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CONVEX MONOTONE SEMIGROUPS ON LATTICES OF

CONTINUOUS FUNCTIONS

ROBERT DENK, MICHAEL KUPPER, AND MAX NENDEL

Abstract. We consider convex monotone semigroups on a Banach lattice, which is
assumed to be a Riesz subspace of a σ-Dedekind complete Banach lattice with an
additional assumption on the dual space. As typical examples, we consider the space
of bounded uniformly continuous functions and the space of continuous functions
vanishing at infinity. We show that the domain of the classical generator for convex
monotone C0-semigroups, which is defined in terms of the time derivative at 0 w.r.t.
the supremum norm, is typically not invariant. We thus propose alternative forms of
generators and domains, for which we prove the invariance under the semigroup. As
a consequence, we obtain the uniqueness of the semigroup in terms of an extended
version of the generator. The results are discussed in several examples related to
fully nonlinear partial differential equations, such as uncertain shift semigroups and
semigroups related to G-heat equations (fully nonlinear versions of the heat equation).

Key words: Convex semigroup, nonlinear Cauchy problem, fully nonlinear PDE,
uniqueness, Hamilton-Jacobi-Bellman equation
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1. Introduction

The topic of model uncertainty or ambiguity in the fields of Mathematical Economics
and Mathematical Finance has been extensively studied in the past decades. Hereby,
a particular focus has been put on parameter uncertainty of stochastic processes de-
scribing the evolution of an underling asset. Examples include a Brownian motion with
drift uncertainty (cf. Coquet et al. [6]) or volatility uncertainty (cf. Peng [31],[32]), a
Black-Scholes model with volatility uncertainty (cf. Avellaneda et al. [2], Epstein and
Ji [15], Vorbrink [36]), and Lévy processes with uncertainty in the Lévy triplet (cf. Hu
and Peng [20], Neufeld and Nutz [28], Hollender [19], Kühn [23]). The aforementioned
examples lead to nonlinear, more precisely, convex Hamilton-Jacobi-Bellman-type par-
tial differential equations. In the case of a Brownian Motion with uncertain volatility
within an interval [σ, σ] with 0 ≤ σ ≤ σ (cf. Section 4.2), this leads, for instance, to
the HJB equation

∂ty(t, u) = sup
σ∈[σ,σ]

σ2

2
∂uuy(t, u) for t ≥ 0 and u ∈ R. (1.1)

The latter is typically referred to as G-heat equation, and their solutions (for different
initial values) can be represented by means of the so-called G-expectation, cf. [31, 32].
Moreover, the G-heat equation (1.1) is intimately related to a stochastic optimal control
problem with control set [σ, σ]. We refer to Denis et al. [10] for a detailed illustration
of this relation.
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for helpful discussions and comments.

1



2 ROBERT DENK, MICHAEL KUPPER, AND MAX NENDEL

Inspired by a construction of Nisio [29], abstract versions of Hamilton-Jacobi-Bellman
equations

∂ty = sup
λ∈Λ

Aλy, (1.2)

for a suitable family (Aλ)λ∈Λ of generators and a nonempty control set Λ, have been
studied using a semigroup-theoretic approach, cf. Denk et al. [14] and Nendel and

Röckner [27]. We would like to point out, choosing Aλ := λ2

2 ∂uu for λ ∈ Λ := [σ, σ],
the G-heat equation (1.1) is of the form (1.2).

From a semigroup-theoretic perspective it is therefore very natural to try relate
convex differential equations ∂ty − Ay = 0, such as the G-heat equation (1.1) or more
general Hamilton-Jacobi-Bellman equations of the form (1.2) with Ay = supλAλy,
to convex semigroups, where the semigroup property is the abstract analogon to the
dynamic programming principle of the related optimal control problem. One classical
approach to treat such fully nonlinear equations uses the theory of maximal monotone
or m-accretive operators (see, e.g., Barbu [3], Bénilan and Crandall [4], Brézis [5],
Evans [16], Kato [21], and the references therein). To show that an accretive operator
is m-accretive, one has to prove that 1 + hA is surjective for h > 0, and in many cases
it is quite delicate to verify this condition (see Example 4.2). Moreover, it is known
that m-accretive operators lead to the existence of a mild solution, but the existence of
strong solutions is only known under additional assumptions on the underlying Banach
space, including reflexivity (see [3, Section 4.1]). In terms of nonlinear semigroups,
this means that even if the initial value is smooth, the solution (i.e., the semigroup
applied to the initial value) does not belong to the domain of the operator for positive
time, so the domain of the operator is not invariant under the semigroup (see, e.g., [8,
Section 4], or Example 4.4 below).

One approach to deal with this problem is to consider more general solution concepts,
and in fact, this was one of the reasons for the introduction of viscosity solutions, cf.
Crandall et al. [7], Crandall and Lions [9], and the discussion in Evans [16, Section 4].
On the other hand, one can construct operators with larger domains, which are invariant
under the semigroup, in this way also obtaining regularity of the solution of the Cauchy
problem. This is one of the topics of the present paper. We study convex monotone
semigroups on spaces of continuous functions and construct invariant domains with a
particular interest in the regularity and uniqueness of the solution. Here, the main
object and the starting point of our investigation is the nonlinear semigroup. We point
out that, in the context of optimal control theory, the uniqueness and regularity of
solutions to Hamilton-Jacobi-Bellman equations are fundamental in order to come up
with verification theorems; ensuring that the solution to the HJB equation is in fact
the value function of an optimal control problem, cf. Fleming and Soner [18], Pham
[34], and Yong and Zhou [37].

We consider convex monotone C0-semigroups S =
(
S(t)

)
t≥0

on Banach lattices and

their generator A defined by

Ax := lim
h↓0

S(h)x− x
h

for x ∈ D(A),

where D(A) :=
{
x ∈ X : limh↓0

S(h)x−x
h exists

}
. Throughout, we consider the case

where X is a Riesz subspace of some Dedekind σ-complete Riesz space X with an
additional property on the dual space. Typical examples for X are the space BUC of
all bounded uniformly continuous functions, the space C0 of all continuous functions
vanishing at infinity, or spaces of uniformly continuous functions with certain growth at
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infinity. We focus on monotone semigroups that are continuous from above, meaning
that S(t)xn ↓ 0 for all t ≥ 0, whenever xn ↓ 0. This additional continuity property
allows to extend the semigroup to

Xδ := {x ∈ X : xn ↓ x for some bounded sequence (xn)n in X}.

In general, the domain D(A) is not invariant under the semigroup S. However, the
invariance can be achieved by extending the generator. Inspired by results on convex
semigroups in Lp-like spaces in Denk et al. [13], we define the domain D(Aδ) of the
monotone generator Aδ as the set of all x ∈ X such that, for every sequence (hn)n in
(0,∞) with hn ↓ 0, there exists an approximating sequence (yn)n in X such that∥∥∥∥S(hn)x− x

hn
− yn

∥∥∥∥→ 0 and yn ↓ y =: Aδx.

The main results in Sections 2 and 3 state that a convex monotone C0-semigroup
leaves the domain D(Aδ) of its monotone generator invariant (Theorem 2.6), and that
the semigroup is uniquely determined by Aδ on D(Aδ) if, in addition, the semigroup is
continuous from above (Corollary 3.2).

We also study even weaker forms of domains requiring only the local Lipschitz con-
tinuity of the map t 7→ S(t)x, or, in other words, a weak Sobolev regularity of the
map t 7→ S(t)x, i.e., for every continuous linear functional µ, the map

(
t 7→ µS(t)x

)
∈

W 1,∞
loc

(
[0,∞)

)
. These domains are shown to be invariant as well, and we discuss their

relation to one another. In Section 4, we consider the example of the uncertain shift
semigroup, which corresponds to the fully nonlinear PDE

∂ty(t, u) = |∂uy(t, u)|, y(0, ·) = x. (1.3)

Here, the nonlinear operator is given by Ay = |∂uy|. In that case, it holds BUC1 ⊂
D(Aδ) ⊂ W 1,∞ and W 1,∞ is invariant under the corresponding semigroup. Note that
(1.3) is a special case of the Hamilton-Jacobi PDE, where under appropriate conditions
on the nonlinearity the viscosity solution is given by the Hopf-Lax formula (see, e.g.,
[17, Section 3.3], [25, Section 11.1]).

Similarly, for the second-order differential operator Ay = 1
2 max{σ∂uuy, σ∂uuy},

where 0 ≤ σ ≤ σ, we derive that W 2,∞ is invariant under the respective semigroup,
which corresponds to the G-heat equation. We remark that in the parabolic situation
σ > 0 many results on the solvability of this second-order fully nonlinear equation in
Sobolev and Hölder spaces were obtained by Krylov, see [22, Chapters 12 and 13].

Assumptions and notation. Throughout this article, we assume that X is a real Banach
lattice which is a Riesz subspace of a Dedekind σ-complete Riesz space X. A typical
example is the space BUC as a subspace of the space L∞ of all bounded measurable
functions. We denote by X ′ the dual space of X, i.e., the space of all continuous linear
functionals X → R. For a sequence (xn)n in X, we write xn ↓ x if (xn)n is decreasing,
bounded from below, and x = infn xn ∈ X. We define

Xδ :=
{
x ∈ X : xn ↓ x for some sequence (xn)n in X

}
.

Let M be the space of all positive linear functionals µ : X → R which are continuous
from above, i.e. µxn ↓ 0 for every sequence (xn)n in X such that xn ↓ 0. Every µ ∈M
has a unique extension µ : Xδ → R which is continuous from above, i.e. µxn ↓ µx for
every sequence (xn)n in Xδ such that xn ↓ x ∈ Xδ, see e.g. [12, Lemma 3.9]. We assume
that the set M separates the points of Xδ, i.e. for every x, y ∈ Xδ with x 6= y there
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exists some µ ∈M with µx 6= µy. For an operator S : X → X, we define

‖S‖r := sup
x∈B(0,r)

‖Sx‖

for all r > 0, where B(x0, r) := {x ∈ X : ‖x − x0‖ ≤ r} for x0 ∈ X. We say that
an operator S : X → X is convex if S

(
λx + (1 − λ)y

)
≤ λSx + (1 − λ)Sy for all

λ ∈ [0, 1], positive homogeneous if S(λx) = λSx for all λ > 0, sublinear if S is convex
and positive homogeneous, monotone if x ≤ y implies Sx ≤ Sy for all x, y ∈ X, and
bounded if ‖S‖r <∞ for all r > 0.

We consider a convex C0-semigroup S on X, i.e., a family S =
(
S(t)

)
t≥0

of bounded

operators X → X satisfying

(S1) S(0)x = x for all x ∈ X,
(S2) S(t+ s)x = S(t)S(s)x for all x ∈ X and s, t ∈ [0,∞),
(S3) S(t)x→ x as t ↓ 0 for all x ∈ X.

We say that S is monotone, convex, or sublinear if S(t) is monotone, convex, or sublinear
for all t ≥ 0, respectively. For t ≥ 0 and x ∈ X, we define the convex operator
Sx(t) : X → X by

Sx(t)y := S(t)(x+ y)− S(t)x.

2. Invariant domains

In this section, we discuss the invariance of various notions of generators and domains.
We start with a notion of continuity, which we will require on several occasions.

Definition 2.1. A monotone semigroup S is called continuous from above if S(t)xn ↓
S(t)0 for all t ∈ [0,∞) and every sequence (xn)n in X with xn ↓ 0.

As before, let S be a convex semigroup on X. In contrast to [13], where the Banach
lattice X is Dedekind σ-complete with order continuous norm, the domain

D(A) :=

{
x ∈ X :

S(h)x− x
h

is convergent in X for h ↓ 0

}
is in general not invariant under the semigroup. For instance, for the uncertain semi-
group (S(t))t∈[0,∞) in Section 4.1, there exists some x ∈ D(A) such that S(t)x 6∈ D(A)
for some t ∈ (0,∞). We therefore introduce the following modified versions of the
domain.

Definition 2.2. The domain D(Aδ) of the monotone generator Aδ is defined as the
set of all x ∈ X such that, for every (hn)n in (0,∞) with hn ↓ 0, there exists a sequence
(Anx)n in X and some y ∈ Xδ such that∥∥∥∥S(hn)x− x

hn
−Anx

∥∥∥∥→ 0 and Anx ↓ y. (2.1)

We define the monotone generator Aδ : D(Aδ) ⊂ X → Xδ of S by Aδx := y for
x ∈ D(Aδ), where y is the limit in (2.1), which is uniquely determined by Lemma B.1.

Definition 2.3. The Lipschitz set of the semigroup S is defined as

DL :=

{
x ∈ X : sup

h∈(0,h0]

∥∥∥∥S(h)x− x
h

∥∥∥∥ <∞ for some h0 > 0

}
. (2.2)

We further define the symmetric Lipschitz set of the semigroup S by

Ds
L :=

{
x ∈ X : x,−x ∈ DL

}
.
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Let W 1,∞
loc

(
[0,∞)

)
denote the space of all functions f ∈ L∞loc

(
[0,∞)

)
with weak

derivative f ′ ∈ L∞loc

(
[0,∞)

)
. Recall that W 1,∞

loc

(
[0,∞)

)
coincides with space of all

locally Lipschitz continuous functions [0,∞)→ R. The following observation is one of
the fundamental ingredients in the proof of Section 3, below.

Remark 2.4. Let x ∈ X. Then, x ∈ D(L) if and only if(
t 7→ µS(t)x

)
∈W 1,∞

loc

(
[0,∞)

)
for all µ ∈ X ′.

In fact, by Proposition A.4, the map [0,∞) → X, t 7→ µS(t)x is locally Lipschitz for
every x ∈ DL and µ ∈ X ′, which proves one direction of the equivalence. Now, assume
that

(
t 7→ µS(t)x

)
∈W 1,∞

loc

(
[0,∞)

)
for all µ ∈ X ′. Then, for every µ ∈ X ′,

sup
h∈(0,1]

∣∣∣∣µ(S(h)x− x
h

)∣∣∣∣ <∞.
By the Banach-Steinhaus theorem, it follows that x ∈ DL. If supt≥0 ‖S(t)‖r < ∞ for
all r ≥ 0, as, for example, in Section 4.1 and Section 4.2, we obtain that x ∈ D(L) if
and only if (

t 7→ µS(t)x
)
∈W 1,∞([0,∞)

)
for all µ ∈ X ′.

We say that the norm ‖ · ‖ on X is σ-order continuous if limn→∞ ‖xn‖ = 0 for every
decreasing sequence (xn)n∈N with infn∈N xn = 0. The prime example for a Banach
lattice with σ-order continuous norm is the closure C0 w.r.t. supremum norm ‖ · ‖∞
of the space Cc of all continuous functions Ω → R with compact support, where Ω is
a locally compact metric space. Moreover, we say that the norm ‖ · ‖ on X is order
continuous if, for every net (xα)α with xα ↓ 0, we have ‖xα‖ → 0. Notice that order
continuity of the norm is, for example, implied by separability of X together with
Dedekind σ-completeness of X, i.e., any countable non-empty subset of X, which is
bounded above, has a supremum, cf. [26, Exercise 2.4.1] or [35, Corollary to Theorem
II.5.14]. Typical examples for Banach lattices with order continuous norm are the
spaces Lp(µ) for p ∈ [1,∞) and an arbitrary measure µ, the space c0 of all sequences
vanishing at infinity, and Orlicz spaces. We would like to point out that, due to its
strong implications, we avoid order continuity of the norm in the present paper. A
detailed study of convex semigroups on Banach lattices with order continuous norm
can be found in [13].

We have the following relations between the domains and generators.

Lemma 2.5. One has D(A) ⊂ D(Aδ) ⊂ DL, and Aδ|D(A) = A. If the norm ‖ · ‖ on X
is σ-order complete, then x ∈ D(Aδ) with Aδx ∈ X implies x ∈ D(A) and Aδx = Ax.
If the norm ‖ · ‖ on X is order complete, then Aδ = A.

Proof. We first assume that x ∈ D(A). Then, for every hn ↓ 0 and Anx := Ax for all
n ∈ N, one has ∥∥∥∥S(hn)x− x

hn
−Anx

∥∥∥∥→ 0,

which shows that x ∈ D(Aδ) with Aδx = Ax.
We next assume that x ∈ D(Aδ). Then, there exists some h0 > 0 such that

sup
h∈(0,h0]

∥∥∥∥S(h)x− x
h

∥∥∥∥ <∞.
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Otherwise, there exists a sequence hn ↓ 0 such that
∥∥S(hn)x−x

hn

∥∥ ≥ n for all n. Since x ∈
D(Aδ) there exists a bounded decreasing sequence (Anx)n in X such that Anx ↓ Aδx
and ∥∥∥∥S(hn)x− x

hn
−Anx

∥∥∥∥→ 0.

But then,

sup
n

∥∥∥∥S(hn)x− x
hn

∥∥∥∥ ≤ sup
n

∥∥∥∥S(hn)x− x
hn

−Anx
∥∥∥∥+ sup

n
‖Anx‖ <∞,

which is a contradiction. This shows that x ∈ DL. If the norm ‖ · ‖ on X is order

complete and x ∈ D(Aδ) with Aδx ∈ X, then ‖Anx − Aδx‖ → 0, so that S(hn)x−x
hn

→
Aδx. If, in addition, X is σ-Dedekind complete, then Aδx ∈ X for all x ∈ D(Aδ), which
shows that Aδ = A. �

For every x ∈ X and y ∈ Xδ, the directional derivative is defined as

S′+(t, x)y = inf
h>0

S(t)(x+ hy)− S(t)x

h
∈ Xδ.

For further details on the directional derivative we refer to Appendix B. The main result
of this subsection is that both, D(Aδ) and DL, are invariant under the semigroup, and
states regularity properties in the time variable t.

Theorem 2.6. For every x ∈ DL one has

(i) S(t)x ∈ DL for all t ∈ [0,∞),
(ii) for every µ ∈M there is a locally bounded measurable function fµ : [0,∞)→ R

with µS(t)x = µx+
∫ t

0 fµ(s) ds for all x ∈ D(Aδ) and t ≥ 0.

For every x ∈ D(A) it holds

(iii) S(t)x ∈ D(Aδ) for all t ≥ 0 with AδS(t)x = S′+(t, x)Aδx,

(iv) µS(t)x = µx+
∫ t

0 µS
′
+(s, x)Aδx ds for every µ ∈M and all t ≥ 0. In particular,

fµ(s) = µS′+(s, x)Aδx for almost every s ∈ [0,∞).

Moreover, (iii) and (iv) hold for all x ∈ D(Aδ) if, in addition, the semigroup is mono-
tone and continuous from above.

Proof. (i) Fix t ≥ 0. By Corollary A.2 there exist L ≥ 0 and r > 0 such that

‖S(t)(y + x)− S(t)x‖ ≤ L‖y‖

for all y ∈ B(x, r). Since S(h)x→ x as h ↓ 0, it follows that∥∥∥∥S(h)S(t)x− S(t)x

h

∥∥∥∥ =

∥∥∥∥S(t)S(h)x− S(t)x

h

∥∥∥∥ ≤ L∥∥∥∥S(h)x− x
h

∥∥∥∥ <∞
for all h ∈ (0, h′0] and some h′0 > 0.

(ii) Since x ∈ DL, it follows from Proposition A.4 that the map [0,∞) → X, t 7→
S(t)x is locally Lipschitz continuous. Fix µ ∈M . Since µ is continuous on X, see e.g. [1,
Theorem 9.6], the map [0,∞)→ R, t 7→ µS(t)x is also locally Lipschitz continuous and

is therefore in W 1,∞
loc

(
[0,∞)

)
by Lebesgue’s theorem. That is, there exists a locally

bounded measurable function fµ : [0,∞)→ R with µS(t)x = µx+
∫ t

0 fµ(s) ds.



CONVEX MONOTONE SEMIGROUPS ON LATTICES OF CONTINUOUS FUNCTIONS 7

(iii) Fix t > 0, let (hn)n be a sequence in (0,∞) with hn ↓ 0, and x ∈ D(A). By
Corollary A.2, there exists some L > 0 such that∥∥∥∥S(t+ hn)x− S(t)x

hn
− S(t)(x+ hnAx)− S(t)x

hn

∥∥∥∥ =

∥∥∥∥S(t)S(hn)x− S(t)(x+ hnAx)

hn

∥∥∥∥
≤ L

∥∥∥∥S(hn)x− x− hnAx
hn

∥∥∥∥ = L

∥∥∥∥S(hn)x− x
hn

−Ax
∥∥∥∥→ 0 as n→∞.

Moreover, the sequence

An
(
S(t)x

)
:=

S(t)(x+ hnAx)− S(t)x

hn

is decreasing and satisfies An(S(t)x) ↓ S′+(t, x)Ax. This shows that S(t)x ∈ D(Aδ)
with AδS(t)x = S′+(t, x)Ax. Recall that Ax = Aδx for all x ∈ D(A) by Lemma 2.5.

If in addition, S is monotone, continuous from above, and x ∈ D(Aδ), then there
exists a bounded decreasing sequence (Anx)n in X such that∥∥∥∥S(hn)x− x

hn
−Anx

∥∥∥∥→ 0 and Anx ↓ Aδx.

By Corollary A.2, there exists some L > 0 such that∥∥∥∥S(t+ hn)x− S(t)x

hn
− S(t)(x+ hnAnx)− S(t)x

hn

∥∥∥∥ ≤ L∥∥∥∥S(hn)x− x
hn

−Anx
∥∥∥∥→ 0

as n→∞. By Lemma B.4, the sequence (AnS(t)x) given by

AnS(t)x :=
S(t)(x+ hnAnx)− S(t)x

hn

is decreasing and satisfies AnS(t)x ↓ S′+(t, x)Aδx. This shows that S(t)x ∈ D(Aδ) with
AδS(t)x = S′+(t, x)Aδx.

(iv) Since x ∈ D(Aδ), it follows from Lemma 2.5 that x ∈ DL. Fix µ ∈ M . By (ii)
one has

µS(t)x = µx+

∫ t

0
fµ(s) ds

for all t ≥ 0. In particular, t 7→ µS(t)x is differentiable almost everywhere. Since µ
is continuous from above it follows from the previous step (iii) that the derivative is
a.e. given by

fµ(t) = lim
h↓0

µS(t+ h)x− µS(t)x

h
= µAδS(t)x = µS′+(t, x)Aδx.

The proof is complete. �

For the symmetric Lipschitz set of a sublinear monotone semigroup, we have the
following proposition.

Proposition 2.7. Let S be sublinear and monotone. Then, the symmetric Lipschitz
set Ds

L is a linear subspace of X. If

− S(s)
(
− S(t)x

)
≥ S(t)

(
− S(s)(−x)

)
for all s, t ≥ 0 and x ∈ X, (2.3)

then S(t)x ∈ Ds
L for all t ≥ 0 and x ∈ Ds

L.
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Proof. The sublinearity of S implies that

S(t)(x+ λy)− (x+ λy) ≤ S(t)x− x+ λ
(
S(t)y − y

)
and

−S(t)(x+ λy) + x+ λy ≤ S(t)(−x) + x+ λ
(
S(t)(−y) + y

)
for all x, y ∈ X and λ > 0. Consequently,

‖S(t)(x+λy)−(x+λy)‖ ≤ ‖S(t)x−x‖+‖S(t)(−x)+x‖+λ
(
‖S(t)y−y‖+‖S(t)(−y)+y‖

)
for all x, y ∈ X and λ > 0, which shows that x+ λy ∈ Ds

L for all x, y ∈ Ds
L and λ > 0.

Since −x ∈ Ds
L for all x ∈ Ds

L, it follows that Ds
L is a linear subspace of X.

Now, let x ∈ Ds
L and t ≥ 0. Since S(t) is sublinear and bounded, it is globally

Lipschitz with some Lipschitz constant L > 0 (see Lemma A.1). Therefore,

‖S(h)S(t)x− S(t)x‖ ≤ L‖S(h)x− x‖,
i.e. S(t)x ∈ DL. It remains to show that −S(t)x ∈ DL. First, observe that

−S(t)x− S(h)
(
− S(t)x

)
≤ −S(t)x+ S(h)S(t)x ≤ S(t)

(
S(h)x− x

)
and, by (2.3),

S(h)
(
− S(t)x

)
+ S(t)x ≤ −S(t)

(
− S(t)(−x)

)
+ S(t)x ≤ S(t)

(
S(h)(−x) + x

)
.

Therefore,∥∥S(h)
(
− S(t)x

)
+ S(t)x

∥∥ ≤ L(‖S(h)x− x‖+
∥∥(S(h)(−x) + x

)∥∥),
which shows that −S(t)x ∈ DL. �

Example 2.8. Let S be a translation-invariant sublinear monotone semigroup on the
space BUC = BUC(G), where G is an abelian group with a translation invariant metric
d such that (G, d) is separable and complete. Here, translation invariant means that(

S(t)x(u+ ·)
)
(0) =

(
S(t)x

)
(u) for all x ∈ BUC, u ∈ G and t ≥ 0.

The space BUC of all bounded uniformly continuous functions x : G → R is endowed
with the supremum norm ‖x‖∞ := supu∈G |x(u)|. Under mild continuity assumptions,
the semigroup has a dual representation(

S(t)x
)
(u) = sup

µ∈Pt

∫
G
x(u+ v) dµt(v) for all x ∈ BUC, u ∈ G and t ≥ 0. (2.4)

where Pt is a convex set of Borel measures on G for all t ≥ 0. For further details on
dual representations we refer to [12] and, for further examples, we refer to [14]. Notice
that, under (2.4),

−
(
S(t)(−x)

)
(u) = inf

µ∈Pt

∫
G
x(u+ v) dµt(v) for all x ∈ BUC, u ∈ G and t ≥ 0.

Then, for x ∈ BUC, u ∈ G, µt ∈ Pt and µs ∈ Ps, it follows from (2.4) and Fubini’s
theorem that∫

G

(
S(t)x

)
(u+ v) dµs(v) ≥

∫
G

∫
G
x(u+ v + w) dµt(w) dµs(v)

=

∫
G

∫
G
x(u+ v + w) dµs(v) dµt(w)

≥
∫
G
−
(
S(s)(−x)

)
(u+ w) dµt(w).
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Taking the infimum over all µs ∈ Pt and supremum over all µt ∈ Ps yields

−S(s)
(
− S(t)x

)
≥ S(t)

(
− S(s)(x)

)
.

By Proposition 2.7, we thus find that Ds
L is S(t)-invariant for all t ≥ 0.

Remark 2.9. Consider the setup of the previous example. Given C ≥ 0 and h0 > 0, let
Ds
L(C, h0) denote the set of all x ∈ Ds

L such that ‖S(h)x−x‖∞ ≤ Ch and ‖S(h)(−x)+
x‖∞ ≤ Ch for all h ∈ [0, h0]. Let x ∈ Ds

L(C, h0) and ν be a Borel probability measure
on G. Then, one has xν ∈ Ds

L(C, h0), where xν(u) :=
∫
G x(u + v) ν(dv). In fact,

by a Banach space valued version of Jensen’s inequality (see e.g. [14] or [27]) and the
translation invariance of S,

S(h)xν − xν = S(h)

(∫
G
x( · + v) dν(v)

)
− xν ≤

∫
G

(
S(h)x

)
( · + v) dν(v)− xν

=

∫
G

(
S(h)x

)
( · + v)− x( · + v) dν(v) ≤ Ch

for all h ≥ 0. In a similar way, it follows that

S(h)(−xν) + xν ≤
∫
G

(
S(h)(−x)

)
( · + v) + x( · + v) dν(v) ≤ Ch

for all h ∈ [0, h0]. Combining these two estimates yields that∥∥S(h)xν − xν
∥∥
∞ ≤ Ch and

∥∥S(h)(−xν) + xν
∥∥
∞ ≤ Ch

for all h ∈ [0, h0], i.e. xν ∈ Ds
L(C, h0).

3. Uniqueness

We are now ready to state the main result of this paper. Again, we assume that X
is a Banach lattice which is a Riesz subspace of a Dedekind σ-complete Riesz space X̄
and that the set M separates the points of Xδ (see Assumptions and Notation). We
show that a convex semigroup is uniquely determined on D(Aδ) through its generator
Aδ if the semigroup is, in addition, monotone and continuous from above.

Theorem 3.1. Let S be a convex monotone C0-semigroup on X which is continuous
from above with monotone generator Aδ. Let y : [0,∞) → X be a continuous function
with y(t) ∈ D(Aδ) for all t ≥ 0, and assume that, for all t ≥ 0 and (hn)n in (0,∞)
with hn ↓ 0, there exists a bounded decreasing sequence (Bny(t))n in X such that∥∥∥∥y(t+ hn)− y(t)

hn
−Bny(t)

∥∥∥∥→ 0 and Bny(t) ↓ Aδy(t).

Then, y(t) = S(t)x for all t ≥ 0, where x := y(0).

Proof. Let t > 0 and g(s) := S(t − s)y(s) for all s ∈ [0, t]. Fix s ∈ (0, t). For every
h > 0 with h < t− s one has

g(s+ h)− g(s)

h
=
S(t− s− h)y(s+ h)− S(t− s)y(s)

h

=
S(t− s− h)y(s+ h)− S(t− s− h)y(s)

h

− S(t− s− h)S(h)y(s)− S(t− s− h)y(s)

h
.
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Let (hn)n in (0,∞) with hn ↓ 0 and µ ∈ M . By assumption, for y := y(s) ∈ D(Aδ),
there exists a bounded decreasing sequence (Bny)n in X with∥∥∥∥y(s+ hn)− y(s)

hn
−Bny

∥∥∥∥→ 0 and Bny ↓ Aδy. (3.1)

We define

νnz :=
µS(t− s− hn)(y + hnz)− µS(t− s− hn)y

hn

for all z ∈ Xδ and n ∈ N with t− s− hn > 0, where we take the unique extension of S
to Xδ given by Lemma B.2. Moreover, let

νz := lim sup
n→∞

νnz for all x ∈ X.

We first show that

νz ≤ inf
h>0

µS(t− s)(y + hz)− µS(t− s)y
h

for all z ∈ X. (3.2)

Indeed, for every ε > 0, there exists some h0 > 0 and, by Corollary A.3 there exists
some m0 ∈ N such that

inf
h>0

µS(t− s)(y + hz)− µS(t− s)y
h

+ 2ε ≥ µS(t− s)(y + h0z)− µS(t− s)y
h0

+ ε

≥ µS(t− s− hm)(y + h0z)− µS(t− s− hm)y

h0

for all m ≥ m0. Hence, for all n ≥ m0, which satisfy hn ≤ h0, one has

inf
h>0

µS(t− s)(y + hz)− µS(t− s)y
h

+ 2ε

≥ µS(t− s− hn)(y + hnz)− µS(t− s− hn)y

hn
= νnz,

which shows (3.2) by taking the limit superior as n → ∞ and letting ε ↓ 0. As a
consequence of (3.2), it follows that ν is continuous from above (on X). Indeed, for
every sequence (zn)n in X with zn ↓ 0, one has

0 ≤ inf
n
νzn ≤ inf

h>0
inf
n

µS(t− s)(y + hzn)− µS(t− s)y
h

= 0

so that νzn ↓ 0. Moreover, by definition, νz = limn→∞ supk≥n νkz for all z ∈ X, and
therefore ν : X → R is convex. By [12, Lemma 3.9], ν uniquely extends to a convex
monotone functional ν : Xδ → R, which is continuous from above. We next show that

lim sup
n→∞

νnBny = νAδy. (3.3)

To that end, let ε > 0. Then, there exist n0,m0 ∈ N such that

νAδy + 2ε ≥ νBn0y + ε = νBn0y + ε ≥ νmBn0y ≥ νmBmy

for all m ≥ m0 ∨ n0, where the last inequality follows by monotonicity of νm. This
shows that

νAδy ≥ lim sup
n→∞

νnBny.
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Further,

νAδy = inf
m∈N

νBmy = inf
m∈N

inf
n∈N

sup
k≥n

νkBmy = inf
n∈N

inf
m∈N

sup
k≥n

νkBmy

≤ inf
n∈N

sup
k≥n

νkBky = lim sup
n→∞

νnBny.

By Lemma A.2, there exists some L > 0 such that∥∥∥∥S(t− s− hn)y(s+ hn)− S(t− s− hn)
(
y + hnBny

)
hn

∥∥∥∥ ≤ L∥∥∥∥y(s+ hn)− y
hn

−Bny
∥∥∥∥→ 0

as n→∞. Therefore, we conclude that

lim sup
n→∞

µ

(
S(t− s− hn)y(s+ hn)− S(t− s− hn)y

hn

)
= lim sup

n→∞
νnBny = νAδy. (3.4)

Since y = y(s) ∈ D(Aδ), it follows from (2.1) that there exists a bounded decreasing
sequence (Any)n with∥∥∥∥S(hn)y − y

hn
−Any

∥∥∥∥→ 0 and Any ↓ Aδy.

By the same arguments as before, we get

lim sup
n→∞

µ

(
S(t− s− hn)S(hn)y − S(t− s− hn)y

hn

)
= lim sup

n→∞
νnAny = νAδy. (3.5)

Hence, in combination with (3.4), we get

lim sup
n→∞

µ

(
S(t− s− hn)y(s+ hn)− S(t− s− hn)y(s)

hn

)
= lim sup

n→∞
µ

(
S(t− s− hn)S(hn)y(s)− S(t− s− hn)y(s)

hn

)
(3.6)

for every sequence (hn)n in (0,∞) with hn ↓ 0 and all µ ∈ M . As a consequence, we
conclude that

µg(s+ hn)− µg(s)

hn
→ 0 (3.7)

for every sequence (hn)n in (0,∞) with hn ↓ 0 and all µ ∈M . Indeed, by passing to a
subsequence (nk)k, we may assume that

lim sup
n→∞

µg(s+ hn)− µg(s)

hn
= lim

k→∞

µg(s+ hnk
)− µg(s)

hnk

.

By passing to another subsequence, which we still denote by (nk)k, we can further
assume that

lim inf
k→∞

µ

(
S(t− s− hnk

)S(hnk
)y(s)− S(t− s− hnk

)y(s)

hnk

)
= lim sup

k→∞
µ

(
S(t− s− hnk

)S(hnk
)y(s)− S(t− s− hnk

)y(s)

hnk

)
. (3.8)
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Then, by applying the equality (3.6) to the subsequence (hnk
)k we obtain

lim sup
n→∞

µg(s+ hn)− µg(s)

hn
= lim

k→∞

µg(s+ hnk
)− µg(s)

hnk

≤ lim sup
k→∞

µ

(
S(t− s− hnk

)y(s+ hnk
)− S(t− s− hnk

)y(s)

hnk

)
− lim inf

k→∞
µ

(
S(t− s− hnk

)S(hnk
)y(s)− S(t− s− hnk

)y(s)

hnk

)
= 0,

where the last equality follows from (3.6) and (3.8). With similar arguments, we also

obtain lim infn→∞
µg(s+hn)−µg(s)

hn
≥ 0, which shows (3.7).

Since µ is continuous on X, see e.g. [1, Theorem 9.6], it follows by the same arguments
as in the proof of [13, Theorem 3.5] that s 7→ µg(s) is continuous on [0, t]. By [30,
Lemma 1.1, Chapter 2], we conclude that the map s 7→ µg(s) is constant on [0, t], since
it is continuous and its right derivative vanishes on [0, t). In particular, µy(t) = µg(t) =
µg(0) = µS(t)y(0) for all µ ∈ M . This shows that y(t) = S(t)y(0) as M separates the
points of X. �

Corollary 3.2. Let S be a convex monotone C0-semigroup on X which is continuous
from above with monotone generator Aδ, and let T be a convex C0-semigroup on X
with generator B and monotone generator Bδ such that Bδ ⊂ Aδ. If D(B) = X, then
S(t) = T (t) for all t ≥ 0.

Proof. For every x ∈ D(B), the mapping y : [0,∞) → X, y(t) := T (t)x satisfies the
assumptions of Theorem 3.1. Indeed, y(0) = x by definition, t 7→ y(t) is continuous by
Corollary A.3, and y(t) ∈ D(Bδ) ⊂ D(Aδ) by Theorem 2.6 with∥∥∥∥y(t+hn)−y(t)

hn
−Bny(t)

∥∥∥∥→ 0 and Bny(t) ↓ Bδy(t) = Aδy(t)

where Bny(t) := T (t)(x+hnBx)−T (t)x
hn

for all n ∈ N. Hence, by Theorem 3.1, it follows

that T (t)x = y(t) = S(t)x for all t ≥ 0. Since, by Lemma A.1, the bounded convex

functions T (t) and S(t) are continuous, and D(B) = X, it holds S(t) = T (t) for all
t ≥ 0. �

4. Examples

4.1. The uncertain shift semigroup on BUC. Let G be a convex set endowed with
a metric d : G × G → [0,∞). We assume that, for every u, v ∈ G and λ ∈ (0, 1),
there exists some λ(u, v) ∈ G such that d(u, λ(u, v)) = λd(u, v) and d(λ(u, v), v) = (1−
λ)d(u, v). The space of all bounded uniformly continuous functions x : G→ R is denoted
by BUC = BUC(G) and endowed with the supremum norm ‖x‖∞ := supu∈G |x(u)|.
Notice that BUC is a Riesz subspace of the Dedekind σ-complete Riesz space L∞ of all
bounded Borel measurable functions x : G→ R. On L∞, we consider the partial order
x ≤ y whenever x(u) ≤ y(u) for all u ∈ G.

The uncertain shift semigroup S on BUC is defined by(
S(t)x

)
(u) := sup

d(u,v)≤t
x(v) for all x ∈ BUC, u ∈ G and t ≥ 0.

Lemma 4.1. S is a sublinear monotone C0-semigroup on BUC. Moreover,

DL = Ds
L = Lipb,

where Lipb = Lipb(G) is the space of all bounded Lipschitz continuous functions G→ R.



CONVEX MONOTONE SEMIGROUPS ON LATTICES OF CONTINUOUS FUNCTIONS 13

Proof. We first show that S(t) : BUC → BUC is well-defined and bounded. To this
end, fix x ∈ BUC. Since

|S(t)x(u)| ≤ sup
d(u,v)≤t

|x(v)| = ‖x‖∞ for all u ∈ G,

it follows that ‖S(t)x‖∞ ≤ ‖x‖∞. Fix ε > 0 and δ > 0 such that |x(u)− x(v)| ≤ ε for
all u, v ∈ G with d(u, v) ≤ δ. Let u, v ∈ G with d(u, v) ≤ δ and w ∈ G with d(u,w) ≤ t.
Then, for λ := t

t+δ , one has

d
(
v, λ(v, w)

)
= λd(v, w) ≤ λ(t+ δ) = t

and

d
(
w, λ(v, w)

)
= (1− λ)d(v, w) ≤ (1− λ)(t+ δ) = δ

Hence,

x(w)−
(
S(t)x

)
(v) ≤ x(w)− x

(
λ(v, w)

)
≤ ε.

Taking the supremum over all w ∈ G with d(u,w) ≤ t, it follows that(
S(t)x

)
(u)−

(
S(t)x

)
(v) ≤ ε.

By a symmetry argument, we obtain that |S(t)x(u) − S(t)x(v)| ≤ ε, showing that
S(t)x is uniformly continuous with the same modulus of continuity as x. We thus have
shown that S(t) : BUC → BUC is well-defined and bounded. By definition, each S(t)
is sublinear and monotone, and S(0)x = x for all x ∈ BUC. Moreover, for t ≤ δ, one
has ∣∣(S(t)x

)
(u)− x(u)

∣∣ ≤ sup
d(u,v)≤t

|x(v)− x(u)| ≤ ε

for all u ∈ G, i.e. ‖S(t)x − x‖∞ ≤ ε for all t ≤ δ, which shows that S is strongly
continuous. It remains to show that S satisfies the semigroup property. Let s, t ≥ 0.
Further, let u ∈ G and w ∈ G with d(u,w) ≤ s+ t. Then, for λ := t

s+t , it holds

d
(
w, λ(u,w)

)
= (1− λ)d(u,w) ≤ s

and

d
(
u, λ(u,w)

)
= λd(u,w) ≤ t.

Hence,

x(w) ≤ sup
d(λ(u,w),v)≤s

x(v) =
(
S(s)x

)(
λ(u,w)

)
≤ sup

d(u,v)≤t

(
S(s)x

)
(v) =

(
S(t)S(s)x

)
(u).

Taking the supremum over all w ∈ G with d(u,w) ≤ s+ t, it follows that(
S(s+ t)x

)
(u) ≤

(
S(t)S(s)x

)
(u).

Now, let w ∈ G with d(u,w) ≤ t. Then, there exists a sequence (wn)n in G with
d(w,wn) ≤ s and x(wn)→

(
S(s)x

)
(w). Then,(

S(s)x
)
(w) = lim

n→∞
x(wn) ≤ sup

d(u,v)≤s+t
x(v) =

(
S(s+ t)x

)
(u).

Taking the supremum over all w ∈ G with d(u,w) ≤ t, yields that(
S(t)S(s)x

)
(u) ≤

(
S(s+ t)x

)
(u).

Altogether, we have shown that S is a sublinear monotone C0-semigroup on BUC.
Now, let x ∈ DL. Then, there exist h0 > 0 and C ≥ 0 such that ‖S(h)x−x‖∞ ≤ Ch

for all h ∈ [0, h0]. Hence, for all u, v ∈ G with d(u, v) =: h ≤ h0,

x(u)− x(v) ≤
(
S(h)x

)
(v)− x(v) and x(v)− x(u) ≤

(
S(h)x

)
(u)− x(u).
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This implies that |x(u) − x(v)| ≤ ‖S(h)x − x‖∞ ≤ Ch = Cd(u, v). Since x ∈ BUC
is bounded, it follows that x ∈ Lipb. On the other hand, if x ∈ Lipb ⊂ BUC with
Lipschitz constant C > 0, it follows that

‖
(
S(h)x

)
(u)− x(u)‖ ≤ sup

d(u,v)≤h
|x(v)− x(u)| ≤ Cd(u, v) ≤ Ch

for all u ∈ G and h ≥ 0. Therefore x ∈ DL. Since −x ∈ Lipb for all x ∈ Lipb, it follows
that Lipb ⊂ Ds

L. Since, by definition, Ds
L ⊂ DL, the assertion follows. �

We now specialize on the case, where G = R with the Euclidean distance d(u, v) =
|u− v|. In this case, the uncertain shift semigroup is given by(

S(t)x
)
(u) = sup

|v|≤t
x(u+ v)

for all u ∈ R and t ∈ [0,∞). By Lemma 4.1, it follows that S is a sublinear monotone
C0-semigroup on BUC. In addition, by Dini’s lemma, it is continuous from above.
Denote by Aδ : D(Aδ) ⊂ BUC → BUCδ the monotone generator of S. Notice that
BUCδ is the space of all bounded upper semicontinuous functions R → R. Moreover,
by Lemma 4.1, we have that DL = Ds

L = W 1,∞. Recall that the space of all Lipschitz
continuous functions coincides with the space W 1,∞ = W 1,∞(R) of all functions with
weak derivative x′ ∈ L∞ = L∞(R) (w.r.t. the Lebesgue measure). As usual, we denote
by BUC1 = BUC1(R) the set of all x ∈ BUC which are differentiable with x′ ∈ BUC.
From a PDE point of view, one might consider BUC1 to be the canonical choice for
the domain of the generator of S. However, the following example shows that this does
not yield an m-accretive operator.

Example 4.2. Let X = BUC and B : D(B) → X with Bx := |x′| for x ∈ D(B) :=
BUC1. Then B is accretive, i.e., for some (equivalently, for any) h > 0, 1 + hB is
injective and∥∥(1 + hB)−1y1 − (1 + hB)−1y2

∥∥ ≤ ‖y1 − y2‖ for all y1, y2 ∈ R(1 + hB),

cf. [3, Proposition 3.1] and [8, Formula (8)]. To see this, let x1, x2 ∈ D(B) and h > 0.
We set y := x1−x2 and choose a sequence (uk)k in R with |y(uk)| → ‖y‖∞ as k →∞. If
(uk)k has a finite accumulation point u0, then we have |y(u0)| = ‖y‖∞, and the function
y has a local extremum at u0. Consequently, y′(u0) = 0 and therefore x′1(u0) = x′2(u0).
We obtain∥∥x1 − x2+h(|x′1| − |x′2|)

∥∥
∞ ≥

∣∣x1(u0)− x2(u0) + h(|x′1(u0)| − |x′2(u0)|
∣∣

= |x1(u0)− x2(u0)| = |y(u0)| = ‖y‖∞ = ‖x1 − x2‖∞.

If (uk)k∈N has no finite accumulation point, we may w.l.o.g. assume that uk → ∞ as
k →∞. Moreover, taking a subsequence we may also assume that y(uk)→ ±‖y‖∞ as
k → ∞. Again, w.l.o.g. let y(uk) → ‖y‖∞ as k → ∞. Let ε > 0, and choose k0 ∈ N
with

‖y‖∞ − ε̃ ≤ y(uk) ≤ ‖y‖∞ for all k ≥ k0,

where we have set ε̃ := min{ ε2 ,
ε

2h}. Let `0 > k0 with u`0 ≥ uk0 + 1. As y ∈ BUC1,
there exists some v0 ∈ (uk0 , u`0) with

ε̃ ≥ |y(u`0)− y(uk0)| = |y′(v0)| |u`0 − uk0 | ≥ |y′(v0)|.
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We obtain∥∥x1 − x2+h(|x′1| − |x′2|)
∥∥
∞ ≥

∣∣x1(v0)− x2(v0) + h(|x′1(v0)| − |x′2(v0)|)
∣∣

≥ |x1(v0)− x2(v0)| − h
∣∣|x′1(v0)| − |x′2(v0)|

∣∣
≥ |x1(v0)− x2(v0)| − h|x′1(v0)− x′2(v0)|
= |y(v0)| − h|y′(v0)| ≥ ‖y‖∞ − ε

2 − h
ε

2h = ‖x1 − x2‖∞ − ε.

As ε > 0 was arbitrary, we see that also in this case the inequality∥∥x1 − x2 + h(|x′1| − |x′2|)
∥∥
∞ ≥ ‖x1 − x2‖∞

holds, which shows that B is accretive.
However, the operator B is not m-accretive, i.e., the operator 1+hB is not surjective.

For this, let h > 0, and set f(u) := (1 − |u|)1[−1,1](u) for u ∈ R. Assume that there
exists some x ∈ D(B) with

x(u) + h|x′(u)| = f(u) for u ∈ R. (4.1)

As f is an even function, we see that the function x̄ defined by x̄(u) := x(−u) is also a
solution of (4.1). As B is accretive, the operator 1 + hB is injective, which shows that
x̄ = x, i.e., the solution x is an even function, too. As x ∈ BUC1, we get x′(0) = 0 and
therefore x(0) = f(0) = 1. Now, the differentiability of x leads to a contradiction to
x(u) ≤ f(u) for all u ∈ R, which holds by (4.1).

Proposition 4.3. Let G = R. Then, BUC1 ⊂ D(A) ⊂ D(Aδ) ⊂ DL = Ds
L = W 1,∞.

In particular, S(t)x ∈W 1,∞ for every x ∈W 1,∞ and all t ≥ 0. Further, for x ∈ D(Aδ),
one has Aδx = |x′| almost everywhere.

Proof. If x ∈ BUC1, it follows from Taylor’s theorem that∥∥∥∥S(h)x− x
h

− |x′|
∥∥∥∥
∞
→ 0 as h ↓ 0.

Hence, by Lemma 2.5 and Lemma 4.1,

BUC1 ⊂ D(A) ⊂ D(Aδ) ⊂ DL = Ds
L = W 1,∞.

In particular, W 1,∞ is invariant under the uncertain shift semigroup by Theorem 2.6.
Let x ∈ W 1,∞. By Rademacher’s theorem the function x is differentiable almost

everywhere. If x is differentiable at u, then

lim
h↓0

(
S(h)x

)
(u)− x(u)

h
= lim

h↓0
sup
|v|≤h

x(u+ v)− x(u)

h
= lim

h↓0
sup
|v|=h

x(u+ v)− x(u)

h

= |x′(u)|.

Since, for x ∈ D(Aδ), one has(
Aδx

)
(u) = lim

h↓0

(
S(h)x

)
(u)− x(u)

h

for all u ∈ Rd, we conclude that Aδx = |x′| almost everywhere. Here, x′ is understood
as the weak derivative in L∞. �

The following example shows that, in general, D(A) is not invariant under the semi-
group (S(t))t≥0.
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Example 4.4. Consider the case G = R, and let x ∈ BUC1 with

x(u) =

{
u2, u ∈ [0, 2],

u4, u ∈ [−2, 0).

Then, by Proposition 4.3, S(1)x ∈ D(Aδ) ⊂ W 1,∞ with AδS(1)x =
∣∣(S(1)x

)′∣∣. By
definition of S(1), (

S(1)x
)
(u) =

{
(u+ 1)2, u ∈ [0, 1],

(u− 1)4, u ∈ [−1, 0),

which implies that (
S(1)x

)′
(u) =

{
2(u+ 1), u ∈ (0, 1),

4(u− 1)3, u ∈ (−1, 0).

Therefore, AδS(1)x =
∣∣(S(1)x

)′∣∣ /∈ BUC and, in particular, S(1)x /∈ D(A).

4.2. The symmetric Lipschitz set of the G-expectation. We consider the G-
expectation on BUC = BUC(R), which corresponds to the sublinear semigroup(

S(t)x
)
(u) := sup

σ≤σ≤σ
E
[
x
(
u+

∫ t

0
σs dWs

)]
for x ∈ BUC, u ∈ G and t ≥ 0,

where W is a Brownian motion on a filtered probability space (Ω,F , (Ft),P) and the
supremum is taken over all progressively measurable processes with values in [σ, σ], see
e.g. [11] and [33] for an overview on G-expectations. We assume that 0 ≤ σ ≤ σ. One
can verify that S is a translation invariant sublinear C0-semigroup on BUC which is
continuous from above. Moreover, an application of Itô’s formula shows that

lim
h↓0

S(h)x− x
h

=
1

2
max

{
σx′′, σx′′

}
for all x ∈ BUC2 = BUC2(R).

Fix x ∈ Ds
L. By definition of the symmetric Lipschitz set, there exist C > 0 and

h0 > 0 such that x ∈ Ds
L(C, h0). For every δ > 0, define xδ(u) :=

∫
R x(u + v) νδ(dv),

where νδ is the normal distribution N (0, δ) with mean zero and variance δ. Then,
xδ ∈ BUC2 for all δ > 0, and ‖xδ − x‖∞ → 0 as δ ↓ 0. In view of Remark 2.9, one has

S(h)xδ − xδ ≤ Ch and − S(h)(−xδ)− xδ ≥ −Ch
for all h ∈ [0, h0] and δ > 0. Hence, letting h ↓ 0, it follows that

1

2
σx′′δ ≤ C and

1

2
σx′′δ ≥ −C.

This shows that ‖x′′δ‖∞ is uniformly bounded in δ > 0. Hence, there exists a sequence
δn ↓ 0 such that

∫ v
u x
′′
δn

(z)− y(z) dz → 0 for all u, v ∈ R with u < v and some y ∈ L∞
w.r.t. the Lebesgue measure. By the dominated convergence theorem, we get

x(u+ h)− x(u) = lim
n→∞

(
xδn(u+ h)− xδn(u)

)
= lim

n→∞

(
hx′δn(u) +

∫ u+h

u

∫ v

u
x′′δn(z) dz dv

)
=
(

lim
n→∞

hx′δn(u)
)

+

∫ u+h

u

∫ v

u
y(z) dz dv



CONVEX MONOTONE SEMIGROUPS ON LATTICES OF CONTINUOUS FUNCTIONS 17

for all u ∈ R and h > 0. In particular, x is differentiable with x′(t) = limn→∞ x
′
δn

(t)

and second weak derivative x′′ = y, i.e. x ∈ W 2,∞. This shows that Ds
L = W 2,∞.

As an application of Proposition 2.7, it follows that S(t)x ∈ W 2,∞ for all t ≥ 0 and
x ∈ W 2,∞. Notice that we do not assume that σ > 0, which is a standard assumption
in PDE theory for obtaining regularity results in Hölder spaces (cf. Lieberman [24,
Chapter XIV] and Peng [33, Appendix C, §4] for a short survey).

Appendix A. Some auxiliary results

In this section, we list some basic properties for convex operators and semigroups,
which can be found, for example, in [13].

Lemma A.1 (cf. [13, Corollary A.4]). Let S : X → X be a bounded and convex
operator. Then, S is Lipschitz on bounded subsets, i.e., for every r > 0, there exists
some L > 0 such that ‖Sx− Sy‖ ≤ L‖x− y‖ for all x, y ∈ B(0, r).

Lemma A.2 (cf. [13, Corollary 2.4]). Let T > 0 and x0 ∈ X. Then, there exist L ≥ 0
and r > 0 such that

sup
t∈[0,T ]

‖S(t)y − S(t)z‖ ≤ L‖y − z‖

for all y, z ∈ B(x0, r).

Corollary A.3 (cf. [13, Corollary 2.5]). The map [0,∞)→ X, t 7→ S(t)x is continuous
for all x ∈ X.

Proof. Let t ≥ 0 and x ∈ X. Then, by Corollary A.2, there exist L ≥ 0 and r > 0 such
that

sup
s∈[0,t+1]

‖S(s)y − S(s)x‖ ≤ L‖y − x‖

for all y ∈ B(x, r). Moreover, there exists some δ ∈ (0, 1] such that ‖S(h)x − x‖ ≤ r
for all h ∈ [0, δ]. For s ≥ 0 with |s− t| ≤ δ it follows that

‖S(t)x− S(s)x‖ = ‖S(s ∧ t)S(|t− s|)x− S(s ∧ t)x‖ ≤ L‖S(|t− s|)x− x‖ → 0

as s→ t. �

Proposition A.4 (cf. [13, Proposition 2.7]). Let x ∈ X with

sup
h∈(0,h0]

∥∥∥∥S(h)x− x
h

∥∥∥∥ <∞ for some h0 > 0.

Then, the map [0,∞) → X, t 7→ S(t)x is locally Lipschitz continuous, i.e., for every
T > 0, there exists some LT ≥ 0 such that ‖S(t)x−S(s)x‖ ≤ LT |t−s| for all s, t ∈ [0, T ].

Appendix B. Directional derivatives of convex operators

In this section, we provide some fundamental results on directional derivatives of
convex operators. Again, we are in the standard setting of the paper, i.e. X is a
Banach lattice which is a Riesz subspace of a Dedekind σ-complete Riesz space X̄. Let
M be the space of all positive linear functionals µ : Xδ → R which are continuous from
above. We assume that M separates the points of Xδ.

Lemma B.1. Let (xn)n be a sequence in X. If (yn)n and (zn)n are decreasing sequences
in X which are bounded from below such that ‖xn − yn‖ → 0 and ‖xn − zn‖ → 0, then
infn yn = infn zn.
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Proof. Fix µ ∈M . Since µ is continuous on X, see e.g. [1, Theorem 9.6], one has

µ(yn − zn) = µ(yn − xn) + µ(xn − zn)→ 0,

which shows that

µ
(

inf
n
yn

)
= lim

n→∞
µyn + lim

n→∞
µ(zn − yn) = lim

n→∞
µzn = µ

(
inf
n
zn

)
.

Since infn yn, infn zn ∈ Xδ and M separates the points of Xδ, it follows that infn yn =
infn zn. �

Lemma B.2. Let S : X → X be a convex monotone operator which is continuous
from above. Then, it has a unique monotone convex extension S : Xδ → Xδ which is
continuous from above.

Proof. For each µ ∈ M , the convex monotone functional µS : X → R is continuous
from above. Thus, by [12, Lemma 3.9], it has a unique extension to a convex monotone
functional µS : Xδ → R which is continuous from above.

Fix x ∈ Xδ. For (xn)n and (yn)n in X with xn ↓ x and yn ↓ x, one has

µ
(

inf
n
Sxn

)
= inf

n
µSxn = µS

(
inf
n
xn

)
= µS

(
inf
n
yn

)
= inf

n
µSyn = µ

(
inf
n
Syn

)
,

so that Sx := infn Sxn is well defined as M separates the points of Xδ. Then, S is
convex and continuous from above as

µ
(

inf
n
Sxn

)
= inf

n
µSxn = µSx

for every (xn)n in Xδ with xn ↓ x ∈ Xδ. Moreover, if S̃ is another extension which is

continuous from above, then S̃x = limn→∞ S̃xn = limn→∞ Sxn = Sx for every (xn)n
in X with xn ↓ x ∈ Xδ, which shows that such an extension is unique. �

Let S : X → X be a convex operator. Then, the function

R \ {0} → X, h 7→ S(x+ hy)− Sx
h

is increasing for all x, y ∈ X. Hence, for all x ∈ X, the operators

S′+(x)y := inf
h>0

S(x+ hy)− Sx
h

and S′−(x)y := sup
h<0

S(x+ hy)− Sx
h

(B.1)

for y ∈ X are well-defined with values in X̄ since

S′+(x)y = inf
n∈N

S(x+ hny)− Sx
hn

∈ Xδ and S′−(x)y = sup
n∈N

Sx− S(x− hny)

hn
∈ −Xδ

for every sequence (hn)n in (0,∞) with hn → 0. The following properties follow directly
from the definition.

Remark B.3. For all x, y ∈ X one has

(i) S′−(x)y = −S′+(x)(−y),
(ii) S′−(x)y ≤ S′+(x)y,
(iii) S′+(x)y = S′−(x)y = Sy, if S is linear.

If S : X → X is a convex monotone operator which is continuous from above, then
by Lemma B.2 it has a unique convex monotone extension S : Xδ → Xδ which is
continuous from above. Therefore, S(x + hy) ∈ Xδ for all y ∈ Xδ and h > 0. Hence,
S′+(x) extends to

S′+(x) : Xδ → Xδ, y 7→ inf
h>0

S(x+ hy)− Sx
h
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for all x ∈ X.

Lemma B.4. Let S : X → X be a convex monotone operator which is continuous from
above. For every x ∈ X, the mapping S′+(x) has the following properties:

(i) S′+(x)y ≤ Sxy for all y ∈ Xδ,
(ii) S′+(x) : Xδ → Xδ is convex and positive homogeneous,
(iii) S′+(x) is continuous from above,

(iv) S(x+hnyn)−Sx
hn

↓ S′+(x)y, for all sequences (hn) in (0,∞) and (yn) in Xδ which
satisfy hn ↓ 0 and yn ↓ y ∈ Xδ.

Proof. (i) For every y ∈ Xδ, one has S′+(x)y ≤ S(x+ y)− S(x) = Sx(y).
(ii) For ε > 0, µ ∈M , and λ ∈ [0, 1] there exists some h > 0 such that

µ
(
λS′+(x)y1 + (1− λ)S′+(x)y2

)
+ ε

≥ λµS(x+ hy1)− µS(x)

h
+ (1− λ)

µS(x+ hy2)− µS(x)

h

≥
µS
(
x+ h(λy1 + (1− λ)y2)

)
− µS(x)

h
≥ µS′+(x)

(
λy1 + (1− λ)y2

)
.

This shows that S′+(x) is convex on Xδ. Moreover, for λ > 0 and y ∈ Xδ it holds

S′+(x)(λy) = inf
h>0

S(x+ λhy)− Sx
h

= λ inf
h>0

(
S(x+ λhy)− Sx

λh

)
= λS′+(x)y.

(iii) For every yn ↓ y one has

inf
n
S′+(x)yn = inf

h>0
inf
n

S(x+ hyn)− S(x)

h
= inf

h>0

S(x+ hy)− S(x)

h
= S′+(x)y.

(iv) Fix ε > 0, and µ ∈ M . By definition of S′+ and continuity from above of S,
there exist n0,m0 ∈ N such that

µS′+(x)y + 2ε ≥ µS(x+ hn0y)− µSx
hn0

+ ε

≥ µS(x+ hn0ym0)− µSx
hn0

≥ µS(x+ hn1yn1)− µSx
hn1

for n1 := n0 ∨m0. This shows that S(x+hnyn)−Sx
hn

↓ S′+(x)y. �
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