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Reflected backward stochastic differential equation driven by

G-Brownian motion with an upper obstacle

Hanwu Li∗ Shige Peng†

Abstract

In this paper, we study the reflected backward stochastic differential equation driven by G-
Brownian motion (reflected G-BSDE for short) with an upper obstacle. The existence is proved
by approximation via penalization. By using a variant comparison theorem, we show that the
solution we constructed is the largest one.

Key words: G-expectation, reflected backward SDEs, upper obstacle
MSC-classification: 60H10, 60H30

1 Introduction

Linear backward stochastic differential equations (BSDEs for short) were initiated by Bismut [2].
Then Pardoux and Peng [25] studied the general nonlinear case. Roughly speaking, on a filtered
probability space (Ω,F , {Ft}0≤t≤T ,P) generated by a Brownian motion B, a solution to a BSDE is a
couple (Y,Z) of progressively measurable processes satisfying:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs, 0 ≤ t ≤ T, P-a.s.,

where the generator is progressively measurable and the terminal value ξ is an FT -measurable random
variable. Pardoux and Peng obtained the existence and uniqueness of the above equation when f is
uniformly Lipschitz and both f and ξ are square integrable. Because it can be widely applied in
mathematical finance, stochastic control, stochastic differential games and probabilistic method for
partial differential equations, the BSDE theory has attracted considerable attention.

Reflected backward stochastic differential equations (RBSDEs for short) were firstly studied by
El Karoui, Kapoudjian, Pardoux, Peng and Quenez [6]. The solution Y of RBSDE is required to
be above a given continuous process S so that an additional non-decreasing process should be added
in the equation. This non-decreasing process should satisfy the Skorohod condition, which ensures
that it behaves in a minimal way, i.e., it only acts when Y reaches the obstacle S. This theory
provides a useful method for pricing American contingent claims, see [7]. It also gives a probabilistic
representation for the solution of an obstacle problem for nonlinear parabolic PDE, which establishes
the connection with variational equalities, see [1] and [6].

Motivated by probabilistic interpretation for fully nonlinear PDEs and applications in financial
markets in the uncertainty volatility model (UVM for short), Peng [26, 27] systemically established
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a time-consistent fully nonlinear expectation theory. As a typical case, Peng introduced the G-
expectation (see [30] and the reference therein). Under G-expectation framework, a new type of
Brownian motion {Bt}t≥0, called G-Brownian motion, was constructed. Different from the classical
case, its quadratic variation process 〈B〉 is not deterministic. The stochastic integrals with respect to
B and 〈B〉 were also established. Similar with the classical SDE theory, the existence and uniqueness
of solution of a stochastic differential equation driven by G-Brownian motion (G-SDE) can be proved
by the contracting mapping theorem. The challenging and fascinating problem of wellposedness for
BSDE driven by G-Brownian motion has been solved by Hu et al. [10]. In their paper, they showed
that there exists a unique triple (Y,Z,K) in proper Banach spaces satisfying the following equation:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+

∫ T

t

g(s, Ys, Zs)d〈B〉s −
∫ T

t

ZsdBs − (KT −Kt).

In the accompanying paper [11], the comparison theorem, nonlinear Feymann-Kac formula and Gir-
sanov transformation were established. We should point out that the equation above holds P -a.s. for
every probability measure P that belongs to a non-dominated class of mutually singular measures.
Therefore, the G-BSDE is highly related to the second order BSDEs (2BSDEs for short) developed by
Cheridito, Soner, Touzi and Victoir [3] and Soner, Touzi and Zhang [32]. It is worth pointing out that
the the terminal value ξ and the generators (f, g) in G-BSDEs should be quasi-continuous in ω and
in (t, ω) repsectively. However, it does not mean that they are uniformly continuous. For example,
if ϕ is a Borel measurable function with polynomial growth, then the process {ϕ(Bt)}t∈[0,T ] satisfies
the quasi-continuous property (for more examples, we may refer to the paper [14]). The advantage
of studying BSDE in the G-framework is that the solution (Y, Z,K) is universally defined and the
processes have strong regularity property.

In the past two decades, a great deal of effort have been devoted to the study of various types of
RBSDEs. Cvitanic and Karaztas [4] and Hamadene and Lepeltier [9] generalized the results above to
the case of two reflecting obstacles and established the connection between this problem and Dynkin
games. Hamadene [8] and Lepeltier and Xu [15] gave a generalized Skorohod condition and obtained
a wellposedness theory when the obstacle process has càdlàg paths.

Recently, Li, Peng and Soumana Hima [18] introduced the notion of reflected G-BSDE with a
lower obstacle. In order to make sure that the solution Y can be pushed upward so that it is above
the given continuous process S, called lower obstacle, a non-decreasing process L will be added in this
equation. Due to the appearance of the non-increasing G-martingale K in G-BSDE, if we expect the
solution to reflected G-BSDE with a lower obstacle is a 4-tuples of processes (Y,Z,K,L), the solution
is not unique (we may refer to Remark 3.7 in [18]). To overcome this shortcoming, we need to put the
two processes K and L together as a non-decreasing process A, i.e., A = L−K. Since L is minimal
in the sense that it satisfies the Skorohod condition, for any t, we have

−
∫ t

0

(Ys − Ss)dAs =

∫ t

0

(Ys − Ss)dKs.

It follows from the fact Y ≥ S that the process {−
∫ t
0
(Ys−Ss)dAs} is a non-increasing G-martingale.

Therefore, we will use the martingale condition instead of the Skorohod condition. Then, the unique-
ness can be derived from a priori estimates and we use the approximation via penalization to solve
the existence. More precisely, consider the following G-BSDEs parameterized by n = 1, 2, · · · ,

Y nt =ξ +

∫ T

t

f(s, Y ns , Z
n
s )ds+

∫ T

t

g(s, Y ns , Z
n
s )d〈B〉s

−
∫ T

t

Zns dBs − (Kn
T −Kn

t ) + (LnT − Lnt ),

(1.1)
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where Lnt = n
∫ t
0
(Y ns − Ss)−ds. We claim that the solution (Y, Z,A) of the reflected G-BSDE with

parameters (ξ, f, g, S) is the limit of (Y n, Zn, Ln − Kn). The proof of convergence in appropriate
spaces becomes delicate and challenging. The difficulty lies in the fact that the Fatou’s lemma cannot
be directly and automatically used in this sublinear expectation framework. Besides, any bounded
sequence in Mβ

G(0, T ) is not weakly compact. It is worth mentioning that the uniformly continuous
property of the elements in SpG(0, T ) plays a key role in overcoming this problem (see Lemma 4.3 in
[18]).

In the classical situation, the solution (Y,Z, L) of reflected BSDE with terminal value ξ, gen-
erator f and upper obstacle S corresponds to (−Ỹ ,−Z̃,−L̃). Here (Ỹ , Z̃, L̃) is the solution of
reflected BSDE with data (−ξ, f̃ ,−S), where f̃(s, y, z) = −f(s,−y,−z). To obtain the existence
result for reflected G-BSDE with an upper obstacle, applying the penalization method, we need to
replace the non-decreasing process {Lnt } in the penalized G-BSDE (1.1) by a non-increasing one

{L̃nt } = {−n
∫ t
0
(Y ns − Ss)+ds} such that the solution can be pulled downward to be below the giv-

en continuous obstacle process. Since there will be a non-increasing G-martingale {Kn
t }, these two

cases are significantly different under the G-framework: {Lnt −Kn
t } is a non-decreasing process while

{L̃nt − Kn
t } is a finite variation process. Due to the difficulity of the analysis caused by this finite

variation process, we need to put stronger assumptions on the parameters of reflected G-BSDE with
an upper obstacle. In the lower obstacle case, we prove the uniform bounded property of sequences
{Y n}, {Ln}, {Kn} simultaneously by using G-Itô’s formula and then get the uniform convergence of
{(Y n−S)−}. However, for the upper obstacle case, we will show the rate of convergence of {(Y n−S)+}
in order to derive the uniform bounded property for {Ln} and {Kn} respectively. Furthermore, the
solution to this problem by our construction is proved to be the largest one using a variant comparison
theorem.

Due to the connection of G-BSDEs and 2BSDEs, our problem is closely related to the reflected
2BSDE theory. To our best knowledge, Matoussi, Possamäı and Zhou [21] first consider reflected
BSDEs under a non-dominated family of probability measures PκH . In this paper, they only consider
the lower obstacle case and the method cannot be applied to the upper obstacle case directly. Besides,
in the original version of [21], the minimal condition for the non-decreasing process of the solution turns
out to be wrong and it is corrected as a new one in [22] which relies on the solution of reflected BSDE
under each probability P ∈ PκH and a new process M generated by the parameters of the reflected
2BSDEs. In order to guarantee the existence of the solution, they need to put some restrictions
on the oscillations or the variations of the obstacle process (see Assumption 2.1 in [22]). Compared
with their results, [18] proposed a so-called martingale condition which can be easliy derived from
the classical Skorohod condition. They obtained the existence result under the assumption about
the uniform continuity of the obstacle process, which implies Assumption 2.1 in [22]. Due to the
stronger regularity of the obstacle process, the solutions of reflected G-BSDEs also inherit stronger
regularity and all the processes of the solutions are defined universally. This result can also be applied
to the pricing problem of American options under Knightian uncertainty as well as the stochastic
representation for the obstacle problem of fully nonlinear partial differential equations (PDEs).

Now let us go back to the upper obstacle case. In the second order BSDE framework, Matoussi,
Piozin and Possamäı [20] consider a more general problem, namely the doubly reflected 2BSDEs,
where the solution is required to stay between a lower obstacle L and an upper obstacle S. Intuitively,
this problem will reduce to the single upper obstacle case by setting L = −∞. As is pointed out in [21],
there will be a non-increasing process to pull the solution downwards and a non-decreasing process
due to the formulation of second order, which will end up with a finite variation process. In order to
derive the uniqueness result, [22] proposed the following conditions: the process which aims to pull the
solution downwards should satisfy the Skorohod condition while the finite variation process satisfies
the minimal condition similar to the lower obstacle case. Then, applying some a prior estimates
yields that the solution is unique. The proof of existence relies on the theory of regular conditional
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probability distributions and the Doob-Meyer decomposition of reflected nonlinear supermartingales.
Roughly speaking, the solutions of reflected 2BSDEs are constructed by the essential supremum of
the solutions to classical reflected BSDEs under P over all P ∈ PκH . Since there are infinitely many
probabilities in PκH , the calculation may turn into a tedious task. Besides, it is worth noting that
after the correction about the defintion of solutions (see Definition 3.1 in [22]), the proof of existence
given in [20] only holds for uniformly bounded terminal values. Fortunately, applying some recently
obtained results in [23] and [31], the regularity condition on the terminal value can be further relaxed.
Compared with their results, the definition of solutions to reflected G-BSDE with an upper obstacle is
more concise which has almost a one-to-one correspondence with the lower obstacle case except that
the third component of the solution is a finite variation process. The proof of existence and uniqueness
is simpler. Similar with the classical case, the existence can be derived by a penalization method.
With the help of the variant comparison theorem, we can show that the solution by our construction
is the maximal one, which implies that the solution is unique. In the G-framework, we need to assume
that the upper obstacle is a G-Itô process which is stronger than the condition in [20]. The advantage
is that the solutions can be defined universally. Although we do not indicate explicitly in this paper,
applying a similar method as in [18], we can also establish a stochastic interpretation for the solution
of the obstacle problems for fully nonlinear PDEs.

The rest of paper is organized as follows. Section 2 is devoted to listing some notations and results
as preliminaries for the later proofs. In Section 3 we prove a variant comparison theorem for G-BSDEs.
The problem is formulated in detail in Section 4 and we present the technics of approximation via
penalization to prove the existence. Furthermore, we state that the solution by our construction is
the largest one using the variant comparison theorem.

2 Preliminaries

The main purpose of this section is to recall some basic notions and results of G-expectation, which
are needed in the sequel. The readers may refer to [10], [11], [28], [29], [30] for more details.

2.1 G-expectation

Definition 2.1 Let Ω be a given set and let H be a vector lattice of real valued functions defined
on Ω, namely c ∈ H for each constant c and |X| ∈ H if X ∈ H. H is considered as the space of

random variables. A sublinear expectation Ê on H is a functional Ê : H → R satisfying the following
properties: for all X,Y ∈ H, we have

(i) Monotonicity: If X ≥ Y , then Ê[X] ≥ Ê[Y ];

(ii) Constant preserving: Ê[c] = c;

(iii) Sub-additivity: Ê[X + Y ] ≤ Ê[X] + Ê[Y ];

(iv) Positive homogeneity: Ê[λX] = λÊ[X] for each λ ≥ 0.

Definition 2.2 Let X1 and X2 be two n-dimensional random vectors defined respectively in sublinear
expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2). They are called identically distributed, denoted by

X1
d
= X2, if Ê1[ϕ(X1)] = Ê2[ϕ(X2)], for all ϕ ∈ CLip(Rn), where CLip(Rn) is the space of real valued

Lipschitz continuous functions defined on Rn.

Definition 2.3 In a sublinear expectation space (Ω,H, Ê), a random vector Y = (Y1, · · ·, Yn), Yi ∈ H,

is said to be independent from another random vector X = (X1, · · ·, Xm), Xi ∈ H under Ê[·], denoted

it by Y⊥X, if for every test function ϕ ∈ CLip(Rm × Rn) we have Ê[ϕ(X,Y )] = Ê[Ê[ϕ(x, Y )]x=X ].
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Definition 2.4 (G-normal distribution) A d-dimensional random vector X = (X1, · · ·, Xd) in a sub-

linear expectation space (Ω,H, Ê) is called G-normally distributed if for each a, b ≥ 0 we have

aX + bX̄
d
=
√
a2 + b2X,

where X̄ is an independent copy of X, i.e., X̄
d
= X and X̄⊥X. Here, the letter G denotes the function

G(A) :=
1

2
Ê[〈AX,X〉] : Sd → R,

where Sd denotes the collection of d× d symmetric matrices.

The function G(·) : Sd → R is a monotonic and sublinear mapping on Sd. In this paper, we suppose
that G is non-degenerate, i.e., there exists some σ2 > 0 such that G(A) − G(B) ≥ 1

2σ
2tr[A − B] for

any A ≥ B.
Let ΩT = C0([0, T ];Rd), the space of Rd-valued continuous functions on [0, T ] with ω0 = 0, be

endowed with the supremum norm, and B = (Bi)di=1 be the canonical process. Set

Lip(ΩT ) := {ϕ(Bt1 , · · · , Btn) : n ≥ 1, t1, · · · , tn ∈ [0, T ], ϕ ∈ CLip(Rd×n)}.

Definition 2.5 For all random variable X ∈ Lip(ΩT ) of the following form:

ϕ(Bt1 , Bt2 −Bt1 , · · · , Btn −Btn−1), ϕ ∈ CLip(Rd×n),

the G-expectation is defined as

Ê[ϕ(Bt1 , Bt2 −Bt1 , · · · , Btn −Btn−1
)] = Ẽ[ϕ(

√
t1ξ1, · · · ,

√
tn − tn−1ξn)],

where ξ1, · · · , ξn are identically distributed d-dimensional G-normally distributed random vectors in
a sublinear expectation space (Ω̃, H̃, Ẽ) such that ξi+1 is independent of (ξ1, · · · , ξi) for each i =

1, · · · , n − 1. (ΩT , Lip(ΩT ), Ê) is called a G-expectation space. The conditional G-expectation Êti [·],
i = 1, · · · , n, is defined as follows

Êti [ϕ(Bt1 , Bt2 −Bt1 , · · · , Btn −Btn−1
)] = ϕ̃(Bt1 , Bt2 −Bt1 , · · · , Bti −Bti−1

),

where
ϕ̃(x1, · · · , xi) = Ê[ϕ(x1, · · · , xi, Bti+1 −Bti , · · · , Btn −Btn−1)].

If t ∈ (ti, ti+1), the conditional G-expectation Êt[X] could be defined by reformulating X as

X = ϕ̂(Bt1 , Bt2 −Bt1 , · · · , Bt −Bti , Bti+1 −Bt, · · · , Btn −Btn−1), ϕ̂ ∈ CLip(Rd×(n+1)).

Denote by LpG(ΩT ) the completion of Lip(ΩT ) under the norm ‖ξ‖LpG := (Ê[|ξ|p])1/p for p ≥ 1.
It is easy to check that the conditional G-expectation is a continuous mapping on Lip(ΩT ) endowed
with the norm ‖ · ‖LpG and thus can be extended to LpG(ΩT ). Denis et al. [5] proved the following

representation theorem of G-expectation on L1
G(ΩT ).

Theorem 2.6 ([5, 12]) There exists a weakly compact set P ⊂ M1(ΩT ), the set of all probability
measures on (ΩT ,B(ΩT )), such that

Ê[ξ] = sup
P∈P

EP [ξ] for all ξ ∈ L1
G(ΩT ).

P is called a set that represents Ê.
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Let P be a weakly compact set that represents Ê. For this P, we define capacity

c(A) := sup
P∈P

P (A), A ∈ B(ΩT ).

A set A ⊂ B(ΩT ) is polar if c(A) = 0. A property holds “quasi-surely” (q.s.) if it holds outside a
polar set. In the following, we do not distinguish two random variables X and Y if X = Y q.s..

For ξ ∈ Lip(ΩT ), let E(ξ) = Ê[supt∈[0,T ] Êt[ξ]], where Ê is the G-expectation. For convenience, we

call E G-evaluation. For p ≥ 1 and ξ ∈ Lip(ΩT ), define ‖ξ‖p,E = [E(|ξ|p)]1/p and denote by LpE(ΩT )
the completion of Lip(ΩT ) under ‖ · ‖p,E . We shall give an estimate between the two norms ‖ · ‖LpG
and ‖ · ‖p,E .

Theorem 2.7 ([33]) For any α ≥ 1 and δ > 0, Lα+δG (ΩT ) ⊂ LαE (ΩT ). More precisely, for any
1 < γ < β := (α+ δ)/α, γ ≤ 2, we have

‖ξ‖αα,E ≤ γ∗{‖ξ‖αLα+δ
G

+ 141/γCβ/γ‖ξ‖
(α+δ)/γ

Lα+δ
G

}, ∀ξ ∈ Lip(ΩT ).

where Cβ/γ =
∑∞
i=1 i

−β/γ ,γ∗ = γ/(γ − 1).

Similar with the classical case, the G-martingale (-sub, -supermartingale) is one of the fundamental
concepts under G-expectation framework.

Definition 2.8 The process {Mt}t∈[0,T ] is called a G-martingale (-sub, -supermartingale), if for any

t ∈ [0, T ], Mt ∈ L1
G(Ωt) and Ês[Mt] = Ms, (≥,≤), for any 0 ≤ s ≤ t ≤ T .

2.2 G-Itô calculus

For simplicity, we only give the definition of G-Itô’s integral with respect to 1-dimensional G-Brownian
motion and its quadratic variation. However, our results in the following sections still hold for the
multidimensional case unless otherwise stated.

Definition 2.9 Let M0
G(0, T ) be the collection of processes in the following form: for a given partition

{t0, · · ·, tN} = πT of [0, T ],

ηt(ω) =

N−1∑
j=0

ξj(ω)1[tj ,tj+1)(t), (2.1)

where ξi ∈ Lip(Ωti), i = 0, 1, 2, · · ·, N − 1. For each p ≥ 1 and η ∈ M0
G(0, T ) let ‖η‖HpG :=

{Ê[(
∫ T
0
|ηs|2ds)p/2]}1/p, ‖η‖Mp

G
:= (Ê[

∫ T
0
|ηs|pds])1/p and denote by Hp

G(0, T ), Mp
G(0, T ) the com-

pletion of M0
G(0, T ) under the norm ‖ · ‖HpG , ‖ · ‖Mp

G
respectively.

Definition 2.10 For each η ∈ M0
G(0, T ) of the form (2.1), we define the linear mappings I, L :

M0
G(0, T )→ LpG(ΩT ) as the following:

I(η) :=

∫ T

0

ηsdBs =

N−1∑
j=0

ξj(Btj+1
−Btj ),

L(η) :=

∫ T

0

ηsd〈B〉s =

N−1∑
j=0

ξj(〈B〉tj+1
− 〈B〉tj ).

Then I, L can be continuously extended to Hp
G(0, T ) and Mp

G(0, T ) respectively.
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By Proposition 2.10 in [19] and classical Burkholder-Davis-Gundy inequality, we have the following
estimate for G-Itô’s integral.

Proposition 2.11 ([11]) If η ∈ Hα
G(0, T ) with α ≥ 1 and p ∈ (0, α], then we get supu∈[t,T ] |

∫ u
t
ηsdBs|p ∈

L1
G(ΩT ) and

σpcpÊt[(
∫ T

t

|ηs|2ds)p/2] ≤ Êt[ sup
u∈[t,T ]

|
∫ u

t

ηsdBs|p] ≤ σ̄pCpÊt[(
∫ T

t

|ηs|2ds)p/2].

Let S0
G(0, T ) = {h(t, Bt1∧t, . . . , Btn∧t) : t1, . . . , tn ∈ [0, T ], h ∈ Cb,Lip(Rn+1)}. For p ≥ 1 and

η ∈ S0
G(0, T ), set ‖η‖SpG = {Ê[supt∈[0,T ] |ηt|p]}1/p. Denote by SpG(0, T ) the completion of S0

G(0, T )
under the norm ‖ · ‖SpG .

We consider the following type of G-BSDEs:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+

∫ T

t

g(s, Ys, Zs)d〈B〉s −
∫ T

t

ZsdBs − (KT −Kt), (2.2)

where
f(t, ω, y, z), g(t, ω, y, z) : [0, T ]× ΩT × R× R→ R,

satisfy the following properties:

(H1’) There exists some β > 1 such that for any y, z, f(·, ·, y, z), g(·, ·, y, z) ∈Mβ
G(0, T ),

(H2) There exists some L > 0 such that

|f(t, y, z)− f(t, y′, z′)|+ |g(t, y, z)− g(t, y′, z′)| ≤ L(|y − y′|+ |z − z′|).

For simplicity, we denote by Sα
G(0, T ) the collection of process (Y,Z,K) such that Y ∈ SαG(0, T ),

Z ∈ Hα
G(0, T ), K is a non-increasing G-martingale with K0 = 0 and KT ∈ LαG(ΩT ).

Definition 2.12 Let ξ ∈ LβG(ΩT ) and f , g satisfies (H1’) and (H2) for some β > 1. A triplet of
processes (Y, Z,K) is called a solution of equation (2.2) if for some 1 < α ≤ β the following properties
hold:

(a) (Y,Z,K) ∈ Sα
G(0, T );

(b) Yt = ξ +
∫ T
t
f(s, Ys, Zs)ds+

∫ T
t
g(s, Ys, Zs)d〈B〉s −

∫ T
t
ZsdBs − (KT −Kt).

Theorem 2.13 ([10]) Assume that ξ ∈ LβG(ΩT ) and f, g satisfy (H1’) and (H2) for some β > 1.
Then equation (2.2) has a unique solution (Y,Z,K). Moreover, for any 1 < α < β, we have Z ∈
Hα
G(0, T ), KT ∈ LαG(ΩT ) and

|Yt|α ≤ CÊt[|ξ|α +

∫ T

t

|f(s, 0, 0)|α + |g(s, 0, 0)|αds],

where the constant C depends on α, T , σ and L.

Theorem 2.14 ([11]) Let (Y lt , Z
l
t,K

l
t)t≤T , l = 1, 2, be the solutions of the following G-BSDEs:

Y lt = ξl +

∫ T

t

f l(s, Y ls , Z
l
s)ds+

∫ T

t

gl(s, Y ls , Z
l
s)d〈B〉s + V lT − V lt −

∫ T

t

ZlsdBs − (Kl
T −Kl

t),

where {V lt }0≤t≤T are RCLL processes such that Ê[supt∈[0,T ] |V lt |β ] <∞, f l, gl satisfy (H1’) and (H2),

ξl ∈ LβG(ΩT ) with β > 1. If ξ1 ≥ ξ2, f1 ≥ f2, g1 ≥ g2, for i, j = 1, · · · , d, V 1
t −V 2

t is a non-decreasing
process, then Y 1

t ≥ Y 2
t .
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3 A variant comparison theorem

In this section, we introduce a variant comparison theorem for solutions to G-BSDEs. First, we state
some basic properties as preliminaries.

Lemma 3.1 Let Xt ∈ SαG(0, T ), where α > 1. Set Xn
t =

∑n−1
i=0 Xtni

I[tni ,tni+1)
(t), where tni = iT

n ,

i = 0, · · · , n, 1/α + 1/α∗ = 1. Suppose that K is a G-submartingale with finite variation satisfying

K0 = 0 and Ê[|V ar(K)|α∗] <∞, where V ar(K) is the total variation of K on [0, T ], then

Ê[ sup
t∈[0,T ]

|
∫ t

0

(Xn
s −Xs)dKs|]→ 0.

Proof. It is easy to check that

sup
t∈[0,T ]

|
∫ t

0

(Xn
s −Xs)dKs| ≤ sup

t∈[0,T ]

|Xn
t −Xt||V ar(K)|.

By applying Lemma 3.2 in [10], we have

Ê[ sup
t∈[0,T ]

|
∫ t

0

(Xn
s −Xs)dKs|] ≤ ‖ sup

t∈[0,T ]

|Xn
t −Xt|‖LαG‖V ar(K)‖Lα∗

G
→ 0.

Lemma 3.2 Let Xt ∈ SαG(0, T ), where α > 1, 1/α+1/α∗ = 1. Suppose that Kj is a G-submartingale

with finite variation satisfying Kj
0 = 0 and Ê[|V ar(Kj)|α∗] <∞, j = 1, 2, then∫ t

0

X+
s dK

1
s +

∫ t

0

X−s dK
2
s ,

is a G-submartingale.

Proof. It suffices to prove that the process
∫ t
0
(Xn

s )+dK1
s +
∫ t
0
(Xn

s )−dK2
s is a G-submartingale, where

Xn is the same as Lemma 3.1. Then for any t ∈ [tni , t
n
i+1),

Êt[X+
tni

(K1
tni+1
−K1

tni
) +X−tni

(K2
tni+1
−K2

tni
)]

= X+
tni
Êt[(K1

tni+1
−K1

tni
)] +X−tni

Êt[(K2
tni+1
−K2

tni
)]

≥ X+
tni

(K1
t −K1

tni
) +X−tni

(K2
t −K2

tni
).

From this we have the desired result.
In order to obtain the variant comparison theorem, we need to construct an auxiliary extended

G̃-expectation space (Ω̃T , L
1
G̃

(Ω̃T ), ÊG̃) with Ω̃T = C0([0, T ],R2) and

G̃(A) =
1

2
sup

σ2≤v≤σ2

tr
[
A

[
v 1
1 v−1

] ]
, A ∈ S2.

Let {(Bt, B̃t)} be the canonical process in the extended space.

Remark 3.3 It is easy to check that 〈B, B̃〉t = t. In particular, if σ2 = σ2, we can further get
B̃t = σ−2Bt.
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Lemma 3.4 Consider the following bounded processes {at}, {bt}, {ct} and {dt} ∈ Mβ
G(0, T ), where

β > 1. Assume that K is a G-submartingale with Ê[|V ar(K)|β ] <∞ and K0. Then we have

Kt ≤ (Xt)
−1ÊG̃t [XTKT −

∫ T

t

asKsXsds−
∫ T

t

csKsXsd〈B〉s],

where X is the solution of the following G̃-SDE:

Xt = 1 +

∫ t

0

asXsds+

∫ t

0

csXsd〈B〉s +

∫ t

0

dsXsdBs +

∫ t

0

bsXsdB̃s.

Proof. Since the G̃-SDE is linear, we may solve it explicitly and get that

Xt = exp(

∫ t

0

(as − bsds)ds+

∫ t

0

csd〈B〉s)EBt EB̃t ,

where EBt = exp(
∫ t
0
dsdBs− 1

2

∫ t
0
d2sd〈B〉s), EB̃t = exp(

∫ t
0
bsdB̃s− 1

2

∫ t
0
b2sd〈B̃〉s). Consider the following

equation

Yt = ξ +

∫ T

t

fsds+

∫ T

t

gsd〈B〉s −
∫ T

t

ZsdBs − (KT −Kt), (3.1)

where fs = asYs + bsZs +ms, gs = csYs + dsZs + ns, {mt}, {nt} ∈Mβ
G(0, T ). Then applying G-Itô’s

formula to XtYt, we derive that

XtYt +

∫ T

t

(XsZs + dsXsYs)dBs +

∫ T

t

bsXsYsdB̃s +

∫ T

t

XsdKs

= XT ξ +

∫ T

t

msXsds+

∫ T

t

nsXsd〈B〉s.

From Lemma 3.2, we have ÊG̃t [
∫ T
t
XsdKs] ≥ 0. Taking ÊG̃t conditional expectations on both sides of

the above equality, it follows that

Yt ≤ (Xt)
−1ÊG̃t [XT ξ +

∫ T

t

msXsds+

∫ T

t

nsXsd〈B〉s].

Consider a special case of Equation (3.1)

Yt =KT +

∫ T

t

(asYs + bsZs − asKs)ds+

∫ T

t

(csYs + dsZs − csKs)d〈B〉s

−
∫ T

t

ZsdBs − (KT −Kt).

It is easy to check that Yt = Kt, Zt = 0 is the solution of the above equation. Applying the analysis
above, we have

Kt = Yt ≤ (Xt)
−1ÊG̃t [XTKT −

∫ T

t

asKsXsds−
∫ T

t

csKsXsd〈B〉s]. (3.2)

Remark 3.5 It is important to note that there may not exist a pair of processes (Y,Z) satisfying E-
quation (3.1) for a given G-submartingale K with finite variation. Especially, if K is a non-increasing
G-martingale, then the two sides of the Equation (3.2) are equal.
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Theorem 3.6 Assume that ξi ∈ LβG(ΩT ), fi, gi satisfy (H1’) and (H2) in Section 2 with β > 1,
i = 1, 2. Let (Y 2

t , Z
2
t ,K

2
t ) be the solution of G-BSDE with generators f2, g2 and terminal value ξ2,

(Y 1
t , Z

1
t ) satisfy the following equation

Y 1
t = ξ1 +

∫ T

t

f1(s, Y 1
s , Z

1
s )ds+

∫ T

t

g1(s, Y 1
s , Z

1
s )d〈B〉s −

∫ T

t

Z1
sdBs − (K1

T −K1
t ),

where K1 is a G-submartingale with finite variation satisfying Ê[|V ar(K1)|β ] < ∞ and K0 = 0. If
ξ1 ≤ ξ2, f1 ≤ f2, g1 ≤ g2, then Y 1

t ≤ Y 2
t .

Proof. Let Ŷt = Y 2
t − Y 1

t , Ẑt = Z2
t − Z1

t , f̂s = f2(s, Y 2
s , Z

2
s ) − f1(s, Y 1

s , Z
1
s ), ĝs = g2(s, Y 2

s , Z
2
s ) −

g1(s, Y 1
s , Z

1
s ), ξ̂ = ξ2 − ξ1. Then we have

Ŷt +K1
t = ξ̂ +K1

T +

∫ T

t

f̂sds+

∫ T

t

ĝsd〈B〉s −
∫ T

t

ẐsdBs − (K2
T −K2

t ). (3.3)

For each fixed ε > 0, by the proof of Theorem 3.6 in [11], we can get

f̂s = aεsŶs + bεsẐs +ms −mε
s, ĝs = cεsŶs + dεsẐs + ns − nεs,

where |mε
s| ≤ 4Lε, |nεs| ≤ 4Lε, ms = f2(s, Y 1

s , Z
1
s ) − f1(s, Y 1

s , Z
1
s ) ≥ 0, ns = g2(s, Y 1

s , Z
1
s ) −

g1(s, Y 1
s , Z

1
s ) ≥ 0, ψε ∈M2

G(0, T ) and |ψε| ≤ L for ψ = a, b, c, d.
Recalling (3.2), we can solve (3.3) to get

Ŷt +K1
t =(Xε

t )−1ÊG̃t [Xε
T (ξ̂ +K1

T ) +

∫ T

t

(m̃ε
s − aεsK1

s )Xε
sds+

∫ T

t

(ñεs − cεsK1
s )Xε

sd〈B〉s]

≥(Xε
t )−1ÊG̃t [Xε

TK
1
T +

∫ T

t

(−mε
s − aεsK1

s )Xε
sds+

∫ T

t

(−nεs − cεsK1
s )Xε

sd〈B〉s]

≥(Xε
t )−1ÊG̃t [Xε

TK
1
T −

∫ T

t

aεsK
1
sX

ε
sds−

∫ T

t

cεsK
1
sX

ε
sd〈B〉s]

− (Xε
t )−1ÊG̃t [

∫ T

t

mε
sX

ε
sds+

∫ T

t

nεsX
ε
sd〈B〉s]

≥K1
t − 4Lε(Xε

t )−1ÊG̃t [

∫ T

t

|Xε
s |ds+

∫ T

t

|Xε
s |d〈B〉s],

where m̃ε
s = ms −mε

s, ñ
ε
s = ns − nεs, {Xε

t }t∈[0,T ] is the solution of the following equation

Xε
t = 1 +

∫ t

0

aεsX
ε
sds+

∫ t

0

cεsX
ε
sd〈B〉s +

∫ t

0

dεsX
ε
sdBs +

∫ t

0

bεsX
ε
sdB̃s.

Then by letting ε→ 0, we can derive the desired result.

4 Reflected G-BSDE with an upper obstacle

El Karoui, Kapoudjian, Pardoux, Peng and Quenez [6] introduced the reflected BSDE with a lower
obstacle. An additional non-decreasing process should be added in this equation to keep the solution
above the given obstacle. Substituting the non-increasing process for an non-decreasing one, we can
use the same method to deal with the reflected BSDE with an upper obstacle. However, under the
G-framework, due to the appearance of the non-increasing G-martingale in the penalized G-BSDEs,
these two cases are significantly different. Now we reformulate this problems as follows.
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We are given these parameters: the generators f and g, the obstacle process {St}t∈[0,T ] and the
terminal value ξ, where f and g are maps

f(t, ω, y, z), g(t, ω, y, z) : [0, T ]× ΩT × R2 → R.

The following assumptions will be needed throughout this section. There exists some β > 2 such
that

(A1) for any y, z, f(·, ·, y, z), g(·, ·, y, z) ∈Mβ
G(0, T ) and Ê[supt∈[0,T ](|f(t, 0, 0)|β + |g(t, 0, 0)|β)] <∞;

(A2) |f(t, ω, y, z)− f(t, ω, y′, z′)|+ |g(t, ω, y, z)− g(t, ω, y′, z′)| ≤ L(|y− y′|+ |z− z′|) for some L > 0;

(A3) {St}t∈[0,T ] ∈ SβG(0, T ) is of the following form

St = S0 +

∫ t

0

b(s)ds+

∫ t

0

l(s)d〈B〉s +

∫ t

0

σ(s)dBs, (4.1)

where {b(t)}t∈[0,T ], {l(t)}t∈[0,T ] belong to Mβ
G(0, T ) and {σ(t)}t∈[0,T ] belongs to Hβ

G(0, T ). Fur-

thermore, Ê[supt∈[0,T ]{|b(t)|β + |l(t)|β + |σ(t)|β}] <∞;

(A4) ξ ∈ LβG(ΩT ) and ξ ≤ ST , q.s..

Remark 4.1 Compared with the reflected G-BSDE with a lower obstacle (see [18]), the conditions
(A1)-(A4) on the parameters are more restrictive. For simplicity, assume that the time horizon is
[0, 1] and consider the generator f defined as the following:

f(t) =

∞∑
n=1

n
1

β+1 I( 1
n+1 ,

1
n ](t).

It is easy to check that f ∈Mβ
G(0, 1) while supt∈[0,1] |f(t)|β =∞. Hence, f satisfies the condition (H1)

in [18] but does not satisfy the condition (A1) in this paper. The requirment that S is a G-Itô process
is to ensure that we can derive the convergence property for the penalized G-BSDEs (see Remark 4.6
below).

Then we can introduce our reflected G-BSDE with an upper obstacle. A triple of processes (Y, Z,A)
is called a solution of reflected G-BSDE if for some 2 ≤ α < β the following properties are satisfied:

(i) (Y,Z,A) ∈ SαG(0, T ) and Yt ≤ St, 0 ≤ t ≤ T ;

(ii) Yt = ξ +
∫ T
t
f(s, Ys, Zs)ds+

∫ T
t
g(s, Ys, Zs)d〈B〉s −

∫ T
t
ZsdBs + (AT −At);

(iii) {−
∫ t
0
(Ss − Ys)dAs}t∈[0,T ] is a non-increasing G-martingale.

Here we denote by SαG(0, T ) the collection of process (Y,Z,A) such that Y ∈ SαG(0, T ), Z ∈ Hα
G(0, T ),

A ∈ SαG(0, T ) is a continuous process with finite variation satisfying A0 = 0 and −A is a G-
submartingale.

For notational simplification, in this paper we only consider the case g ≡ 0 and l ≡ 0. But the
results still hold for the other cases.

Theorem 4.2 Under the above assumptions, in particular (A1)-(A4), the reflected G-BSDE with
parameters (ξ, f, S) has a maximal solution (Y,Z,A), which means that, if (Y ′, Z ′, A′) is another
solution, then Yt ≥ Y ′t , for all t ∈ [0, T ].
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The proof will be divided into a sequence of lemmas. For f , {St}t∈[0,T ] and ξ satisfy (A1)-(A4)
with β > 2. We now consider the following family of G-BSDEs parameterized by n = 1, 2, . . ..

Y nt = ξ +

∫ T

t

f(s, Y ns , Z
n
s )ds− n

∫ T

t

(Y ns − Ss)+ds−
∫ T

t

Zns dBs − (Kn
T −Kn

t ). (4.2)

Now let Lnt = −n
∫ t
0
(Y ns − Ss)+ds. Then {Lnt }t∈[0,T ] is a non-increasing process. We can rewrite

G-BSDE (4.2) as

Y nt = ξ +

∫ T

t

f(s, Y ns , Z
n
s )ds−

∫ T

t

Zns dBs − (Kn
T −Kn

t ) + (LnT − Lnt ). (4.3)

Lemma 4.3 There exists a constant C independent of n, such that for 2 ≤ α < β, we have

Ê[ sup
t∈[0,T ]

|Y nt |α] ≤ C.

Proof. For simplicity, first we consider the case where S ≡ 0. For the case that S is a G-Itô process,

we may refer to Remark 4.4. For any r > 0, set Ỹt = (Y nt )2. Applying Itô’s formula to Ỹ
α/2
t ert yields

that

Ỹ
α/2
t ert +

∫ T

t

rersỸ α/2s ds+

∫ T

t

α

2
ersỸ α/2−1s (Zns )2d〈B〉s

= |ξ|αerT + α(1− α

2
)

∫ T

t

ersỸ α/2−2s (Y ns )2(Zns )2d〈B〉s +

∫ T

t

αersỸ α/2−1s Y ns dL
n
s

+

∫ T

t

αersỸ α/2−1s Y ns f(s, Y ns , Z
n
s )ds−

∫ T

t

αersỸ α/2−1s (Y ns Z
n
s dBs + Y ns dK

n
s )

≤ |ξ|αerT + α(1− α

2
)

∫ T

t

ersỸ α/2−2s (Y ns )2(Zns )2d〈B〉s

+

∫ T

t

αersỸ α/2−1/2s |f(s, Y ns , Z
n
s )|ds− (MT −Mt),

where Mt =
∫ t
0
αersỸ

α/2−1
s (Y ns Z

n
s dBs + (Y ns )+dKn

s ) is a G-martingale. In the last inequality, we use
the fact that −y(y)+ ≤ 0 for any y ∈ R. From the assumption of f and the Young inequality, we have∫ T

t

αersỸ
α−1
2

s |f(s, Y ns , Z
n
s )|ds

≤
∫ T

t

αersỸ
α−1
2

s [|f(s, 0, 0)|+ L|Y ns |+ L|Zns |]ds

≤
∫ T

t

ers|f(s, 0, 0)|αds+
α(α− 1)

4

∫ T

t

ersỸ α/2−1s (Zns )2d〈B〉s

+ (α− 1 + αL+
αL2

σ2(α− 1)
)

∫ T

t

ersỸ α/2s ds.

Setting r = α+ αL+ αL2

σ2(α−1) , we can get

Ỹ
α/2
t ert +MT −Mt ≤ |ξ|αerT +

∫ T

t

ers|f(s, 0, 0)|αds,
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Taking conditional expectations on both sides, we have

|Y nt |α ≤ CÊt[|ξ|α +

∫ T

t

|f(s, 0, 0)|αds].

By Theorem 2.7, we can conclude that for 2 ≤ α < β, there exists a constant C independent of n such
that Ê[supt∈[0,T ] |Y nt |α] ≤ C.

Remark 4.4 For the case when the obstacle process S is given as (4.1), let Ỹ nt = Y nt − St and

Z̃nt = Znt − σ(t). We can rewrite (4.2) as the following:

Ỹ nt =ξ − ST +

∫ T

t

[f(s, Ỹ ns + Ss, Z̃
n
s + σ(s)) + b(s)]ds

− n
∫ T

t

(Ỹ ns )+ds−
∫ T

t

Z̃ns dBs − (Kn
T −Kn

t ).

Using the same method as the proof of Lemma 4.3, we get that

|Ỹ nt |α ≤ CÊt[|ξ − ST |α +

∫ T

t

|f(s, Ss, σ(s)) + b(s)|αds].

Thus, we conclude that, for 2 ≤ α < β, there exists a constant C independent of n such that
Ê[supt∈[0,T ] |Y nt |α] ≤ C.

Compared with Lemma 4.3 in [18], the following result is sharper. More importantly, this lemma
allows us to establish uniform estimates on the sequence (Kn, Ln) and then to obtain the convergence
of (Y n). We apply a nonlinear Girsanov transformation approach to prove this result. First, we
consider the following G-BSDE driven by 1-dimensional G-Brownian motion:

Y Lt = ξ +

∫ T

t

L|ZLs |ds−
∫ T

t

ZLs dBs − (KL
T −KL

t ).

For each ξ ∈ LβG(ΩT ) with β > 2, we define

ẼLt [ξ] := Y Lt .

By Theorem 5.1 in [11], ẼLt [·] is a consistent sublinear expectation.

Lemma 4.5 There exists a constant C independent of n such that for 2 ≤ α < β,

Ê[ sup
t∈[0,T ]

|(Y nt − St)+|α] ≤ C

nα
.

Proof. Set Ỹ nt = Y nt − St, Z̃nt = Znt − σ(t), we can rewrite G-BSDE (4.2) as

Ỹ nt = ξ − ST +

∫ T

t

[f(s, Y ns , Z
n
s ) + b(s)]ds−

∫ T

t

n(Ỹ ns )+ds−
∫ T

t

Z̃ns dBs − (Kn
T −Kn

t ). (4.4)

For each given ε > 0, we can choose a Lipschitz continuous function h(·) such that I[−ε,ε](x) ≤
h(x) ≤ I[−2ε,2ε](x). Thus we have

f(s, Y ns , Z
n
s )− f(s, Y ns , 0) = (f(s, Y ns , Z

n
s )− f(s, Y ns , 0))h(Zns ) + aε,ns Zns =: mε,n

s + aε,ns Zns ,
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where

aε,ns =

{
(1− h(Zns ))(f(s, Y ns , Z

n
s )− f(s, Y ns , 0))(Zns )−1, if Zns 6= 0;

0, otherwise .

It is easy to check that aε,n ∈M2
G(0, T ), |aε,ns | ≤ L and |mε,n

s | ≤ 2Lε. Then we can get

f(s, Y ns , Z
n
s ) = f(s, Y ns , 0) + aε,ns Zns +mε,n

s = f(s, Y ns , 0) + aε,ns σ(s) + aε,ns Z̃ns +mε,n
s .

Now we consider the following G-BSDE:

Y ε,nt = ξ +

∫ T

t

aε,ns Zε,ns ds−
∫ T

t

Zε,ns dBs − (Kε,n
T −Kε,n

t ).

For each ξ ∈ LβG(ΩT ) with β > 2, we define

Ẽε,nt [ξ] := Y ε,nt .

Set B̃ε,nt = Bt −
∫ t
0
aε,ns ds. By Theorem 5.2 in [11], {B̃ε,nt } is a G-Brownian motion under Ẽε,n[·].

Moreover, by Theorem 2.14, we have Ẽε,nt [ξ] ≤ ẼLt [ξ], ∀ξ ∈ LβG(ΩT ). We can rewrite G-BSDE (4.4) as
the following

Ỹ nt = ξ − ST +

∫ T

t

fε,n(s)ds−
∫ T

t

n(Ỹ ns )+ds−
∫ T

t

Z̃ns dB̃
n,ε
s − (Kn

T −Kn
t ),

where fε,n(s) = f(s, Y ns , 0) +mε,n
s + aε,ns σ(s) + b(s). Applying G-Itô’s formula to e−ntỸ nt , we get

Ỹ nt +

∫ T

t

en(t−s)dKn
s =(ξ − ST )en(t−T ) +

∫ T

t

nen(t−s)[Ỹ ns − (Ỹ ns )+]ds

+

∫ T

t

en(t−s)fε,n(s)ds−
∫ T

t

en(t−s)Z̃ns dB
ε,n
s

≤
∫ T

t

en(t−s)|fε,n(s)|ds−
∫ T

t

en(t−s)Z̃ns dB
ε,n
s .

Note that Ẽε,ns [Kn
t ] = Kn

s for any 0 ≤ s ≤ t ≤ T by Theorem 5.1 in [11]. Taking Ẽε,nt conditional
expectation on both sides, we have

Ỹ nt ≤Ẽ
ε,n
t [

∫ T

t

en(t−s)|fε,n(s)|ds] ≤ ẼLt [

∫ T

t

en(t−s)|fε,n(s)|ds]

≤ẼLt [

∫ T

t

en(t−s) sup
u∈[0,T ]

[|f(u, 0, 0)|+ L|Y nu |+ |mε,n
u |+ L|σ(u)|+ |b(u)|]ds]

≤C
n
ẼLt [ sup

u∈[0,T ]

[|f(u, 0, 0)|+ |Y nu |+ |σ(u)|+ |b(u)|] + ε].

By Theorem 2.13, for 2 ≤ α < β, it follows that

|(Ỹ nt )+|α ≤ C

nα
(ẼLt [ sup

u∈[0,T ]

[|f(u, 0, 0)|+ |Y nu |+ |σ(u)|+ |b(u)|] + ε])α

≤ C

nα
Êt[ sup

u∈[0,T ]

[|f(u, 0, 0)|+ |Y nu |+ |σ(u)|+ |b(u)|+ ε]α].

Then applying Lemma 4.3 and Theorem 2.7, letting ε→∞, we get the desired result.
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Remark 4.6 It is worth pointing out that the uniform convergence property of {(Y nt −St)+} ({(Y nt −
St)
−}) is of vital importance in proving the existence of solutions to the reflected G-BSDE with an

upper (lower) obstalce. It is easy to see that conditions on the parameters of reflected G-BSDE with
an upper obstacle ((A1)-(A4)) is more restrictive than the ones of the lower obstacle case ((H1)-(H3),
(H4) or (H4’), see [18]). If the parameters of reflected G-BSDE with a lower obstacle also satisfy
(A1)-(A4), we may use the same technique, i.e., the Girsanov transformation, to prove Lemma 4.3 in
[18]. More specificly, we may obtain the convergence rate of {(Y nt − St)−}. However, for the general
case, this method does not work since we need the decomposition of the obstacle to apply the G-Itô
formula.

Lemma 4.7 There exists a constant C independent of n, such that for 2 ≤ α < β,

Ê[|LnT |α] = Ê[nα(

∫ T

0

(Y ns − Ss)+ds)α] ≤ C, Ê[|Kn
T |α] ≤ C, Ê[(

∫ T

0

|Zns |2ds)
α
2 ] ≤ C.

Proof. The first estimate can be derived easily from Lemma 4.5. Applying G-Itô’s formula to |Y nt |2,
we have

|Y n0 |2 +

∫ T

0

|Zns |2d〈B〉s =|ξ|2 +

∫ T

0

2Y ns f(s, Y ns , Z
n
s )ds

−
∫ T

0

2Y ns Z
n
s dBs −

∫ T

0

2Y ns dA
n
s ,

where Ant = Lnt −Kn
t . Consequently

(

∫ T

0

|Zns |2d〈B〉s)
α
2 ≤C{|ξ|α + |

∫ T

0

Y ns f(s, Y ns , Z
n
s )ds|α

+ |
∫ T

0

Y ns Z
n
s dBs|α + |

∫ T

0

2Y ns dA
n
s |α}.

By Proposition 2.11 and simple calculation, we obtain

Ê[(

∫ T

0

|Zns |2ds)
α
2 ] ≤C{Ê[ sup

t∈[0,T ]

|Y nt |α] + (Ê[ sup
t∈[0,T ]

|Y nt |α])1/2[(Ê[|Kn
T |α])1/2

+ (Ê[|LnT |α])1/2 + (Ê[(

∫ T

0

|f(s, 0, 0)|ds)α])1/2]}.
(4.5)

On the other hand,

Kn
T = ξ − Y n0 +

∫ T

0

f(s, Y ns , Z
n
s )ds−

∫ T

0

Zns dBs + LnT .

An easy computation shows that

Ê[|Kn
T |α] ≤ C{Ê[ sup

t∈[0,T ]

|Y nt |α] + Ê[|LnT |α] + Ê[(

∫ T

0

|f(s, 0, 0)|ds)α] + Ê[(

∫ T

0

|Zns |2ds)
α
2 ]}. (4.6)

Combining inequalities (4.5) and (4.6), we can easily see the desired results.

Remark 4.8 Set Ant = Lnt −Kn
t . Then {Ant }t∈[0,T ] is a process with finite variation. Moreover, it is

easy to check that {−Ant }t∈[0,T ] is a G-submartingale. We denote by V ar(An) the total variation for
An on [0, T ]. Then there exists a constant C independent of n, such that for 2 ≤ α < β

Ê[|V ar(An)|α] ≤ C{Ê[|LnT |α] + Ê[|Kn
T |α]} ≤ C.

15



We now show that the sequences (Y n)∞n=1, (Zn)∞n=1 and (An)∞n=1 are convergent.

Lemma 4.9 For m,n ∈ N, set Ŷt = Y nt − Y mt , Ẑt = Znt − Zmt and Ât = Ant − Amt . Then for any
2 ≤ α < β, we have

lim
m,n→∞

Ê[ sup
t∈[0,T ]

|Ŷt|α] = 0, lim
m,n→∞

Ê[(

∫ T

0

|Ẑs|2ds)
α
2 ] = 0, lim

m,n→∞
Ê[ sup
t∈[0,T ]

|Ât|α] = 0. (4.7)

Proof. The convergence property for (Y n)∞n=1 can be proved in a similar way as the proof of Lemma
4.4 in [18]. For reader’s convenience, we give a brief proof here. Without loss of generality, we may

assume S ≡ 0 in (4.2). Set L̂t = Lnt − Lmt , K̂t = Kn
t − Km

t , f̂t = f(t, Y nt , Z
n
t ) − f(t, Y mt , Zmt ) and

Ȳt = |Ŷt|2. By applying Itô’s formula to Ȳ
α/2
t ert , where r is a constant to be determined later, we

get

Ȳ
α/2
t ert +

∫ T

t

rersȲ α/2s ds+

∫ T

t

α

2
ersȲ α/2−1s (Ẑs)

2d〈B〉s

= α(1− α

2
)

∫ T

t

ersȲ α/2−2s (Ŷs)
2(Ẑs)

2d〈B〉s +

∫ T

t

αersȲ α/2−1s ŶsdL̂s

+

∫ T

t

αersȲ α/2−1s Ŷsf̂sds−
∫ T

t

αersȲ α/2−1s (ŶsẐsdBs + ŶsdK̂s)

≤ α(1− α

2
)

∫ T

t

ersȲ α/2−2s (Ŷs)
2(Ẑs)

2d〈B〉s +

∫ T

t

αersȲ
α−1
2

s |f̂s|ds

−
∫ T

t

αersȲ α/2−1s (Y ns )+dLms −
∫ T

t

αersȲ α/2−1s (Y ms )+dLns − (MT −Mt),

(4.8)

where Mt =
∫ t
0
αersȲ

α/2−1
s (ŶsẐsdBs + (Ŷs)

+dKm
s + (Ŷs)

−dKn
s ). By Lemma 3.4 in [10], {Mt} is a

G-martingale. Applying the assumption on f and the Hölder inequality, we obtain∫ T

t

αersȲ
α−1
2

s |f̂s|ds ≤ L̃
∫ T

t

ersȲ α/2s ds+
α(α− 1)

4

∫ T

t

ersȲ α/2−1s (Ẑs)
2d〈B〉s,

where L̃ = αL+ αL2

σ2(α−1) . Let r = 1 + L̃. The above analysis shows that

Ȳ
α/2
t ert + (MT −Mt) ≤ −

∫ T

t

αersȲ α/2−1s (Y ns )+dLms −
∫ T

t

αersȲ α/2−1s (Y ms )+dLns .

Taking conditional expectation on both sides of the above inequality, we conclude that

|Ŷt|α ≤CÊt[−
∫ T

t

Ȳ α/2−1s (Y ns )+dLms −
∫ T

t

Ȳ α/2−1s (Y ms )+dLns ]

≤C(n+m)Êt[
∫ T

0

|(Y ns )+|α−1(Y ms )+ds+

∫ T

0

|(Y ms )+|α−1(Y ns )+ds].

By Lemma 4.3-4.7, Theorem 2.7 and the Hölder inequality, we have for any 2 ≤ α < β,

lim
n,m→∞

Ê[ sup
t∈[0,T ]

|Y nt − Y mt |α] = 0.

Choosing α = 2 and r = 0 in (4.8), we get

|Ŷ0|2 +

∫ T

0

|Ẑs|2d〈B〉s =

∫ T

0

2Ŷsf̂sds−
∫ T

0

2ŶsdK̂s +

∫ T

0

2ŶsdL̂s −
∫ T

0

2ŶsẐsdBs.

16



Observe that∫ T

0

2Ŷsf̂sds ≤ 2L

∫ T

0

(|Ŷs|2 + |Ŷs||Ẑs|)ds ≤ (2L+ L2/ε)

∫ T

0

|Ŷs|2ds+ ε

∫ T

0

|Ẑs|2ds,

where ε < σ2. The above two equations yield that∫ T

0

|Ẑs|2ds ≤ C(

∫ T

0

|Ŷs|2ds−
∫ T

0

ŶsdK̂s +

∫ T

0

ŶsdL̂s −
∫ T

0

ŶsẐsdBs).

By Lemma 4.3, Lemma 4.7, Proposition 2.11 and the Hölder inequality, we derive that

Ê[(

∫ T

0

|Ẑs|2)
α
2 ] ≤C{Ê[ sup

t∈[0,T ]

|Ŷt|α + sup
t∈[0,T ]

|Ŷt|
α
2 (λn,mT )

α
2 ] + Ê[(

∫ T

0

Ŷ 2
s Ẑ

2
sds)

α
4 ]}

≤C{Ê[ sup
t∈[0,T ]

|Ŷt|α] + (Ê[ sup
t∈[0,T ]

|Ŷt|α])
1
2 }

+
C2

2
Ê[ sup
t∈[0,T ]

|Ŷt|α] +
1

2
Ê[(

∫ T

0

|Ẑs|2)
α
2 ],

where λn,mT = |LnT |+ |LmT |+ |Kn
T |+ |Km

T |. It follows that

lim
n,m→∞

Ê[(

∫ T

0

|Zns − Zms |2ds)
α
2 ] = 0.

From Proposition 2.11 and the assumption of f , we have

Ê[ sup
t∈[0,T ]

|Ant −Amt |α] ≤ CÊ[ sup
t∈[0,T ]

|Ŷt|α + (

∫ T

0

|f̂s|ds)α + sup
t∈[0,T ]

|
∫ t

0

ẐsdBs|α]

≤ C{Ê[ sup
t∈[0,T ]

|Ŷt|α] + Ê[(

∫ T

0

|Ẑs|2ds)α/2]} → 0.

Using the convergence property of (Y n)∞n=1 and (Zn)∞n=1, it is easy to check that

lim
n,m→∞

Ê[ sup
t∈[0,T ]

|Ant −Amt |α] = 0.

We now turn to the proof of Theorem 4.2.
Proof. According to Lemma 4.9, for any 2 ≤ α < β, there exists a triple (Y,Z,A) ∈ SαG(0, T ), such
that

Ê[ sup
t∈[0,T ]

|Y nt − Yt|α]→ 0, Ê[(

∫ T

0

|Zns − Zs|2ds)
α
2 ]→ 0, Ê[ sup

t∈[0,T ]

|Ant −At|α]→ 0, as n→∞.

We then show that (Y,Z,A) is a solution of the reflected G-BSDE with an upper obstacle. The fact
that Y is below the obstacle process S can be derived easily from Lemma 4.5. Besides, since −An
is a G-submartingale and An converges to A uniformly, −A is also a G-submartingale. It remains to
check that {−

∫ t
0
(Ss − Ys)dAs}t∈[0,T ] is a non-increasing G-martingale. Set

K̃n
t :=

∫ t

0

(Ss − Ys)dKn
s .
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Since S − Y is a nonnegative process in SαG(0, T ), by Lemma 3.4 in [10], K̃n is a non-increasing
G-martingale. Note that

sup
t∈[0,T ]

| −
∫ t

0

(Ss − Ys)dAs − K̃n
t |

≤ sup
t∈[0,T ]

{|
∫ t

0

YsdAs −
∫ t

0

YsdA
n
s |+ |

∫ t

0

(Ys − Y ns )dAns |

+ |
∫ t

0

(Ys − Y ns )dKn
s |+ |

∫ t

0

−(Ss − Y ns )dLns |}

≤ sup
t∈[0,T ]

{|
∫ t

0

Ỹ ms d(Ans −As)|+ |
∫ t

0

(Ys − Ỹ ms )d(Ans −As)|}

+ sup
t∈[0,T ]

|Ys − Y ns |[|V ar(An)|+ |Kn
T |] + sup

t∈[0,T ]

(Y ns − Ss)+|LnT |,

where Ỹ mt =
∑m−1
i=0 Ytmi I[tmi ,tmi+1)

(t) and tmi = iT
m , i = 0, 1, · · · ,m. Recalling Lemma 4.3-4.9, by a

similar analysis as in the proof of Theorem 5.1 in [18], we have

lim
n→∞

Ê[ sup
t∈[0,T ]

| −
∫ t

0

(Ss − Ys)dAs − K̃n
t |] ≤ C(Ê[ sup

t∈[0,T ]

|Ys − Ỹ ms |2])1/2.

Applying Lemma 3.2 in [10] and letting m→∞, it follows that

lim
n→∞

Ê[ sup
t∈[0,T ]

| −
∫ t

0

(Ss − Ys)dAs − K̃n
t |] = 0,

which implies that {−
∫ t
0
(Ss − Ys)dAs} is a non-increasing G-martingale.

In the following, we prove that the solution constructed by the penalization procedure is the largest
one. Suppose that (Y ′, Z ′, A′) is the solution of the reflected G-BSDE with parameters (ξ, f, S) and
Y ′t ≤ St, 0 ≤ t ≤ T , we have

Y ′t = ξ +

∫ T

t

f(s, Y ′s , Z
′
s)ds−

∫ T

t

n(Y ′s − Ss)+ds−
∫ T

t

Z ′sdBs + (A′T −A′t).

Comparing with G-BSDE (4.2) and applying Theorem 3.6, we can easily check that for all n ∈ N,
Y ′t ≤ Y nt . Letting n→∞, we conclude that Y ′t ≤ Yt.

Remark 4.10 The assumption (A3) and (A4) on S and ξ can be weakened in the following sense:

(A5) There exist {ξn}n∈N ⊂ LβG(ΩT ) and sequence {Sn}n∈N of G-Itô processes

Snt = Sn0 +

∫ t

0

bn(s)ds+

∫ t

0

ln(s)d〈B〉s +

∫ t

0

σn(s)dBs,

with {bn(t)}, {ln(t)} belong to Mβ
G(0, T ) and {σn(t)} belong to Hβ

G(0, T ) for all n ∈ N. Fur-

thermore, supn∈N Ê[supt∈[0,T ]{|bn(t)|β + |ln(t)|β + |σn(t)|β}] < ∞, ξn ≤ SnT and ξn → ξ,

supt∈[0,T ] |Snt − St| → 0 both quasi-surely and in LβG(ΩT ) as n→∞.

Under (A1), (A2) and (A5), we need to consider the following family of G-BSDEs parameterized
by n = 1, 2, . . ..

Y nt = ξn +

∫ T

t

f(s, Y ns , Z
n
s )ds− n

∫ T

t

(Y ns − Sns )+ds−
∫ T

t

Zns dBs − (Kn
T −Kn

t ).

Similar analysis as above, the reflected G-BSDE with parameters (ξ, f, S) has at least one solution.

18



Remark 4.11 If we further assume that the process A satisfies the following condition:

(iv) At = A1
t − A2

t , t ∈ [0, T ], where Ai ∈ SαG(0, T ), i = 1, 2, −A1 is a non-increasing G-martingale,

A2 is a non-decreasing process such that
∫ T
0

(Ss − Ys)dA2
s = 0.

Then the solution satisfying (i), (ii) and (iv) of the reflected G-BSDE with parameters (ξ, f, S) is
unique.

Assume that (Y, Z,A) and (Ỹ , Z̃, Ã) are solutions of the reflected G-BSDE satisfying (i), (ii) and

(iv). Let Ŷt = Yt − Ỹt, Ẑt = Zt − Z̃t, f̂t = f(t, Yt, Zt)− f(t, Ỹt, Z̃t), Ât = At − Ãt. For any r, ε > 0,

applying Itô’s formula to Ȳ
α
2
t ert = (|Ŷt|2 + εα)

α
2 ert, where εα = ε(1− α/2)+, we get

Ȳ
α/2
t ert +

∫ T

t

rersȲ α/2s ds+

∫ T

t

α

2
ersȲ α/2−1s (Ẑs)

2d〈B〉s

= α(1− α

2
)

∫ T

t

ersȲ α/2−2s (Ŷs)
2(Ẑs)

2d〈B〉s +

∫ T

t

αersȲ α/2−1s Ŷsf̂sds

+

∫ T

t

αersȲ α/2−1s ŶsdÂs −
∫ T

t

αersȲ α/2−1s ŶsẐsdBs.

From the assumption of f , we have∫ T

t

αersȲ α/2−1s Ŷsf̂sds ≤
∫ T

t

αersȲ
α−1
2

s L(|Ŷs|+ |Ẑs|)ds

≤(αL+
α2L

σ2(α− 1)
)

∫ T

t

ersȲ
α
2
s ds+

α(α− 1)

4

∫ T

t

ersȲ α/2−1s (Ẑs)
2d〈B〉s.

By condition (iv), it is easy to check that∫ T

t

αersȲ α/2−1s ŶsdÂs

=

∫ T

t

αersȲ α/2−1s Ŷsd(A1
s − Ã1

s) +

∫ T

t

αersȲ α/2−1s Ŷsd(Ã2
s −A2

s)

≤
∫ T

t

αersȲ α/2−1s (Ŷs)
−dÃ1

s +

∫ T

t

αersȲ α/2−1s (Ŷs)
+dA1

s.

Let Mt =
∫ t
0
αersȲ

α/2−1
s ŶsẐsdBs −

∫ t
0
αersȲ

α/2−1
s (Ŷs)

−dÃ1
s −

∫ t
0
αersȲ

α/2−1
s (Ŷs)

+dA1
s. Then it is a

G-martingale. Let r = αL+ α2L
σ2(α−1) + 1, we have

Ȳ
α/2
t ert + (MT −Mt) ≤ 0.

Taking conditional expectations on both sides, it follows that Y ≡ Ỹ . By applying Itô’s formula to
(Yt − Ỹt)2(≡ 0) on [0, T ] and taking expectations, we get

Ê[

∫ T

0

(Zs − Z̃s)2d〈B〉s] = 0,

which implies Z ≡ Z̃. Then it is easy to check that A ≡ Ã.
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5 Application to optimal stopping problem under volatility
uncertainty

Recall that, in the classical case, the solution of reflected BSDE can be represented as the value
function of an optimal stopping problem (see [6]). In fact, [18] establishes a similar relation for
the reflected G-BSDE with a lower obstacle (see also [16]). Since the G-expectation is an upper
expectation induced by a non-dominated family of probability measures P ∈ P, the corresponding
optimal stopping problem is essentially a “supτ supP ” problem, where τ represents a stopping time. It
is natural to conjecture that the solution of reflected G-BSDE with an upper obstacle coincides with
the value function of an optimal stopping problem. Furthermore, this problem can be interpreted as
an “infτ supP ” problem, which is more complicated than the cases studied before.

To begin with, let us first introduce some spaces and random times appropriate for the optimal
stopping problem under G-expectation framework. For more details, we may refer to the papers [13].

Consider a G-expectation space (ΩT , L
1
G(ΩT ), Ê). Define the following spaces:

L0(ΩT ) := {X : ΩT → [−∞,∞] and X is B(ΩT )-measurable},

Lp(ΩT ) := {X ∈ L0(ΩT ) : Ê[|X|p] <∞} for p ≥ 1,

L1∗

G (ΩT ) := {X ∈ L1(ΩT ) : ∃{Xn} ⊂ L1
G(ΩT ) such that Xn ↓ X, q.s.}.

Definition 5.1 ([13]) A random time τ : Ω → [0, T ] is called a ∗-stopping time if I{τ≥t} ∈ L1∗

G (Ωt)
for each t ∈ [0, T ].

Example 5.2 ([13]) A typical example of the ∗-stopping time is the first exist time for a right con-
tinuous process. More precisely, let X = {Xt}t∈[0,T ] be a 1-dimensional right continuous process such
that Xt ∈ L1

G(Ωt) for any t ∈ [0, T ]. Then τ defined below is a ∗-stopping time

τ = inf{t ≥ 0 : Xt /∈ F} ∧ T,

where F ⊂ R is a fixed closed set.

Theorem 5.3 ([13]) For any ξ ∈ LpG(ΩT ) with p > 1, let Mt = Êt[ξ] for any t ∈ [0, T ] and let σ, τ

be two ∗-stopping times with 0 ≤ σ ≤ τ ≤ T . Then, we have Mσ = Êσ[Mτ ].

Let T0,T be the collection of all random times τ such that there exists a sequence of ∗-stopping
times {τn}n∈N such that τn converges to τ , q.s.

Lemma 5.4 Suppose that X ∈ SpG(0, T ) is a G-martingale, where p > 1. Then, for any τ ∈ T0,T , we

have Ê[Xτ ] = X0.

Proof. By Theorem 5.3, for any ∗-stopping time τ , we have Ê[Xτ ] = X0. Recall that, for any
X ∈ SpG(0, T ) with p > 1, we have the following uniform continuity property (see [17])

lim
ε→0

Ê[ sup
t∈[0,T ]

sup
s∈[t,t+ε]

|Xt −Xs|p] = 0,

where Xs := XT for any s > T . The desired result follows easily from the uniform continuity property.

Proposition 5.5 Suppose that Assumptions (A1)-(A4) hold. Let (Y,Z,A) be the maximal solution
to reflected G-BSDE with parameters (ξ, f, S). Then, we have

Y0 = inf
τ∈T0,T

Ê[

∫ τ

0

f(s, Ys, Zs)ds+ ξI{τ=T} + SτI{τ<T}].
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Proof. First, by the result in [19], for any τ ∈ T0,T , we have

E[

∫ τ

0

ZsdBs] = 0.

Let (Y n, Zn, An) be the approximation sequence for (Y, Z,A), where An = Ln−Kn and (Y n, Zn,Kn)
is the solution to the penalized G-BSDE (4.2). We first show that

Y0 ≤ inf
τ∈T0,T

Ê[

∫ τ

0

f(s, Ys, Zs)ds+ ξI{τ=T} + SτI{τ<T}].

In fact, noting that Ln ≤ 0 for any n ∈ N, it is easy to check that

Y0 =

∫ τ

0

f(s, Ys, Zs)ds−
∫ τ

0

ZsdBs + Yτ +Aτ

≤
∫ τ

0

f(s, Ys, Zs)ds−
∫ τ

0

ZsdBs + ξI{τ=T} + SτI{τ<T} +Aτ −Anτ −Kn
τ .

Putting Kn
τ to the left-hand side and taking expectations, by Lemma 5.4, we obtain that

Y0 ≤ Ê[

∫ τ

0

f(s, Ys, Zs)ds+ ξI{τ=T} + SτI{τ<T}] + Ê[|Aτ −Anτ |].

Letting n go to infinity, it follows that, for any τ ∈ T0,T ,

Y0 ≤ Ê[

∫ τ

0

f(s, Ys, Zs)ds+ ξI{τ=T} + SτI{τ<T}].

It remains to prove the reverse inequality. Set

D = inf{t ∈ [0, T ] : St = Yt} ∧ T.

It suffices to show that D ∈ T0,T and

Y0 = Ê[

∫ D

0

f(s, Ys, Zs)ds+ ξI{D=T} + SDI{D<T}].

In fact, for any m ∈ N, let

Dm = inf{t ∈ [0, T ] : St − Yt <
1

m
} ∧ T.

By Example 5.2, Dm is a ∗-stopping time. Clearly, Dm converges to D, q.s. Therefore, D ∈ T0,T .
Applying the comparison theorem 2.14 yields that Y n1 ≤ Y n2 , with n1 ≤ n2. It follows that

Y n − S = Y n − Y + Y − S ≤ Y − S.

By simple calculation, for any n ∈ N, we have

|LnD| = n

∫ D

0

(Y ns − Ss)+ds ≤ n
∫ D

0

(Ys − Ss)+ds = 0.

Note that

Y0 =

∫ D

0

f(s, Ys, Zs)ds−
∫ D

0

ZsdBs + YD +AD

=

∫ D

0

f(s, Ys, Zs)ds−
∫ D

0

ZsdBs + ξI{D=T} + SDI{D<T} +AD −AnD −Kn
D.

Putting Kn
D to the left-hand side and then taking expectations, finally, letting n → ∞, we get the

desired result. The proof is complete.
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Remark 5.6 Especially, if Y is the maximal solution to reflected G-BSDE with parameters (ST , 0, S),
by Proposition 5.5 and Theorem 2.6, we have

Y0 = inf
τ∈T0,T

Ê[Sτ ] = inf
τ∈T0,T

sup
P∈P

EP [Sτ ].

For a more general setting of the optimal stopping problem under adverse nonlinear expectations, we
may refer to the paper [24].
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