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Abstract

We study a dynamic game in which a monopolistic seller sequentially discloses infor-
mation about a binary state to a consumer through priced experiments. The consumer
privately observes a binary signal which influences her willingness to pay for informa-
tion. We show that if buyer types favor different actions but their willingness to pay for a
state-revealing test is sufficiently close, then the seller can commit to a sequence of priced
experiments that extracts the entire surplus of both consumer types simultaneously. The
optimal sequence of experiments is such that the high-valuation type assigns a higher
probability to outcomes that trigger further information acquisition, thus creating a differ-
ence in expected costs. As a key element of the construction, we introduce an ‘encryption
protocol’ under which the consumer faces a stopping problem. We then characterize sit-
uations in which the seller strictly benefits from a dynamic selling strategy when perfect
price discrimination is not feasible. Finally, we illustrate our framework in the context of
medical diagnostic testing, showing that a free test followed by a state-revealing test is
often sufficient to improve revenue in comparison with a static approach.
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tion, price discrimination.
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1. Introduction

Information goods are an increasingly vital component of modern economies. However,
their unique characteristics pose significant challenges to traditional market mechanisms.
For instance, they usually entail substantial fixed costs for initial production, yet they can
be reproduced and distributed at nearly zero marginal cost. Developing tailored mecha-
nisms is essential for incentivizing the creation and dissemination of valuable informa-
tion. The digital era has not only amplified the economic importance of information but
has also enhanced the technological feasibility of implementing dynamic selling proto-
cols. Online platforms, for instance, allow for interactions to be meticulously staged and
tracked, making the sequential disclosure of information more practically relevant than
ever.

This paper investigates the strategic interaction between a monopolistic seller who
possesses access to informative experiments and consumers with heterogeneous valua-
tions. The seller offers information about an unknown binary state of the world through
a finite sequence of priced experiments, which can partially or fully reveal the true state.
The buyer’s optimal action depends on the state. A critical element of the model is the
consumer’s private information: she observes a binary signal that shapes her initial be-
lief about the state of the world. This private signal leads to heterogeneity in consumer
valuations, distinguishing between a ‘high-valuation type’ and a ‘low-valuation type’.

The seller’s objective is to maximize revenue. The ideal scenario is to achieve perfect
price discrimination, meaning extracting the entire consumer surplus from each buyer
type. The central research question is: What is the optimal sequential information disclo-
sure strategy for a revenue-maximizing monopolist facing privately informed consumers?
The sequential nature of the interaction is pivotal because it enables the seller to utilize
the buyer’s evolving beliefs.

As an illustration, suppose consumers would like to distinguish between two diseases
with similar symptoms, such as COVID and the flu. Effective treatment requires knowing
the correct illness. Consider two individuals who exhibit general cold symptoms: one’s
symptoms suggest that COVID is more likely (high type), while the other’s tend towards
the flu (low type). The seller, say some governmental agency, is interested in raising
revenue to keep costs for taxpayers down.1 Suppose that the high type is ‘more uncertain’
and thus willing to pay more for a revelation of the state. The seller offers a sequence
of two priced tests. The first test may reveal the illness to be the flu or provide partial
information indicating towards a case of COVID, resembling a rapid ‘antigen test’. If the
first test is inconclusive, a second test is offered which determines the illness conditional

1One may object that the government’s primary aim should be to inform consumers. As we will see,
consumers obtaining perfect information is a by-product of revenue maximization.
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on knowing the result of the first test. As we will see, encrypting the second test in this way
allows the seller to extract more revenue, as it prevents the buyer from purchasing solely
the second test.2 The seller will price the tests such that the total expected cost for the
low type coincides with her valuation. Importantly, the high-type buyer, who perceives a
higher likelihood of getting an inconclusive result from the first test, ends up paying more
in expectation. Remarkably, we can find parameters such that the seller also extracts the
entire surplus of the high type with these two tests although their valuations differ, which
is not feasible in a static setting à la Bergemann, Bonatti, and Smolin (2018, henceforth
BBS).

Our main result establishes that this insight holds more generally: If buyer types are
‘non-congruent’, meaning their initial private signals predispose them to favor different
actions, but their valuations for full state revelation are close enough, then the seller can
design a sequence of priced experiments to extract the entire surplus from both types
simultaneously. As a key element of the construction of the optimal mechanism, we in-
troduce an ‘encryption protocol’. This protocol includes a coin toss with each experiment,
which allows to design the experiments in the sequence such that they are perceived as
uninformative unless all preceding outcomes of experiments have been observed. This
turns the consumer’s optimal purchase strategy into a stopping problem, which simplifies
the analysis. In particular, both types exhibit an identical purchasing behavior under the
optimal mechanism: They purchase until the state is revealed (or maturity is reached).
The sequence of experiments is structured such that, due to the initial beliefs, the high-
valuation buyer assigns a higher ex-ante probability to outcomes that necessitate further
information acquisition (i.e., outcomes that do not immediately reveal the state). There-
fore, the number of experiments they expect to purchase differs although they follow the
same purchasing behavior. This enables the seller to price the experiments so that the
total expected costs for each type aligns exactly with their respective valuation for a state-
revealing test.

Furthermore, the analysis reveals that the largest ‘valuation gap’ between the two
types for which perfect price discrimination remains feasible increases in the length of
the sequence of experiments. More periods allow for finer manipulation of beliefs and
expected costs. It is worth to note that the constructed sequence of priced experiments that
leads to perfect price discrimination involves uniform costs from the third period onward.
In the special case that the valuation gap coincides with the highest achievable difference
in expected costs in T periods, our construction leads to a sequence of T experiments with
uniform costs, including also the first two experiments.

2Of course, if it were possible to offer the second test conditional on the purchase of the first test, then
such encryption were not necessary. All results would go through under such an assumption.



4 Manuel Foerster and Fynn Louis Närmann

The paper then explores more generally when a dynamic approach can generate higher
revenue than an optimal static menu of experiments à la BBS. They show that the optimal
static approach is to sell a single state-revealing test at the valuation of the low type if
this type is common enough. In particular, perfect price discrimination is possible only
if valuations coincide, i.e., if the valuation gap is zero. We then show that the seller
can generate a higher revenue compared to the static benchmark under a large range of
parameters, including any non-congruent valuations. Interestingly, it often suffices to
employ a dynamic strategy in which a free experiment designed to align valuations if the
result is inconclusive is followed by a state-revealing experiment at a price equal to both
types’ updated valuation. Coming back to the example, the initial free experiment can
be understood as a rapid antigen test for COVID, and the subsequent priced experiment
resembles a ‘PCR test’, which precisely determines the illness. Since the high-type buyer
perceives a higher likelihood of getting an inconclusive result from the first test, the seller
can extract the entire surplus from the low-valuation type, while extracting strictly more
than that from the high-valuation type.

1.1. Related Literature

There are many authors who have discussed the need for tailored designs of mechanisms
for selling information (e.g., Babaioff, Kleinberg, and Paes Leme, 2012), because many
of the results that hold for traditional goods fail to apply when dealing with information
goods. Varian (1999) provides an elementary discussion of the challenges as well as the
intriguing possibilities of information as an economic good.

Our analysis considers a dynamic extension of the work of BBS, who analyzed a
static scenario in which a monopolistic seller offers a menu of statistical experiments to a
buyer whose willingness to pay for additional information depends on her initial private
information. They characterize the optimal menu and show that it generally includes a
fully informative experiment and, in some cases, also a partially informative experiment
in order to receive different payments from each type of buyer. However, a key limi-
tation of the static framework is that achieving perfect price discrimination when buyer
valuations differ is impossible. Our work contrasts with this limitation by demonstrating
that a dynamic approach can overcome it, provided that types are non-congruent and their
valuations are sufficiently close. The buyer’s ability to update beliefs based on observed
outcomes and make sequential purchasing decisions is fundamental to this result. In a
static model, the seller cannot leverage this belief-updating process: If a menu extracts
the low type’s full valuation, the high type can mimic the low type’s purchasing behavior,
thus effectively capping her payment at the low type’s valuation.

Hörner and Skrzypacz (2016) explore a dynamic model in which an informed agent
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possesses divisible hard evidence that is gradually revealed to an uninformed firm. They
show that splitting information over time can help the agent to extract more surplus from
the interaction. However, it does not suffice to extract the entire surplus in contrast to our
main result. Similarly, Honryo (2018) studies a dynamic communication game, where
a sender is endowed with verifiable arguments. He shows that the sender gains from
committing to a stochastic mechanism that reports those arguments over multiple periods.
While these works highlight the strategic advantages of dynamic disclosure, our paper has
a different focus. Here, the seller offers experiments that partially reveal the state of the
world instead of releasing verifiable hard evidence.

Babaioff, Kleinberg, and Paes Leme (2012) also investigated optimal mechanisms
for a monopolistic data provider. The authors compare different types of mechanisms to
sell information. They demonstrate that multiple rounds of partial information disclosure
can achieve higher revenue than selling information in a ‘sealed envelope’.3 In contrast
to their analysis, we present a specific construction of a sequential mechanism. In their
multi-round protocol, they assume that the seller monitors the purchasing decisions and
makes the next round available only if the consumer purchases the previous round. The
encryption protocol introduced here provides a microfoundation for implementing such
multi-round protocols. Interestingly, the authors claim that it is an open problem to suc-
cessfully integrate cryptography in information theory.

Urbano and Vila (2002) develop cryptographic techniques that can be applied to the
design of strategic communication mechanisms. They state that the main assumption
in cryptography is that agents are limited in their computational power. The encryption
protocol applied in this paper does not require such an assumption of boundedly rational
consumers. Specifically, in our approach, the seller encrypts each test result and embeds
a key in the combination of all earlier test results that is required to decrypt it. The gain
of implementing such an encryption is that it induces a unique rational purchasing order
of tests. In particular, it prevents consumers to buy later experiments, which may be more
informative, without having purchased all previous ones.

Our research is also related to the literature on Bayesian persuasion, which was pio-
neered by Kamenica and Gentzkow (2011). In the Bayesian persuasion model, a sender
who does not charge for information commits to an information structure in order to influ-
ence the actions of a consumer whose preferences are well-known. However, the model
in this paper diverges in several crucial aspects. First, the seller’s objective is to maxi-
mize revenue through priced experiments. In classic Bayesian persuasion, the seller does
not monetize the information directly via prices, but the induced action has a direct ef-
fect on the seller’s utility. Second, the buyer in our model possesses private information,

3This refers to write the information on a paper, put it inside an envelope and treat it as a regular good.
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which introduces a problem absent from the basic Kamenica-Gentzkow setup. Third, in
our model, the seller controls the belief formation process in a dynamic environment.
However, the ‘persuasion’ aspect is embedded in the design of each experiment, which
shapes beliefs in a way that encourages the buyer to continue along the seller’s revenue-
maximizing path.

Recent research has extended Bayesian persuasion to dynamic settings. For example,
Che, Kim, and Mierendorff (2023) analyze a dynamic model where generating and pro-
cessing information is costly for both the seller and receiver over time, and neither party
can commit to future actions. The objective of the seller is to keep the consumer engaged,
which differs from the approach in this paper, where each experiment comes with an in-
dividual price tag and thus has a different relevance for the seller. Ball (2023) studies
the optimal provision of information in a dynamic interaction where the state is evolv-
ing, and the seller uses the threat of concealing future information to maintain influence.
Specifically, the seller’s optimal dynamic information policy is to report the value of the
state with a delay that shrinks over time and to commit to stop reporting once a report is
ignored by the consumer.

The seller commitment assumed in this paper (to the sequence of experiments and
their prices upfront) is a standard assumption in much of the mechanism design literature.
This contrasts with the model of Mora and Rodrıguez (2024) that explores a dynamic
extension of BBS without such a commitment. Furthermore, they deviate from the latter
paper by introducing prior disagreement instead of a private information observed by the
consumer. In their model, the seller and receiver agree to disagree about their beliefs.
However, their results share some similarities. Using a dynamic programming approach,
they prove that the seller benefits from the dynamic framework. However, full surplus
extraction (from the viewpoint of the seller) necessitates the commitment ability of the
seller and is thus not present in their analysis. Furthermore, they have shown that in a
two period environment, it is optimal for the seller to first offer a free sample test and a
subsequent fully-revealing test. Due to the additional commitment power in our model,
this selling strategy is in general not optimal. However, we show that the seller can benefit,
in comparison to a static environment, from a free sample test that aligns the valuations
of the types, and characterize situations in which he strictly gains.

To our knowledge, we are the first to study a dynamic extension of BBS in which the
seller can commit to a sequence of experiments and show that perfect price discrimina-
tion is feasible despite buyers’ valuations being different. Furthermore, we introduce an
encryption protocol as a key element of the construction of the optimal mechanism.

The remainder of this paper is organized as follows. We start by providing the illus-
trative example on medical diagnostic testing in Section 2. Section 3 provides the formal
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model, detailing the construction of experiments, the timing of the game as well as the
strategies and payoff functions. Section 4 begins by formally introducing the encryption
protocol that underpins the sequential disclosure protocol. Afterwards, the main theo-
retical results are presented: Section 4.3 details the construction of the dynamic mecha-
nism and provides the proof for achieving perfect price discrimination with non-congruent
types. Section 4.5 compares the outcomes of this sequential approach with those achiev-
able under a static framework and establishes conditions under which the seller strictly
benefits from a dynamic mechanism. Section 5 concludes and discusses relevant model-
ing assumptions.

2. Example: Medical diagnostic Testing

Consider two diseases with similar symptoms, such as COVID (C) and the flu (F). Effec-
tive management of each disease requires specific actions – such as appropriate medica-
tion and measures to prevent further spread. Formally, let the set of possible states and
aligned actions be

Ω = {C,F} = A.

We assume that taking the correct action yields an ex-post payoff of 1, while taking the
incorrect action yields 0, i.e., u(a, ω) = I[a=ω] for all a ∈ A and ω ∈ Ω, where I[·] denotes
the indicator function.

Suppose we have two individuals who both have cold symptoms and can narrow down
their illness to be either COVID or the flu. However, one person’s set of symptoms sug-
gests that COVID is more likely, while the other person’s symptoms tend towards the flu.
For concreteness, we treat each set of symptoms as a private signal that classifies the in-
dividual into one of two types: a ‘high type’, with θh = IP[ω = C | h] = 0.64 and a ‘low
type’, with θl = IP[ω = C | l] = 0.325.

We measure each type’s willingness to pay for the revealing information by the ex-
pected reduction in misaligned actions. For instance, if the high type does not purchase
any additional information, she will take action a = C and err with probability 1 − θh.
Thus, her willingness to pay for the revealing information is given by

V (θh) = 1− θh = 0.36.

Similarly, the low type’s probability of erring is θl (since she would choose a = F absent
further information), leading to

V (θl) = θl = 0.325.
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Now consider a monopolistic seller who offers tests that can fully or partially reveal
the state of the world. Formally, a test (or experiment) is defined by a stochastic mapping:

σt : Ω×M t−1 → ∆(M),

where t = 1, 2, . . . , T indexes the period within a finite time horizon T ∈ N. This
mapping specifies, for each possible state and all previous realizations, a probability dis-
tribution over the finite signal space M . An intuitive interpretation is that the tests are
performed one at a time, with the seller deciding which test to perform next based on
previous results. However, we will show in Section 4.1 that, for our purposes, it is suffi-
cient to select each subsequent test solely on the basis of events with objective – that is,
state-independent and thus agreed upon by both types – probabilities. As a result, there is
no need to perform a test that is not purchased; the seller only requires a randomization
device to determine the sequence of tests.

At the beginning of the game, the seller commits to implement a sequence of priced
tests ((σt, ct))

T
t=1. If the buyer decides to purchase the test σt in period t, she pays the

costs ct ≥ 0 to the seller, and observes the realized outcome mt ∈ M . The buyer then
updates her belief according to Bayes’ rule.

BBS analyze a static scenario in which all tests are offered simultaneously and both
buyer types choose their preferred tests. In such a setting, the seller can only extract the
full surplus from both buyer types if their valuations are equal, i.e., V (θh) = V (θl). The
reasoning is straightforward: for the low-type buyer to pay her full valuation, there must
be a subset of tests that reveal the state with certainty at a total cost of V (θl). However,
this implies that the high-type buyer could choose the same subset and also pay V (θl) ≤
V (θh), preventing the seller from capturing any additional surplus from the high type.

In contrast, our approach adopts a sequential framework: the buyer purchases a test,
observes its outcome, and then decides whether to stop or buy another test based on the
result. We will show that, for the given valuations, a sequence of two priced experiments
is sufficient to perform perfect price discrimination, thus extracting the heterogeneous
valuations of both individuals. Moreover, it is sufficient to consider experiments that
generate only two possible signals, i.e., M =

{
Ĉ, F̂

}
. The initial test σ1 is summarized

in the table below, which gives the probability distribution over the signal space M for
each state in Ω:

Ĉ F̂

C

F

1 0

4
9

5
9

σ1(m1 | ω)
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Under the first test, observing the signal m1 = F̂ reveals that ω = F . Conversely,
receiving m1 = Ĉ shifts the buyer’s belief toward ω = C due to Bayesian consistency.
The resulting posterior beliefs are depicted in Figure 1. Notably, the low-type buyer

IP(ω = C)
0 11

2
θl θh

m1 = F̂

m1 = F̂

m1 = Ĉ m1 = Ĉ

Figure 1. Posteriors induced by σ1.

assigns a higher probability to observing m1 = F̂ than the high-type buyer does, because
she considers ω = F to be more likely. Consequently, the low-type buyer expects to
identify the state from the first test result with a higher likelihood.

The second test confirms, m2 = Ĉ, or falsifies, m2 = F̂ , the initial assessment. In
other words, a perfect test is performed, but the choice of the test depends on the first
outcome: a ‘COVID test’ follows if m1 = Ĉ, while a ‘flu test’ follows if m1 = F̂ .
Formally, the second test is described by the following signal mappings:

Ĉ F̂

C

F

1 0

0 1

σ2

(
m2 | ω,m1 = Ĉ

)
Ĉ F̂

C

F

0 1

1 0

σ2

(
m2 | ω,m1 = F̂

)

This testing procedure ensures that the state is revealed with certainty in the second
period if and only if the consumer is aware of the signal realization in the first period.
The resulting posterior beliefs are illustrated in Figure 2. Thus, the initial test not only

IP(ω = C)
0 1θl θh

m1 ̸= m2 m1 = m2

Figure 2. Posteriors induced by σ1 and σ2.

provides an imperfect signal, but also contains the information about which test will be
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performed in the second period. In other words, the first test contains an encryption key

that is necessary to decipher the full information that is contained in the second test result.
If the buyer chooses to purchase only the second test, she is unaware of the specific

stochastic mapping that generates the signal. However, the second test still provides some
information. In particular, if ω = C, the initial signal realization is always truthful and
will therefore be confirmed in the second period. If ω = F , the signal probabilities are
effectively reversed: a first period test result of m1 = Ĉ will be falsified, m2 = F̂ , in the
second period, while a signal realization of m1 = F̂ will be confirmed, m2 = Ĉ. As can
be seen from the table below, the second test, taken in isolation, is less informative (in the
Blackwell sense) than the first test:

Ĉ F̂

C

F

1 0

5
9

4
9

IP(m2 | ω)

We now turn to the pricing for each test. To extract the full surplus from both types,
each of them must learn the true state with certainty. Otherwise, an immediate action
would dominate any purchasing strategy with an expected cost equal to the buyer’s valu-
ation. Therefore, it is not sufficient to implement a pricing scheme where only the second
test is purchased. Furthermore, if the first test yields m1 = F̂ , the buyer will identify
the state as ω = F and will not buy the second test. Therefore, the price of the second
test must be set so that both types have an incentive to buy it after observing m1 = Ĉ.
In particular, when observing m1 = Ĉ the high type has a lower probability to err (see
Figure 1) and thus a lower willingness to pay in comparison to the low type, i.e.:

IP
[
F | h,m1 = Ĉ

]
=

4
9
· 0.36

0.64 + 4
9
· 0.36

= 0.2 < 0.48 = IP
[
F | l,m1 = Ĉ

]
.

Since the second test, conditional on m1 = Ĉ, reveals the state with certainty, the
seller can ask them to pay their complete residual valuation. Thus, the highest price the
seller can charge and still ensure that both types will buy the second test is given by

c2 = IP
[
F | h,m1 = Ĉ

]
= 0.2.

One might ask how the seller can still extract all of the low type’s surplus, given that
she is paying strictly less than her willingness to pay for the second test. The key insight
is that, in anticipation of receiving this discount at the second test, the low type is willing
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to pay more for the first test than its immediate informational value. Consequently, in
order to capture all of her surplus, the seller sets the price of the first test so that the total
expected cost of purchasing the first test – and, conditional on m1 = Ĉ, the second test –
is equal to her valuation. Formally, we choose:

c1 = V (θl)− IP
[
m1 = Ĉ | l

]
· c2 = 0.325−

(
0.325 +

4

9
· 0.675

)
· c2 = 0.2.

Notably, we arrive at a uniform pricing scheme. More insights on this follow in the
analysis.

Neither type of consumer benefits from buying only the second test, as the first test is
more informative for the same price. However, we have chosen the price of the second
test so that it will be purchased if a consumer has bought the first test and it has realized
as m1 = Ĉ. Therefore, both types compare only two purchasing strategies: (i) not buying
any test, or (ii) buying the first test and, conditional on m1 = Ĉ, the second test as well.
Their expected utility from not purchasing either test is 1 − V (θs). Under strategy (ii),
their action always matches the true state, at an expected cost of:

c1 + IP
[
m1 = Ĉ | l

]
· c2 = 0.325 = V (θl) for type θl and

c1 + IP
[
m1 = Ĉ | h

]
· c2 = 0.36 = V (θh) for type θh.

Thus, given risk neutrality, their expected utility is also given by 1−V (θs). We assume
that both types choose the seller-preferred purchasing strategy (ii). The expected costs
differ because the high type assigns a higher probability to receiving the test result m1 =

Ĉ, which triggers further information acquisition. This discrepancy ensures that both
types pay their respective valuations in expectation. Consequently, the seller’s sequence
of priced experiments is optimal.

Our main result will imply that, given θh = 0.64, θl = 0.325 is the lowest value that
allows for full surplus extraction in two periods. Achieving perfect price discrimination
with a smaller θl would necessitate additional periods. Furthermore, the uniform pricing
across experiments is not coincidental; we will demonstrate that this property generalizes
to the T -period case when the sequence of priced experiments is designed to maximize
the discrepancy in expected costs.

3. Model

We study a dynamic game featuring a monopolistic data seller (he) and an information-
seeking consumer (or buyer, she). The consumer’s task is to take an action a ∈ A :=

{a, a}, while facing uncertainty concerning the payoff-relevant state of the world ω ∈
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Ω := {ω, ω}. We say that the chosen action matches the realized state (a = ω) if either
a = a and ω = ω or a = a and ω = ω.

At the beginning, both agents share the same prior belief µ := IP [ω] ∈ (0, 1). How-
ever, the consumer privately observes an imperfect signal s ∈ S := {l, h}. This signal s
is generated by a commonly known experiment π : Ω → ∆S. The consumer then forms
her interim belief via Bayes’ rule:

θs := IP [ω | s] = π(s | ω)µ
π (s | ω)µ+ π (s | ω) (1− µ)

∈ (0, 1).

Consequently, the consumer can fall into one of two ‘types’, θs ∈ Θ = {θl, θh}. Without
loss of generality (relabeling the signals), we assume that a consumer experiences ‘more
uncertainty’ about the state of the world when receiving the signal s = h and we refer to
this consumer as the high-valuation type. Formally:∣∣∣∣θh − 1

2

∣∣∣∣ ≤
∣∣∣∣θl − 1

2

∣∣∣∣. (1)

While the realization of the signal remains private information of the consumer, the seller
is aware of its distribution:

IP[s] = µ · π(s | ω) + (1− µ) · π(s | ω).

We consider a dynamic interaction over a finite time horizon T ∈ N. In period t = 0,
the state of the world ω ∈ Ω is chosen by nature, the consumer privately observes the
signal s generated by π (and thus learns her type θs), and the seller publicly commits
to a sequence of (Blackwell) experiments σ = (σt)t=1,...,T and a pricing scheme c =

(ct)t=1,...,T ∈ RT
+. In each period t, the seller will conduct the experiment σt. Deciding

to observe the experiment outcome mt necessitates a payment of ct ≥ 0 to the seller.
The seller commits to report the experiment outcome mt ∈ M truthfully, where M is
a finite set of possible signals. The realization mt is drawn according to a probability
distribution that may depend on the underlying state of the world ω as well as on the
history of previously realized outcomes (m1, . . . ,mt−1). Formally, each experiment is a
stochastic mapping:

σt : Ω×M t−1 7→ ∆M.

We denote Σt as the set of all possible experiments in period t. We prevent the seller
to adjust the pricing of the experiments after the initial assessment. Therefore, the seller
publicly commits to a pure strategy (σ, c) ∈

∏T
t=1Σt × RT

+.

At this point, it is worth noting that our model differs from Bergemann, Bonatti, and
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Smolin (2018) in that the consumer buys the experiments sequentially instead of simul-
taneously. In particular, the consumer’s belief will be updated based on the outcome of
each bought experiment, which can influence her decision about subsequent purchases.

In each period t, the consumer decides whether to observe (ρ̂t = 1) or ignore (ρ̂t = 0)

the experiment outcome mt. This decision ρ̂t may depend on her type θs as well as the set
of outcomes of previously bought experiments {mk | ρ̂k = 1, k < t}. Furthermore, the
decision depends on the strategy of the seller in order to interpret the experiment outcomes
and anticipate future gains or losses. The strategy of the consumer requires a purchase
decision for any subset of the history of experiment outcomes including non-observed
outcomes denoted as ∅. Formally, the behavioral purchase strategy is given by:

ρt : Θ× (M ∪ {∅})t−1 ×
T∏

k=1

Σk × RT
+ 7→ {0, 1} for t = 1, . . . , T.

After the final period T , the consumer chooses an action a ∈ A. This action choice
ρa depends on her type as well as on the set of all purchased reports {mk | ρ̂k = 1}.
Again, the experiment sequence is required to update the belief correctly. However, we
can exclude the pricing scheme as all payments made are already sunk costs and do not
influence the terminal action. Analogously, the behavioral action strategy is given by:

ρa : Θ× (M ∪ {∅})T ×
T∏

k=1

Σk 7→ A.

The consumer’s complete behavioral strategy is ρ =
(
(ρt)

T
t=1, ρa

)
. We make some sim-

plifying assumptions:

Assumption 1. (i) Both agents are risk-neutral and have no time preference.

(ii) The seller can design and execute any sequence of experiments σ ∈
∏T

t=1 Σt at no

cost.

The ex-post utilities of the seller and consumer depend on the realized purchasing de-
cisions, denoted by ρ̂t. The consumer aims to match her action to the state while minimiz-
ing cumulative payments. Her preferences are quasi-linear with respect to the payments
to the seller, yielding an ex-post utility of:

UR(ω, a, (ρ̂t)
T
t=1, c) := I[a=ω] −

T∑
t=1

ρ̂t · ct,

where I[·] denotes the indicator function.
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The seller is exclusively interested in maximizing his total revenue. Accordingly, his
ex-post utility is given by the sum of received payments:

US

(
(ρ̂t)

T
t=1, c

)
:=

T∑
t=1

ρ̂t · ct.

Consequently, the seller’s utility is independent of the true state and the consumer’s action.

Notice that the purchasing behavior can depend on the experiment outcomes that are
chosen by nature. Let M = (m1, . . . ,mT ) ∈ (M ∪ ∅)T be a sequence of realized signals
including non-observed outcomes. Importantly, the probability assigned to observing the
sequence of experiment outcomes M is type-dependent:

IP[M | s, σ] =
T∏
t=1

IP[mt | s, σ,M|t−1].

As the seller commits to the sequence of experiments at the beginning of the game and
their outcomes naturally depend on the choice of experiments, we will in the following
simplify notation and omit the dependency of the probabilities of experiment outcomes
M on σ.

These probabilities further depend on the private information of the consumer, thus
the same purchasing behavior can lead to a different evaluation of expected costs. The
consumer of type θs evaluates ex-ante her expected payoff from choosing strategy ρ given
the sequence of priced experiments (σ, c) as:

∑
M∈(M∪∅)T

IP[M | s]

(
I[ρa(θs,M,σ)=ω] −

T∑
t=1

ρt (θs,M|t−1, σ, c) · ct

)
.

The seller also assigns his subjective probabilities to each sequence of experiment
outcomes including non-observed outcomes. However, we can apply the law of total
probability and rewrite his expected revenue as the expected payment of each type times
the likelihood of the respective type:

∑
s∈{l,h}

IP[s] ·
∑

M∈(M∪∅)T
IP[M | s] ·

T∑
t=1

ρt (θs,M|t−1, σ, c) · ct.

We employ the solution concept of a seller-preferred subgame perfect Nash equilib-
rium. This implies that the consumer behaves sequentially rational and that she behaves
such that her behavior maximizes the seller’s expected utility if she is indifferent. Thus,
the seller will implement the revenue-maximizing information structure that can be in-
duced by a sequence of priced experiments.
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4. Analysis

The subsequent analysis is structured as follows: First, Section 4.1 introduces an ‘encryp-
tion protocol’. This method simplifies the analysis by ensuring that experiments appear
informative only if all preceding experiment outcomes have been observed. Section 4.2
lays further groundwork by defining consumer valuations for a revelation of the state de-
pending on their current information. The core of the analysis is presented in Section
4.3, which details the construction of a sequence of priced experiments, which allows the
seller to extract the entire surplus simultaneously from both buyer types. Finally, Sec-
tion 4.4 investigates conditions under which there exists a sequential selling strategy that
yields strictly higher revenue for the seller compared to the static framework.

4.1. Encryption Protocol

In our model, the seller cannot observe the buyer’s purchasing decisions. If such ob-
servation were possible, the seller could enforce a protocol in which each test becomes
available only after all previous tests have been purchased. The following analysis can
also be read by allowing for such protocols. However, we show that such a modeling
assumption is unnecessary. Rather than preventing the buyer from purchasing a test, we
encrypt each test result and embed a key in the combination of all earlier test results that is
required to decrypt it. This approach allows the seller to offer the tests regardless of previ-
ous purchase decisions, since a test does not provide any information unless all previous
test results, and hence the keys need to decrypt it, have been observed. Note in particular
that, after the seller has committed to the sequence of priced experiments, the dynamics
of the model are driven exclusively by the buyer. Specifically, if the consumer decides to
observe an outcome, then she will update her belief and decide whether to purchase an
additional experiment or to stop further information acquisition.

We will illustrate the idea of encrypting subsequent test results by revisiting the initial
example. We demonstrate how the analysis in Section 2 can be simplified by encrypting
the second experiment in such a way that it is only informative if the consumer knows
the first test result. In particular, the component of the first-period outcome required to
decrypt the second outcome will be chosen independently of the underlying state and
any state-depending signal. As a result, it can be generated without performing a state-
dependent test, thus the seller only requires a randomization device to select the subse-
quent test. We then generalize this procedure to T periods.

Before revisiting the initial example, we consider an extreme but instructive case:
two tests that, taken separately, generate no belief update, but together reveal the state
with certainty. Intuitively, the first test can be interpreted as randomly ‘claiming’ that
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a particular state is true, while the second test indicates whether that claim was correct.
Observing the random claim does not in itself reveal any information. Similarly, knowing
whether the claim was true or false without knowing the claim is not informative at all.
Consequently, each test in isolation is uninformative, but together they reveal the true
state with certainty. In particular, the first test effectively serves as a key to decrypt the
second test.

To formalize this, we consider a signal space M = {m,m}. Recall that an experiment
is defined by a stochastic mapping, σt : Ω×M t−1 → ∆(M), which assigns, for each state
and every history of past signals, a probability distribution over the signal space M . In the
first period, we use a state-independent coin toss to generate the signal. As a stochastic
mapping, the first experiment can be represented as follows:

m m

ω

ω

1
2

1
2

1
2

1
2

σ1(m1 | ω)

In the second period, we introduce an experiment designed to reveal the true state given
the outcome of the first experiment. Specifically, if the first experiment yields m, then the
second experiment maps ω to m (and ω to m); if it yields m, the mapping is reversed.
Hence, although the coin toss itself does not reveal any information about the state, its
outcome affects how we interpret the signal in the second period. Formally:

m m

ω

ω

1 0

0 1

σ2(m2 | ω,m1 = m) m m

ω

ω

0 1

1 0

σ2(m2 | ω,m1 = m)

Viewed in isolation, the second experiment does not update the belief either. This is
because in state ω, the second experiment signals m if and only if the first experiment has
realized as m1 = m, while in state ω it is the other way around:

IP[m2 = m | ω] = IP[m1 = m | ω] = 1

2
= IP[m1 = m | ω] = IP[m2 = m | ω].

This means that neither m1 nor m2 shifts the belief about the state on its own:

IP[ω] = IP[ω | m1] = IP[ω | m2].
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We can conclude that, while the first and second experiments appear like fair coin tosses
in isolation, their combined outcome reveals the underlying state:

IP[ω | m1,m2] =

1, if m1 = m2 = m or m1 = m2 = m,

0, otherwise.

This insight shows that selling information differs from selling traditional economic
goods. A binary information can be divided into several components. A consumer will
buy each of the components as long as the total cost does not exceed her valuation of the
complete information. In other words, it is the total price that matters, not the price of
each component. The following analysis demonstrates how the seller can benefit from in-
duced belief updates by providing imperfect information in each component when facing
multiple consumers.

4.1.1. Example Revisited: Medical diagnostic Testing

A potential objection to the previous approach used in Section 2 is that the seller must
either design correlated tests or perform each test in order to determine subsequent tests.
While correlated tests lead to an additional complexity, which makes real-world appli-
cation difficult, the option to perform each test is heavily dependent on the assumptions
that tests can be performed without facing a cost and that agents have no time preference
(Assumption 1). In particular, even if the buyer decides against purchasing a test, each
test has to be performed.

We now demonstrate how this strict assumption can be relaxed to make real-world
application more attainable. Specifically, we will incorporate an independent coin toss,
which is the only part of the test that needs to be performed if a test is not purchased. We
thereby introduce an encryption protocol in which the coin toss serves as a key necessary
to decrypt the second test result.

We want to address the same situation as in the initial example in Section 2. Recall
that the state space is given by Ω = {C,F}. However, in contrast to the original example,
we extend the signal space to incorporate a coin toss, i.e.:

M =
{
Ĉ, F̂

}
× {0 (Head), 1 (Tail)} .

In the initial example, the first test always signals Ĉ when the state is C, while in state F ,
it signals Ĉ with a probability of 4

9
and F̂ with a probability of 5

9
. We modify this first test

to incorporate the outcome of an independent coin toss. For instance, if the state is F , the
signal still includes Ĉ with a probability of 4

9
, but it is either (Ĉ, 0) or (Ĉ, 1) with equal
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probability. The adjusted test is summarized in the table below.

(Ĉ, 0) (Ĉ, 1) (F̂ , 0) (F̂ , 1)

C

F

1
2

1
2 0 0

4
18

4
18

5
18

5
18

σ1(m1 | ω)

Since the coin toss is independent of the signal containing Ĉ or F̂ , the posterior belief
induced by observing m1 = (Ĉ, 0) is the same as that induced by m1 = (Ĉ, 1) and
analogously for a signal that contains F̂ . Consequently, the resulting posterior beliefs, for
both types s ∈ {l, h}, coincide with those in the original example.

We now turn to the second test. In contrast to the original example, we assume that
the choice of the second test depends exclusively on the outcome of the coin toss, rather
than on whether the observed signal contains Ĉ or F̂ . Consider the following stochastic
mapping for each ω̂ ∈

{
Ĉ, F̂

}
:

Ĉ F̂

C

F

1 0

0 1

σ2 (m2 | ω,m1 = (ω̂, 0)) Ĉ F̂

C

F

0 1

1 0

σ2 (m2 | ω,m1 = (ω̂, 1))

Note that we omit the coin toss in the table above, as it is not needed in the second
period.4 Indeed, this procedure simplifies the analysis since the second test becomes
uninformative without holding the result of the coin toss, i.e., IP[C | s,m2] = θs = IP[C |
s]. Consequently, the consumer will not buy the second test in isolation. However, if the
result of the coin toss is known, the second test still reveals the state with certainty. So
this approach has the same strategic consequences as in the initial example in Section 2.

4.1.2. Encryption Protocol with T Periods

We next extend the encryption protocol to the general model and T periods. The idea
is to construct ‘encrypted’ experiments that can only be understood if the outcome of
each experiment has been observed beforehand. This approach simplifies the analysis:
if a consumer decides to ignore an experiment, then her optimal decision is to abstain
from buying all subsequent experiments. As a result, analyzing the consumer’s optimal
purchase strategy effectively becomes a stopping problem.

4Formally, we could include it by assigning probability 1 to heads independently of ω and m1.
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For the construction, consider an arbitrary sequence of independent binary experi-
ments, i.e., experiments which use the signals m and m and do not depend on previous
signals. Specifically, in each period t, signal m is realized with probability qt (and signal
m with probability 1− qt) if the state is ω and with probability pt if the state is ω, i.e.:

m m

ω

ω

qt 1− qt

pt 1− pt

σt(mt | ω)

Suppose the buyer observes a set of experiment outcomes, which is denoted by M ⊆
{m1, . . . ,mT}. We define l∗(M) as the longest consecutive sequence of tests starting
with the first test. In other words, the test in period l∗(M) + 1 is the first test that the
consumer does not purchase. Formally, we define:

l∗(M) := max {l | {m1, . . . ,ml} ⊆ M} .

We will demonstrate that the seller can design a modified experiment sequence that
provides the same information for any consecutive sequence of tests beginning with the
first one, but any set of experiment outcomes that follow a non-purchased experiment
appear to be independent of the state. Following the example in Section 4.1.1, we do
so by including a coin toss with each experiment that serves as an encryption key for
subsequent experiments:

M = {m,m} × {0 (Head), 1 (Tail)} .

Specifically, for each period t, the coin flip determines whether the probability of an
experiment outcome m in state ω alternates with the probability of m in state ω in all
subsequent periods. This design ensures that the buyer interprets the t-th experiment
correctly if she has bought all experiments up to period t, but retains her prior belief
about the state if she has skipped at least one test.

Lemma 1. Let (σt)
T
t=1 be a sequence of independent binary experiments, i.e., with out-

comes (mt)
T
t=1 ∈ {m,m}T . Then the seller can design a sequence of experiments (σ′

t)
T
t=1

with outcomes (m′
t)

T
t=1 ∈ M such that

IP [ω | M] = IP
[
ω | m′

1, . . . ,m
′
l∗(M)

]
= IP

[
ω | m1, . . . ,ml∗(M)

]
,

where M is an arbitrary subset of outcomes of (σ′
t)

T
t=1.
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The proofs of all Lemmata are relegated to Appendix A. By construction, the mod-
ified sequence of experiments in Lemma 1 is such that the information that the buyer
gains about the state of the world by acquiring the outcomes in M is equivalent to the
information that she gains from the longest consecutive sequence of experiments, starting
with the first experiment. Consequently, for any positive price assigned to subsequent
experiments, it is sequentially rational for the consumer to stop after this sequence.

4.2. Consumer Valuations

Consider a consumer of type θs ∈ Θ. If the consumer chooses to ignore all experiment
outcomes (i.e., ρt = 0 for all t = 1, . . . , T ), her optimal action depends exclusively on
her private information s. Since she receives a payoff of 1 for matching the state and 0

otherwise, we obtain:

ρ∗a (θs, ∅, σ) ∈ argmax
a∈A

{IP[a = ω | s]} ,

with an expected payoff of max{θs, 1− θs}. If the consumer learns the state ω perfectly,
her optimal action would yield a payoff of 1. Thus, the value a consumer assigns to a
revelation of the state is the difference between the perfectly informed payoff and the
payoff based exclusively on her prior information s:

V (θs) := 1−max{θs, 1− θs} = min{θs, 1− θs}.

This valuation represents the highest amount the consumer is willing to pay for a state-
revealing experiment. Due to the labeling of the signals (1), it holds that V (θh) ≥ V (θl).

Definition 1. Types θl and θh are ‘congruent’ if they share an optimal action based ex-

clusively on their private information s (without holding any experiment outcomes), i.e.,⋂
s∈S

argmax
a∈A

{IP[a = ω | s]} ≠ ∅.

Otherwise, the types are ‘non-congruent’.

We henceforth adopt the convention that the high type θh prefers the action a based
on her private information, which implies that she considers state ω more likely, i.e.,
θh ≥ 1/2. This convention also implies that if θh ̸= 1

2
, then the types are congruent if and

only if θh ≤ θl. Additionally, it allows to simplify the value of information. Specifically,
the valuation of the high type is given by V (θh) = 1 − θh and the valuation of the low
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type is given by

V (θl) =

1− θl if the types are congruent,

θl otherwise.

Note that ignoring all experiment outcomes cannot be part of a seller-preferred sub-
game perfect equilibrium. It follows directly from the static case of BBS that the seller
can always extract a revenue equal to the valuation of the low type:

Corollary 1. In any seller-preferred subgame perfect equilibrium ((σ∗, c∗), ρ∗), the ex-

pected revenue of the seller is at least V (θl), i.e.,

∑
s∈{l,h}

IP[s] ·
∑

M∈(M∪∅)T
IP[M | s] ·

T∑
t=1

ρ∗t (θs,M|t−1, σ
∗, c∗) · c∗t ≥ V (θl).

Therefore, in equilibrium, the seller offers informative experiments and we need to
analyze the optimal terminal action for each set of outcomes. To ease the exposition,
we denote the experiment outcome in period t by mt = ∅ if it remains unobserved by
the consumer. Given any set of outcomes M ∈ (M ∪ {∅})T , the terminal action in a
seller-preferred subgame perfect equilibrium must satisfy

ρ∗a (θs,M, σ) ∈ argmax
a∈A

{IP [a = ω | s,M]} .

Now, suppose that after period t, the consumer so far has observed outcomes Mt ∈
(M ∪ {∅})t. If she decides against acquiring any further experiment, she will choose
an optimal terminal action ρ∗a(θs,Mt, σ) that yields a payoff of maxω{IP[ω | s,Mt]}.
Consequently, her updated valuation of receiving a revelation of the state, given Mt, is

V (θs,Mt) := 1−max
ω

{IP [ω | s,Mt]} = min
ω

{IP [ω | s,Mt]} .

Notably, this updated valuation does not necessarily satisfy V (θh,Mt) ≥ V (θl,Mt).

4.3. Perfect Price Discrimination

We are now in the position to establish the main result. We will show that by sequen-
tially offering experiments, the seller can perfectly price discriminate between buyer types
which are non-congruent, and thus differ in their beliefs about which state is more likely,
yet have sufficiently similar valuations. Recall that by convention θh ≥ 1/2 ≥ 1−θh ≥ θl.
To extract the entire consumer surplus, both types of consumers must learn the state of
the world with certainty, and their subjective expected costs must match their respective
valuation.
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Theorem 1. Assume that the consumer types θl and θh are non-congruent. If

θl ≥ θl(θh, T ) :=
1− θh − Tθh

(
1− θ

1/T
h

)
2(1− θh)− T

(
1− θ

1/T
h

) , (2)

then the seller extracts the entire consumer surplus in a seller-preferred subgame perfect

equilibrium; thus, both buyer types θs pay their respective valuation V (θs) in expectation

to the seller, i.e.,

∑
M∈(M∪∅)T

IP[M | s] ·
T∑
t=1

ρ∗t (θs,M|t−1, σ
∗, c∗) · c∗t = V (θs).

In particular, there exists some maturity T which satisfies the inequality (2) if

θl >
1− θh + θh ln(θh)

2(1− θh) + ln(θh)
. (3)

Note first that θl(θh, T ) ≤ 1 − θh, such that extracting the entire consumer surplus is
possible at least for equal valuations. Second, call V (θh) − V (θl(θh, T )) the admissible

valuation gap between the types for perfect price discrimination to be possible. Since
θl(θh, T ) is strictly decreasing in the maturity T , we obtain:

Remark. The admissible valuation gap V (θh)−V (θl(θh, T )) is strictly increasing in the

maturity T . In particular, T = 1 means no admissible valuation gap as in BBS, since

V (θl(θh, 1)) = θl(θh, 1) = 1− θh = V (θh).

Figure 3 considers the relative admissible valuation gap, illustrating how it increases
with respect to the maturity for each valuation V (θh). Note that the relative admissible
valuation gap is larger when the beliefs are more extreme (i.e., when V (θh) is low), as the
types then perceive the likelihood of experiment outcomes as very different, facilitating
perfect price discrimination.

The proof of Theorem 1 constructs a sequence of experiments such that the state may
only be revealed with certainty when it is equal to ω:

m m

ω

ω

1 0

pt 1− pt

σt(mt | ω)

We then encrypt the experiments to simplify the analysis as described in Lemma 1, effec-
tively turning the consumer’s optimal purchase strategy into a stopping problem. Suppose
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Figure 3. The relative admissible valuation gap (V (θh)− V (θl(θh, T )))/V (θh) for perfect price
discrimination depending on V (θh) for T = 2 (dotted), T = 5 (dashed), and T = ∞ (solid)
periods.

further that both types follow the same purchasing behavior, namely that they continue
buying additional experiments until the state is revealed (or maturity is reached). Since
the high-valuation buyer assigns a higher ex-ante probability to the state being ω (recall
that θs = IP [ω | s] and θh ≥ 1/2 ≥ θl), and thus to outcomes that do not immediately
reveal the state, she expects to purchase more experiments compared with the low type.
This leads to higher expected costs for the high-valuation buyer. The proof then first deter-
mines a pricing scheme under which the low type purchases until the state is revealed and
pays her valuation in expectation. Second, it proposes probabilities pt under which the
difference in expected costs between the types becomes large,5 which yields the admissi-
ble valuation gap, and hence θl(θh, T ). At θl = θl(θh, T ), the experiments, interestingly,
are priced at a uniform price across periods. For smaller valuation gaps, the proof shows
that we can simply adapt the initial two experiments and their costs accordingly.

5We have verified that these probabilities for many maturities T maximize this difference.
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4.4. Proof of Theorem 1

We proceed in several steps as follows: We first provide a class of experiments that will be
used by the seller for perfect price discrimination in Section 4.4.1. Subsequently, Section
4.4.2 introduces a pricing scheme that leads both consumers to buy those experiments.
In Section 4.4.3, we search for the parametrization of those experiments that induces
the highest achievable difference in expected costs. Since this parametrization can lead
to a difference that is more than the valuation gap V (θh) − V (θl) between consumers,
we adjust the parametrization in Section 4.4.4 such that the difference in expected costs
coincides with the valuation gap. Finally, Section 4.4.5 summarizes our findings.

4.4.1. Construction of the Experiments

Recall that we assumed that the high-valuation type considers the state ω to be more likely
than ω, i.e., θh ≥ 1

2
. Given non-congruent beliefs, it follows that the low-valuation type

considers state ω more likely. We will construct a sequence of experiments such that a
positive probability of state revelation occurs only when the true state is ω. Specifically,
the experiments are constructed as follows:

m m

ω

ω

1 0

pt 1− pt

σt(mt | ω)

In other words, these experiments are designed to guarantee a non-revealing signal when
the state is ω, but with a positive probability a state-revealing signal when the state is ω.
Consequently, the low type considers it more likely to get a revelation of the state for each
experiment σt with pt ∈ (0, 1).

As discussed in Section 4.1, the seller can encrypt each experiment so that its outcome
can only be understood if all previous experiment outcomes have been observed before-
hand. Specifically, we apply Lemma 1 to the experiments denoted above and from now on
consider the encrypted sequence of experiments (σ′

t)
T
t=1. Consequently, it is sequentially

rational for the buyer to stop purchasing experiments after an unobserved experiment out-
come. Alternatively, this could be achieved by monitoring the buyer’s purchasing deci-
sions. Exemplary, the seller could punish the consumer by only conducting uninformative
experiments after the buyer ignores an experiment.

Furthermore, it is sequentially rational for the buyer to stop purchasing experiments
as soon as an observed experiment realizes as m, because in such a case, she is already
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aware of the state and assigns no value to holding additional outcomes. Therefore, a pur-
chase of the experiment in period t is only considered if the consumer holds all previous
experiment outcomes and all of them have realized as m. From now on, we will denote

Mt := {m1 = m, . . . ,mt = m}.

Let Mt−1 ∈ (M ∪ {∅})t−1, by the reasoning above, we can conclude that the following
behavior is sequentially rational:

ρ∗t (θs,Mt−1, σ
′, c) = 0 if Mt−1 ̸= Mt−1.

The key insight that enables price discrimination is that the ex-ante probability of
observing Mt depends on the consumer’s private information:

IP [Mt | s] = θs + (1− θs) ·
t∏

r=1

pr.

In particular, it holds that the high type assigns a higher probability to the event that all
experiments up to period t result in the non-revealing signal m than the low type:

IP [Mt | h] ≥ IP [Mt | l]

with strict inequality if θh ̸= θl.

Perfect price discrimination requires that consumers learn the true state with certainty
in order to pay their full valuation in expectation. Therefore, the seller must set pt = 0 for
some t. Without loss of generality, we assume this occurs only in the final period T . If it
occurred earlier, for instance in t′ < T , we have argued that no rational consumer would
buy any positively priced experiments thereafter. Thus, such a sequence of experiments
is equivalent to a sequence where we cut out all experiments after period t′ and prefix a
sequence with T − t′ periods of free, uninformative experiments. This shifts the original
sequence so that the experiment in t′ of the original sequence becomes the final experi-
ment of the adjusted sequence and the unique experiment with a certain revelation of the
state.

4.4.2. Pricing

In each period t, conditional on Mt−1, the consumer has to consider two options: ei-
ther stop acquiring further information and choose the optimal action given her current
information, or to buy the next experiment. If she chooses to act (ignore all upcoming
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experiments), then she receives a payoff of

1− V
(
θs,Mt−1

)
− c1 − · · · − ct−1,

where we recall that

V
(
θs,Mt−1

)
= 1−max

ω

{
IP
[
ω | s,Mt−1

]}
= min

ω

{
IP
[
ω | s,Mt−1

]}
.

If she purchases the experiment and the signal realizes as m, she identifies the state as ω
and receives a payoff of 1 while incurring a cumulative cost of c1 + · · ·+ ct. If the signal
is m, she faces the same decision problem in period t+1. Figure 4 illustrates the stopping
problem faced by the buyer.

B

1− V (θs)

σ′
1

s

b

1− c1

B

m

m

1− V (θs,M1)− c1

. . .

s

b σ′
t

1− c1 − · · · − ct

B

m

m

1− V (θs,Mt)− c1 − · · · − ct

. . .

s

b σ′
T 1− c1 − · · · − cT

Figure 4. The Buyer decides in each period upon observing signal m whether to buy the next
experiment or to stop buying and choose the optimal action given her current information.

To enable perfect price discrimination, the pricing scheme must ensure that each ex-
periment is purchased until the state is identified. In other words, the optimal pricing
scheme must incentivize the buyer to purchase the next experiment whenever all previous
experiments have been realized as a non-revealing signal. Suppose that the pricing policy
from period t + 1 onward is such that the consumer chooses to purchase these experi-
ments. If the buyer purchases the t-th experiment, she knows that she will choose the
state-optimal action – anticipating that she will continue to purchase subsequent experi-
ments until the true state is revealed. Therefore, she will decide to buy the t-th experiment
only if

1−
T−1∑
u=t

IP
[
mt = m, . . . ,mu = m | s,Mt−1

]
cu+1 ≥ 1− V

(
θs,Mt−1

)
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⇔ ct ≤ V
(
θs,Mt−1

)
−

T−1∑
u=t

IP
[
mt = m, . . . ,mu = m | s,Mt−1

]
· cu+1. (4)

The following Lemma provides a pricing scheme that leads to the desired purchase be-
havior. Specifically, c2, . . . , cT are chosen such that equality in (4) holds for s = h. Under
this pricing scheme, the high-valuation type is indifferent in each period t ≥ 2 and we can
assume that she takes the seller-preferred decision to buy each experiment. Remarkably,
the experiments will be designed so that at some point the updated valuation of the low
type exceeds the updated valuation of the high type. One might think that the low type
would benefit from this effect. However, we will ensure that the low type pays exactly
her valuation in expectation, anticipating any future discounts and effectively paying for
them in the initial period. We do this by setting the cost in the first period so that equality
in (4) holds for s = l.

Lemma 2. Consider the experiments (σ′
t)

T
t=1 constructed in Section 4.4.1. If the parame-

ters satisfy non-negativity of the cost in period one, then

ct =
(1− θh)

∏t−1
s=1 ps (1− pt)

θh + (1− θh)
∏t−1

s=1 ps
(5)

and

c1 = θl −
T−1∑
t=1

(
θl + (1− θl)

t∏
s=1

ps

)
· ct+1 (6)

lead to a sequentially rational purchasing behavior for all t ≥ 2:

ρ∗t (θs,M, σ′, c) = 1 if and only if Mt−1 = Mt−1.

Furthermore, it is sequentially rational for the low-valuation type to purchase the first

experiment, i.e., ρ∗1 (θl, ∅, σ′, c) = 1.

Due to the choice of the costs in the first period in Lemma 2, the low type’s valuation
V (θl) covers exactly the expected cost of the experiment sequence until a state-revelation:

V (θl) = c1 +
T−1∑
t=1

IP [Mt | l] · ct+1.

Furthermore, it is sequentially rational for the high type to buy the first experiment only
if

V (θh) ≥ c1 +
T−1∑
t=1

IP [Mt | h] · ct+1. (7)

Otherwise, the high type will decide against purchasing the first experiment, thereby ig-
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noring all experiments. In this case, extending the horizon from T to T + 1 would allow
for perfect price discrimination, as it would create space for an additional state-revealing
experiment. Specifically, one could shift all priced experiments one period towards the
maturity (t → t+ 1) and offer an additional state-revealing experiment in the first period
priced at c1 = V (θh) without encrypting the subsequent experiments. Such an experiment
would be purchased exclusively by the high type, while the low type behaves sequentially
rational by purchasing all following experiments and paying her valuation V (θl) in expec-
tation. In the following, we will show that this additional period is not required, because
the seller can adjust the experiments such that equality in (7) holds.

4.4.3. Cost Discrepancy

Recall that consumers of different types assign different probabilities to the outcomes
of the experiments, which in turn leads to different evaluations of the expected costs.
Specifically, the experiments are designed to capture the valuation V (θl) of the low-type
while inducing a greater expected cost for the high type. By ‘cost discrepancy’ we refer
to the difference in expected costs, given that both consumers will continue to purchase
experiments until a state revelation occurs.

In the initial example, we have seen that the seller can make use of the cost discrepancy
in order to bridge the gap of the heterogeneous valuations while selling the same sequence
of experiments. In particular, with maturity T = 2 and the pricing of Lemma 2, the cost
discrepancy between the high and low type is given by

(c1 + IP [M1 | h] · c2)− (c1 + IP [M1 | l] · c2) = (θh − θl)
(1− p1) (1− θh)p1
θh + (1− θh)p1

. (8)

We want to find the probabilities that maximize the expression (8). We first consider
the boundaries of p1 ∈ [0, 1]. Choosing p1 = 1 implies that the first message does not
reveal the state, i.e., IP

[
M1 | s

]
= 1. Thus, both consumer types face the same cost,

c1 + c2, and thus there is no difference in expected costs. If the seller were to design
the first experiment such that p1 = 0, then both types would stop acquiring experiments
afterwards, again leading to no cost discrepancy. In particular, inserting p1 = 0 into the
pricing of Lemma 2 yields c1 = V (θl) and c2 = 0.

We can simplify the expression (8), before searching for the critical points. Specifi-
cally, the constant factor (θh − θl)(1 − θh) can be factored out. Thus, a critical point of
(8) is also a critical point of (1−p1)p1

θh+(1−θh)p1
. Using the quotient rule, we can calculate the

derivative:

δ (1−p1)p1
θh+(1−θh)p1

δp1
=

θh − (1− θh)p
2
1 − 2θhp1

[θh + (1− θh)p1]2
.
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Setting the numerator of the derivative equal to zero gives a quadratic equation for p1.
The solutions are p1 =

−θh±
√
θh

1−θh
. So, there is a unique candidate solution p∗1 ∈ (0, 1):

p∗1 =

√
θh − θh
1− θh

. (9)

If one inserts p∗1 in the cost discrepancy term (8), one gets

(θh − θl) · (1− p∗1) ·
(1− θh) · p∗1

θh + (1− θh) · p∗1
= (θh − θl)

(
2 ·
(
1−

√
θh

1− θh

)
− 1

)
≥ 0.

This inequality is strict for θl ̸= θh. Thus, the global maximum of (8) is at p∗1. This
provides further insight into the initial example.

Example 1. Consider the parameter values θh = 0.64, θl = 0.325, and p1 =
4
9

as in our

initial example. This choice of p1 indeed maximizes the cost discrepancy between the two

types, as it is the optimal value p∗1:

p∗1 =

√
0.64− 0.64

1− 0.64
=

0.8− 0.64

0.36
=

0.16

0.36
=

4

9
.

Inserting p∗1 into (8) yields the highest attainable cost discrepancy:

(θh − θl) · (1− p∗1) ·
(1− θh) · p∗1

θh + (1− θh) · p∗1

= (0.64− 0.325) ·
(
1− 4

9

)
·

(1− 0.64) · 4
9

0.64 + (1− 0.64) · 4
9

= 0.035.

Here, the cost discrepancy is precisely what is needed to bridge the valuation gap:

V (θl) + 0.035 = V (θh).

As in the two-period case, the seller can utilize different probability assignments to
the experiment outcomes in T periods. Specifically, the discrepancy in expected costs is
given by: (

c1 +
T−1∑
t=1

IP[Mt | h] · ct+1

)
−

(
c1 +

T−1∑
t=1

IP[Mt | l] · ct+1

)

=
T−1∑
t=1

(IP[Mt | h]− IP[Mt | l]) · ct+1
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=
T−1∑
t=1

(
θh − θl + (1− θh)

t∏
s=1

ps − (1− θl)
t∏

s=1

ps

)
· ct+1

=(θh − θl) ·
T−1∑
t=1

(
1−

t∏
s=1

ps

)
· ct+1. (10)

While the seller’s ideal scenario is to find probabilities where the cost discrepancy co-
incides with the valuation gap, it is also interesting to find the probabilities that maximize
the admissible valuation gap and thereby finding the boundary for perfect price discrim-
ination. The following lemma states probabilities that form a critical point of (10) and
generalize the two-period maximizing probability (9) to T periods. These probabilities
lead to uniform costs and significant simplifications of (10).

Lemma 3. Consider the experiments (σ′
t)

T
t=1 constructed in Section 4.4.1. The probabil-

ities

p∗t =
θ
t/T
h − θh

θ
(t−1)/T
h − θh

for t = 1, . . . , T (11)

and the pricing scheme proposed in Lemma 2 lead to uniform costs for t ≥ 2,

c∗t = 1− θ
1/T
h for t = 2, . . . , T, (12)

and a cost discrepancy of

(θh − θl)

(
T

(
1− θ

1/T
h

1− θh

)
− 1

)
(13)

in T periods. The limit with respect to T → ∞ is given by:

(θh − θl)
1− θh − ln(θh)

1− θh
. (14)

We will show later that c1 = 1 − θ
1/T
h holds as well whenever the valuation gap

coincides with the highest attainable cost discrepancy.

4.4.4. Lower Bound on the Low Type’s Valuation and Adjustment of Experiments

By using Statement (13) of Lemma 3, we can calculate the smallest valuation of the low
type such that the cost discrepancy suffices to bridge the valuation gap in T periods:

θl(θh, T ) + (θh − θl(θh, T ))

(
T

(
1− θ

1/T
h

1− θh

)
− 1

)
= 1− θh
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⇔ θl(θh, T ) =
1− 2θh

1−
(
T

(
1−θ

1/T
h

1−θh

)
− 1

) + θh (15)

⇔ θl(θh, T ) =
(1− θh)− T θh

(
1− θ

1/T
h

)
2 (1− θh)− T

(
1− θ

1/T
h

) .
Analogously, we use Statement (14) of Lemma 3 to calculate the smallest valuation

of the low type such that the cost discrepancy suffices to bridge the valuation gap when
infinitely many periods are available:

θl(θh,∞) + (θh − θl(θh,∞))
1− θh − ln(θh)

1− θh
= 1− θh

⇔ θl(θh,∞) =
(1− θh) + θh ln(θh)

2(1− θh) + ln(θh)
.

We can conclude that for every θl ∈ (θl(θh,∞), θl(θh, 1)] =
(

(1−θh)+θh ln(θh)
2(1−θh)+ln(θh)

, 1− θh

]
,

we can find a maturity T ′ such that θl ∈ [θl(θh, T
′), θl(θh, T

′ − 1)] ⇔

θl ∈

(1− θh)− T ′ θh

(
1− θ

1/T ′

h

)
2 (1− θh)− T ′

(
1− θ

1/T ′

h

) , (1− θh)− (T ′ − 1) θh

(
1− θ

1/(T ′−1)
h

)
2 (1− θh)− (T ′ − 1)

(
1− θ

1/(T ′−1)
h

)
 . (16)

We will show that the seller can perform perfect price discrimination in T ′ ≤ T peri-
ods. Hence, given (16), we have to find probabilities (p1, . . . , pT ′) such that the valuation
gap can be bridged:

θl + (θh − θl) ·

(
T ′−1∑
t=1

(
1−

t∏
s=1

ps

)
· ct+1

)
= 1− θh. (17)

The probabilities (11) proposed in Lemma 3 lead to equality in (17) with respect to
θl = θl(θh, T

′). We will adjust those probabilities slightly. Notice that they lead to a
telescoping product:

t∏
s=1

p∗s =
θ
1/T ′

h − θh

θ
0/T ′

h − θh
· θ

2/T ′

h − θh

θ
1/T ′

h − θh
· . . . · θ

t/T ′

h − θh

θ
(t−1)/T ′

h − θh
=

θ
t/T ′

h − θh
1− θh

for t = 1, . . . , T ′.

To allow for equality in (17) across the entire interval (16), we relax this condition to:

t∏
s=1

ps =
θ
t/T ′

h − θh
1− θh

for t = 2, . . . , T ′,
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while leaving p1 ∈
[
θ
2/T ′
h −θh
1−θh

, 1

]
as a variable. Notice that p1 =

θ
1/T ′
h −θh
1−θh

recovers the

proposed discrepancy-maximizing case.

The following lemma shows that the range of values of θl with respect to varying p1

cover the entire interval (16).

Lemma 4. There exists a probability p1(θl) ∈ (p∗1, 1) that satisfies Equation (17) for each

choice of θl satisfying (16).

Finally, we check for non-negativity of the costs. We first determine the individual
probabilities pt:

pt =


p1(θl) for t = 1,∏2

s=1 ps
p1(θl)

=
θ
2/T ′
h −θh

(1−θh)p1(θl)
for t = 2,∏t

s=1 ps∏t−1
s=1 ps

=
θ
t/T ′
h −θh

θ
(t−1)/T ′
h −θh

for t = 3, . . . , T ′.

As a result, only the second-period probability depends on the variable p1(θl) in order to
satisfy the relaxed condition. In all subsequent periods, the condition ensures that this
variable cancels out.

Let’s recall the cost terms ct for t ≥ 2 (5) from Lemma 2:

ct =
(1− θh)

∏t−1
s=1 ps (1− pt)

θh + (1− θh)
∏t−1

s=1 ps
≥ 0.

Substituting the chosen probabilities for t ≥ 3 leads to the familiar costs:

ct = 1− θ
1/T ′

h for t = 3, . . . , T ′.

However, for t = 2, the cost depends on p1:

c2 =
(1− θh)p1(1− p2)

θh + (1− θh)p1
=

(1− θh)p1

(
1− θ

2/T ′
h −θh
(1−θh)p1

)
θh + (1− θh)p1

=
(1− θh)p1 − (θ

2/T ′

h − θh)

θh + (1− θh)p1
.

In order to calculate c1, it will prove useful to rearrange (17):

T ′−1∑
t=1

(
θh + (1− θh)

t∏
s=1

ps

)
· ct+1 −

T ′−1∑
t=1

(
θl + (1− θl)

t∏
s=1

ps

)
· ct+1 = 1− θh − θl

⇔−
T ′−1∑
t=1

(
θl + (1− θl)

t∏
s=1

ps

)
ct+1 = 1− θh − θl −

T ′−1∑
t=1

(
θh + (1− θh)

t∏
s=1

ps

)
ct+1.
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Now, we can rewrite the cost in period one (6) from Lemma 2 as:

c1 = θl −
T ′−1∑
t=1

(
θl + (1− θl)

t∏
s=1

ps

)
· ct+1

= θl + 1− θh − θl −
T ′−1∑
t=1

(
θh + (1− θh)

t∏
s=1

ps

)
· ct+1

= 1− θh − (θh + (1− θh)p1) · c2 −
T ′−1∑
t=2

θ
t/T ′

h ·
(
1− θ

1/T ′

h

)
= 1− θh − (1− θh)p1(1− p2)− θ

2/T ′

h + θh

= 1− θh − (1− θh)p1 + θ
2/T ′

h − θh + θ
2/T ′

h − θh

= 1− θh − (1− θh)p1 ≥ 0.

Thus, the pricing is well defined. In particular, if p1 = p∗1 =
θ
1/T ′
h −θh
1−θh

, then the optimal
pricing scheme results in uniform costs, i.e., ct = 1 − θ

1/T ′

h for all 1 ≤ t ≤ T ′. Con-
sequently, if the difference in consumer valuations coincides with the highest achievable
cost discrepancy in T ′ periods, then the seller can implement a sequence of T ′ experiments
with uniform costs.

Remark. In the initial example, we had c1 = c2 = 1−
√
0.64 = 0.2. As shown, this was

no coincidence but holds more generally. However, it requires that the highest admissi-

ble valuation gap has to be bridged. As we have seen in Example 1, this holds for the

parameters θh = 0.64 and θl = 0.325 in two periods.

4.4.5. Summary

We can conclude that for each pair of θl and θh that satisfy inequality (2) from Theorem
1, the seller can restrict himself to a maturity T ′ ≤ T that satisfies (16) and design priced
experiments of the following form:

m m

ω

ω

1 0

pt 1− pt

σt(mt | ω)
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with probabilities

pt =


p1(θl) ∈

[
θ
2/T ′
h −θh
(1−θh)

, 1

]
for t = 1,

θ
2/T ′
h −θh

(1−θh)p1(θl)
for t = 2,

θ
t/T ′
h −θh

θ
(t−1)/T ′
h −θh

for t = 3, . . . , T ′

and costs

ct =


1− θh − (1− θh)p1(θl) for t = 1,

(1−θh)p1(θl)−(θ
2/T ′
h −θh)

θh+(1−θh)p1(θl)
for t = 2,

1− θ
1/T ′

h for t = 3, . . . , T ′.

Considering the encrypted experiments (σ′
t)

T ′
t=1 (in the sense of Lemma 1), we have

shown in Lemma 2 that for these costs and t ≥ 2, it is sequentially rational for both
consumer types to buy all experiments conditional on Mt−1 = Mt−1 until a revelation of
the state occurs:

ρ∗t (θs,Mt−1, σ
′, c) =

1 if Mt−1 = Mt−1

0 otherwise.

If they buy also the first experiment, then we have shown that this behavior leads to a
difference in expected costs that coincides with the valuation gap:(

c1 +
T ′−1∑
t=1

IP[Mt | h] · ct+1

)
−

(
c1 +

T ′−1∑
t=1

IP[Mt | l] · ct+1

)
= 1− θh − θl.

Due to (6) from Lemma 2, it holds that the low type pays her valuation in expectation:

c1 +
T ′−1∑
t=1

IP[Mt | l] · ct+1 = θl = V (θl).

Thus, the same holds for the high type:(
c1 +

T ′−1∑
t=1

IP[Mt | h] · ct+1

)
− θl = 1− θh − θl

⇔ c1 +
T ′−1∑
t=1

IP[Mt | h] · ct+1 = 1− θh = V (θh).

Hence, we have equality in (7), which implies that it is sequentially rational to take the
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seller-preferred decision and buy also the first experiment:

ρ∗t (θs, ∅, σ, c) = 1.

Therefore, the seller extracts the entire consumer surplus:

IP[s = h] ·

(
c1 +

T ′−1∑
t=1

IP[Mt | h] · ct+1

)
+ IP[s = l] ·

(
c1 +

T ′−1∑
t=1

IP[Mt | h] · ct+1

)
=IP[s = h] · V (θh) + IP[s = l] · V (θl).

Since a consumer of type θs is unwilling to pay more than her valuation V (θs) in expec-
tation, this sequence of priced experiments is optimal from the viewpoint of the seller.
Therefore, we have found a seller-preferred subgame perfect equilibrium and all other
equilibria have to extract the entire consumer surplus as well, which concludes the proof
of Theorem 1.

4.5. Comparison with the static framework of BBS

Suppose for the moment that the consumer cannot observe the outcomes of experiments
until the communication phase concludes. In this scenario, the buyer views a menu of
experiments and selects which ones to purchase. This restriction transforms the game
into a static game à la BBS.

In such a static game, the seller can only extract the entire surplus out of both con-
sumers if their valuations coincide. Therefore, according to Theorem 1, the seller receives
a strictly higher revenue compared to the optimal static menu whenever the valuations
of the types are sufficiently close. The following theorem lists further conditions under
which the seller strictly benefits from a sequential selling strategy.

Theorem 2. Let T ≥ 2 and the types satisfy 0 < V (θl) < V (θh) <
1
2
. If types are either

(i) congruent and

IP[s = h] · (1− θh) < 1− θl + IP[s = h] ·

√θh(1− θh)(1− θl)

θl
− (1− θl)

 ,

(ii) non-congruent and

θl(2θh − 1)

θh − θl
+ IP[s = h] · 1− θh − θhθl

θh − θl
< θl+ IP[s = h] ·

√θlθh(1− θh)

1− θl
− θl

 ,
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(iii) non-congruent and T ≥ 3,

then every seller-preferred subgame perfect equilibrium yields a strictly higher revenue

than the optimal revenue achievable in the static game.

To establish the first claim for congruent beliefs, we compare the optimal static menu
with a two-period selling strategy of offering a free test that aligns the valuations of each
type and offer a subsequent state-revealing test priced at their updated valuations. This
comparison leads to the first statement of Theorem 2. Implementing the same idea with
non-congruent beliefs yields the second statement of the theorem. Subsequently, a more
involved dynamic mechanism, that requires state-depending encryption, is introduced to
prove the third statement.

4.6. Proof of Theorem 2

We prove the theorem by addressing each claim individually because different method-
ologies are required.

(i) Consider congruent types. BBS demonstrated that for congruent beliefs, the seller
optimally implements a single state-revealing experiment:

m m

ω

ω

1 0

0 1

σ1(m1 | ω)

The price c1 of this experiment is determined by comparing the expected revenue
from selling exclusively to the high-valuation type consumer versus selling to both
consumer types. In the static framework, the seller’s optimal menu is as follows:

(a) If IP[s = h] · (1 − θh) ≤ 1 − θl, then offering the experiment σ1, priced at
c1 = V (θl), is an optimal strategy for the seller in the static framework.

(b) If IP[s = h] · (1 − θh) ≥ 1 − θl, then offering the experiment σ1, priced at
c1 = V (θh), is an optimal strategy for the seller in the static framework.

In the first case6, the following example illustrates how the seller can benefit from
providing a free experiment in the first period and selling the state-revealing experi-
ment in the second period. In particular, the seller can design the sequence of priced

6and slightly beyond, i.e., if IP[s = h] · (1− θh) < 1− θl + IP[s = h] ·
(√

θh(1−θh)(1−θl)
θl

− (1− θl)

)
.
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experiments such that he receives an expected payment of V (θl) from the low type
while receiving strictly more from the high type.

Example 2. Let T = 2. Consider the prior beliefs θh = 0.8 for the high type

and θl = 0.9 for the low type. We assume that the low type is more likely, i.e.,

IP[s = h] ≤ 1
2
.

Since the types are congruent, and the probability of the type being high is suffi-

ciently small (specifically, IP[s = h] · (1− θh) ≤ (1− θl)), the optimal static menu

consists of a single state-revealing experiment priced at c1 = V (θl) = 1
10

. At this

price, it is sequentially rational for both types to buy the experiment, yielding a

revenue of 1
10

.

We show that a sequential selling strategy over two periods with two signals can

yield a strictly higher revenue than in the optimal static menu. Consider a free

first-period experiment (c1 = 0) with the following stochastic mapping:

m m

ω

ω

5
6

1
6

0 1

σ1(m1 | ω)

If the consumer receives the signal m1 = m, they will learn that the state is ω,

and they will rationally ignore further experiments. If they receive m1 = m, their

valuation updates. The posterior beliefs for state ω given signal m1 = m are:

IP[ω | h,m1 = m] =
θh · 1

6

θh · 1
6
+ 1− θh

= 0.4 < 0.6 = IP[ω | l,m1 = m].

Figure 5 illustrates the induced posteriors. Importantly, the low type would not pay

a positive price for this first experiment in isolation because each possible outcome

does not change her optimal action. For this reason, the seller can still extract the

full valuation from the low type.

Notice that the stochastic mapping is chosen such that the updated valuations coin-

cide upon observing the non-revealing signal, m2 = m. Thus, the seller can extract

the full updated valuations by offering a state-revealing experiment in the second

period at a price of

c2 = V (θl,m1 = m) = V (θh,m1 = m) = 0.4.
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IP(ω)
1θlθh1

2
0.4 0.6

m1 = m
m1 = m

m1 = m

Figure 5. Posteriors induced by σ1.

After observing m1 = m from the first experiment, both types find it sequentially

rational to purchase the second experiment. The key observation is that the high

type considers it more likely than the low type to observe the signal realization

m1 = m:

IP[m1 = m | h] = θh ·
1

6
+ (1− θh) =

1

3
>

1

4
= θl ·

1

6
+ (1− θl) = IP[m1 = m | l].

Thus, if both types decide to observe the first experiment and only purchase the

second experiment upon observing m1 = m, then the seller’s expected revenue is

strictly higher than the revenue of the optimal static menu:

IP[s = h] · IP[m1 = m | h] · c2 + (1− IP[s = h]) · IP[m1 = m | l] · c2

= IP[s = h] · 1
3
· 0.4 + (1− IP[s = h]) · 1

4
· 0.4 >

1

10
.

We will now generalize the idea from the previous example. We assume that the
consumer types are congruent and their valuations satisfy 0 < V (θl) < V (θh) <

1
2
.

This implies that the prior beliefs satisfy θl > θh > 1
2
.

As in the previous example, the seller can restrict himself to use only two signals,
M = {m,m}, and two periods. Consider a sequence of two experiments. The first
experiment is designed such that each consumer sometimes learns the state, which
is already favored by their beliefs. The stochastic mapping of the experiment is as
follows:

m m

ω

ω

1−
√

(1−θh)(1−θl)
θhθl

√
(1−θh)(1−θl)

θhθl

0 1

σ1(m1 | ω)

Since an experiment outcome of m1 = m reveals the state as ω, a consumer observ-
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ing m1 = m has no need to buy a second experiment. In contrast, an outcome of
m1 = m leads to interim beliefs of:

IP [ω | h,m1 = m] =
θh ·

√
(1−θh)(1−θl)

θhθl

θh ·
√

(1−θh)(1−θl)
θhθl

+ 1− θh

=
1

1 +
√

(1−θh)θl
θh(1−θl)

=
1− θl

θl ·
√

(1−θh)(1−θl)
θhθl

+ 1− θl

= IP [ω | l,m1 = m] .

The low type’s optimal action does not change regardless of the signal realization
m1. We assume that the seller offers σ1 for free, c1 = 0. The seller benefits from
the adjustment of the consumers’ valuations for further information. Specifically,
the seller can offer a second, state-revealing experiment that extracts the updated
valuation of both consumer upon observing m1 = m. The price of it needs to be
chosen as:

c2 = V (θh,m1 = m) = V (θl,m1 = m) =
1

1 +
√

(1−θh)θl
θh(1−θl)

.

At this price, both types, upon observing m1 = m, consider it sequentially rational
to purchase the second experiment, σ2.

The low type’s expected payoff from ignoring all experiments is 1 − V (θl) = θl.
Since any of the outcomes of the first experiment do not change her optimal action,
her payoff after σ1 alone remains θl. She will not purchase the second experiment in
isolation because its price c2 exceeds her valuation of a state-revelation, V (θl) < c2.
She always matches her action to the true state if she observes the outcome of σ1

and then purchases σ2 upon observing m1 = m. The expected costs are IP[m1 =

m | l] · c2. Crucially,

IP[m1 = m | l]·c2 = IP[m1 = m | l]·IP[ω | l,m1 = m] = IP[ω,m1 = m | l] = 1−θl.

Therefore, her expected utility from this purchasing behavior is also 1−V (θl) = θl.
Thus, she is indifferent between this purchasing behavior and ignoring all experi-
ments. We assume that the low type makes the seller-preferred decision and pur-
chases the experiments.

Similarly, the high type’s expected payoff from ignoring all experiments is 1 −
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V (θh) = θh. If she observes the outcome of σ1 and then purchases σ2 only if
m1 = m occurs, her action always matches the state. Her expected costs are

IP [m1 = m | h] · c2 = IP [m1 = m | h] · IP [ω | l,m1 = m] > V (θl)

since IP [m1 = m | h] > IP [m1 = m | l]. This purchasing behavior is preferred by
the high type over buying σ2 exclusively, because there is a positive probability that
there is no need to purchase σ2. Furthermore, it is sequentially rational for the high
type to buy σ2 upon observing m1 = m because her updated valuation exceeds the
costs of the second experiment, i.e., V (θh,m1 = m) > c2.

The seller’s expected revenue from this sequence of experiments and the implied
purchasing behavior is as follows:

IP[s = h] · IP [m1 = m | h] · c2 + (1− IP[s = h]) · V (θl)

= 1− θl + IP[s = h] ·

θh ·

√
(1− θh)(1− θl)

θhθl
− (1− θl)


= 1− θl + IP[s = h] ·

√θh(1− θh)(1− θl)

θl
− (1− θl)

 .

To conclude, we compare this dynamic revenue with that of the optimal static menu.
Specifically, the sequence of experiments yields a strictly higher revenue than the
optimal static menu if

max{1−θl, IP[s = h]·(1−θh)} < 1−θl+IP[s = h]·

√θh(1− θh)(1− θl)

θl
− (1− θl)

 .

Since the right-hand side is always greater than 1− θl
7, it suffices to check whether

the dynamic revenue surpasses IP[s = h] · (1− θh). This verifies the first claim.

(ii) Consider non-congruent beliefs and T = 2. The static scenario with non-congruent
beliefs has also been analyzed by BBS. Analogously to the congruent case, a state-
revealing experiment, σ1, is part of the optimal menu:

7i.e.,
√

θh(1−θh)(1−θl)
θl

> 1−θl ⇔ θh(1−θh) > θl(1−θl), which holds since 1−θl < 1−θh < θh < θl.
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m m

ω

ω

1 0

0 1

σ1(m1 | ω)

In contrast to the congruent beliefs scenario, the seller can simultaneously offer an
imperfect experiment and sell it to the low type while selling σ1 to the high type.
This is possible because the low type benefits from an experiment that reveals the
state ω even with a small probability p. Such an experiment holds no value for the
high type if the probability p is chosen sufficiently small such that her default action,
choosing a = a, remains optimal regardless of the realized signal.

Such an experiment can be designed with a revealing probability p∗ = 2θh−1
θh−θl

such
that both types get the same additional precision out of it (see BBS). If the seller
prices the second imperfect experiment at the low type’s additional precision, c2 =

p∗ · θl, then the high type is indifferent between buying or ignoring this experiment
and is assumed to ignore it. Instead, we assume that the high type opts for the
state-revealing experiment σ1 priced at her valuation V (θh).

Hence, the seller compares receiving V (θl) = θl from both types with receiving
V (θh) = 1 − θh from the high type and p∗ · θl = 2θh−1

θh−θl
· θl from the low type. The

break-even point, where these revenues are equal, is given by:

θl = IP[s = h] · (1− θh) + (1− IP[s = h]) · 2θh − 1

θh − θl
θl ⇔ θl = IP[s = h] · θh.

The optimal static menu is then as follows:

(a) If types are non-congruent and IP[s = h] · θh ≤ θl, then offering the experi-
ment σ1 priced at c1 = V (θl) is an optimal strategy of the seller in the static
framework.

(b) If types are non-congruent and IP[s = h] ·θh ≥ θl, then offering the experiment
σ1 priced at c1 = V (θh) as well as a second imperfect experiment σ2 given by

m m

ω

ω

2θh−1
θh−θl

1−θh−θl
θh−θl

0 1

σ2(m2 | ω)
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priced at c2 = θl · 2θh−1
θh−θl

is an optimal strategy of the seller in the static frame-
work.

In the first case8, similarly to the situation with congruent beliefs, the seller can ben-
efit from providing a free experiment in the first period and offer a state-revealing
experiment afterwards. The following example illustrates how the seller can anal-
ogously receive an expected payment of V (θl) from the low type and strictly more
than that from the high type.

Example 3. We consider a scenario with prior beliefs of θh = 0.8 and θl = 0.1.

Notice that these beliefs lead to the same valuations as in the previous example. It

is assumed that the high type is relatively unlikely, specifically IP[s = h] ≤ 1
8
.

Since these types are non-congruent and the probability of the high type is suffi-

ciently small, i.e., IP[s = h] · θh ≤ θl, the optimal static menu consists of a single

state-revealing experiment. This experiment is priced at c1 = θl =
1
10

. At this price,

it is sequentially rational for both types to purchase the experiment, yielding the

seller a revenue of 1
10

.

We now show that a sequential selling strategy over two periods can yield a strictly

higher revenue. Consider a first-period experiment, σ1, offered for free (c1 = 0).

The stochastic mapping is given by:

m m

ω

ω

1 0

2
3

1
3

σ1(m1 | ω)

If a consumer observes the signal m1 = m, she learns that the state is ω and will

rationally ignore further experiments. If she observes m1 = m, her valuations

updates. The posterior beliefs for state ω given signal m1 = m are calculated

below.

IP[ω | h,m1 = m] =
θh

θh + (1− θh) · 2
3

=
0.8

0.8 + 0.2 · 2
3

=
6

7

and

IP[ω | l,m1 = m] =
θl

θl + (1− θl) · 2
3

=
0.1

0.1 + 0.9 · 2
3

=
1

7
.

8and slightly beyond, i.e., if θl(2θh−1)
θh−θl

+ IP[s = h] · 1−θh−θhθl
θh−θl

< θl+ IP[s = h] ·
(√

θlθh(1−θh)
1−θl

− θl

)
.
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In the second period, a state-revealing experiment is offered at a price of c2 = 1
7
.

Upon observing m1 = m from the first experiment, both types find it sequentially

rational to purchase σ2. A key observation is that the high type considers it more

likely than the low type to observe the signal realization m1 = m:

IP[m1 = m | h] = θh+(1−θh) ·
2

3
=

14

15
>

7

10
= θl+(1−θl) ·

2

3
= IP[m1 = m | l].

Therefore, if both types decide to observe the first experiment and only purchase the

second experiment upon observing m1 = m, the seller’s expected revenue is strictly

greater than 1
10

(the revenue of the optimal static menu):

IP[s = h] · IP[m1 = m | h] · c2 + (1− IP[s = h]) · IP[m1 = m | l] · c2

= IP[s = h] · 14
15

· 1
7
+ (1− IP[s = h]) · 7

10
· 1
7
>

1

10
.

We now generalize this idea. Assume consumer types are congruent and their valua-
tions for a state-revealing experiment satisfy 0 < V (θl) < V (θh) <

1
2
. This implies

the following structure: θh > 1
2
> 1− θh > θl.

Consider a sequence of two experiments with signals M = {m,m}. The first exper-
iment is offered for free (c1 = 0). It is designed such that the consumers sometimes
learn the state ω (which is already favored by the low type’s belief). Furthermore,
the probabilities are chosen such that the updated valuations of both types coincide
after observing m1 = m. The stochastic mapping is:

m m

ω

ω

1 0√
θlθh

(1−θh)(1−θl)
1−

√
θlθh

(1−θh)(1−θl)

σ1(m1 | ω)

If the outcome is m1 = m, the state is revealed as ω, so a consumer observing
m1 = m has no need to buy a second experiment. In contrast, if m1 = m occurs,
the interim beliefs satisfy:

IP [ω | l,m1 = m] =
θl

θl + (1− θl)
√

θlθh
(1−θh)(1−θl)

=
1

1 +
√

(1−θl)θh
θl(1−θh)
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=
(1− θh)

√
θlθh

(1−θh)(1−θl)

θh + (1− θh)
√

θlθh
(1−θh)(1−θl)

= IP [ω | h,m1 = m] .

In isolation, only the high type strictly benefits from σ1; the low type’s optimal
action does not change regardless of the signal realization m1.

Although, the experiment is offered for free, the seller benefits from its implications.
Specifically, the seller can offer a second, state-revealing experiment afterwards and
price it as the updated valuation after observing m1 = m:

c2 = V (θh,m1 = m) = V (θl,m1 = m) =
1

1 +
√

(1−θl)θh
θl(1−θh)

.

At this price, both types, holding the signal realization m1 = m, find it sequentially
rational to purchase σ2.

The low type’s expected payoff from ignoring all experiments is 1−V (θl) = 1− θl.
The free experiment σ1 alone does not alter this payoff, as her optimal action remains
unchanged. She would not purchase σ2 in isolation because its price c2 exceeds her
valuation of a state revelation, V (θl) < c2. However, if she observes the outcome
of σ1 and then purchases σ2 only upon observing m1 = m, her expected costs
match her valuation, IP[m1 = m | l] · c2 = IP[ω,m1 = m | l] = θl = V (θl).
Therefore, her expected utility from this purchasing behavior is also 1 − θl. This
makes her indifferent between this sequential purchasing strategy and ignoring all
experiments. We assume that the low type makes the seller-preferred decision.

Similarly, the high type’s expected payoff from ignoring all experiments is 1 −
V (θh) = θh. If she observes the outcome of σ1 and purchases σ2 only if m1 = m

occurs, her action always matches the state. This sequential strategy is preferred
by the high type over buying σ2 exclusively, because there is a positive probability
that there is no need to pay the cost c2. Furthermore, it is sequentially rational for
the high type to buy σ2 upon observing m1 = m because the cost coincides with
her updated valuation, c2 = V (θh,m1 = m) = IP[ω | h,m1 = m]. Since the
high type considers the signal realization m1 = m more likely than the low type,
IP[m1 = m | h] > IP[m1 = m | l], her expected costs exceed the valuation of the
low type, i.e., IP[m1 = m | h] · c2 > V (θl).

The seller’s expected revenue from this sequence of experiments and the implied
purchasing behavior is:

IP[s = h] · IP[m1 = m | h] · c2 + (1− IP[s = h]) · V (θl)
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= θl + IP[s = h] ·

(
(1− θh)

√
θlθh

(1− θh)(1− θl)
− θl

)

= θl + IP[s = h] ·

√θlθh(1− θh)

1− θl
− θl

 .

To conclude, we compare this dynamic revenue with that of the optimal static menu.
The sequence of experiments yields a strictly higher revenue than the optimal static
menu if:

max

{
θl, IP[s = h] · (1− θh) + (1− IP[s = h]) · 2θh − 1

θh − θl
θl

}

< θl + IP[s = h] ·

√θlθh(1− θh)

1− θl
− θl

 .

Since the right-hand side is always higher than 1−θl
9, the condition can be simplified

to checking whether the dynamic revenue also surpasses the second term inside of
the maximum, which can be simplified to

θl(2θh − 1)

θh − θl
+ IP[s = h] · 1− θh − θhθl

θh − θl
< θl+ IP[s = h] ·

√θlθh(1− θh)

1− θl
− θl

 .

This verifies the second claim.

(iii) Consider non-congruent beliefs and T ≥ 3. We demonstrate that a sequence of
three experiments can generate a strictly higher revenue for the seller than that of
the optimal static menu. We assume IP[s = h] · θh > θl; otherwise, the optimal
static menu consists of a single state-revealing experiment priced at V (θl), and the
previous analysis has shown that in this case already two periods are sufficient to
achieve a strictly increased revenue.

Let T = 3. The seller can restrict himself to use the signal set M = {m,m′,m}.
Consider the following sequence of priced experiments. The first experiment is
state-revealing and priced at c1 = 1− θh.

9i.e.,
√

θlθh(1−θh)
1−θl

> θl ⇔ θh(1− θh) > θl(1− θl), which holds since θl < 1− θh < θh < 1− θl.
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m m′ m

ω

ω

1 0 0

0 0 1

σ1(m1 | ω)

The subsequent experiments will be designed to ensure that the high-type consumer
purchases σ1, mirroring her choice in the optimal static menu.

The second experiment, σ2, is a modified version of the imperfect experiment sold
to the low type in the optimal static menu. It is defined by the probabilities p and ϵ:

m m′ m

ω

ω

p
2

p
2 1− p

ϵ
2

ϵ
2 1− ϵ

σ2(m2 | ω)

It is priced at c2 = θl · p − IP[m2 ̸= m | l] · c3, where c3 is the price of the third
experiment. We choose ϵ > 0 sufficiently small and p sufficiently high, specifically

ϵ ≤ θl(2θh − 1)

(1− θh)(θh − θl)
≤ 2θh − 1

θh − θl
≤ p.

If we would choose ϵ = 0, then σ2 would be as informative as the imperfect experi-
ment in the static menu.

The third experiment will depend on the outcome of the second experiment, m2:

• If m2 = m, σ3 is uninformative:

m m′ m

ω

ω

1
2 0 1

2

1
2 0 1

2

σ3(m3 | ω,m2 = m)

• If m2 = m or m2 = m′, σ3 is state-revealing.

m m′ m

ω

ω

1 0 0

0 0 1

σ3(m3 | ω,m2 = m)
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m m′ m

ω

ω

0 0 1

1 0 0

σ3(m3 | ω,m2 = m′)

The price is c3 = IP[ω | h,m2 = m] = IP[ω | h,m2 = m′] = ϵ(1−θh)
ϵ(1−θh)+pθh

. Let us
check that c2 is well defined for these cost c3:

c2 = θl · p− (θl · p+ (1− θl) · ϵ)
ϵ(1− θh)

ϵ(1− θh) + θh · p
≥ 0 ⇔ ϵ ≤ p ·

√
θlθh

(1− θh)(1− θl)
.

Our initial constraint for ϵ satisfies this since:

ϵ <
θl(2θh − 1)

(1− θh)(θh − θl)
=

2θh − 1

θh − θl
·

√(
θl

1− θh

)2

< p ·

√
θlθh

(1− θh)(1− θl)
,

where we used that p > 2θh−1
θh−θl

and θl
1−θh

< θh
1−θl

⇔ θl(1− θl) < θh(1− θh).

As in Section 4.1, encryption ensures that the third experiment is uninformative if
the consumer did not observe the outcome of the second experiment, m2. How-
ever, the approach that is used here differs from the encryption used in the proof
of Lemma 1 as it relies on the state-dependent signal realization of the experiment.
Specifically, σ3 is state-revealing only if a signal m2 ̸= m has realized in the second
period. This event (m2 ̸= m) is more likely to occur if the state is ω, given that
ϵ < p.

The design ensures that σ3 provides no information if purchased in isolation (i.e.,
without holding the experiment outcome m2). For any type θs and any state ω ∈ Ω:

IP[ω | s,m3 = m] = IP[ω | s] = IP[ω | s,m3 = m].

If a consumer has observed m2 ̸= m from σ2 (but did not purchase σ1), it is sequen-
tially rational to also purchase σ3. This is because the updated valuation conditional
on m2 ̸= m for the low type exceeds that for the high type and the high type is
indifferent at price c3:

V (θl,m2 = m) = V (θl,m2 = m′) > V (θh,m2 = m) = V (θh,m2 = m′) = c3.

On the other hand, if m2 = m, the consumer knows that each outcome of σ3 will be
uninformative and thus rationally ignores it.



48 Manuel Foerster and Fynn Louis Närmann

The low type’s expected payoff from her default action is 1 − θl. The first exper-
iment is too expensive for her since c1 = 1 − θh > θl. The costs of buying the
second experiment and the third whenever m2 ̸= m are designed such that her ex-
pected costs coincide with her additional precision to match the state. Namely, her
expected payoff from this purchasing behavior is (1−θl)+θl ·p. The additional pre-
cision, compared to ignoring all experiments precisely matches the expected costs
by construction of c2:

(1− θl) + θl · p︸ ︷︷ ︸
new expected payoff

− (1− θl)︸ ︷︷ ︸
initial expected payoff

= θl · p = c2 + IP[m2 ̸= m | l] · c3︸ ︷︷ ︸
expected costs

.

Thus, it is sequentially rational for the low type to purchase the second experiment
and the third whenever m2 ̸= m. We will demonstrate that the seller can choose
p > 2θh−1

θh−θl
to increase the revenue from the low type, while ensuring the high type

still prefers σ1.

Now, consider the high type. First, we ensure that if the high type observes the
signal realization m2 = m, her belief is updated such that she prefers action a (i.e.,
IP[ω | h,m2 = m] > 1/2). This requires:

(1− θh)(1− ϵ)

θh(1− p) + (1− θh)(1− ϵ)
>

1

2
⇔ (1− θh)(1− ϵ) > θh(1− p)

⇔ ϵ <
1− θh(2− p)

1− θh
.

This upper bound for ϵ is compatible with the initial constraint because the bound
1−θh(2−p)

1−θh
is increasing in p. By choosing p > 2θh−1

θh−θl
, we have that:

ϵ <
θl(2θh − 1)

(1− θh)(θh − θl)
=

1− θh(2− 2θh−1
θh−θl

)

1− θh
<

1− θh(2− p)

1− θh
.

If the high type purchases the second experiment and the third experiment upon
observing m2 ̸= m, then she matches the state with certainty if the state is ω and
with probability IP[m2 ̸= m | ω] = p if the state is ω. Therefore, the additional
precision that the consumer has is given by:

(1− θh) + θh · p︸ ︷︷ ︸
new expected payoff

− θh︸︷︷︸
old expected payoff
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and the expected costs are as follows:

c2 + IP[m2 ̸= m | h] · c3 = θl · p+ (IP[m2 ̸= m | h]− IP[m2 ̸= m | l]) · c3 > θl · p.

The inequality holds since, as p > ϵ, we have that IP[m2 ̸= m | h] > IP[m2 ̸= m | l].
Let p∗ be the value at which the high-valuation type is indifferent. Then:

(1− θh) + θh · p∗ − θh > θl · p∗ ⇔ p∗ >
2θh − 1

θh − θl
,

which satisfies the requirement for the probability p and to get a higher payment
from the low type compared to that of the optimal static menu.

We can conclude that with this constructed sequence of priced experiments, there
exists a sequentially purchasing rational behavior such that the high type purchases
σ1 (paying c1 = 1 − θh), while the low type pays p∗ · θl in expectation, where
p∗ > 2θh−1

θh−θl
. The expected revenue of the seller is:

IP[s = h](1−θh)+(1−IP[s = l])p∗θl > IP[s = h](1−θh)+(1−IP[s = l])
2θh − 1

θh − θl
θl.

This verifies the third statement and concludes the proof of Theorem 2.

5. Conclusion

This work studies a dynamic game of information selling and demonstrates the construc-
tion of a sequence of priced experiments through which a seller can extract the entire sur-
plus from heterogeneous buyer types simultaneously. We have shown that perfect price
discrimination is attainable when consumer types are non-congruent, meaning their ini-
tial beliefs favor different actions, and their valuations for complete information are close
enough. This surplus extraction mechanism relies on a sophisticated design of experi-
ments and pricing: First, it is crucial to design the experiments so that the high-valuation
consumer assigns a higher probability to outcomes requiring further information acqui-
sition. Second, we introduce an ‘encryption’ protocol to ensure that information from
subsequent experiments is valuable only if the preceding experiments in the sequence
have been purchased. This effectively simplifies the buyer’s purchasing behavior to an
optimal stopping problem.

The dynamic nature of the model sets this work apart from simpler ‘take-it-or-leave-it’
offers à la BBS. This approach provides a more realistic framework for situations in which
information is acquired incrementally and decisions about acquiring more information
depend on preliminary findings. Examples of such situations include medical diagnostic
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testing as well as research and development processes and social media platforms, whose
advertisement revenue depends on how long consumers stay on the platform. This study
shows how sequential revelation and strategic belief management allows a monopolistic
seller to overcome the limitations of static models.

5.1. Discussion of Modeling Assumptions

The results of this study are based on several modeling assumptions that will be discussed
below.

First, the model assumes a monopolistic seller. This simplification is crucial because
it enables the seller to focus exclusively on optimizing surplus extraction without consid-
ering strategic responses from competitive firms. The monopoly assumption is pivotal for
achieving perfect price discrimination. Thus, the model establishes an upper bound on
what a seller can achieve in terms of revenue.

Second, extending the model to include more than two states or buyer types would
introduce substantial complexity. While the general principles of sequential revelation
and belief management might still apply, the specific design of experiments and pricing
rules would require significant modifications. The binary framework isolates the core
logic of how differing initial beliefs and their evolution can be exploited strategically.

Third, both the seller and the buyer are assumed to be risk-neutral with no time prefer-
ences. These simplifications allow the analysis to focus on informational and strategic as-
pects of the interaction, rather than on the added complexities arising from risk attitudes or
inter-temporal trade-offs. Including real-world risk aversion and time discounting would
lead to offering fewer, but more informative experiments.

Finally, the model assumes that the seller does not incur any costs when designing or
conducting the experiments. In practice, however, information generation and dissemi-
nation can be costly. Introducing positive costs for experiments would shift the seller’s
objective from pure revenue maximization to profit maximization. If each experiment
would incur a fixed cost, this would lead to fewer experiments being offered. If the cost
depends on the complexity of the experiment, it would strengthen the effect of offering
imperfect experiments in the beginning in order to increase the updated valuations and
thus the willingness to pay of the consumer for more complex tests.
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A. Appendix: Proofs of Lemmata

A.1. Proof of Lemma 1

We construct the sequence of experiments (σ′
t)

T
t=1 as follows. The signal mt in period t

contains two components: a state-dependent component m ∈ {m,m} and an independent
coin flip ft. For each period t, the coin flip ft determines whether the probability of an
experiment outcome m in state ω alternates with the probability of m in state ω in all
subsequent periods. Thus, the result of the coin flip in m1 can alternate the probabilities
for all periods t ≥ 2, the coin flip in m2 can alternate the probabilities for t ≥ 3, and so
on. Specifically, we make the choice that a ‘tail’ triggers a switch in these probabilities.
Since two switches neutralize each other, the net effect on the probabilities in period t

depends only on the parity of the number of ‘tails’ up to period t. Accordingly, we define
the key for interpreting the outcome of the experiment in period t as follows:

Kt :=

1, if
∑t−1

s=1 fs is odd,

0, otherwise.

In general, the experiment in period t could depend on all previous test results. How-
ever, a simpler approach is sufficient for our analysis: the design of the t-th experiment
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depends only on the key Kt, which is determined by a sequence of independent coin
flips. Specifically, we construct the coin flips such that they are performed independently
of each other, the state ω, and the state-dependent component m of the signal. Thus,
the following stochastic mapping results from the described modification of the original
experimental sequence:

(m, 0) (m, 1) (m, 0) (m, 1)

ω

ω

qt
2

qt
2

1−qt
2

1−qt
2

pt
2

pt
2

1−pt
2

1−pt
2

σ′
t(mt | ω,Kt = 0)

(m, 0) (m, 1) (m, 0) (m, 1)

ω

ω

pt
2

pt
2

1−pt
2

1−pt
2

qt
2

qt
2

1−qt
2

1−qt
2

σ′
t(mt | ω,Kt = 1)

By definition, K1 = 0. For every other period t, the key Kt takes either the value
0 or 1, each with a prior probability of 1

2
. The design ensures that the buyer learns the

key Kt with certainty if she buys all tests up to period t, but retains her prior belief about
Kt if she skips at least one test. Specifically, consider a period t in which at least one
coin flip affecting Kt is unobserved. Let n be the number of missed coin flips up to
period t. Note that each outcome (realized sequence of coin flip results) occurs with the
same probability. Define Seven :=

∑n
k: even

(
n
k

)
as the number of outcomes among these n

missed coin flips with an even number of ‘tails’, and analogously, Sodd :=
∑n

k: odd

(
n
k

)
as

the number of outcomes with an odd number of ‘tails’. By the binomial theorem, Seven

and Sodd coincide, regardless of n. Formally:

Seven − Sodd =
n∑

k=0

(
n

k

)
(−1)k = (1− 1)n = 0 for n ≥ 1.

Therefore, if at least one coin flip is missing up to period t, the probability that Kt is 0

coincides with the probability that Kt is 1.
As a next step, we will show that for each period t following a non-purchased ex-

periment, an experiment outcome mt, in isolation, provides no information that updates
the belief about the state ω. Applying the reasoning from above, we can deduce that the
realization of Kt ∈ {0, 1} remains uncertain since there is at least one coin flip, namely
fl∗(M)+1, that misses. Furthermore, the realization of Kt is state independent, since it is
determined by coin flips, which are independent of the state ω. Let t > l∗(M) + 1 and
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ω ∈ Ω, then

IP[Kt | ω,m1, . . . ,ml∗(M)] =

IP
[∑t−1

s=l∗(M)+1 fs is even | ω
]
= 1

2
if Kt = Kl∗(M)+1;

IP
[∑t−1

s=l∗(M)+1 fs is odd | ω
]
= 1

2
otherwise.

In the following, we will abbreviate the notation by defining IPl∗ [·] := IP[·|m1, . . . ,ml∗(M)].

To show that the observation mt does not update the belief about ω, we demonstrate
that the probability of observing mt given ω, is independent of the state ω. We compute
this probability for each state using the law of total probability, conditional on the key
realization Kt.

For state ω:

IPl∗ [mt | ω] = IPl∗ [mt | ω,Kt = 0]IPl∗ [Kt = 0 | ω] + IPl∗ [mt | ω,Kt = 1]IPl∗ [Kt = 1 | ω]

= IPl∗ [mt | ω,Kt = 0] · 1
2
+ IPl∗ [mt | ω,Kt = 1] · 1

2
. (18)

For state ω:

IPl∗ [mt | ω] = IPl∗ [mt | ω,Kt = 0]IPl∗ [Kt = 0 | ω] + IPl∗ [mt | ω,Kt = 1]IPl∗ [Kt = 1 | ω]

= IPl∗ [mt | ω,Kt = 0] · 1
2
+ IPl∗ [mt | ω,Kt = 1] · 1

2
. (19)

We have designed the experiments so that the following symmetry properties hold:

IPl∗ [mt | ω,Kt = 0] = IPl∗ [mt | ω,Kt = 1]

and
IPl∗ [mt | ω,Kt = 0] = IPl∗ [mt | ω,Kt = 1].

Using these properties, we see that the expression for IPl∗ [mt | ω] in (18) is equal to
the expression for IPl∗ [mt | ω] in (19). Since the probability of observing mt is the same
regardless of the state ω, observing mt provides no information to distinguish between the
states. Consequently, the posterior belief IPl∗ [ω | mt] is equal to the prior belief IPl∗ [ω].

Since all keys to decipher the results in M \ {m1, . . . ,ml∗(M)} are unknown to the
buyer, a similar reasoning implies that these test results do not depend on the state from
the buyer’s perspective:

Claim:

IPl∗
[
M\

{
m1, . . . ,ml∗(M)

}]
= IPl∗

[
M\

{
m1, . . . ,ml∗(M)

}
| ω
]
.
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Proof. Let M ⊆ {m1, . . . ,mT}.

Probability of Key Sequences. We first show that for any (i1, . . . , in) ∈ {0, 1}n:

IPl∗ [Kt1 = i1, . . . , Ktn = in] = IPl∗ [Kt1 = i1, . . . , Ktn = in | ω] =
(
1

2

)n

. (20)

Consider the probability that the tj-th key Ktj is equal to ij conditioned on the previous
key realizations Kt1 , . . . , Ktj−1

. This event coincides with the parity of the sum of coin
flips that happened between the last known key and the current period:

IPl∗ [Ktj = ij | Kt1 = i1, . . . , Ktj−1
= ij−1] =

IP
[∑tj−1

s=tj−1
fs is even

]
if ij = ij−1,

IP
[∑tj−1

s=tj−1
fs is odd

]
otherwise.

Note that at least one coin flip is missing, namely ftj−1
. By previous reasoning based

on the binomial theorem, IP
[∑tj−1

s=tj−1
fs is even

]
= 1

2
= IP

[∑tj−1
s=tj−1

fs is odd
]
. Further-

more, the coin flip results fs are constructed to be independent of the state ω. Therefore,
conditioning on ω does not change these probabilities:

IPl∗ [Ktj = ij | Kt1 = i1, . . . , Ktj−1
= ij−1] =

1

2

and
IPl∗ [Ktj = ij | ω,Kt1 = i1, . . . , Ktj−1

= ij−1] =
1

2
.

Using the chain rule for probability yields:

IPl∗ [Kt1 = i1, . . . , Ktn = in]

=
n∏

j=1

IPl∗ [Ktj = ij | Kt1 = i1, . . . , Ktj−1
= ij−1] =

n∏
j=1

1

2
=

(
1

2

)n

and

IPl∗ [Kt1 = i1, . . . , Ktn = in | ω]

=
n∏

j=1

IPl∗ [Ktj = ij | ω,Kt1 = i1, . . . , Ktj−1
= ij−1] =

n∏
j=1

1

2
=

(
1

2

)n

,

which confirms (20).
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Independency of the state. Assume that
∣∣M\

{
m1, . . . ,ml∗(M)

}∣∣ = n. Let t1 <

· · · < tn be the indices such that M\
{
m1, . . . ,ml∗(M)

}
= {mt1 , . . . ,mtn}.

So we have to show that IPl∗ [mt1 , . . . ,mtn ] = IPl∗ [mt1 , . . . ,mtn | ω]. First, we use
the law of total probability, conditioning on the possible sequences (i1, . . . , in) of key
realizations.

IPl∗ [mt1 , . . . ,mtn ]

=
∑

(i1,...,in)∈{0,1}n
IPl∗ [mt1 , . . . ,mtn | Kt1 = i1, . . . , Ktn = in] IPl∗ [Kt1 = i1, . . . , Ktn = in]

=
∑

(i1,...,in)∈{0,1}n
IPl∗ [mt1 , . . . ,mtn | Kt1 = i1, . . . , Ktn = in]

(
1

2

)n

. (*)

Note that for every (i1, . . . , in) there is a unique (i′1, . . . , i
′
n) with i′j = 1− ij such that

the design of the experiments induces the following symmetry property:

IPl∗ [mt1 , . . . ,mtn | ω,Kt1 = i1, . . . , Ktn = in] = IPl∗ [mt1 , . . . ,mtn | ω,Kt1 = i′1, . . . , Ktn = i′n].

We apply the law of total probability again on (*), conditioning on ω:

∑
(i1,...,in)∈{0,1}n

IPl∗ [mt1 , . . . ,mtn | Kt1 = i1, . . . , Ktn = in]

(
1

2

)n

=
∑

(i1,...,in)∈{0,1}n

∑
ω∈Ω

IPl∗ [ω | Kt1 = i1, . . . , Ktn = in]IPl∗ [mt1 , . . . ,mtn | ω,Kt1 = i1, . . . , Ktn = in]

(
1

2

)n

=
∑

(i1,...,in)∈{0,1}n
IPl∗ [ω]IPl∗ [mt1 , . . . ,mtn | ω,Kt1 = i1, . . . , Ktn = in]

(
1

2

)n

+
∑

(i′1,...,i
′
n)∈{0,1}n

IPl∗ [ω]IPl∗ [mt1 , . . . ,mtn | ω,Kt1 = i′1, . . . , Ktn = i′n]

(
1

2

)n

=
∑

(i1,...,in)∈{0,1}n
IPl∗ [mt1 , . . . ,mtn | ω,Kt1 = i1, . . . , Ktn = in]

(
1

2

)n

=
∑

(i1,...,in)∈{0,1}n
IPl∗ [mt1 , . . . ,mtn | ω,Kt1 = i1, . . . , Ktn = in]IPl∗ [Kt1 = i1, . . . , Ktn = in | ω]

=IPl∗ [mt1 , . . . ,mtn | ω],

which holds for both states ω ∈ Ω. Furthermore, we used that

IPl∗ [ω | Kt1 = i1, . . . , Ktn = in] =
IPl∗ [Kt1 = i1, . . . , Ktn = in | ω]

IPl∗ [Kt1 = i1, . . . , Ktn = in]
· IPl∗ [ω] = IPl∗ [ω].

We can conclude that IPl∗ [mt1 , . . . ,mtn ] = IPl∗ [mt1 , . . . ,mtn | ω].
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Finally, it holds that:

IP [ω | M] = IP
[
ω | M \

{
m1, . . . ,ml∗(M)

}
,
{
m1, . . . ,ml∗(M)

}]
=

IP
[
M\

{
m1, . . . ,ml∗(M)

}
| ω,

{
m1, . . . ,ml∗(M)

}]
IP
[
M\

{
m1, . . . ,ml∗(M)

}
|
{
m1, . . . ,ml∗(M)

}] · IP
[
ω | m1, . . . ,ml∗(M)

]
= IP

[
ω | m1, . . . ,ml∗(M)

]
,

which concludes the proof.

A.2. Proof of Lemma 2

Consider the experiment in the last period T . This experiment will be purchased only
if the buyer has bought all previous experiments, and only if each previous outcome mt

(for 1 ≤ t ≤ T − 1) was the non-revealing signal m. If the consumer buys the final
experiment, she will learn the true state and select the state-optimal action, yielding a
payoff of 1 − c1 − · · · − cT . On the other hand, if she refuses to purchase the final
experiment, her payoff is 1 − V

(
θs,MT−1

)
− c1 − · · · − cT−1. Thus, buying the last

experiment is sequentially rational only if

1− c1 − · · · − cT ≥ 1− V
(
θs,MT−1

)
− c1 − · · · − cT−1

⇔ cT ≤ V
(
θs,MT−1

)
.

Therefore, the seller must choose cT to satisfy this constraint for both buyer types.

Now assume that the pricing policy from period t+1 onward is such that the consumer
chooses to purchase these experiments. The experiment in period t will be purchased only
if the buyer has bought all previous experiments and all of them have realized as m. If the
consumer decides against purchasing the t-th experiment outcome, she receives a payoff
of 1 − V

(
θs,Mt−1

)
− c1 − · · · − ct−1. If the buyer purchases the t-th experiment, she

knows that she will choose the state-optimal action – anticipating that she will continue
to purchase subsequent experiments until the true state is revealed – and thus receives a
payoff of 1− c1−· · ·− ct−

∑T−1
u=t IP[mt = m, . . . ,mu = m | s,Mt−1] · cu+1. Therefore,

she will decide to buy the t-th experiment only if

1−
t∑

r=1

cr −
T−1∑
u=t

IP
[
mt = m, . . . ,mu = m | s,Mt−1

]
cu+1 ≥ 1− V

(
θs,Mt−1

)
−

t−1∑
r=1

cr

⇔ ct ≤ V
(
θs,Mt−1

)
−

T−1∑
u=t

IP
[
mt = m, . . . ,mu = m | s,Mt−1

]
· cu+1. (21)
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Finally, the consumer will purchase the first experiment if and only if

1− V (θs) ≤ 1− c1 −
T−1∑
t=1

IP [Mt | s] · ct+1

⇔ V (θs) ≥ c1 +
T−1∑
t=1

IP [Mt | s] · ct+1 (22)

⇔ c1 ≤ V (θs)−
T−1∑
t=1

IP [Mt | s] · ct+1.

The inequality (22) ensures that the expected cost of acquiring experiments until the state
is revealed is less than the consumer’s valuation of learning the state.

We choose c2, . . . , cT so that equality holds for s = h in (21). Note that observing
Mt shifts the belief towards the state ω. Since we have assumed that the high-type’s prior
belief already favors the state ω, we can conclude that V (θs,Mt) = IP [ω | h,Mt]. Thus,
the costs of the experiments in period 2 ≤ t ≤ T are given by

ct = IP
[
ω | h,Mt−1

]
−

T−1∑
u=t

IP
[
mt = m, . . . ,mu = m | h,Mt−1

]
· cu+1. (23)

We next derive a closed-form solution of (23) via backward induction.

Claim: For 2 ≤ t ≤ T , it holds that

ct =
(1− θh)

∏t−1
s=1 ps (1− pt)

θh + (1− θh)
∏t−1

s=1 ps
≥ 0.

Proof. The conditional probabilities involved in the recursive formula for the cost ct (23)
are given by:

IP
[
ω | h,Mt−1

]
=

(1− θh)
∏t−1

s=1 ps

θh + (1− θh)
∏t−1

s=1 ps

and
IP
[
mt = m, . . . ,mu = m | h,Mt−1

]
=

θh + (1− θh)
∏u

s=1 ps

θh + (1− θh)
∏t−1

s=1 ps
.

Therefore, the expression for ct simplifies to:

ct =
(1− θh)

∏t−1
s=1 ps

θh + (1− θh)
∏t−1

s=1 ps
−

T−1∑
u=t

θh + (1− θh)
∏u

s=1 ps

θh + (1− θh)
∏t−1

s=1 ps
· cu+1. (24)

We proceed by backward induction.
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Final Period (t=T): For the final period t = T , the summation term in (24) is empty
(sum from T to T − 1) and thus zero. Therefore:

cT =
(1− θh)

∏T−1
s=1 ps

θh + (1− θh)
∏T−1

s=1 ps
.

This matches the general formula for the defined value pT = 0.

Inductive Step: Assume the desired formula holds for all t ≥ t∗ + 1:

ct =
(1− θh)

∏t−1
s=1 ps (1− pt)

θh + (1− θh)
∏t−1

s=1 ps
. (25)

We want to show that it holds as well for t = t∗. We consider equation (24) and calculate
the summation term separately using the induction hypothesis (25):

T−1∑
u=t∗

θh + (1− θh)
∏u

s=1 ps

θh + (1− θh)
∏t−1

s=1 ps
· cu+1

=
T−1∑
u=t∗

θh + (1− θh)
∏u

s=1 ps

θh + (1− θh)
∏t∗−1

s=1 ps
· (1− θh)

∏u
s=1 ps (1− pu+1)

θh + (1− θh)
∏u

s=1 ps

=
T−1∑
u=t∗

(1− θh)
∏u

s=1 ps (1− pu+1)

θh + (1− θh)
∏t∗−1

s=1 ps

=
T−1∑
u=t∗

(1− θh)
(∏u

s=1 ps −
∏u+1

s=1 ps
)

θh + (1− θh)
∏t∗−1

s=1 ps

=
1− θh

θh + (1− θh)
∏t∗−1

s=1 ps

T−1∑
u=t∗

(
u∏

s=1

ps −
u+1∏
s=1

ps

)

=
(1− θh)

∏t∗

s=1 ps

θh + (1− θh)
∏t∗−1

s=1 ps
.

Inserting this result in equation (24) yields ct∗:

ct∗ =
(1− θh)

∏t∗−1
s=1 ps

θh + (1− θh)
∏t∗−1

s=1 ps
− (1− θh)

∏t∗

s=1 ps

θh + (1− θh)
∏t∗−1

s=1 ps

=
(1− θh)

(∏t∗−1
s=1 ps −

∏t∗

s=1 ps

)
θh + (1− θh)

∏t∗−1
s=1 ps

=
(1− θh)

∏t∗−1
s=1 ps (1− pt∗)

θh + (1− θh)
∏t∗−1

s=1 ps
.

This is the required form (25) for t = t∗. By induction, the formula holds for all t.
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Under this pricing scheme, the high-valuation type is indifferent in each period t ≥ 2

and we can assume that she takes the seller-preferred decision to buy each experiment.
This verifies the claim for s = h.

Remarkably, a non-revealing signal m can update beliefs such that the conditional
valuation of the high type decreases while the conditional valuation of the low type in-
creases. In particular, the experiments will be designed so that at some point the updated
valuation of the low type exceeds the updated valuation of the high type. One might think
that the low type would benefit from this effect. However, we will ensure that the low type
pays exactly her valuation in expectation, anticipating any future discounts and effectively
paying for them in the initial period. We do this by setting the cost in the first period so
that equality holds for s = l in (22):

c1 = θl −
T−1∑
t=1

IP [Mt | l] · ct+1

= θl −
T−1∑
t=1

(
θl + (1− θl)

t∏
s=1

ps

)
· (1− θh)

∏t
s=1 ps (1− pt+1)

θh + (1− θh)
∏t

s=1 ps
.

If the parameters are such that the price of the first experiment (6) is non-negative,
then the costs are well defined. Finally, to verify the claim for s = l, it is left to show the
following:

Claim: The pricing scheme induces a dynamically consistent behavior, i.e., the low type
purchases all subsequent experiments until the state is revealed.

Proof. By the choice of c1 (6), the agent’s ex-ante valuation V (θl) covers exactly the
expected cost of the experiment sequence until a state-revelation:

V (θl) = c1 +
T−1∑
t=1

IP [Mt | l] · ct+1. (26)

We have to show that the consumer will continue to acquire experiments until a state
revelation occurs. Consider the agent’s decision in period t ≥ 2, given Mt−1. The low-
type’s updated valuation is

V
(
θl,Mt−1

)
= min

ω∈{ω,ω}

{
IP
[
ω | l,Mt−1

]}
.

The expected costs, conditional on buying experiment t and continuing as long as m is
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observed, are

ct +
T−1∑
u=t

IP
[
mt = m, . . . ,mu = m | l,Mt−1

]
· cu+1.

We want to show that the agent benefits from buying experiment t and all subsequent
experiments until the state is revealed, i.e.:

V
(
θl,Mt−1

)
≥ ct +

T−1∑
u=t

IP
[
mt = m, . . . ,mu = m | l,Mt−1

]
· cu+1. (27)

We consider two cases based on which state yields the minimum posterior probability:

V
(
θl,Mt−1

)
= IP

[
ω | l,Mt−1

]
, (i)

V
(
θl,Mt−1

)
= IP

[
ω | l,Mt−1

]
. (ii)

Case (i): We can show inequality (27) directly:

IP
[
ω | l,Mt−1

]
≥ ct +

T−1∑
u=t

IP
[
mt = m, . . . ,mu = m | l,Mt−1

]
· cu+1

⇔ IP[ω | l] ≥ ct · IP
[
Mt−1 | l

]
+

T−1∑
u=t

IP [Mu | l] · cu+1

⇔ θl ≥
T−1∑

u=t−1

IP [Mu | l] · cu+1,

This final inequality holds by the initial condition (26) since V (θl) = θl and the non-
negativity of costs ct ≥ 0.

Case (ii): Given a realization of experiment outcomes Mt−1, the following holds.
The low type considers state ω less likely than the high type:

IP
[
ω | l,Mt−1

]
=

θl

θl + (1− θl)
∏t−1

s=1 ps

≤ θh

θh + (1− θh)
∏t−1

s=1 ps
= IP

[
ω | h,Mt−1

]
.

Furthermore, the low type considers subsequent non-revealing experiment outcomes
less likely than the high type:

IP
[
mt = m, . . . ,mu = m | l,Mt−1

]
=IP

[
ω | l,Mt−1

]
+ IP

[
ω | l,Mt−1

] u∏
s=t

ps
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=IP
[
ω | l,Mt−1

]
+
(
1− IP

[
ω | l,Mt−1

])
·

u∏
s=t

ps

≤IP
[
ω | h,Mt−1

]
+
(
1− IP

[
ω | h,Mt−1

])
·

u∏
s=t

ps

=IP
[
ω | h,Mt−1

]
+ IP

[
ω | h,Mt−1

] u∏
s=t

ps

=IP
[
mt = m, . . . ,mu = m | h,Mt−1

]
.

We conclude, by definition of ct (23), that:

ct = IP
[
ω | h,Mt−1

]
−

T−1∑
u=t

IP
[
mt = m, . . . ,mu = m | h,Mt−1

]
· cu+1

≤ IP
[
ω | l,Mt−1

]
−

T−1∑
u=t

IP
[
mt = m, . . . ,mu = m | l,Mt−1

]
· cu+1.

Since the inequality (27) holds in both cases, the low type finds it optimal to buy
experiment t after any history consisting only of m signals. This holds for all t ≥ 2.
Combined with the assumption for t = 1, the low type buys all experiments until a m

signal is received.

A.3. Proof of Lemma 3

In a first step, we aim to find the probabilities p1, . . . , pT with pt ∈ [0, 1] that form a
critical point of the cost discrepancy (10). Equivalently, factoring out (θh − θl)(1 − θh),
we search for a critical point of ∆, defined as:

∆(p1, . . . , pT ) :=
T−1∑
t=1

(
1−

t∏
s=1

ps

)
ct+1

1− θh
=

T−1∑
t=1

(
1−

t∏
s=1

ps

) ∏t
s=1 ps(1− pt+1)

θh + (1− θh)
∏t

s=1 ps︸ ︷︷ ︸
=:ft(p1,...,pt+1)

.

Further define Pt := Pt(p1, . . . , pt) =
∏t

s=1 ps as the cumulative probability of receiving
no state-revealing test result up to the t-th test.

We first observe that only the last term fT−1 depends on pT :

fT−1 = (1− PT−1)
PT−1(1− pT )

θh + (1− θh)PT−1

.

Since PT−1 and θh are positive, fT−1 decreases linearly with pT . To maximize ∆, we must
choose pT = 0. For p1, . . . , pT−1, we find a critical point by setting the partial derivatives
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to zero: ∂∆
∂pu

= 0 for u = 1, . . . , T − 1.

Claim: The probabilities p∗1, . . . , p
∗
T defined by

p∗t =
θ
t/T
h − θh

θ
(t−1)/T
h − θh

for t = 1, . . . , T.

form a critical point of ∆.

Proof. We need to show that ∂∆
∂pu

∣∣∣
p=p∗

= 0 for u = 1, . . . , T − 1. The partial derivative of

∆ with respect to pu (for 1 ≤ u ≤ T − 1) is:

∂∆

∂pu
=

T−1∑
t=1

∂ft
∂pu

.

Note that ft depends on pu only if t ≥ u− 1. Hence, the sum reduces to:

∂∆

∂pu
=

∂fu−1

∂pu
+

T−1∑
t=u

∂ft
∂pu

. (28)

Let’s calculate the partial derivatives.

1. For the t = u− 1 term:

∂fu−1

∂pu
=

∂

∂pu

[
(1− Pu−1)

(Pu−1 − Pu)

θh + (1− θh)Pu−1

]
= −(1− Pu−1)

Pu−1

θh + (1− θh)Pu−1

.

2. For terms t ≥ u:

∂ft
∂pu

=
∂

∂pu

[
(1− Pt)

(Pt − Pt+1)

θh + (1− θh)Pt

]
=

(Pt − Pt+1) [θh(1− 2Pt)− (1− θh)(Pt)
2]

pu (θh + (1− θh)Pt)
2 .

Now, we evaluate these derivatives at the proposed probabilities p∗. Notice that the
product Pt telescopes, i.e.

P ∗
t := Pt(p

∗
1, . . . , p

∗
t ) =

t∏
s=1

p∗s

=
θ
1/T
h − θh

θ
0/T
h − θh

· θ
2/T
h − θh

θ
1/T
h − θh

· . . . · θ
t/T
h − θh

θ
(t−1)/T
h − θh
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=
θ
t/T
h − θh
1− θh

.

Using this, we evaluate the derivatives at p∗:

1. Evaluating ∂fu−1

∂pu
at p∗:

∂fu−1

∂pu

∣∣∣
p=p∗

= −(1− P ∗
u−1)

P ∗
u−1

θh + (1− θh)P ∗
u−1

= −

(
1− θ

(u−1)/T
h − θh
1− θh

) (
θ
(u−1)/T
h −θh

1−θh

)
θh + (1− θh)

(
θ
(u−1)/T
h −θh

1−θh

)
= −(1− θ

(u−1)/T
h )(θ

(u−1)/T
h − θh)

(1− θh)2 · θ(u−1)/T
h

. (*)

2. Evaluating ∂ft
∂pu

for t ≥ u at p∗:

∂ft
∂pu

∣∣∣
p=p∗

=
(P ∗

t − P ∗
t+1) [θh(1− 2P ∗

t )− (1− θh)(P
∗
t )

2]

p∗u (θh + (1− θh)P ∗
t )

2

=

((
θ
t/T
h −θh
1−θh

)
−
(

θ
(t+1)/T
h −θh

1−θh

))[
θh

(
1− 2

(
θ
t/T
h −θh
1−θh

))
− (1− θh)

(
θ
t/T
h −θh
1−θh

)2
]

θ
u/T
h −θh

θ
(u−1)/T
h −θh

(
θh + (1− θh)

(
θ
t/T
h −θh
1−θh

))2

=

(
1− θ

1/T
h

)(
θ
(T−t)/T
h − θ

t/T
h

)
(1− θh)2

· θ
(u−1)/T
h − θh

θ
u/T
h − θh

.

Now, it remains to calculate:

T−1∑
t=u

∂ft
∂pu

∣∣∣
p=p∗

=
T−1∑
t=u

(
1− θ

1/T
h

)(
θ
(T−t)/T
h − θ

t/T
h

)
(1− θh)2

· θ
(u−1)/T
h − θh

θ
u/T
h − θh

=

(
1− θ

1/T
h

)(
θ
(u−1)/T
h − θh

)
(1− θh)2

(
θ
u/T
h − θh

) ·

[
T−1∑
t=u

θ
(T−t)/T
h − θ

t/T
h

]

=

(
1− θ

1/T
h

)(
θ
(u−1)/T
h − θh

)
(1− θh)2

(
θ
u/T
h − θh

) ·

[
T−u∑
t=1

(
θ
1/T
h

)t
− θ

(u−1)/T
h

T−u∑
k=1

(θ
1/T
h )k

]
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=

(
1− θ

1/T
h

)(
θ
(u−1)/T
h − θh

)
(1− θh)2

(
θ
u/T
h − θh

) ·
(
θ
1/T
h − θ

u/T
h

) 1− θ
(T−u)/T
h

1− θ
1/T
h

=

(
θ
(u−1)/T
h − θh

)
(1− θh)2 · θu/Th

(
1− θ

(T−u)/T
h

) · θ1/Th

(
1− θ

(u−1)/T
h

)(
1− θ

(T−u)/T
h

)

=

(
θ
(u−1)/T
h − θh

)(
1− θ

(u−1)/T
h

)
(1− θh)2 · θ(u−1)/T

h

. (**)

Comparing (*) and (**), we see that

T−1∑
t=u

∂ft
∂pu

∣∣∣
p=p∗

= −∂fu−1

∂pu

∣∣∣
p=p∗

.

Substituting this into Equation (28):

∂∆

∂pu

∣∣∣
p=p∗

=
∂fu−1

∂pu

∣∣∣
p=p∗

− ∂fu−1

∂pu

∣∣∣
p=p∗

= 0.

This holds for all u = 1, . . . , T − 1. Thus, the proposed probabilities p∗ satisfy the first-
order conditions for an extrema10.

Next, by substituting the probability assignments p∗t into our expression for the cost
in period t from Lemma 2 (5), we get a uniform cost for all t ≥ 2:

c∗t =
(1− θh)

∏t−1
s=1 p

∗
s (1− pt)

θh + (1− θh)
∏t−1

s=1 ps

=

(1− θh)

(
θ
(t−1)/T
h −θh

1−θh

)(
θ
(t−1)/T
h −θ

t/T
h

θ
(t−1)/T
h −θh

)
θh + (1− θh)

(
θ
(t−1)/T
h −θh

1−θh

)
=

θ
(t−1)/T
h − θ

t/T
h

θ
(t−1)/T
h

= 1− θ
1/T
h .

We will show later that c1 = 1− θ
1/T
h holds as well whenever the valuation gap coincides

with the highest attainable cost discrepancy.

Now, we can substitute these costs and probabilities in the cost discrepancy term (10)

10Numerical maximization suggests that the proposed probabilities maximize the expression ∆ globally.
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and thereby verifying the Statement (13) for any maturity T :

(θh − θl)
T−1∑
t=1

(
1−

t∏
s=1

p∗s

)
· c∗t+1 =(θh − θl)

T−1∑
t=1

(
1− θ

t/T
h − θh
1− θh

)
·
(
1− θ

1/T
h

)
=(θh − θl)

(
1− θ

1/T
h

1− θh

)
T−1∑
t=1

(
1− θ

t/T
h

)
=(θh − θl)

(
1− θ

1/T
h

1− θh

)(
T −

T−1∑
t=0

(
θ
1/T
h

)t)

=(θh − θl)

(
1− θ

1/T
h

1− θh

)(
T − 1− θh

1− θ
1/T
h

)

=(θh − θl)

(
T

(
1− θ

1/T
h

1− θh

)
− 1

)
.

As T increases, the sequential experiments allow for an increasing gap in the expected
costs incurred by the high and low type. The limit of this gap as T → ∞ represents the
highest cost discrepancy that the seller can exploit to bridge the valuation gap. Applying
L’Hôpital’s rule yields the desired limit (14):

lim
T→∞

(θh − θl)

(
T ·

(
1− θ

1/T
h

1− θh

)
− 1

)
= (θh − θl)

(
−1 + lim

1/T→0

1− θ
1/T
h

1
T
(1− θh)

)

= (θh − θl)

(
−1 + lim

1/T→0

[
θ
1/T
h ln(θh)

θh − 1

])

= (θh − θl)

(
−1 +

− ln(θh)

1− θh

)
= (θh − θl)

1− θh − ln(θh)

1− θh
.

A.4. Proof of Lemma 4

Consider an arbitrary θl ∈
(

(1−θh)+θh ln(θh)
2(1−θh)+ln(θh)

, 1− θh

]
. From (16), we know there exists a

maturity T ′ such that θl lies within the interval:

IT ′ :=

(1− θh)− T ′ θh

(
1− θ

1/T ′

h

)
2 (1− θh)− T ′

(
1− θ

1/T ′

h

) , (1− θh)− (T ′ − 1) θh

(
1− θ

1/(T ′−1)
h

)
2 (1− θh)− (T ′ − 1)

(
1− θ

1/(T ′−1)
h

)
 . (29)

Our goal is to demonstrate the existence of probabilities (p1, . . . , pT ′) such that the
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discrepancy in expected costs coincides with the valuation discrepancy:

θl + (θh − θl)

(
T ′−1∑
t=1

(
1−

t∏
s=1

ps

)
ct+1

)
= 1− θh.

Rearranging this equation to solve for θl yields:

θl =
1− 2θh

1−
∑T ′−1

t=1

(
1−

∏t
s=1 ps

)
ct+1

+ θh. (30)

We recall that the probabilities that correspond to the lower bound of θl in the in-

terval IT ′ satisfy
∏t

s=1 ps =
θ
t/T ′
h −θh
1−θh

for all t = 1, . . . , T ′. To allow for perfect price
discrimination across the entire interval IT ′ , we relax this condition by setting:

t∏
s=1

ps =
θ
t/T ′

h − θh
1− θh

for t = 2, . . . , T ′,

while leaving p1 ∈
[
θ
2/T ′
h −θh
1−θh

, 1

]
as a variable. The lower bound of the interval guarantees

that p2 can be chosen such that p1 · p2 =
θ
2/T ′
h −θh
1−θh

. Now, we can determine the individual
probabilities pt:

pt =


p1 for t = 1,∏2

s=1 ps
p1

=
θ
2/T ′
h −θh
(1−θh)p1

for t = 2,∏t
s=1 ps∏t−1
s=1 ps

=
θ
t/T ′
h −θh

θ
(t−1)/T ′
h −θh

for t = 3, . . . , T ′.

The choice of probabilities thus reduces to selecting p1. Note that p1 =
θ
1/T ′
h −θh
1−θh

recovers
the proposed discrepancy-maximizing case.

Let’s recall the cost terms ct from (5):

ct =
(1− θh)

∏t−1
s=1 ps (1− pt)

θh + (1− θh)
∏t−1

s=1 ps
.

Substituting the chosen probabilities for t ≥ 3 leads to the familiar costs:

ct = 1− θ
1/T ′

h for t = 3, . . . , T ′.
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However, for t = 2, the cost c2 depends on p1:

c2 =
(1− θh)p1(1− p2)

θh + (1− θh)p1
=

(1− θh)p1

(
1− θ

2/T ′
h −θh
(1−θh)p1

)
θh + (1− θh)p1

=
(1− θh)p1 − (θ

2/T ′

h − θh)

θh + (1− θh)p1
.

Now, let’s evaluate the sum in the denominator of (30), denoted by S(p1):

S(p1) =
T ′−1∑
t=1

(
1−

t∏
s=1

ps

)
ct+1

= (1− p1)c2 +
T ′−1∑
t=2

(
1−

t∏
s=1

ps

)
ct+1

= (1− p1)
(1− θh)p1 − θ

2/T ′

h + θh
θh + (1− θh)p1

+
(T ′ − 2)

(
1− θ

1/T ′

h

)
− θ

2/T ′

h + θh

1− θh
.

The expression θl =
1−2θh
1−S(p1)

+ θh depends continuously on p1 since S(p1) < 1. We will
show this directly. Note that c1 + S(p1) are the expected costs given that the state is ω. If
c1 = 0, the pricing of ct for t ≥ 2 guarantees that it is sequentially rational for the high
valuation type to buy all experiments until the state reveals independent of the choice of
probabilities (p1, . . . , pT ′). In this case, the expected costs of the high valuation type are
thus at most equal to her valuation V (θh) = 1− θh:

θh ·
T ′∑
t=2

ct + (1− θh) · S(p1) ≤ 1− θh.

Since the costs ct for t ≥ 2 are strictly positive, it holds that:

(1− θh) · S(p1) < 1− θh ⇔ S(p1) < 1.

We consider the following two values for p1:

(i) p1 =
θ
1/T ′
h −θh
1−θh

. This corresponds to the discrepancy-maximizing probabilities. Equa-
tion (30) yields the lower bound of the target interval IT ′:

θl =
(1− θh)− T ′ θh

(
1− θ

1/T ′

h

)
2 (1− θh)− T ′

(
1− θ

1/T ′

h

) .
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(ii) p1 = 1. Then the first term (1− p1)c2 in S(p1) vanishes. The sum becomes:

S(1) =
(T ′ − 2)

(
1− θ

1/T ′

h

)
−
(
θ
2/T ′

h − θh

)
1− θh

.

Substituting this into (30):

θl =
1− 2θh
1− S(1)

+ θh =
1− 2θh

1−
(T ′−2)

(
1−θ

1/T ′
h

)
−
(
θ
2/T ′
h −θh

)
1−θh

+ θh.

In particular, if T ′ = 2, then θl = 1− θh attains the highest possible value for θl.

By continuity of θl with respect to p1, it holds that for each

θl ∈

(1− θh)− T ′ θh

(
1− θ

1/T ′

h

)
2 (1− θh)− T ′

(
1− θ

1/T ′

h

) , 1− 2θh
1− S(1)

+ θh

 ,

there exists a p1 ∈
[
θ
1/T ′
h −θh
1−θh

, 1

]
such that (30) holds.

It remains to show that this interval covers the target interval IT ′ given in (29). This
requires verifying that 1−2θh

1−S(1)
+ θh is greater than or equal to the upper bound of IT ′ .

By (15), we can rewrite the upper bound of IT ′:

(1− θh)− (T ′ − 1) θh

(
1− θ

1/(T ′−1)
h

)
2 (1− θh)− (T ′ − 1)

(
1− θ

1/(T ′−1)
h

) =
1− 2θh

1−
(
(T ′ − 1)

(
1−θ

1/(T ′−1)
h

1−θh

)
− 1

) + θh.

We conclude the proof by showing that

1− 2θh

1−
(
(T ′ − 1)

(
1−θ

1/(T ′−1)
h

1−θh

)
− 1

) + θh ≤ 1− 2θh
1− S(1)

+ θh

⇔ (T ′ − 1)

(
1− θ

1/(T ′−1)
h

1− θh

)
− 1 ≥ (T ′ − 2)(1− θ

1/T ′

h )− θ
2/T ′

h + θh
1− θh

⇔ (T ′ − 1)
(
1− θ

1/(T ′−1)
h

)
− (1− θh) ≥ (T ′ − 2)

(
1− θ

1/T ′

h

)
− θ

2/T ′

h + θh

⇔ T ′ − 2− (T ′ − 1)θ
1/(T ′−1)
h ≥ T ′ − 2− (T ′ − 2)θ

1/T ′

h − θ
2/T ′

h

⇔ 0 ≥ (T ′ − 1)θ
1/(T ′−1)
h − (T ′ − 2)θ

1/T ′

h − θ
2/T ′

h

⇔ T ′ − 2 ≥ (T ′ − 1)θ
1/(T ′−1)−1/T
h − θ

1/T ′

h ,

which holds since θxh ≤ 1 for all x ≥ 0.
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