ) ≥ 0 for each i ∈ I and j ∈ D−i.

Remark 2.5 We note that in the first block of (7) some of the equations are redundant. In particular,
for each i ∈ I, recalling (8) and exploiting relation (26) (see Appendix A) it holds∑

j∈D−i

σj
−ip

j
i (σ) =

∑
j∈D−i

σj
−i

(
p0i (σ) + (u0

i (σi, s
0
−i)− uj

i (σi, s
j
−i))

)
=

∑
j∈D−i

σj
−ip

0
i (σ) +

∑
j∈D−i

σj
−i(u

0
i (σi, s

0
−i)− uj

i (σi, s
j
−i))

= p0i (σ)− p0i (σ) = 0. (9)

Consequently, from (7) and (9), we conclude that σ is a Berge equilibrium of the game if and only if
Proposition 2.4 holds with system (7) replaced by{

σj
−ip

j
i (σ) = 0 for each i ∈ I and j ∈ D−i \ {0}∑di

j=0 σij = 1 for each i ∈ I.
(10)

We conclude this section by characterizing Berge equilibria in pure and completely mixed strategies.

Corollary 2.6 A pure strategy profile s = (s1l1 , . . . , sNlN ) ∈ S is a Berge equilibrium if and only if

min
j∈D−i\{l−i}

(
ui(s)− ui(sili , s

j
−i)
)
≥ 0 for each i ∈ I. (11)
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Remark 2.7 Corollary 2.6 recovers the main result of Corley and Kwain (2015), Theorem 3, where the
authors provide a condition for finding pure strategies Berge equilibria using the so-called disappointment
matrix. It is also equivalent to the conditions for the existence of pure Berge equilibria provided in
Nessaha, Larbani, and Tazdaitb (2007), Lemma 2.1 and Proposition 2.1.

Let us now come to the case of completely mixed Berge equilibria that has not been studied in detail
in the literature. As usual, we call a profile σ completely mixed if every player i plays each strategy j
with strictly positive probability, i.e. for all i ∈ I, j ∈ [di] we have σij > 0. Let i ∈ {1, . . . , N}. We order
the elements jl of the set D−i assuming that the first element is j1 = 0.

Proposition 2.8 The strategy profile σ = ((σ10, . . . , σ1d1), . . . , (σN0, . . . , σNdN
)) ∈ RD+N is a completely

mixed Berge equilibrium if and only if σi = (σi0, . . . , σidi
) is a strictly positive solution of the linear system

Aiσi = bi (12)

for each i ∈ I, where Ai ∈ R|D−i|×(di+1), with

Ai(l,m) :=

{
1 if l = 1

ui

(
si(m−1), s

jl
−i

)
− ui

(
si(m−1), s

0
−i

)
if 2 ≤ l ≤ |D−i|

, (13)

for each l = 1, . . . , |D−i| and m = 1, . . . , di + 1, and

bi :=


1
0
...
0

 ∈ R|D−i|. (14)

In mixed Nash equilibrium, the other players make player i indifferent between all her pure strategies.
In Berge equilibrium, player i mixes in such a way that all coalitions −i are indifferent among all pure
(−i)-strategy profiles they might consider in order to make him better off. This is the meaning of equation
(12).

3 Gröbner basis techniques for existence and computation of
Berge equilibria

The main object of study of Algebraic Geometry and Commutative Algebra are algebraic varieties, which
are geometric entities defined as the solution sets of polynomial equations. The origins of the two disci-
plines are traced back to the 19th and the (early) 20th century. Throughout the 20th century the ties
between the two areas fastly grew up also driven by the emergence of important computational aspects,
primarily due to Buchberger’s contributions on algorithms for manipulating systems of polynomial equa-
tions. In particular, in 1965 the concept of Gröbner bases was introduced by Buchberger (2006), who also
developed an algorithm to compute Gröbner bases of given ideals, which allowed for the simplification
of polynomial systems. Then, in the late 20th century, with the advent of computers, software packages
(like CoCoA (1988), Macaulay2 by Grayson and Stillman (1993) and Singular by Decker, Greuel, Pfister,
and Schönemann (2024)) were developed, making Gröbner bases computations doable to all researchers
and highly relevant for various disciplines (such as Robotics, Criptography, Combinatorics, Statistics,
Mathematical Optimization), thus establishing themselves as a fundamental tool to bridge theory and
application across diverse fields. Recently, in economics, Gröbner bases theory has been fruitfully applied
in different areas, such as in General Equilibrium Theory for the analysis of the equilibrium conditions
in markets (see Kubler and Schmedders (2010)), in Econometrics to address the global identification
problem in dynamic stochastic general equilibrium (DSGE) models (see Kocięcki and Kolasa (2023)) and
in Game Theory for the computation of all Nash equilibria in games with polynomial payoff functions
(see Datta (2010)).
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Despite the wide range of applications, the main and best known task of Gröbner basis technique
is to provide a simplified representation of a set of polynomial equations, which enables to compute
its solutions. In the rest of this section we provide a brief introduction to Gröbner basis and the main
algebraic/geometric objects involved when studying systems of polynomial equations. For a more detailed
introduction to the topic we refer the interested reader to Cox, Little, and O’Shea (2005, 2015) and
Kreuzer and Robbiano (2000). The definitions and results presented in this section are drawn from these
reference textbooks.

Formally, the set of all the solutions of a given system of polynomial equations f1(x1, . . . , xn) =
. . . = fs(x1, . . . , xn) = 0 in n variables with coefficients in a field K is the affine algebraic variety
V(f1, . . . , fs) ⊆ Kn defined by

V(f1, . . . , fs) := {(a1, . . . , an) ∈ Kn | fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ s} ⊆ Kn,

which is the main geometrical object of Computational Algebraic Geometry. The set

I(f1, . . . , fs) := {p1f1 + . . .+ psfs | pi ∈ K[x1, . . . , xn] for i = 1, . . . , s} ⊆ K[x1, . . . , xn]

is the ideal generated by f1, . . . , fs, one of the most important algebraic structures in polynomial rings.
The definition of Gröbner bases of ideals is constructed upon monomial orders, which are defined as

follows.

Definition 3.1 A monomial order on K[x1, . . . , xn] is any relation > on the set of monomials xα in
K[x1, . . . , xn] (or equivalently on the exponent vectors α ∈ Zn

≥0) satisfying:

(i) > is a total (linear) ordering relation;

(ii) > is compatible with multiplication in K[x1, . . . , xn], in the sense that if xα > xβ and xγ is any
monomial, then xαxγ = xα+γ > xβ+γ = xβxγ ;

(iii) > is a well-ordering, that is, every non-empty collection of monomials has a smallest element
under >.

Note that in the univariate case (n = 1) the only monomial order in the polynomial ring K[x] is
the degree order given by . . . > xm+1 > xm > . . . > x2 > x > 1, whereas polynomial rings in several
variables (n > 1) admit many different monomial orders. In this case, a choice on the ordering of
x1, . . . , xn is firstly required (usually the variables are ordered as follows: x1 > x2 > . . . > xn). Then,
based on the previous choice, there are still many possibilities to define a monomial order; for instance,
the lexicographic order, the graded lexicographic order, the graded reverse lexicographic order. Monomial
orders allow to introduce the leading term of a polynomial (see Definition 3.2) which is needed to define
Gröbner bases (see Definition 3.3).

Definition 3.2 Let > be a monomial order on K[x1, . . . , xn] and let f =
∑

α cαx
α be a polynomial in

K[x1, . . . , xn]. The leading term of f (with respect to >), denoted by LT>(f) or simply by LT(f) if no
confusion arises, is the product cαxα where xα is the largest monomial appearing in f in the ordering >.

Definition 3.3 Fix a monomial order > on K[x1, . . . , xn] and let I ⊂ K[x1, . . . , xn] be an ideal. A
Gröbner basis for I (with respect to >) is a finite collection of polynomials G = {g1, . . . , gt} ⊂ I with the
property that for every nonzero f ∈ I, its leading term LT(f) is divisible by LT(gi) for some i ∈ {1, . . . , t}.

Gröbner bases are characterized by many different properties, some of them being used to provide
alternative equivalent definitions. We recall here two fundamental facts: a Gröbner basis G = {g1, . . . , gt}
of I is a special kind of generating set of the ideal, that is I(g1, . . . , gt) = I, and Gröbner bases exist
for all ideals in K[x1, . . . , xn]. Further, Gröbner basis computation can provide a systematic method
for eliminating variables from systems of polynomial equations, as it can be used as a multivariate non-
linear generalization of Gaussian elimination for linear systems (see Lazard (1983)). The basic strategy
of elimination theory is provided by the following two main theorems: the Elimination Theorem, which
is based on the lexicographic monomial order, and the Extension Theorem. Note that, for the reader’s
convenience, the Extension Theorem is stated only for the case of eliminating the first variable x1, but it
can be applied as well when eliminating any number of variables.
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Theorem 3.4 (The Elimination Theorem) Let I ⊆ K[x1, . . . , xn] be an ideal and let G be a Gröbner
basis of I w.r.t. the monomial order >Lex (with x1 > x2 > . . . > xn). Then, for every 0 ≤ l ≤ n, the set

Gl = G ∩K[xl+1, . . . , xn]

is a Gröbner basis of the l-th elimination ideal Il = I ∩K[xl+1, . . . , xn] ⊆ K[xl+1, . . . , xn].

Theorem 3.5 (The Extension Theorem) Let I = I(f1, . . . , fs) ⊆ K[x1, . . . , xn] and let I1 = I ∩
K[x2, . . . , xn] ⊆ K[x2, . . . , xn]. For each 1 ≤ i ≤ s write fi in the form

fi = ci(x2, . . . , xn)x
Ni
1 + terms in which x1 has degree < Ni,

where Ni ≥ 0 and ci(x2, . . . , xn) ∈ K[x2, . . . , xn] is nonzero. Suppose that we have a partial solution
(a2, . . . , an) ∈ V(I1). If (a2, . . . , an) ̸∈ V(I(c1, . . . , cs)) and K is algebraically closed, then there exists
a1 ∈ K such that (a1, a2, . . . , an) ∈ V(I).

If the ideal I is zero-dimensional, that is if the associated system of polynomial equations has a finite
number of solutions (note that again this can be tested by looking at the leading terms of a Gröbner basis
of I), the previous theorems provide a procedure to compute V(I). Indeed, let G be a Gröbner basis of
I w.r.t. the monomial order >Lex (with x1 > x2 > . . . > xn); the last coordinate of a solution of the
associated polynomial system is a root an of the greatest common divisor of the polynomials Gn−1, that
is the polynomials of the basis that depend only on the last variable. If the assumptions of the Extension
Theorem are satisfied, the substitution xn = an can be performed in G, and the second-last coordinate
of such solution is a root of the greatest common divisor of the polynomials in Gn−2 |{xn=an}. Then,
the iterations continue till the first variable is considered, so that all elements of V(I) are computed.
This approach describes an effective and quite simple solving process which is outlined in Algorithm
SolutionSet in Section 5 below.

4 Regular games
The algorithms that we develop below focus on the generic class of games that possess at most finitely
many locally isolated Berge equilibria. In this section, we specify the notion of regularity that will be
used throughout, adapting the notion that van Damme (1991) developed for Nash equilibria to the case of
Berge equilibria. The reader who is not interested in these technical details is invited to jump immediately
to Section 5 on algorithms.

In the setting of Section 2, let G(I, (Si)i∈I) be the set of all games with pure strategies spaces
S1, . . . , SN . Imposing a fixed ordering on the payoff functions, there is one-to-one correspondence be-
tween the space of all the games G(I, (Si)i∈I) and RNDS . In particular, each game Γ in G(I, (Si)i∈I) is
represented by its payoff vector

u = (u1, . . . , uN ) ∈ RNDS .

Thus, the game Γ ∈ G(I, (Si)i∈I) can be simply denoted by u, and its (possibly empty) set of Berge
equilibria by B(u).

Inspired by van Damme (1991), we introduce the notions of isolated and strongly stable Berge equi-
libria. A Berge equilibrium is said to be isolated if there is no other Berge equilibrium of the game lying
arbitrarily close to it. A Berge equilibrium is said to be strongly stable if it undergoes continuous and
unique changes under small perturbations in the original payoff functions.

Definition 4.1 Let Γ ∈ G(I, (Si)i∈I) be an N -person normal form game defined by u = (u1, . . . , uN ) ∈
RNDS . Let σ be a Berge equilibrium of Γ. Then:

(i) σ is isolated if there exists a neighborhood Uσ of σ such that Uσ ∩B(u) = {σ};

(ii) σ is strongly stable if there exist neighborhoods Uu of u and Uσ of σ such that:

(a) |B(u) ∩ Uσ| = 1 for each u ∈ Uu;
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(b) the mapping b : Uu −→ Uσ defined by b(u) = B(u) ∩ Uσ is continuous.

In order to introduce regularity, we recall that each Berge equilibrium is defined as a positive solution
of system (10) such that pji (σ) ≥ 0 for each i ∈ I and j ∈ D−i (see Proposition 2.4 and Remark 2.5).
Henceforth, we find it convenient to explicitly denote the dependence of each pji on the payoff functions ui,
that is we will write pji (σ, ui). We let F = (F1, . . . , FN ) : RD+N ×RNDS −→ R

∑
i∈I |D−i| be the mapping

defined by system (10), where Fi : RD+N × RDS −→ R|D−i| has the following components

Fi,0(σ, ui) :=
∑d

j=0 σij − 1

Fi,j(σ, ui) := σj
−ip

j
i (σ, ui) for each j ∈ D−i \ {0},

(15)

for each i ∈ I. Let ∇F (σ,u) and ∇σF (σ,u) be the Jacobian matrices of F w.r.t. all the variables (σ,u)
and w.r.t. σ respectively. A game Γ defined by the payoff function u is regular if for any (real) solution
σ of the polynomial system (10) the Jacobian matrix ∇σF (σ,u) has full rank and the rank of ∇F (σ,u)
is constant and equal to rank(∇σF (σ,u)) in a neighborhood of (σ,u). The formalization of this concept
is provided in Definition 4.3.

Remark 4.2 We observe that the rank of ∇σF (σ,u) is at most D + N . Indeed, recalling that D =∑N
i=1 di and

∑N
i=1 |D−i| =

∑N
i=1

∏N
j=1,j ̸=i(dj +1), it immediately follows that in the case N = 2 it holds

N∑
i=1

|D−i| = D +N,

whereas for N ≥ 3 we have

N∑
i=1

|D−i| >
N−1∑
i=1

(di+1 + 1) + (d1 + 1) =

N∑
i=1

(di + 1) = D +N.

Definition 4.3 Let Γ ∈ G(I, (Si)i∈I) be an N -person normal form game defined by u = (u1, . . . , uN ) ∈
RNDS and VR(u) ⊆ RD+N be the (real) zero set of the polynomial system F (σ,u) = 0, where F is the
mapping defined in (15). The game Γ is (Berge) regular if for each σ ∈ VR(u) the following conditions
are satisfied:

(i) rank(∇σF (σ,u)) = D +N ;

(ii) there exists a neighborhood W of (σ,u) such that

rank(∇F (σ,u)) = D +N, ∀ (σ,u) ∈ W.

Remark 4.4 In 2-players games, (Berge) regularity simply corresponds to the nonsingularity of the Ja-
cobian matrix ∇σF (σ,u) for each σ ∈ VR(u) (see Remark 4.2 and Definition 4.3).

In regular games, Berge equilibria are strongly stable isolated points.

Theorem 4.5 In (Berge) regular games,

(i) every Berge equilibrium is strongly stable,

(ii) every strongly stable equilibrium is isolated. In particular, all Berge equilibria are isolated.

Finally, regularity has a remarkable implication on Berge equilibria: regular games admit at most one
completely mixed Berge equilibrium, regardless of the number of players or strategies. This stands in
stark contrast to the rapid growth of completely mixed Nash equilibria, as discussed in McKelvey and
McLennan (1997).

Proposition 4.6 (Berge) regular games admit at most one completely mixed Berge equilibrium.
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5 Algorithms for Computing Berge Equilibria
Having transformed the problem of finding Berge equilibria into an equivalent algebraic polynomial system
(see Proposition 2.1) or an equivalent semi-algebraic system (see Proposition 2.4), we can use techniques
such as Gröbner bases and elimination theory (see Section 3) to simplify and solve these systems. The
process provides a structured way to compute equilibria, offering insights beyond traditional equilibrium
analysis. Building on the results from Section 2 and the theory recalled in Section 3, this section introduces
algorithms for computing Berge equilibria. Specifically, Algorithm AllBerge is designed to compute
all Berge equilibria, while Algorithms PureBerge and CompletelyMixedBerge provide pseudocode for
computing pure and completely mixed Berge equilibria, respectively. From now on, we assume that the
games under consideration are regular (see Section 4). The algorithms presented in this paper have been
implemented using the CoCoA computer algebra system CoCoA (1988). The full source code is publicly
available in the GitHub repository: https://github.com/mltorrente/BergeEquilibria.git.

5.1 Pseudocode for computing all Berge equilibria
In Proposition 2.4 (and Remark 2.5) all Berge equilibria are characterized as the nonnegative solutions
to the polynomial system (10) satisfying some positivity conditions (see Proposition 2.4-item(ii)). Based
on such result, we introduce Algorithm AllBerge that, starting from any regular game with N -players,
sets of pure strategies S1, . . . , SN and payoff functions u1, . . . , uN , performs the following steps. At first,
it constructs the polynomial set F associated to the system (10) and the ideal I(F ). Then, the solution
set S of the system F = 0 is computed by applying Algorithm SolutionSet (described below) to I(F ).
To this aim we recall that, by the regularity assumption, all real zeros of F = 0 are locally isolated points
(see Corollary ??. Finally, Algorithm AllBerge collects in the variable BE all the solutions z ∈ S which
are both positive and satisfy the positivity condition pji (z) ≥ 0 for each i ∈ I and j ∈ D−i, and return
it. From Proposition 2.4, the returned set BE contains all Berge equilibria of the input game.

Algorithm 1 - AllBerge: Computation of All Berge Equilibria
Require: Regular game defined by:

set of players I = {1, . . . , N}
sets of pure strategies S1 = {s10, . . . , s1d1

}, . . . , SN = {sN0, . . . , sNdN
}

payoff functions u1, . . . , uN

Ensure: Berge Equilibria BE
1: BE = ∅ {Initialize the set of Berge Equilibria}
2: σi = (σi0, . . . , σid1) for each i ∈ I
3: σ = (σ1, . . . , σN ) {Construct the set of variables}
4: [di] = {0, 1, . . . , di} for each i ∈ I

5: D−i =
∏N

k=1,k ̸=i[dk] for each i ∈ I
6: for all i ∈ I and j ∈ D−i do
7: uj

i (σi, s
j
−i) =

∑di

ji=0 ui(siji , s
j
−i)σiji {Compute all uj

i (σi, s
j
−i)}

8: end for
9: for all i ∈ I do

10: p0i (σ) =
∑

j∈D−i,j ̸=0 σ
j
−i(u

j
i (σi, s

j
−i)− u0

i (σi, s
0
−i)) {Compute all pji (σ)}

11: for all j ∈ D−i \ {0} do
12: pji (σ) = p0i (σ) + (u0

i (σi, s
0
−i)− uj

i (σi, s
j
−i))

13: end for
14: end for
15: F = ∅
16: for all i ∈ I do
17: for all j ∈ D−i \ {0} do
18: append σj

−ip
j
i (σ) to F {Compute the polynomial set F}

19: end for
20: append

∑di

i=0 σij − 1 to F
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21: end for
22: let S be the output of Algorithm SolutionSet applied to

√
I(F ) {S = VR(

√
I(F ))}

23: for all z ∈ S do
24: if z ≥ 0 and pji (z) ≥ 0 for each i ∈ I and j ∈ D−i then
25: append z to BE
26: end if
27: end for
28: if BE=∅ then
29: print “Berge equilibria do not exist"
30: else
31: print “The game admits Berge equilibria"
32: end if
33: return BE {Return the set of All Berge Equilibria}

Algorithm SolutionSet is designed to compute all the solutions of a given zero-dimensional ideal. It
is based on the Elimination Theorem and the Extension Theorem (recalled in Section 3, see Theorem 3.4
and 3.5). Starting from a given zero-dimensional ideal I of the polynomial ring K[x1, . . . , xn], Algorithm
SolutionSet first of all computes the Gröbner basis G of I w.r.t. the lexicographic monomial order
(>Lex) with x1 > x2 > . . . > xn. Then, it performs a stepwise computation based on the number of the
variables. The main for loop is indexed by the integer variable l that ranges between n − 1 (starting
value) to 0 (final value). In particular, at the first iteration l = n− 1, the partial solution set is Sn−1 = ∅
and Gn−1 = G ∩ K[xn] is a Gröbner basis of the (n − 1)th elimination ideal In−1. The set Sn−1 is then
updated with all the common roots of the polynomials belonging to Gn−1, that are computed by simply
finding all the common zeros of the GCD of the elements of Gn−1. At the lth iteration, with 0 ≤ l < n−1,
the partial solution set is Sl = ∅, Gl = G ∩ K[xl+1, . . . , xn] is a Gröbner basis of Il and Ll contains the
leading coefficients polynomials of Gl, that is the nonzero polynomials c(xl+2.., . . . , xn) ∈ K[xl+2, . . . , xn]
such that each f ∈ Gl rewrites in the form

f = c(xl+2.., . . . , xn)x
d
l+1 + terms in which xl+1 has degree < d,

where d ≥ 0. Then, an inner loop applies. The for condition considers at each step one partial solution
s ∈ Sl+1 at a time: if not all elements of Ll simultaneously vanish at s, then the univariate polynomial
set H is constructed with the evaluations of all elements of Gl at (xl+1, . . . , xn) = s, that is H =
Gl |{(xl+1,...,xn)=s}. The set of all the common roots of the GCD of H is denoted by T and each t ∈ T
is used to “extend" the partial solution s, that is the pair (t, s) ∈ Kn−l is appended to Sl. The outer
iterations continue till l = 0 when the first variable is considered. Finally, S0 is assigned to the returned
variable S which, by Theorem 3.5 and 3.4, contains all elements of V(I).

Algorithm 2 - SolutionSet: Computation of the solution set of a zero-dimensional ideal

Require: I ⊂ K[x1, . . . , xn] zero-dimensional ideal
Ensure: solution set S = V(I)
1: compute the reduced Gröbner basis G of I w.r.t. Lex with xn < . . . < x1

2: for l = n− 1, . . . , 0 do
3: Sl = ∅ {Initialize Sl = ∅}
4: Gl = G ∩K[xl+1, . . . , xn] {Compute a Gröbner basis of lth elimination ideal}
5: if l = n− 1 then
6: Sn−1 = RootsOf(GCD(Gn−1)) {Sn−1 contains the common roots of Gn−1}
7: else
8: Ll = {LCP(f, xl+1) | f ∈ Gl} {Compute the Leading Coefficients Polynomials of Gl}
9: for all s ∈ Sl+1 do

10: if subst(c, [xl+2, . . . , xn], s) ̸= 0 for some c ∈ Ll then
11: H = {subst(f, [xl+2, . . . , xn], s) | f ∈ Gl} {H contains univariate polys in xl+1}
12: T = RootsOf(GCD(H)) {T contains the common roots of H}
13: for all t ∈ T do
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14: append (t, s) to Sl {Sl contains the extensions of the partial solutions}
15: end for
16: end if
17: end for
18: end if
19: end for
20: S = S0

21: return S {Return the solution set S}

Example 5.1 We consider the game Battle of the Sexes illustrated by Table 1.

I II
I (2,1) (0,0)
II (0,0) (1,2)

Table 1: 2-player game Battle of the Sexes

This is a regular 2-player game in which each player has the two strategies I and II, hence N = 2,
d1 = d2 = 1, S1 = {s10, s11} = {I, II} and S2 = {s20, s21} = {I, II}. We apply Algorithm AllBerge
and follow its main steps. Algorithm AllBerge initializes the variables σ = ((σ10, σ11), (σ20, σ21)) and
constructs the polynomial set F (see (10)), which is made up of 4 polynomials in 4 variables (see also
Proposition 2.4 and Remark 2.5):

F = {−(2σ10 − σ11)σ20σ21,−σ10σ11(σ20 − 2σ21), σ10 + σ11 − 1, σ20 + σ21 − 1} . (16)

Then, Algorithm SolutionSet is applied to the (radical) ideal I(F ) to solve the polynomial system F = 0
via the method of variables’ elimination (see Elimination Theorem and Extension Theorem). The reduced
Gröbner basis G, w.r.t. the lexicographical ordering on the monomials of K[σ] with σ21 < σ20 < σ11 < σ10,
of I(F ) is computed

G =


g1 = σ20 + σ21 − 1
g2 = σ10 + σ11 − 1
g3 = 1

3σ21(σ21 − 1)(3σ11 − 2)
g4 = (σ11 + σ21 − 1)(σ11 − σ21)
g5 = 1

3σ21(σ21 − 1)(3σ21 − 1).

The procedure of variables’ elimination starts. The set G21 = G ∩K[σ21] = {g5} is a Gröbner basis of the
last elimination ideal I21 = I ∩K[σ21]. The unique solutions of the equation g5 = 0 are

σ21 = 0, σ21 =
1

3
, σ21 = 1,

which are used to extend to all complete solutions of the polynomial system. At the end, Algorithm
SolutionSet returns the following 5 solutions:

ξ1 = (0, 1, 1, 0) ξ2 = (1, 0, 1, 0) ξ3 = (0, 1, 0, 1)
ξ4 = (1, 0, 0, 1) ξ5 = (1/3, 2/3, 2/3, 1/3)

Control is then passed back to Algorithm AllBerge which checks whether the condition of Proposition 2.4
item (ii) is verified on the solutions. While ξ2, ξ3 and ξ5 satisfy the condition, ξ1 and ξ4 fail to meet it.
Algorithm AllBerge stops and returns two pure Berge equilibria σ10 = σ20 = 1 and σ10 = σ20 = 0 and
one completely mixed Berge equilibrium

((
1
3 ,

2
3

)
,
(
2
3 ,

1
3

))
. Note that this is one of the rare cases where

Berge and Nash equilibria coincide as we shall see below.
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Example 5.2 Our techniques allow to determine whether Berge equilibria exist. Consider the following
regular three player game (compare Sturmfels (2002), Section 6.2), with d1 = d2 = d3 = 1 and where
player 1 chooses the row, player 2 the column, and player 3 the matrix.

C1 :

(
(0, 12, 11) (11, 6, 3)
(6, 10, 0) (6, 8, 2)

)
C2 :

(
(6, 7, 11) (1, 8, 3)
(4, 12, 14) (8, 1, 7)

)
.

We apply Algorithm AllBerge to this game. Algorithm AllBerge initializes the variables σ =
((σ10, σ11), (σ20, σ21), (σ30, σ31)) and constructs the polynomial set F (see (10)), which is made up of
12 polynomials in 6 variables (see also Proposition 2.4 and Remark 2.5):

F =



σ31σ20(6σ10σ20σ31 + 11σ10σ21σ30 + σ10σ21σ31 − 2σ11σ20σ31 + 2σ11σ21σ31 − 6σ10 + 2σ11),
σ30σ21(6σ10σ20σ31 + 11σ10σ21σ30 + σ10σ21σ31 − 2σ11σ20σ31 + 2σ11σ21σ31 − 11σ10),
σ31σ21(6σ10σ20σ31 + 11σ10σ21σ30 + σ10σ21σ31 − σ10 − 2σ11σ20σ31 + 2σ11σ21σ31 − 2σ11),
σ31σ10(−5σ10σ20σ31 + 2σ10σ21σ31 − 2σ11σ20σ30 + 2σ11σ21σ30 − 5σ11σ21σ31 + 5σ20 − 2σ21),
σ30σ11(−5σ10σ20σ31 + 2σ10σ21σ31 − 2σ11σ20σ30 + 2σ11σ21σ30 − 5σ11σ21σ31 + 2σ20 − 2σ21),
σ31σ11(−5σ10σ20σ31 + 2σ10σ21σ31 − 2σ11σ20σ30 + 2σ11σ21σ30 − 5σ11σ21σ31 + 5σ21),
σ21σ10(−8σ10σ21σ30 − 8σ10σ21σ31 − 11σ11σ20σ30 + 3σ11σ20σ31 − 9σ11σ21σ30 − 4σ11σ21σ31 + 8σ30 + 8σ31),
σ20σ11(−8σ10σ21σ30 − 8σ10σ21σ31 − 11σ11σ20σ30 + 3σ11σ20σ31 − 9σ11σ21σ30 − 4σ11σ21σ31 + 11σ30 − 3σ31),
σ21σ11(−8σ10σ21σ30 − 8σ10σ21σ31 − 11σ11σ20σ30 + 3σ11σ20σ31 − 9σ11σ21σ30 − 4σ11σ21σ31 + 9σ30 + 4σ31),
σ10 + σ11 − 1,
σ20 + σ21 − 1,
σ30 + σ31 − 1


Algorithm SolutionSet is then applied to the (radical) ideal I(F ) to solve the polynomial system F = 0.
The reduced Gröbner basis G, w.r.t. the lexicographical ordering on the monomials of K[σ] with σ31 <
σ30 < σ21 < σ20 < σ11 < σ10, of I(F ) is computed:

G =



g1 = σ10 + σ11 − 1
g2 = σ11(σ11 − 1)
g3 = σ20 + σ21 − 1
g4 = σ21(σ21 − 1)
g5 = σ30 + σ31 − 1
g6 = σ31(σ31 − 1)

The procedure of variables’ elimination starts. The set G31 = G ∩K[σ31] = {g6} is a Gröbner basis of the
last elimination ideal I31 = I∩K[σ31]. The unique solutions of the equation g6 = 0 are 0 and 1, which are
used to extend to all complete solutions of the polynomial system. At the end, Algorithm SolutionSet
returns the following 8 solutions

ξ1 = (0, 1, 0, 1, 0, 1)
ξ2 = (0, 1, 0, 1, 1, 0)
ξ3 = (0, 1, 1, 0, 0, 1)
ξ4 = (0, 1, 1, 0, 1, 0)

ξ5 = (1, 0, 0, 1, 0, 1)
ξ6 = (1, 0, 0, 1, 1, 0)
ξ7 = (1, 0, 1, 0, 0, 1)
ξ8 = (1, 0, 1, 0, 1, 0).

Control is then passed back to Algorithm AllBerge which checks whether the condition of Proposition 2.4
item (ii) is verified. Since none of them meet it, Algorithm AllBerge terminates with the conclusion that
the game has no Berge equilibria.

5.2 Pseudocode for computing pure Berge equilibria
Based on Corollary 2.6, we introduce Algorithm PureBerge that, starting from any game with N -players,
sets of pure strategies S1, . . . , SN and payoff functions u1, . . . , uN , finds all pure strategies Berge equilibria
as follows. Similarly to Corley and Kwain (2016) and Nessaha, Larbani, and Tazdaitb (2007), we consider
a transformation of all the player’s payoffs. For each pure strategy profile s ∈ S and each player i ∈ I
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the difference between the actual payoff ui(s) and the best payoff that the player i could get by choosing
among all −i coalitions is computed. If such values are positive for each i ∈ I, then the pure strategy
s, which is a Berge equilibrium by Corollary 2.6, is appended to the variable PBE, that is returned by
Algorithm PureBerge once all pure strategies have been analyzed.

Algorithm 3 - PureBerge: Computation of Pure Berge Equilibria
Require: Game defined by:

set of players I = {1, . . . , N}
sets of pure strategies S1 = {s10, . . . , s1d1

}, . . . , SN = {sN0, . . . , sNdN
}

payoff functions u1, . . . , uN

Ensure: Pure Berge Equilibria PBE
1: PBE = ∅ {Initialize the set of Pure Berge Equilibria}
2: [di] = {0, 1, . . . , di} for each i ∈ I

3: for all l = (l1, . . . , lN ) ∈
∏N

i=1[di] do
4: s = (sl1 , . . . , slN ) ∈ S
5: zero(N) = (0 | i ∈ I)
6: z = zero(N)
7: for i = 1, . . . , N do
8: zi = minj∈D−i\{l−i}

(
ui(s)− ui(sili , s

j
−i)
)

9: end for
10: if z ≥ zero(N) componentwise then
11: append s to PBE
12: end if
13: end for
14: return PBE {Return the set of all Pure Berge Equilibria}

5.3 Pseudocode for computing Completely Mixed Berge equilibria
The computation of all completely mixed Berge equilibria relies upon Proposition 2.8 and is implemented
in Algorithm CompletelyMixedBerge, whose input is any N -player regular game with sets of pure strate-
gies S1, . . . , SN and payoff functions u1, . . . , uN . The algorithm’s main for loop is indexed by the integer
i, ranging from 1 to N , representing the considered player. At each iteration, D−i is the number of −i
coalitions (as in our general setting), whereas Ai ∈ R|D−i|×(di+1) and bi ∈ R|D−i|×1 are defined as in (13)
and (14) respectively. The linear system Aiσi = bi is solved and the (componentwise) strictly positive
solution is denoted by Si. By Proposition 2.8, in any completely mixed Berge equilibrium, player i plays
a strategy of the set Si. At the end of the for loop, if all Si are not empty, (S1, . . . , SN ) is the unique
completely mixed Berge equilibrium of the game (see also Proposition 4.6), which is returned by the
algorithm.

Algorithm 4 - CompletelyMixedBerge: Computation of Completely Mixed Berge Equilibria
Require: Regular game defined by:

set of players I = {1, . . . , N}
sets of pure strategies S1 = {s10, . . . , s1d1}, . . . , SN = {sN0, . . . , sNdN

}
payoff functions u1, . . . , uN

Ensure: Completely Mixed Berge Equilibrium CMBE
1: CMBE = ∅ {Initialize the set of Completely Mixed Berge Equilibria}
2: σi = (σi0, . . . , σid1

) for each i ∈ I {Construct the set of variables}
3: [di] = {0, 1, . . . , di} for each i ∈ I

4: D−i =
∏N

k=1,k ̸=i[dk] for each i ∈ I
5: for i = 1, . . . , N do
6: construct Ai ∈ R|D−i|×(di+1) as defined in (13)
7: cosntruct bi ∈ R|D−i| as defined in (14)
8: let Si be the (componentwise) strictly positive solution of Aiσi = bi

14



9: end for
10: if Si = ∅ for some i ∈ I then
11: print “The game does not admit completely Berge equilibria"
12: else
13: CMBE = {(S1, . . . , SN )}
14: end if
15: return CMBE {Return the Completely Mixed Berge Equilibrium}

Example 5.3 Consider the following regular three player game with d1 = d2 = d3 = 1 and where player
1 chooses the row, player 2 the column, and player 3 the matrix.

C1 :

(
(0, 2, 7) (10, 8, 3)
(10, 8, 3) (0, 2, 7)

)
C2 :

(
(10, 8, 3) (0, 2, 7)
(0, 2, 7) (10, 8, 3)

)
.

Intuitively, in a completely mixed Berge equilibrium, each player has to make the other players indifferent
in their concern about her payoff. We apply Algorithm CompletelyMixedBerge to this game. Algorithm
CompletelyMixedBergeconstructs the three linear systems:

A1σ1 = b1, A2σ2 = b2 and A3σ3 = b3,

where

A1 =


1 1
10 −10
10 −10
0 0

 A2 =


1 1
6 −6
6 −6
0 0

 A3 =


1 1
−4 4
−4 4
0 0


and b1 = b2 = b3 = (1, 0, 0, 0)t. Then, for each i = 1, . . . , 3, the set Si of (componentwise) strictly positive
solutions of Aiσi = bi is computed:

S1 = S2 = S3 =
{(

1
2 ,

1
2

)}
.

The strategy
((

1
2 ,

1
2

)
,
(
1
2 ,

1
2

)
,
(
1
2 ,

1
2

))
is returned as the unique completely mixed Berge equilibrium of the

game.

6 Games Admitting Completely Mixed Berge Equilibria
As discussed in Remark 2.3, the reader may already anticipate that Berge equilibria do not generally
exist, since their characterization involves solving an overdetermined system of equations. This intuition
is confirmed in the analysis that follows. We proceed to identify and characterize the class of games
that can admit completely mixed Berge equilibria. Our results show that, for games with more than
two players, this class forms a subset of significantly lower dimension within the space of all games.
Specifically, we describe the determinantal variety that encompasses all such games, providing a precise
geometric understanding of the structural constraints underlying the existence of completely mixed Berge
equilibria.

For simplicity, we consider the case of games with N players, each having the same number d+1 ≥ 2
of pure strategies. We write [d] = {0, 1, . . . , d}. The finite set of pure strategies of the ith player is
Si = {si0, . . . , sid} and the set of strategy profiles is S =

∏
i∈I Si with cardinality DS := |S| = (d+ 1)N .

In this setting D = Nd, D−i = [d]N−1 and |D−i| = (d + 1)N−1, for each i ∈ I. For each player i, we
consider S−i =

∏
j∈I,j ̸=i Sj , that is the set of pure strategies of the (−i)-coalition. Using the notation of

Section 4, we recall that each game in G(I, (Si)i∈I) is identified by its payoff vector u ∈ RN(d+1)N and
that RN(d+1)N represents the space of all games in G(I, (Si)i∈I).

Let i ∈ I. Recalling the notation of Proposition 2.8, we order the elements jl of the set D−i assuming
that the first element is j1 = 0. It is convenient to reorganize the payoff functions of the the game as
follows. For each i ∈ I, we let

ξi := (ξi1, . . . , ξ
i
d+1) ∈ R(d+1)N−(d+1),
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where

ξim := (ξi2,m, . . . , ξi(d+1)N−1,m) ∈ R(d+1)N−1−1 ∀ m ∈ {1, . . . , d+ 1}

and

ξil,m := ui

(
si(m−1), s

jl
−i

)
− ui

(
si(m−1), s

0
−i

)
∈ R ∀ l ∈ {2, . . . , (d+ 1)N−1},∀ m ∈ {1, . . . , d+ 1}.

The space of coordinates of the ith player is denoted by Zi := R(d+1)N−(d+1) and the space of payoff
functions of all players is Z :=

∏N
i=1 Zi. In such a space, we aim to characterize the payoff functions such

that the associated game admits a completely mixed Berge equilibrium. It is trivial to note that, having
imposed a fixed ordering on D−i, each game is uniquely represented as the point

ξ := (ξ1, . . . , ξN ) ∈ Z. (17)

Further, we introduce the set of variables for player i:

zi := (zi1, . . . , z
i
d+1),

where

zim := (zi2,m, . . . , zi(d+1)N−1,m) ∀ m ∈ {1, . . . , d+ 1},

and

zilm := ui(si(m−1), s
jl
−i)− ui(si(m−1), s

0
−i) ∀ l ∈ {2, . . . , (d+ 1)N−1},∀ m ∈ {1, . . . , d+ 1}. (18)

Let P i := R[zi] be the polynomial ring in the variables zi with real coefficients. The following result
holds.

Theorem 6.1 (The class of games with completely mixed Berge equilibria)

(i) The affine variety

V :=

N∏
i=1

Vi ⊆ Z,

where

Vi := V (Ii) ⊆ Zi

and Ii := ⟨Gi⟩ is the ideal generated by the polynomials set

Gi :=
{
f i
l

∣∣ l = (l2, . . . , ld+2) and 2 ≤ l2 < . . . < ld+2 ≤ (d+ 1)N−1
}

(19)

with

f i
l := det

 zil21 . . . zil2(d+1)

...
...

zild+21
. . . zild+2(d+1)

 ∈ P i, (20)

contains the set of all games that admit completely mixed Berge equilibria.

(ii) The payoff functions in Z \V give rise to games that do not have completely mixed Berge equilibria.

(iii) The dimension of the set of games that admit completely mixed Berge equilibria is at most Nd(d+
1)N−1.
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(iv) For each i ∈ I we consider the affine variety

Wi := V (Ji) ⊆ Zi (21)

where
Ji :=

〈{
gil | l = (l2, . . . , ld+1) and 2 ≤ l2 < . . . < ld+1 ≤ (d+ 1)N−1

}〉
and

gil := det


1 . . . 1

zil21 . . . zil2(d+1)

...
...

zild+11
. . . zild+1(d+1)

 ∈ P i. (22)

It holds Wi ⊆ Vi and, letting

Ti := Vi \Wi, (23)

it follows that Vi = Wi ∪ Ti. Further, the set

T :=

N∏
i=1

Ti ⊆ V

contains the set of games that admit at most one completely mixed Berge equilibrium.

(v) The payoff functions in V \T give rise to games that have none or infinitely many completely mixed
Berge equilibria. Further, if the game is regular then it has no completely mixed Berge equilibria.

(vi) In the above setting, we consider a game represented by ξ = (ξ1, . . . , ξN ) ∈ Z (see (17)) and assume
that ξ ∈ T . For each i ∈ I, let li = (li2, . . . , l

i
d+1) be such that 2 ≤ li2 < . . . < lid+1 ≤ (d+1)N−1 and

gili(ξ
i) ̸= 0. Let

σit =
(−1)th(li)−t(ξi)

gli(ξi)
> 0, for each t ∈ {0, . . . , d}, for each i ∈ I, (24)

where

h(li)−t := det

 zil21 . . . zil2t zil2(t+2) . . . zil2(d+1)

...
...

...
...

zild+11
. . . zild+1t

zild+1(t+2) . . . zild+1(d+1)

 .

If

σit > 0 for each t ∈ {0, . . . , d}, for each i ∈ I, (25)

then
σ = (σ10, . . . , σ1d, . . . , σN0, . . . , σNd)

is the unique completely Berge equilibrium of the game. Otherwise, the game admits no completely
mixed Berge equilibria.

Theorem 6.1 provides a characterization of games according to their location in the space of payoff
functions of all players. Recalling that each game is identified by the point ξ = (ξ1, . . . , ξN ) ∈ Z, the
main results of Theorem 6.1 can be summarized as follows: if ξ ∈ Z \V then the game has no completely
mixed Berge equilibria; if ξ ∈ T then the game admits at most one completely mixed Berge equilibrium
(and conditions for its existence are provided by (25), which can be used to define a semi-algebraic subset
of T ); finally, if ξ ∈ V \ T then the game may admit none or infinitely many completely mixed Berge
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equilibria. In this last case, assuming that the game is regular, we can conclude that no completely mixed
Berge equilbrium exists.

The result shows that the set of games admitting completely mixed Berge equilibria is a null set of
substantially lower dimension within the class of all games. Relative to the dimension of the space of all
games, we have a ratio of

Nd(d+ 1)N−1

N [(d+ 1)N − (d+ 1)]
≈ d

d+ 1

for large N .

7 Conclusion
This paper presents a novel algebraic framework for analyzing Berge equilibria in finite normal-form
games. By characterizing Berge equilibria as solutions to systems of polynomial equations, we bring
powerful tools from computational algebra and algebraic geometry – particularly Gröbner basis techniques
– into the study of strategic interactions. Our approach provides a systematic method for determining
the existence of Berge equilibria and computing them explicitly, both in pure and mixed strategies.

In addition to the theoretical formulation, we have developed algorithms capable of identifying all
Berge equilibria in regular games, including completely mixed equilibria. We also show that the set of
games admitting such equilibria lies within a determinantal variety, and we provide an explicit com-
putation of its dimension. This insight clarifies the structural rarity of Berge equilibria, especially in
multi-player games, and contributes to a deeper understanding of their geometric properties.

Beyond these technical achievements, our work lays the foundation for a richer algebraic treatment
of alternative solution concepts in game theory. One promising avenue for future research is to explore
the relationship between Berge equilibria and strong Nash equilibria. Both concepts involve stability
against deviations by coalitions rather than individuals, yet they rest on fundamentally different princi-
ples—benevolence in the case of Berge, and mutual self-interest in the case of strong Nash. Investigating
formal connections or identifying conditions under which the two coincide could deepen our understanding
of strategic cooperation and coalition-proof stability.

Moreover, the algebraic framework developed here may be extended to dynamic games, stochastic
settings, or games with continuous strategy spaces, potentially linking to equilibrium refinements in
broader economic and strategic contexts. In sum, this paper not only contributes a new computational
and structural understanding of Berge equilibria but also opens several directions for advancing the
interplay between game theory and computational algebra.
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A Proofs

A.1 Proof of Proposition 2.1

Proof. We rewrite the expected payoff to player i as follows:

ui(σi, σ−i) =
∑

s1∈S1

. . .
∑

sN∈SN

ui(s1, . . . , sN )σ1(s1) . . . σN (sN )

=
∑

s−i∈S−i

∑
si∈Si

ui(si, s−i)σ1(s1) . . . σN (sN )

=
∑

s−i∈S−i

σ1(s1) . . . σi−1(si−1)σi+1(si+1) . . . σN (sN )
∑
si∈Si

ui(si, s−i)σi(si)

=
∑

s−i∈S−i

σ1(s1) . . . σi−1(si−1)σi+1(si+1) . . . σN (sN )

di∑
ji=0

ui(siji , s−i)σi(siji)

=
∑

j=(j1,...,ji−1,ji+1,...,jN )∈D−i

σ1(s1j1) . . . σi−1(si−1,ji−1)σi+1(si+1,ji+1) . . . σN (sNjN ) ·

·
di∑

ji=0

ui(siji , s
j
−i)σi(siji)

=
∑

j=(j1,...,ji−1,ji+1,...,jN )∈D−i

σ1j1 . . . σi−1,ji−1
σi+1,ji+1

. . . σNjN ·

·
di∑

ji=0

ui(siji , s
j
−i)σi(siji)

=
∑

j=(j1,...,ji−1,ji+1,...,jN )∈D−i

σ1j1 . . . σi−1,ji−1
σi+1,ji+1

. . . σNjNuj
i (σi, s

j
−i)

Note that for each j ∈ D−i the function uj
i (σi, s

j
−i) is a polynomial with real coefficients of degree one

in the variables σi0, . . . , σidi .
Assume that σ is a Berge equilibrium. In particular, it holds σij ≥ 0 and

∑di

j=0 σij = 1 for each i ∈ I

and for each j = 0, . . . , di. For each i ∈ I and for each j ∈ D−i let vji := ui(σ)−uj
i (σi, s

j
−i); then vji ≥ 0.

The quantities vji + uj
i (σi, s

j
−i) are all equal to ui(σ) for each j ∈ D−i and so they are all equal to each

other. Recall that σj
−i = σ1j1 . . . σi−1,ji−1

σi+1,ji+1
. . . σNjN ; we consider the quantity σj

−iv
j
i

σj
−iv

j
i = σj

−i(ui(σ)− uj
i (σi, s

j
−i))− ui(σ) +

∑
k∈D−i

σk
−iu

k
i (σi, s

k
−i)

=

 ∑
k∈D−i,k ̸=j

σk
−iu

k
i (σi, s

k
−i)

− (1− σj
−i)ui(σ)

=

 ∑
k∈D−i,k ̸=j

σk
−iu

k
i (σi, s

k
−i)

−

−

 d1∑
k1=0

σ1k1
. . .

di−i∑
ki−1=0

σi−1,ki−1

di+1∑
ki+1=0

σi+1,ki+1
. . .

dN∑
kN=0

σNkN
− σj

−i

ui(σ)

=
∑

k∈D−i,k ̸=j

σk
−i

(
uk
i (σi, s

k
−i)− ui(σ)

)
≤ 0.
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Since σj
−iv

j
i ≥ 0 then it follows that σj

−iv
j
i = 0 for each i ∈ I and for each j ∈ D−i.

Viceversa: suppose that σij and vji are nonnegative and satisfy (2). Let σ be the strategy profile
defined by σ(sij) = σij . Fix a player i and consider, for each k ̸= i, mixed strategies σ′

k. Recall that∑dk

jk=0 σkjk =
∑dk

jk=0 σ
′
kjk

= 1 for each k; then

1 =
∏
k ̸=i

 dk∑
jk=0

σkjk

 =
∑

j∈D−i

σ1j1 · . . . · σi−1,ji−1
· σi+1,ji+1

· . . . · σNjN =
∑

j∈D−i

σj
−i (26)

1 =
∏
k ̸=i

 dk∑
jk=0

σ′
kjk

 =
∑

j∈D−i

σ′
1j1 · . . . · σ

′
i−1,ji−1

· σ′
i+1,ji+1

· . . . · σ′
NjN =

∑
j∈D−i

(σ′)j−i.

Then ∑
j∈D−i

(
(σ′)j−i − σj

−i

)
= 0,

hence there exists some j such that (σ′)j−i − σj
−i ≥ 0. W.l.o.g. we suppose (σ′)0−i − σ0

−i ≥ 0.
We consider

ui(σ)− ui(σi, σ
′
−i) =

∑
j∈D−i

(σj
−i − (σ′)j−i)u

j
i (σi, s

j
−i)

=
∑

j∈D−i

(σj
−i − (σ′)j−i)u

j
i (σi, s

j
−i)− u0

i (σi, s
0
−i)

∑
j∈D−i

(σj
−i − (σ′)j−i)

=
∑

j∈D−i

(σj
−i − (σ′)j−i)

(
uj
i (σi, s

j
−i)− u0

i (σi, s
0
−i)
)

=
∑

j∈D−i,j ̸=0

(σj
−i − (σ′)j−i)

(
v0i − vji

)
=

∑
j∈D−i,j ̸=0

(σj
−i − (σ′)j−i)v

0
i −

∑
j∈D−i,j ̸=0

σj
−iv

j
i +

∑
j∈D−i,j ̸=0

(σ′)j−iv
j
i

= ((σ′)0−i − (σ)0−i)v
0
i +

∑
j∈D−i,j ̸=0

(σ′)j−iv
j
i ≥ 0,

therefore σ is a Berge equilibrium.

A.2 Proof of Proposition 2.4

Proof. From System (2) it holds

vji = v0i +
(
u0
i (σi, s

0
−i)− uj

i (σi, s
j
−i)
)

for each i ∈ I and j ∈ D−i \ {0}, (27)

where uj
i (σi, s

j
−i), defined in (1), is a linear function in the variables σi0, . . . , σidi , for each i ∈ I and

j ∈ D−i. Further, again from system (2), we have σj
−iv

j
i = 0 for each i ∈ I and j ∈ D−i. Consequently,

for each i ∈ I, it follows that

0 =
∑

j∈D−i

σj
−iv

j
i . (28)
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Using (27) in (28) we get

0 =
∑

j∈D−i

σj
−iv

j
i

= σ0
−iv

0
i +

∑
j∈D−i,j ̸=0

σj
−i

[
v0i +

(
u0
i (σi, s

0
−i)− uj

i (σi, s
j
−i)
)]

=

 ∑
j∈D−i

σj
−i

 v0i +
∑

j∈D−i,j ̸=0

σj
−i

(
u0
i (σi, s

0
−i)− uj

i (σi, s
j
−i)
)

(29)

Since ∑
j∈D−i

σj
−i =

N∏
k=1,k ̸=i

 dk∑
j=1

σkj

 = 1,

then (29) becomes

0 = v0i +
∑

j∈D−i,j ̸=0

σj
−i(u

0
i (σi, s

0
−i)− uj

i (σi, s
j
−i)),

from which, using (8) and (27), it follows

v0i = p0i (σ) for each i ∈ I

vji = pji (σ) for each i ∈ I and j ∈ D−i \ {0}.

Consequently, each vji is a polynomial function of degree N of σ, and solving system (2) reduces to solve
(7). Thus, we conclude that σ is a Berge equilibrium if and only if conditions (i) and (ii) simultaneously
hold.

A.3 Proof of Corollary 2.6

Proof. Let l = (l1, . . . , lN ); the pure strategy s = (s1l1 , . . . , sNlN ) ∈ S is represented by the strategy
profile

ξ(l) = (ξ(l)10, . . . , ξ(l)1d1 , . . . , ξ(l)N0, . . . , ξ(l)NdN
) ∈ RD+N

such that

ξ(l)ij =

{
1 if j = li

0 if j ̸= li
for each i ∈ I.

Since

ξ(l)j−i =

{
0 if j ̸= l−i

1 if j = l−i
for each i ∈ I and j ∈ D−i, (30)

it follows that

ξ(l)j−ip
j
i (ξ(l)) = 0 for each i ∈ I and j ∈ D−i \ {l−i} (31)

and

ξ(l)l
−i

−i p
l−i

i (ξ(l)) = pl
−i

i (ξ(l)). (32)

If l−i = 0, from (8) and (30) it follows

pl
−i

i (ξ(l)) = p0i (ξ(l)) =
∑

j∈D−i,j ̸=0

σj
−i

(
uj
i (ξ(l)i, s

j
−i)− u0

i (ξ(l)i, s
0
−i)
)
= 0; (33)
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otherwise, if l−i ̸= 0, using again (8) and (30) we have

pl
−i

i (ξ(l)) = p0i (ξ(l)) +
(
u0
i (ξ(l)i, s

0
−i)− ul−i

i (ξ(l)i, s
l−i

−i )
)

=
∑

j∈D−i,j ̸=0

ξ(l)j−i

(
uj
i (ξ(l)i, s

j
−i)− u0

i (ξ(l)i, s
0
−i)
)

+
(
u0
i (ξ(l)i, s

0
−i)− ul−i

i (ξ(l)i, s
l−i

−i )
)

=
∑

j∈D−i,j ̸=0,j ̸=l−i

ξ(l)j−i

(
uj
i (ξ(l)i, s

j
−i)− u0

i (ξ(l)i, s
0
−i)
)

+(1− ξ(l)l
−i

−i )
(
u0
i (ξ(l)i, s

0
−i)− ul−i

i (ξ(l)i, s
l−i

−i )
)

= 0. (34)

By combining (32), (33) and (34) it follows that

ξ(l)l
−i

−i p
l−i

i (ξ(l)) = 0. (35)

Finally, from (31) and (35), it follows that ξ(l) is a positive solution of the polynomial system (7), so
that condition (i) of Proposition 2.4 is satisfied.

Regarding condition (ii) of Proposition 2.4, we first observe that pl
−i

i (ξ(l)) = 0 for each i ∈ I (see
(33) and (34)). We evaluate pji (ξ(l)) for each i ∈ I and j ∈ D−i \ {l−i}. If l−i = 0 then

pji (ξ(l)) = p0i (ξ(l)) +
(
u0
i (ξ(l)i, s

0
−i)− uj

i (ξ(l)i, s
j
−i)
)

= u0
i (ξ(l)i, s

0
−i)− uj

i (ξ(l)i, s
j
−i)

=

di∑
ji=0

ui(siji , s
0
−i)ξ(l)iji −

di∑
ji=0

ui(siji , s
j
−i)ξ(l)iji

= ui(sili , s
0
−i)− ui(sili , s

j
−i)

= ui(s)− ui(sili , s
j
−i) for each i ∈ I and j ∈ D−i \ {l−i} (36)

If l−i ̸= 0 then

p0i (ξ(l)) =
∑

j∈D−i,j ̸=0

ξ(l)j−i

(
uj
i (ξ(l)i, s

j
−i)− u0

i (ξ(l)i, s
0
−i)
)

= ul−i

i (ξ(l)i, s
l−i

−i )− u0
i (ξ(l)i, s

0
−i)

=

di∑
ji=0

ui(siji , s
l−i

−i )ξ(l)iji −
di∑

ji=0

ui(siji , s
0
−i)ξ(l)iji

= ui(sili , s
l−i

−i )− ui(sili , s
0
−i)

= ui(s)− ui(sili , s
0
−i)

and

pji (ξ(l)) = p0i (ξ(l)) +
(
u0
i (ξ(l)i, s

0
−i)− uj

i (ξ(l)i, s
j
−i)
)

= ul−i

i (ξ(l)i, s
l−i

−i )− u0
i (ξ(l)i, s

0
−i) + u0

i (ξ(l)i, s
0
−i)− uj

i (ξ(l)i, s
j
−i)

= ul−i

i (ξ(l)i, s
l−i

−i )− uj
i (ξ(l)i, s

j
−i)

=

di∑
ji=0

ui(siji , s
l−i

−i )ξ(l)iji −
di∑

ji=0

ui(siji , s
j
−i)ξ(l)iji

= ui(sili , s
l−i

−i )− ui(sili , s
j
−i)

= ui(s)− ui(sili , s
j
−i), for each i ∈ I and j ∈ D−i \ {l−i} (37)
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As a consequence of (36) and (37), and since pl
−i

i (ξ(l)) = ui(s) − ui(sili , s
l−i

−i ) = 0 condition (ii) of
Proposition 2.4 is satisfied if and only if condition (11) holds. Finally, applying Proposition 2.4 the result
is proved.

A.4 Proof of Proposition 2.8

Proof. The strategy profile σ is completely mixed if and only if σj
−i > 0 for each i ∈ I and j ∈ D−i.

Further, by applying Proposition 2.4, a necessary and sufficient condition for σ to be a completely mixed
Berge equilibrium is that it is a solution of the following system{

pji (σ) = 0 for each i ∈ I and j ∈ D−i∑di

j=0 σij = 1 for each i ∈ I
(38)

By using (8), system (38) becomes{
uj
i (σi, s

j
−i)− u0

i (σi, s
0
−i) = 0 for each i ∈ I and j ∈ D−i \ {0}∑di

j=0 σij = 1 for each i ∈ I,
(39)

and, recalling the definition of uj
i (see (1)), system (39) is equivalent to the linear systems:{ ∑di

k=0 σik = 1∑di

k=0

(
ui(sik, s

j
−i)− ui(sik, s

0
−i)
)
σik = 0 for each j ∈ D−i \ {0},

(40)

for each i ∈ I. System (40) is made up by |D−i| equations in di + 1 unknowns and, by exploiting the
ordering on elements of D−i, it can immediately be rewritten in matrix form as formula (12).

A.5 Proof of Theorem 4.5
Before providing the proof of Theorem 4.5, we state the following result, which is a generalization of the
classical Implicit Function Theorem (see for instance Rudin (1964), Theorem 9.28) to the overdetermined
case.

Theorem A.1 Let k,m, n be three strictly positive integers such that k ≥ n. Let F be a C1-mapping of
an open set E ⊂ Rn ×Rm into Rk, such that F (a, b) = 0 for some point (a, b) ∈ E. Let ∇F (x,y) be the
Jacobian of F and ∇xF (x,y) be the matrix of first order derivatives of F w.r.t. the variables x. Assume
that

rank(∇xF (a, b)) = n (41)

and that there exists a neighborhood W ⊆ E of (a, b) such that

rank(∇F (x,y)) = n ∀ (x,y) ∈ W. (42)

Then there exist an open set W ⊂ Rn × Rm, with (a, b) ∈ W , and a neighborhood V ⊂ Rm of b, having
the following properties:

(i) to every y ∈ V corresponds a unique x such that

(x,y) ∈ W and F (x,y) = 0;

(ii) x = G(y), where G is a C1-mapping from V into Rn, G(b) = a and

F (G(y),y) = 0 ∀ y ∈ V .
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Proof. From assumption (41) it follows that there exists a neighborhood W1 ⊆ E of (a, b) such
that the matrix ∇xF (x,y) contains n linearly independent rows. W.l.o.g. we assume that the first n
rows of ∇xF (x,y) are linearly independent for each (x,y) ∈ W1. Then, by assumption (42), for each
(x,y) ∈ W2 = W1 ∩ W , the last k − n rows of ∇F (x,y) are linear combination of the first n rows of
∇F (x,y). Let π : Rk −→ Rn be the projection map on the first n components and let f : E −→ Rn

be defined by f = π ◦ F . Then, f is a C1-mapping from E to Rn, f(a, b) = π(F (a, b)) = π(0) = 0 and
∇fx(a, b), being the submatrix of ∇xF (a, b) made up of its first n rows, is invertible. By applying the
Implicit Function Theorem to f at the point (a, b) it follows that there exist open sets W3 ⊂ Rn × Rm

and V ⊂ Rm, with (a, b) ∈ W3 and b ∈ V , such that to every y ∈ V corresponds a unique x such that
(x,y) ∈ U and F1(x,y) = . . . = Fn(x,y) = 0. Further, x = g(y), with g is a C1-mapping from V into
Rn, g(b) = a and

F1(g(y),y) = . . . = Fn(g(y),y) = 0 ∀ y ∈ V. (43)

Let Γ : V −→ W3 be defined by Γ : y 7→ (g(y),y); then, Γ is continuous. Let W = W2 ∩ W3; notice
that (a, b) ∈ W . Let V be a neighborhood of b such that V ⊆ Γ−1(W ) and let G = g|V . Notice
that Graph(g|V ) ⊆ W . We aim to show that Fn+1(G(y),y) = . . . = Fk(G(y),y) = 0 for each y ∈ V .
Condition (43) yields

∇Fi(G(y),y)

(
∇G(y)
Im

)
= 0 ∀ y ∈ V , ∀ i ∈ {1, . . . , n}. (44)

We consider Fn+1. By contradiction, we assume that there exists y ∈ V such that Fn+1(G(y),y) ̸= 0.
Since V is convex, by applying the Mean Value Theorem and recalling that Fn+1(G(b), b) = Fn+1(a, b) =
0 we have:

0 ̸= Fn+1(G(y),y)

= Fn+1(G(y),y)− Fn+1(G(b), b)

=

[
∇Fn+1 (G(yt),yt)

(
∇G(yt)

Im

)]
(y − b) (45)

where yt := ty + (1 − t)b ∈ V for a suitable t ∈ (0, 1). Recalling that in W2 the last k − n rows of
∇F (x,y) are a linear combination of its first n rows, we write

∇Fn+1 (G(yt),yt) =

n∑
i=1

λi
1(yt)∇Fi (G(yt),yt) (46)

for some scalars λi
1(yt), . . . , λ

i
n(yt). Plugging (44) and (46) into (45) we get Fn+1(G(y,y)) = 0, that is

a contradiction. Repeating the same argument for the cases Fn+2, . . . , Fk the theorem is proved.

We are now ready to give the proof of Theorem 4.5.

Proof.

(i) Let Γ = (I, (Si)i∈I ,u) be a regular game with payoff functions u = (uN , . . . , uN ). Let σ be a
completely Berge equilibrium of Γ. From Proposition 2.4 and Remark 2.5, it holds F (σ,u) = 0,
where F is the C1-mapping defined in (15). Further, since σ is completely mixed, then pji (σ,u) :=

pji = 0 for each i ∈ I and j ∈ D−i, where pji is defined in (8). From Remark 4.2, it follows that∑N
i=1 |D−i| ≥ D +N . Further, from regularity (see Definition 4.3) it holds

rank(∇σF (σ,u)) = D +N

and there exists a neighborhood W of (σ,u) such that

rank(∇F (σ,u)) = D +N ∀ (σ,u) ∈ W.
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Applying Theorem A.1 to F at the point (σ,u), it follows that there exist an open set W ⊂
RD+N × RNDS , with (σ,u) ∈ W , a neighborhood V ⊂ RNDS of u and a C1-mapping G from V
into RD+N such that to every u ∈ V corresponds a unique σ such that (σ,u) ∈ W and F (σ,u) = 0.
Further, G(u) = σ and

F (G(u),u) = 0 ∀ u ∈ V .

W.l.o.g. we may assume V small enough so that G(u) > 0 for each u ∈ V . Hence, G(u) ∈ B(u)
for each u ∈ V (note that for completely mixed strategies condition (ii) of Proposition 2.4 is
automatically satisfied). Let Uσ := {σ | (σ,u) ∈ W} It is simple to show that Uσ is a neighborhood
of σ containing the unique Berge equilibrium G(u) for each u ∈ V , that is

|B(u) ∩ Uσ| = 1 ∀ u ∈ V ,

so that Definition 4.1, (ii), condition (a) is proved. Further, since the mapping u 7→ G(u) is
differentiable, condition (b) is also satisfied, leading to the conclusion that the equilibrium σ is
strongly stable.

Now, we consider the case in which σ is a semi–mixed Berge equilibrium of Γ, that is a type of
mixed strategy where some players randomize their actions while others play a pure strategy. We
note that a semi–mixed equilibrium corresponds to a completely mixed equilibrium of a restricted
version of the original game, where only a subset of the original pure strategies are available. The
proof simply follows by repeating the above discussion in the setting of the restricted game.

(ii) It immediately follows from Definition 4.1, (i) and (ii).

A.6 Proof of Proposition 4.6
Before passing to the proof of Proposition 4.6, we present the following technical lemma which shows that,
in the case of completely mixed Berge equilibria, the Jacobian matrix ∇σF (σ,u) can be decomposed
into the product of two suitable matrices, each depending only on one of the two inputs σ and u. As
a byproduct, the regularity of the completely mixed equilibrium σ reduces to a simple condition on the
rank of a matrix that only depends on the payoffs of the game.

Lemma A.2 Let Γ ∈ G(I, (Si)i∈I) be an N -person normal form game defined by u = (u1, . . . , uN ) ∈
RNDS and σ be a completely mixed Berge equilibrium of Γ. Let

A(u) =


A1(u1) 0 . . . 0

0 A2(u2)
. . .

...
...

. . . . . . 0
0 . . . 0 AN (uN )

 ∈ R(
∑N

i=1 |D−i|)×(D+N),

Σ(σ) =


Σ1(σ) 0 . . . 0

0 Σ2(σ)
. . .

...
...

. . . . . . 0
0 . . . 0 ΣN (σ)

 ∈ R(
∑N

i=1 |D−i|)×(
∑N

i=1 |D−i|)

B(σ) =


B1(σ) 0 . . . 0

0 B2(σ)
. . .

...
...

. . . . . . 0
0 . . . 0 BN (σ)

 ∈ R(
∑N

i=1 |D−i|)×(
∑N

i=1 |D−i|)
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where Ai(ui) ∈ R|D−i|×(di+1) is defined by (13),

Σi(σ) =


1 0 . . . 0

0 σj2
−i

. . .
...

...
. . . . . . 0

0 . . . 0 σ
j|D−i|

−i

 ∈ R|D−i|×|D−i|, (47)

and

Bi(σ) =



1 0 0 . . . 0

0 σj2
−i − 1 σj3

−i . . . σ
j|D−i|

−i

0 σj2
−i σj3

−i − 1 . . . σ
j|D−i|

−i
...

...
. . .

0 σj2
−i σj3

−i . . . σ
j|D−i|

−i − 1


∈ R|D−i|×|D−i|. (48)

Then

∇σF (σ,u) = Σ(σ)B(σ)A(u). (49)

and

rank(∇σF (σ,u)) = rank(A(u)).

Proof. From system (10), since σij ̸= 0 for each i ∈ I and j ∈ {0, . . . , di}, this is equivalent to
pji (σ, ui) = 0 for each i ∈ I and j ∈ D−i. Further, Proposition 2.8 yields Ai(ui)σi = bi and

uj
i (σi, s

j
−i)− u0

i (σi, s
0
−i) = 0 for each i ∈ I and j ∈ D−i \ {0}, (50)

see also (39). Let i ∈ I; from (15) we compute

∂Fi0

∂σkl
(σ, ui) =

{
0 if k ̸= i

1 if k = i,
(51)

for each l ∈ [dk]. Now, we fix j ∈ D−i \ {0} and let k ∈ I and l ∈ [dk]. We consider two cases: k ̸= i and
k = i. If k ̸= i, using (1) and (8) we first compute

∂pji
∂σkl

(σ, ui) =
∂p0i
∂σkl

(σ, ui) +
∂

∂σkl
(u0

i (σi, s
0
−i)− uj

i (σi, s
j
−i))

=
∑

m∈D−i\{0}

∂

∂σkl

[
σm
−i(u

m
i (σi, s

m
−i)− u0

i (σi, s
0
−i))

]
+ 0

=
∑

m∈D−i\{0}, σkl|σm
−i

σm
−i

σkl
(um

i (σi, s
m
−i)− u0

i (σi, s
0
−i)),

from which, using (50), we get

∂pji
∂σkl

(σ, ui) = 0.

Using (15), we compute

∂Fi,j

∂σkl
(σ, ui) =


σj
−i

σkl
pji (σ, ui) + σj

−i
∂pj

i

∂σkl
(σ, ui) if σkl | σj

−i

σj
−i

∂pj
i

∂σkl
(σ, ui) if σkl ̸ | σj

−i,
(52)
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from which, since pji (σ, ui) =
∂pj

i

∂σkl
(σ, ui) = 0, we get

∂Fi,j

∂σkl
(σ, ui) = 0. (53)

Now, we consider k = i; using again (15), we have

∂Fi,j

∂σil
(σ, ui) = σj

−i

∂pji
∂σil

(σ, ui). (54)

Using (1) and (8), we compute

∂pji
∂σil

(σ, ui) =
∂p0i
∂σil

(σ, ui) +
∂

∂σil
(u0

i (σi, s
0
−i)− uj

i (σi, s
j
−i))

=
∑

m∈D−i\{0}

σm
−i

∂

∂σil

(
um
i (σi, s

m
−i)− u0

i (σi, s
0
−i)
)
+

∂

∂σil

(
u0
i (σi, s

0
−i)− uj

i (σi, s
j
−i)
)

=
∑

m∈D−i\{0}

σm
−i

(
ui(sil, s

m
−i)− ui(sil, s

0
−i)
)
−
(
ui(sil, s

j
−i)− ui(sil, s

0
−i)
)
. (55)

Coupling (55) with (13), where Ai = Ai(ui), it follows that

∂pji
∂σil

(σ, ui) =
∑

m∈D−i\{0}

σm
−iAi(m, l)−Ai(j, l).

By evaluating (53) at (σ, ui) and using the former expression we obtain

∂Fi,j

∂σil
(σ, ui) = σj

−i

∑
m∈D−i\{0}

σm
−iAi(m, l)−Ai(j, l). (56)

From (51), (53) and (56) it follows that the Jacobian matrix ∇σFi(σ, ui) ∈ R|D−i|×(D+N) of Fi w.r.t. σ
is a block matrix with the following structure

∇σFi(σ, ui) =

(
0 . . . 0︸ ︷︷ ︸
d1+1

| . . . | 0 . . . 0︸ ︷︷ ︸
di−1+1

| Σi(σ)Bi(σ)Ai(ui) | 0 . . . 0︸ ︷︷ ︸
di+1+1

| . . . | 0 . . . 0︸ ︷︷ ︸
dN+1

)
, (57)

where Σi(σ) ∈ R|D−i|×|D−i|, Bi(σ) ∈ R|D−i|×|D−i|, and Ai(ui) ∈ R|D−i|×(di+1) are defined by (47), (48)
and (13), respectively. From (57) and the block structure of the matrices A(u), B(σ) and Σ(σ), formula
(49) easily follows.

Since σ is completely mixed then det(Σi(σ)) ̸= 0, hence det(Σ(σ)) =
∏

i∈I det(Σi(σ)) ̸= 0 and Σ(σ)
is invertible. In order to show the B(σ) has full-rank, we fix i ∈ I and consider a linear combination of
the columns of the matrix Bi(σ) with scalars λ1, . . . , λ|D−i|. By some computations, it follows that such
linear combination is trivial if and only if λ1 = 0, λ2 = . . . = λ|D−i| and

λ2

1−
|D−i|∑
k=2

σjk
−i

 = 0.

Since
∑|D−i|

k=2 σjk
−i < 1, it follows that λk = 0 for each k ∈ {1, . . . , |D−i|}, so Bi(σ) is a full-rank matrix.

Consequently, the matrix B(σ) is invertible. Then, from (49) and the nonsingularity of Σ(σ) and B(σ),
it follows that

rank(∇σF (σ,u)) = rank (Σ(σ)B(σ)A(u)) = rank(A(u)),

which concludes the proof.
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We are now ready to provide the proof of Proposition 4.6.

Proof. Let Γ ∈ G(I, (Si)i∈I) be an N -person normal form (Berge) regular game defined by u =
(u1, . . . , uN ) ∈ RNDS and let σ be a completely mixed Berge equilibrium of Γ. The regularity assumption,
Lemma A.2 and Remark 4.2 yield

rank(Ai(ui)) = di + 1,

that is Ai(ui) is invertible, for each i ∈ I. By Proposition 2.8, we conclude that σ is the unique completely
Berge equilibrium of the game.

A.7 Proof of Theorem 6.1

Proof. Using notation (18) and Proposition 2.8, the strategy σ = (σ10, . . . , σ1d, . . . , σN0, . . . , σNd) is a
completely mixed Berge equilibrium if and only if σi = (σi0, . . . , σid) is a strictly positive solution of the
linear system Aiσi = bi for each i ∈ I (see (12)), where

Ai :=


1 1 . . . 1
zi21 zi22 . . . zi2(d+1)

...
...

...
zi(d+1)N−11 zi(d+1)N−12 . . . zi(d+1)N−1(d+1)

 ∈ R(d+1)N−1×(d+1)

and bi ∈ R(d+1)N−1

is given by (14). A necessary condition for the existence of solutions of the linear
system Aiσi = bi is that the rank of the augmented matrix

(Ai | bi) :=


1 1 . . . 1
zi21 zi22 . . . zi2(d+1)

...
...

...
zi(d+1)N−11 zi(d+1)N−12 . . . zi(d+1)N−1(d+1)

∣∣∣∣∣∣∣∣∣
1
0
...
0

 ∈ R(d+1)N−1×(d+2) (58)

is at most d+ 1. The set of payoff functions such that rank((Ai | bi)) ≤ (d+ 1) is an affine variety of Zi

defined by the vanishing of all the (d + 2) × (d + 2) minors of (Ai | bi). Since the number of columns of
(Ai | bi) is exactly (d+ 2), all such minors are given by the determinant of all the submatrices of (Ai | bi)
constructed by selecting (d+ 2) rows, that is

det((Ai | bi)lm | l ∈ L and 1 ≤ m ≤ d+ 2)

where
L := {l1, . . . , ld+2} ⊂ {1, . . . , (d+ 1)N−1}

such that 1 ≤ l1 < . . . < ld+2 ≤ (d+1)N−1. From (58), it is immediate to observe that if l1 > 1 then the
corresponding minor is equal to 0. Hence, we only consider the case l1 = 1 and, by an easy computation,
we find that Gi (see (19)) is the set of all nondegenerate minors of (Ai | bi) of order (d+2). Consequently,
recalling that Ii = ⟨Gi⟩, inside the affine variety Vi = V (Ii) ⊆ Zi the rank of (Ai | bi) is at most (d+ 1),
which is a necessary condition for the linear system (12) to admit solutions. By applying Proposition 2.8
statements (i) and (ii) follow.

Now, we prove item (iii). We consider player i ∈ I. We compute the dimension of the coefficient ring
P i/Ii by applying a classical result on determinantal ideals (see Hashimoto (1994), Corollary 1.4, and
Hochster and Eagon (1971)). In our setting, the parameters of Hashimoto (1994), Corollary 1.4, read
m = (d+ 1)N−1 − 1 and n = t = d+ 1, hence:

dim(P i/Ii) = ((d+ 1)N−1 − 1)(d+ 1)− ((d+ 1)N−1 − 1− (d+ 1) + 1)((d+ 1)− (d+ 1) + 1)

= (d+ 1)N − (d+ 1)− (d+ 1)N−1 + (d+ 1)

= d(d+ 1)N−1
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From Bruns and Vetter (2006), Theorem 2.10, it follows that Ii is prime, hence radical. Consequently,
I(Vi) =

√
Ii = Ii and dim(Vi) = dim(P i/Ii) = d(d+ 1)N−1 for each i ∈ I. Finally

dim(V ) = dim

(
N∏
i=1

Vi

)
= Nd(d+ 1)N−1,

so item (iii) follows.
We prove item (iv). A necessary condition so that the game admits a unique completely mixed Berge

equilibrium is that for each i ∈ I the linear system Aiσi = bi has unique solution. This is equivalent
to select inside Vi ⊆ Zi the set of payoff functions such that rank(Ai) = d + 1. A sufficient condition
is that there exists l = (l2, . . . , ld+1), with 2 ≤ l2 < . . . < ld+1 ≤ (d + 1)N−1, such that gil ̸= 0.
Recalling the definition of Wi and Ti (see (21) and (23)), for each payoff function in Ti it holds that
rank((Ai | bi)) = rank(Ai) = d + 1, hence system Aiσi = bi admits unique solution. Consequently, the
payoff functions in T are such that all linear systems Aiσi = bi, for each i ∈ I, admit unique solution
(with no information about their positiveness). By Proposition 2.8, we conclude that the associated
games admit at most one completely mixed Berge equilibrium. Now, we show that Wi ⊆ Vi. We consider
a multi-index m = (m1, . . . ,md+1) such that 2 ≤ m1 < . . . < md+1 ≤ (d+ 1)N−1 and let

Bm
i :=


1 . . . 1 1

zim11 . . . zim1(d+1) zim11

...
...

...
zimd+11

. . . zimd+1(d+1) zimd+11

 .

By some computations, using (20) and (22), we get:

0 = det(Bm
i )

= (−1)d+3 det

 z1m11 . . . zim1(d+1)

...
...

zimd+11
. . . zimd+1(d+1)



+

d+1∑
t=1

(−1)t+d+3zimt1 det



1 . . . 1
zim11 . . . zim1(d+1)

...
...

zimt−11 . . . zimt−1(d+1)

zimt+11 . . . zimt+1(d+1)

...
...

zimd+11
. . . zimd+1(d+1)


= (−1)d+3

(
f i
m +

d+1∑
t=1

(−1)tzimt1g
i
m−t

)
(59)

where
m−t := (m1, . . . ,mt−1,mt+1, . . . ,md+1) for each t ∈ {1, . . . , d+ 1}.

From (59) it follows that f i
m =

∑d+1
t=1 (−1)t+1zimt1g

i
m−t , for each m = (m1, . . . ,md+1) such that 2 ≤

m1 < . . . < md+1 ≤ (d + 1)N−1, hence Ii ⊆ Ji, which implies that Wi ⊆ Vi. In addition, we show
that Ii ⊂ Ji. The polynomial set Gi (see (19)) is the reduced Gröbner basis, w.r.t. the standard graded
lexicographic monomial ordering, of the ideal Ii of P i (see Caniglia, Guccione, and Guccione (1990) and
Sturmfels (1990)); further, Gi is made up of homogeneous polynomials of degree d+1. Consequently, all
polynomials of Ii have degree ≥ d+ 1. On the other hand, each polynomial gil ∈ Ji has degree d, and so
gil ̸∈ Ii. We thus conclude that Ii ⊂ Ji.

29



We prove item (v). From item (iv) we recall that Ti is characterized by payoff functions of player i such
that rank((Ai |bi)) = rank(Ai) = d+1. Consequently, the payoff functions in V \T are such that for some
i ∈ I the corresponding linear system Aiσi = bi either admits no solution or infinitely many solutions.
Hence, the associated game may exhibit none or infinitely many completely mixed Berge equilibria. In
the special case of regular games, since only isolated Berge equilibria are possible, it immediately follows
that no completely mixed Berge equilibria exist.

Finally, we prove item (vi). If ξ = (ξ1, . . . , ξN ) ∈ T , then from item (iv) the linear system Aiσi = bi
has unique solution. Since gil(ξ

i) ̸= 0, solution (24) immediately follows. Finally, if condition (25)
holds then σi = (σi0, . . . , σid) is the strategy of the i-th player of a completely mixed Berge equilibrium,
otherwise no completely mixed Berge equilibrium exists.
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