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Strategic Investment with Positive Externalities∗

Jan-Henrik Stega Jacco J. J. Thijssenb

September 16, 2022

Abstract

We study strategic investment in continuous time with positive externalities of chang-
ing magnitude. Our model particularly allows for two correlated risk factors. Constructing
subgame-perfect equilibria with pure and mixed strategies, we observe the novel effect that
it is important for the firms to anticipate preemption. In fact, the presence of a second risk
factor implies also an additional strategic risk. We quantify the associated extra waiting cost
and show that it is ex ante uncertain whether investment will happen when there is a first- or
a second-mover advantage. Our formal arguments involve several methodological contribu-
tions. In addition, we provide detailed specifications of our basic model to address various
applications.
Keywords: Real options, Externalities, Preemption,Warof attrition,Optimal stopping,Multi-
dimensional
JEL subject classification: C61, C73, D21, D43, L13

1 Introduction

In the last few decades, our understanding of firms’ timing decisions under uncertainty has been
much improved by explicitly considering competition. In a competitive environment, the effects
of firms’ decisions on each other can be at least as important as other circumstances that are
beyond any firm’s control. For instance, if it is crucial to be the first to use a particular investment
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option, the possibility to wait for optimal conditions is significantly limited. Or, if a firm faces
losses in some business branch, the hope for a turning point may rest on the exit of a competitor
rather than on other, external developments.

A crucial distinction for theeffectsof competition is, as in these twodifferent examples,whether
the firms’ actions cause negative or positive externalities on each other. Investments are often as-
sociated with negative externalities, because they improve the investing firm’s position, so that,
relatively, its competitors areweakened. The common lesson in such cases is that thefirms strate-
gically preempt each other as soon as the investment predicts a relative gain, i.e., they compete
for a first-mover advantage. In contrast, if there is a strong positive externality, like in the second
example, the only way to win the main benefit is to wait longer than the competitor, i.e., there is
a dominant second-mover advantage. The strategic interaction then typically resembles a war of
attrition, and the firm that gives up and acts first appears as the loser.

In this paper, we are interested in interactions that differ from the essentially well-understood
standard cases. We consider cases with positive externalities that are not a priori dominating.
This means that taking the first action yields some benefit for a competitor, but the benefit for
the acting firm itself may also be substantial—and possibly even higher. We think of several eco-
nomically relevant settings, for instance the following three.

(1) Suppose there is a license or patent for a new product for sale, i.e., only one of several
potential firms can bring this product to market. However, as soon as the product is offered, a
new market for services related to that product is created. Such services are not protected, so
there is a new business opportunity for other firms, too. Whether offering the product or the
service is more profitable depends, amongst others, on the price of the licence or patent.

(2) Suppose two firms produce a similar good and compete in a commonmarket. Both have
the possibility to undertake a major adjustment of their facilities in order to produce another,
differentiated good instead. If one of the firms uses this replacement option, both become mo-
nopolists in their respective markets. Which firm benefits most depends, amongst others, on the
developments of the markets for the established and the differentiated good.

(3) Suppose two firms produce similar goods and both have the option to adopt a new tech-
nology, which then creates some spillovers. The relative profits again depend on various factors,
e.g., the price for adopting the technology, themagnitude of spillovers, how close competitors the
firms are, or if a cheaper substitute technology will become available.

An important further aspect of such settings is that there is likely more than only one risk
factor. When one firm has acted (i.e., used the option), the firms’ businesses are differentiated.
In such cases it is natural to assume that there are some separate risk factors or that the weight of
shared risk factors has changed. We, thus, consider that the different firms’ risks after exercising
the option are not identical—they may be correlated, but not necessarily perfectly.

And indeed,we show in this paper thatmodeling at least two-dimensional uncertainty iswhat
leads to qualitatively new results compared to the aggregate of the literature (of whichwe provide
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an overview below). Our first observation is that the externalities we consider imply an inter-
action with phases of attrition and phases of preemption. Not many other settings have been
studied in which this happens. The greatest distinction of our model is, then, that we observe a
feedback effect between the two principally known strategic regimes. Specifically, we find that the
anticipation of preemption creates additional costs of waiting while there is still a second-mover
advantage, so that the firms should consider using the option earlier. This novel effect is driven
by our two-dimensional uncertainty. At which times there is a preemption incentive depends
more on the relative than absolute values of the risk factors that affect the investment reward and
externality. There is, thus, a threat that preemption kicks in at a point where investment is less
profitable. The nonlinearity of the state space then implies a region where this threat dominates
the chances of further gains, so that earlier investment is optimal. In typical one-dimensional
models, by contrast, such an anticipation has no observable effect. A further distinction of our
model is that it is, ex ante, indeed uncertainwhich strategic incentivewill eventually drive the op-
tion exercise decision, i.e., whether investment will happen to escape attrition or as a preemptive
move.

We derive these findings by means of a reduced model (which is in fact a two-dimensional
variant of classic real option models), because the mathematical problems we need to consider
differ significantly from the usual ones. The reduced model allows us to focus on the novel ef-
fects. We construct subgame-perfect equilibria with pure and mixed strategies on the basis of a
two-dimensional constrained optimal stopping problem. This problem is of a new type, and its
solution determines the endogenous waiting cost in equilibrium. Therefore, we aim for a charac-
terization that is as explicit as possible. For an equilibrium, the first crucial question is at which
times waiting is costly at all, and we prove in terms of the solution of the stopping problem that
anticipating preemption makes a difference in our model. The follow-up question is how high
exactly the waiting cost is. We characterize it and then prove that it generates a strategic risk of
whether investmentwill happenwhen there is a first- or a second-mover advantage. Both of these
novel effects are additionally evaluated numerically, so we can quantify and visualize the firms’
strategic tradeoffs.

Our results for the reduced model hold also for applications with many different features.
We set up two more detailed models, one of competition for a replacement option and one of
technology adoption with uncertain reward and spillovers, and show that the analysis is in each
case formally equivalent to that of the reduced model. Therefore, our findings are substantially
more general thanatfirstmayappear. Finally, wediscuss indetail somepossible extensionsof our
model for which we expect analogous results to hold, but which would require adjusted proofs
due to the challenges of a two-dimensional state space.
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Related literature

There is a large body of literature on strategic investment timing, focusing on many different as-
pects and applications. The strategic value of preemption was pointed out prominently in Fu-
denberg and Tirole (1985) within the context of technology adoption, where a negative external-
ity caused a first-mover advantage. These ideas proved to be quite fundamental and have had a
far-reaching impact, e.g., on the theory of real options, where it was shown that game-theoretic
approaches imply a substantial correction to established valuation formulas. Some of the first
studies of strategic investment timing under uncertainty considered FDI (Smets, 1991), real es-
tate markets (Grenadier, 1996), or R&D competition (Weeds, 2002); early conceptual treatments
are Huisman (2001) or Huisman et al. (2004); and surveys of this development can be found in
Chevalier-Roignant and Trigeorgis (2011) or Azevedo and Paxson (2014). The effects in these
models are essentially very similar—negative externalities imply preemptive investment—and
this consequence is in fact proved within a more general framework in Steg (2018).

The interaction in settings with a systematic second-mover advantage is usually a war of at-
trition. Ghemawat and Nalebuff (1985) and Fudenberg and Tirole (1986), for instance, study exit
timing problems of firms that are accumulating losses, but whichwould become profitable when
holding on longer than the competitor. Strategic exit timing under uncertainty is analyzed in, e.g.,
Lambrecht (2001), Murto (2004), and Georgiadis et al. (2022).

Positive externalities can also arise for other reasons. Katz and Shapiro (1987) consider li-
censing and imitation opportunities after the leader has implemented a new technology, and
Hoppe (2000) addresses the possibility to gain information regarding the profitability of an in-
vestment project by observing the leader’s performance. Informational spillovers with dynamic
uncertainty are studied in, e.g., Décamps and Mariotti (2004), Thijssen et al. (2006), and Kwon
et al. (2016). Depending on the strength of the respective externality, some of these models may
becomepreemption games, and themodel in Agrawal et al. (2016) is actually a hybrid case, where
both preemption and attrition occur in different phases of the game.

Dynamic uncertainty is usually modeled by a one-dimensional diffusion or Poisson process.
The effects of different uncertainty models for preemption games are studied in, e.g., Thijssen
(2010), whereuncertainty is player-specific, andHellmannandThijssen (2018), where theplayers
perceive probabilistic ambiguity.

We will further discuss the relation of our results to both the theoretical and the empirical
literature on strategic investment in Section 9.

Organization of this paper

We set up our basic reduced model in Section 2 and define the timing game in Section 3. In Sec-
tion 4, wederive the structure of our two-dimensional state space and the solutionof the essential
constrained optimal stopping problem. This allows us to construct subgame-perfect equilibria
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in Sections 5 (with pure strategies) and 6 (with mixed strategies). We quantify and illustrate our
results by a numerical analysis in Section 7, for which we develop a particular finite-difference
scheme. In Section 8, we present two different applications with initially more detailed models
that canbe reduced toourbasicmodel. Thenwediscuss the relationof ourfindings to the existing
literature in Section 9, where we in particular point out the central role of two-dimensional un-
certainty. Finally, we conclude by discussing possiblemodifications and extensions of ourmodel
in Section 10. The Appendix collects the formal proofs of all results, and an additional online
appendix contains supplementary material mentioned throughout the paper.

2 Reducedmodel

In this section, we set up a reduced model of strategic investment with a positive externality. We
focus on our key feature: the firms face uncertainty about the evolution of both the return on in-
vestment and themagnitude of the externality. This reduction greatly simplifies the presentation
of our novel methodology, makes applications in other settings easier, and helps us to point out
the differences between our results and the existing literature. Examples of models with different
additional features, which can all be reduced to the following one, will be presented in Section 8.

Consider a duopoly and a single investment option. Each firm i ∈ {1, 2}may exercise the op-
tion at any time t ∈ R+, and as soon as one firm has exercised it, the option is gone. Exercising
the option requires a total net investment I ∈R+. The reward and the externality from this invest-
ment depend on time and some state of the world, and the firms accumulate public information
about the state. Therefore, let (Ω,F , P ) be a fixed probability space and (Ft ) a filtration satisfy-
ing the usual conditions, i.e., (Ft ) is right-continuous and complete. If the option is exercised at
time t , then the information about the state is given by the sigma-field Ft , and the conditional
expected values of reward and externality are respectively given by two Ft -measurable random
variables Yt and X t . Besides the externality, there may be some net cost for the other firm (e.g.,
an adjustment cost), given by C ∈R. We assume C ≤ I . Both firms discount future payoffs con-
tinuously by a common factor r ∈ (0,∞). To summarize, if a firm uses the investment option at
time t , then this firm obtains the so-called leader payoff

L t := e −r t (Yt − I ) (1)

and the other firm the so-called follower payoff

Ft := e −r t (X t −C ). (2)

If both firms try to exercise the option simultaneously at some time t , then we assume a tie-
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breaking rule is applied and each firm’s conditionally expected payoff is

Mt :=
1

2
(L t + Ft ).

(See Appendix D for endogenous coordination and other generalizations.) If no firm ever uses the
investment option, each firm’s payoff is M∞ ≡ 0.

In order to obtain analytical results as far as possible, we specifically assume that the stochas-
tic processes (X t ) and (Yt ) are geometric Brownian motions, which can be correlated, but not
perfectly.1

Hence, the processes (X t ) and (Yt ) have some given initial values X0 ≡ x0 ∈ R+ and Y0 ≡ y0 ∈
R+, and their dynamics follow the stochastic differential equations

d X t =µX X t d t +σX X t d B (1)t and d Yt =µY Yt d t +σY Yt d B (2)t , (3)

where µX ,µY ∈R are given average growth rates,σX ,σY ∈R\{0} are given volatility parameters,
and (B (1)t ) and (B

(2)
t ) are two (Ft )-adapted Brownian motions with given correlation ρ ∈ (−1, 1).

If x0 > 0, then the externality X t stays positive for all t ∈ R+, and if x0 = 0, then also X t ≡ 0 for
all t ∈R+. The same holds for the reward (Yt ). To ensure finite option values, we assume µX < r

and µY < r , which also implies that our payoff processes (L t ), (Ft ), and (Mt ) converge to the no-
investment payoff M∞ ≡ 0 as t →∞ (in L 1(P ); see Remarks 12 and 13 in Appendix E for more
details.)

This reduced model is rich enough to allow for explicit revenue streams and costs for both
firms, which may change in different ways when the investment option is exercised, and also for
some idiosyncratic components; see Section 8.

3 Timing game

Now we formalize a timing game between the two firms, in order to study their strategic conflict
when to use the investment option. Because the option can be exercised by only one firm, the
game ends as soon as some firm stopswaiting and invests. Thismeans that the firms cannot con-
dition their behavior on any observed actions. Nevertheless, it is still possible that the firmsmake
certain threats when to exercise the option or not, so we require any threats to be credible and,
thus, consider only subgame-perfect equilibria. Specifically, we apply the framework developed
in Riedel and Steg (2017), which relies on the concept of stopping times to allow both strategies
and subgames to depend on the dynamic information about the state of the world.

1Two-dimensionalmodels typically require customizedmethods (see also footnote 3 below), and geometric Brow-
nian motion is the most common model in theory and applications of real options (and financial derivatives). In
Section 10, we will discuss which of our arguments would go through more generally and which depend crucially on
our model choice.
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Recall that a random variable τ: Ω→ [0,∞] is a stopping time if {τ ≤ t } ∈Ft for every t ∈
R+. Any stopping time is, hence, a feasible state-dependent plan when to exercise the option. A
typical example is the first time that (X t , Yt ) hits a certain subset of the state-spaceR2

+, and for the
case that this never happens, we let inf; :=∞. However, stopping times can encode muchmore
information about the state of the world, in particular concerning the “history” of the observed
processes (X t ) and (Yt ). Therefore, stopping times also mark the start of subgames under the
hypothesis that the option is still available. In this second role, a generic stopping time will be
denoted by ϑ.2 Let T denote the set of all stopping times. We first consider only pure strategies,
but the equilibrium in pure strategies will also be the basis for an equilibrium inmixed strategies,
which we are going to introduce in Section 6.

Definition 1. Fix any ϑ ∈T and consider the subgame that starts at ϑ (and in which no firm has
invested, yet). A plan for firm i ∈ {1, 2} in this subgame is another stopping time τi such that
τi ≥ ϑ (a.s.). Given also a plan τ j for the other firm j ∈ {1, 2}, firm i ’s payoff in this subgame is

V ϑi (τi ,τ j ) := E
�

1{τi<τ j }Lτi
+1{τ j<τi }Fτ j

+1{τi=τ j }Mτ j

�

�

�Fϑ

�

. (4)

In equilibrium, the firms must not want to change any plans before they are realized.

Definition 2. A pure strategy for firm i ∈ {1, 2} is a family of plans (τϑi ;ϑ ∈ T ) for all subgames
satisfying the time-consistency condition

ϑ′ ≤τϑi ⇒ τϑ
′

i =τ
ϑ
i (a.s.) (5)

for any two ϑ,ϑ′ ∈T such that ϑ ≤ ϑ′ (a.s.). A subgame-perfect equilibrium in pure strategies is a
pair of pure strategies ((τϑ1 ;ϑ ∈T ), (τϑ2 ;ϑ ∈T )) such that

V ϑi (τ
ϑ
i ,τϑj )≥V ϑi (τi ,τϑj ) (a.s.)

for any i , j ∈ {1, 2}with i ̸= j , ϑ ∈T , and plan τi for firm i in the subgame starting at ϑ.

4 Regions of the state space

The subgame-perfect equilibria we are going to construct can be characterized by certain regions
of the state-space of our two-dimensional process (X t , Yt ). The first coordinate measures the
strength of the investment externality and, thus, the attractiveness of becoming follower, whereas
the second coordinatemeasures the reward from becoming leader. The first crucial distinction is

2The σ-field Fϑ, which represents the information available at ϑ, is formally defined as {A ∈
F∞ |A ∩{ϑ ≤ t } ⊆Ft for all t ∈R+} (whereF∞ is theσ-field generated by

⋃

t ∈R+ Ft ).
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which role is preferred at the moment the option is exercised. Clearly, L t > Ft if and only if

(X t , Yt ) ∈P := {(x , y ) ∈R2
+ | y > x + I −C },

which we call the preemption region, because there the firms try to preempt each other in equi-
librium in order to win the current first-mover advantage. On the boundary ofP , the equilibrium
payoff will then be Mt = L t = Ft .

The next important question is if a firm could have an incentive to exercise the option while
there is a second-mover advantage Ft > L t , i.e., when (X t , Yt ) ̸∈ P . Such a decision is similar to
giving up in a war of attrition and letting the opponent win. Whether this is optimal depends on
the cost of holding on. What distinguishes ourmodel is that the firms know theywill be “trapped”
in preemption when the state hits P , and this will create a cost already in anticipation. To see
when a firmprefers to become leader instead of waiting for preemption, consider the hitting time
τP := inf{t ∈ R+ | (X t , Yt ) ∈ P} and note that the preemption payoff is MτP = LτP for (x0, y0) ̸∈ P .
Therefore, we need to study the constrained optimal stopping problem of becoming leader up to
τP ,

sup
τ∈T : τ≤τP

E
�

Lτ
�

. (6)

Due to the constraint, this is a stopping problem with two-dimensional state-space (depicted in
Figure 1 below). Such problems and their free boundaries are rarely studied in the literature, so
characterizing the solution of this problem is our first main contribution.3

There are two prior estimates for the optimal stopping region for the constrained problem (6)
(which will be verified formally in the proof of Proposition 3). First, a lower bound results from
observing that it is optimal to wait as long as this is feasible and Yt is less than

ŷ :=
r

r −µY
I ,

because then the reward is so low that the time effect of delaying the investment cost dominates,
so that the drift of L t is positive. Second, an upper bound is the solution of the unconstrained
problem supτ∈T E [Lτ], because whenever it is optimal to stopwith unconstrained opportunities
to wait, it must in particular be so with constraints. The unconstrained problem depends only on
the one-dimensional process (Yt ). This is a standard problem, which is solved by the first hitting
time τy ∗ := inf{t ∈R+ |Yt ≥ y ∗} of the threshold

y ∗ :=
βY

βY −1
I ,

3Most initially two-dimensional models are solved by a reduction to a single dimension, like in the seminal work
McDonald and Siegel (1986), or in Peskir and Shiryaev (2006), Thijssen (2008), or Hackbarth andMorellec (2008). This
approach is not possible in our case, because our underlying stochastic source is already two-dimensional, and the
fixed investment cost prevents that we can consider only the ratio etc. of the exponential processes (X t ) and (Yt ).
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whereβY > 1 is the uniquepositive solution of the quadratic equation 1
2σ

2
Y β (β−1)+µY β−r = 0.4

If y ∗ ≤ I −C , then τy ∗ ≤ τP , so τy ∗ is in fact feasible in the constrained problem (6) and solves
also this problem.

If y ∗ > I −C , however, then the optimal stopping boundary for the constrained problem (6) is
the graph of a function b (x ) as illustrated in Figure 1. We are going to establish the existence and
general regularity properties of this function in Proposition 3 and then highlight its economically
most important property in Proposition 5.5

x

y

y∗

ŷ

x+ I − C

b(x)

P
(L > F )

A

C

Figure 1: Continuation, attrition, and preemption regions.

Proposition 3. If y ∗ ≤ I −C , then τ = τy ∗ solves the constrained problem (6). If y ∗ > I −C , then
there exists a non-decreasing and continuous function b :R+→R+ satisfying b (x )≤ x+I −C , such
that the problem (6) is solved by τ=τCc := inf{t ∈R+ | (X t , Yt ) ̸∈ C} for the continuation region

C = {(x , y ) ∈R2
+ | y < b (x )}∪ {(0, 0)}. (7)

Furthermore, b (0) = I −C and b (x )≥min{ ŷ , x + I −C } for all x ∈R+.

Remark 4. The quantities y ∗, ŷ , and I −C in Proposition 3 and Figure 1 are related as follows.
y ∗ > I −C if and only if 1

βY −1 I >−C , where 1
βY −1 is positive and strictly increasing in µY ,σ2

Y , and
4The unconstrained problem equals the basicmodel of investment under uncertainty as in, e.g., Dixit and Pindyck

(1994). It was first formally solved by H. P. McKean in the Appendix to Samuelson (1965), where the model was used
for pricing warrants.

5All proofs can be found in Appendix A.
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−r . If y ∗ > I −C , then y ∗ > ŷ > 0, so that b (x )> 0 for all x > 0 by I −C ≥ 0. Also ŷ > I −C if and
only if µY

r−µY
I >−C , i.e., if µY I or C is sufficiently big. (See Lemma 14 in Appendix E for details.)

We now turn to the most significant property of the stopping boundary.

Proposition 5. If y ∗ > I −C , then the function b in Proposition 3 satisfies b (x )< y ∗ for all x ∈R+.

Proposition 5 means that optimal stopping must occur strictly before reaching y ∗ anywhere
in the state space, even though the constraint is binding only in some part of the state space if
y ∗ > I −C . In other words, if τP < τy ∗ with any positive probability, no matter how small, then
the “naive” solution of waiting until min{τP ,τy ∗} is never optimal. The consequences of these
results for equilibrium behavior are explored in Sections 5 and 6.

5 SPE in pure strategies

The results from the previous section yield an equilibrium in the “subgame” starting at ϑ ≡ 0

by construction: If (x0, y0) ∈ P , then L0 > M0 > F0, and it is optimal for both firms to engage
in preemption. If (x0, y0) ̸∈ P and firm j plans to invest only for preemption at τ j = τP , then
LτP = FτP = MτP implies that τi is a best reply for firm i if it solves the constrained optimal
stopping problem (6). But then τ j = τP is also a best reply for firm j : By construction of τi ,
investing earlier is not worthwhile; at τi , there is still a second-mover advantage Fτi

≥ Lτi
by

τi ≤ τP , and then also Fτi
≥Mτi

; finally, the planned time τ j = τP is sufficiently late to achieve
the optimal payoff E [Fτi

] for firm j . This reasoning can be formalized for subgames starting at
arbitrary ϑ ∈T , and since the plans are hitting times, they are time-consistent.

Theorem 6. Suppose y ∗ > I −C and let C be as in Proposition 3. Then, for any fixed i , j ∈ {1, 2}
with i ̸= j , the pair of pure strategies consisting of the plans

τϑi =τCc (ϑ) := inf{t ≥ ϑ | (X t , Yt ) ̸∈ C} and τϑj =τP (ϑ) := inf{t ≥ ϑ | (X t , Yt ) ∈P}

for every ϑ ∈T is a subgame-perfect equilibrium in pure strategies.

Eventual preemption is a binding constraint for the optimal time to exercise the option (i.e.,
y ∗ > I −C ) in the following cases: (i) the cost C associated with the externality is positive; (ii) the
necessary investment I is sufficiently big; (iii) the reward’s growth rate µY or varianceσ2

Y is high
enough; (iv) financing is in sufficient supply, i.e., the discount rate r low enough (cf. Remark 4).

Then, as shown in Proposition 5, already the anticipation of preemption implies that some
firm gives in earlier and lets the other enjoy the preferred externality. There is, thus, a feedback
effect from a preemptive continuation equilibrium on the prior phase of the game, when each
firm still wishes that the other exercises the option. If there were no such competitive pressure,
then the only tradeoff against the chance of a higher rewardwould be the risk that the statemakes
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an excursionwith low rewards; then any higher rewardwould be delayed, and discountingwould
turn it into a lower one. Preemption adds the risk of getting trapped during such an excursion,
at a lower reward even in undiscounted terms. This risk generates an additional cost of waiting,
and the boundary b (x )marks where the cost of waiting becomes positive in equilibrium.

Because onefirmgives in immediatelywhen there is any cost ofwaiting, the payoffs are asym-
metric. The higher payoff goes to the firm which commits to not use the option, except for pre-
emption. This is unsatisfactory, because both firms prefer the same role, and the gamemay begin
with a significant period of inaction in the continuation region C. Therefore, we are next going to
construct a symmetric subgame-perfect equilibrium by allowing for mixed strategies. This will
also yield additional insight into the strategic dynamics.

6 SPE inmixed strategies

By considering mixed strategies, it is possible to resolve the coordination problem arising from
pure strategies—which firm takes the favored role—within the game. Constructing an equilib-
rium in mixed strategies also sheds more light on the strategic trade-offs, because we need to
exactly quantify the equilibrium cost of waiting. (In fact, we already used this quantification for
proving the feedbackeffect of preemptionon theequilibrium investment time.) Moreover, wewill
obtain another novel effect: Although the firms conduct a war of attrition, typically even repeat-
edly if they use mixed strategies, this need not lead to investment before the preemption region
is reached.

6.1 Mixed strategies and payoffs

In any subgame starting at some ϑ ∈T , we allow the firms to randomize over their planned in-
vestment timesby choosing cumulative distribution functions over the remaining time t ∈ [ϑ,∞].
These distribution functionsmay depend on the state of theworld by the filtration (Ft ). The pay-
offs are then a linear extension of the payoffs (4), and every pure plan τϑi ∈T is equivalent to the
degenerate distribution function 1{t≥τϑi }.

Definition 7. Amixed plan for firm i ∈ {1, 2} in the subgame starting at ϑ ∈T is an (Ft )-adapted
stochastic processG ϑi with values in [0, 1] that is non-decreasing, right-continuous, and satisfying
G ϑi (t ) = 0 for all t <ϑ (a.s.). For every mixed plan, we letG ϑi (0−)≡ 0 andG ϑi (∞)≡ 1. Given also a
mixed planG ϑj for the other firm j ∈ {1, 2}, firm i ’s payoff in this subgame is

V ϑi (G
ϑ
i ,G ϑj ) := E
�

∫

[0,∞)

�

1−G ϑj (s )
�

L s d G ϑi (s ) +

∫

[0,∞)

�

1−G ϑi (s )
�

Fs d G ϑj (s )

+
∑

s∈[0,∞]
∆G ϑi (s )∆G ϑj (s )Ms

�

�

�

�

Fϑ

�

. (8)
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Time-consistency of mixed plansmeans that Bayes’ lawmust be satisfied whenever possible.
This is equivalent to the condition (5) for pure plans if the mixed plans are degenerate.

Definition 8. A mixed strategy for firm i ∈ {1, 2} is a family of mixed plans (G ϑi ;ϑ ∈ T ) for all
subgames satisfying the time-consistency condition

G ϑi (t ) =G ϑi (ϑ
′−) +
�

1−G ϑi (ϑ
′−)
�

G ϑ
′

i (t ) for all t ≥ ϑ′ (a.s.)

for any two ϑ,ϑ′ ∈T such that ϑ ≤ ϑ′. A subgame-perfect equilibrium inmixed strategies is a pair
of mixed strategies ((G ϑ1 ;ϑ ∈T ), (G ϑ2 ;ϑ ∈T )) such that

V ϑi (G
ϑ
i ,G ϑj )≥V ϑi (G

ϑ
a ,G ϑj ) (a.s.)

for any i , j ∈ {1, 2}with i ̸= j , ϑ ∈T , and mixed planG ϑa for firm i in the subgame starting at ϑ.

Thepure strategies fromTheorem6remaina subgame-perfect equilibrium if alsomixed strate-
gies are allowed (see Proposition 2.3 in Steg (2018) for a general proof).

6.2 Waiting cost

In the equilibria in pure strategies, one firm assumes it can never enjoy the externality when this
would be more profitable than going ahead with the investment itself, so it uses the option as
soon as any further delay would reduce the leader payoff. This requires that the drift of L t is
negative, which it is for states Yt > ŷ . However, such “local” decreases are not always considered
losses, because the payoffs do not evolve monotonically in expectation. Waiting would be costly
only outside the continuation region C, which is an endogenous object as the characterization in
Propositions 3 and 5 has shown. On the boundary of C, future chances and risks are balanced in
equilibrium.

If the firms use randomized strategies, there is an additional chance to benefit from the ex-
ternality. This chance can compensate the waiting cost outside C. In order to make both firms
indifferent, we are going to show now that a negative drift of L t is considered a loss if and only
if the state is outside C. From a mathematical point of view, this result is a non-trivial regular-
ity property, because the state crosses the boundary of C very frequently (see Jacka, 1993). Our
characterization in terms of the function b is instrumental for this. Additionally, we show that
preemption for a first-mover advantage starts immediately when the state hits the boundary of
P (which is muchmore straightforward).

Proposition 9.

(i) Suppose y ∗ > I −C and let C be as inProposition 3. Then the cost ofwaiting in the constrained

12



problem (6) is given by the rate

1{(X t ,Yt )∈Cc }e
−r t (r −µY )(Yt − ŷ )

for all t ∈ [0,τP ) (a.s.).

(ii) inf{t ≥ 0 | (X t , Yt ) ∈P}= inf{t ≥ 0 | (X t , Yt ) ∈P} (a.s.), except if x0 = y0 = I −C = 0.

6.3 Symmetric SPE

Proposition 9 makes the features of a war of attrition visible that the firms conduct before they
switch to preemption when the state hits P . In P c , there is a second-mover advantage Ft > L t .
Holding on is costly, however, only in the endogenous subset A = P c ∩ Cc , which we call the
attrition region. Knowing the exact cost of holding on, we can nowmake the firms indifferent by
the chance that the opponent gives in at a certain rate at and invests first.

Theorem10. Suppose y ∗ > I −C . Let C be as in Proposition 3, setA=P c ∩Cc , and define a process
(at ) by

at =







(r −µY )(Yt − ŷ )
X t + I −C −Yt

if (X t , Yt ) ∈A,

0 else.

For every ϑ ∈T , let τP (ϑ) := inf{t ≥ ϑ | (X t , Yt ) ∈ P}, and define a mixed plan G ϑi for both i = 1, 2

byG ϑi (t ) = 0 for all t ∈ [0,ϑ),
d G ϑi (t )

1−G ϑi (t )
= at d t (9)

for all t ∈ [ϑ,τP (ϑ)), and G ϑi (t ) = 1 for all t ≥ τP (ϑ). Then (G ϑ1 ;ϑ ∈ T ) and (G ϑ2 ;ϑ ∈ T ) form a
subgame-perfect equilibrium in mixed strategies.

Our payoffs evolve non-monotonically and randomly, so the firms face irregular periods of
attrition, and they engage in preemptionwhen the state hitsP . In fact, it is a particular additional
feature of our stochastic model that the investment is likely to happen in each of the different
strategic scenarios. The reason is not simply that the state may either enterA or hit P first when
it starts in C (cf. Figure 1 again). Indeed, there are many other likely outcomes, because there is a
positive probability of reachingP at any given part of its boundary from any point in C orA. This
result, stated in the following Proposition 11, is quite surprising: The attrition rate at becomes
arbitrarily high when the state approaches the preemption boundary (where X t + I −C −Yt = 0),
but it is not necessarily the case that some firm will give in and concede the externality to the
other; this is only one possible outcome.

13



Proposition 11. The strategiesG ϑi specified in Theorem 10 satisfy

τP (ϑ)<∞ ⇒ ∆G ϑi (τP (ϑ))> 0 (a.s.).

From the proof, we also obtain a by-product of independent mathematical interest, which is
a certain integrability property for paths of Brownian motion; see Remark 16 in Appendix E.

7 Illustration

To illustrate the symmetric SPE inmixed strategies, we briefly study a numerical example, where
we take the parameter values I = 15, C = −5, r = 0.1, µX = 0.05, µY = 0.08, σX = 0.2, σY = 0.4,
and ρ =−0.5. In this case, the unconstrained leader investment threshold is y ∗ ≈ 142.

(a) Preemption, attrition, and continuation regions

(b) Value function

Figure 2: Strategic regions and value function for the numerical example.

Determining the exact boundary x 7→ b (x ) as characterized in Proposition 3 is not trivial. It
is, however, possible to construct a finite-difference scheme to approximate the boundary b and
the equilibrium value function V ∗ : R2

+→R given by

V ∗(x0, y0) =







M0 if (x0, y0) ∈P ,
supτ∈T : τ≤τP E

�

Lτ
�

else,
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Figure 3: Scatter plot of realizations of first-investment times.

which agrees with the value of the constrained stopping problem (6) outside P . Details of this
scheme can be found in Appendix F. Applying it to a 250×250 grid gives approximations to b and
V ∗ as depicted in Figures 2a and 2b, respectively.

Moreover, we run a simulation of 5,000 sample paths, all starting at (x0, y0) = (150, 50), and
recordwhether investment takes place in the attrition or the preemption region. Wefind that 88%
of sample paths end in preemption, whereas 12% of sample paths end in the attrition region. A
scatter diagram of the value of (X t , Yt ) at the time of investment for each of these paths is given in
Figure 3. The average fraction of time spent in the attrition region is 7.78%, and all sample paths
experience attrition before investment.

Figure 4: Difference between equilibrium and
“naive” values.

To show the qualitative importance of the
feedback effect of preemption on attrition, we
compare the equilibrium value of the firm
with the case that the “naive” boundary

b̂ (x ) =min
�

x + I −C , y ∗
	

is chosen. This is the boundary that results
from thinking that the preemption region and
unconstrained attrition region can be found
separately and then “glued together”. Fig-
ure 4 shows the difference between the equi-
librium value function and the value function
obtained by the naive boundary and gives, therefore, an indication of the amount of value that is
destroyed by ignoring the feedback effect between preemption and attrition. The loss is particu-
larly high around the “corner” ofA that is not part of the attrition region if the “naive” boundary is
used.6 This figure shows the consequence of the feedback effect frompreemption for firm values.

6The slightly “ragged” behavior along the estimated boundary b̂ occurs because the true boundary b has, generi-
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8 Applications

In this section, we present two economic situations that can be analyzed by our results for the
reduced model. In both settings, there are positive externalities of uncertain magnitude, but the
drivers of the externalities are quite different. Correspondingly, also the initial models differ sig-
nificantly; the first appears much simpler than the second. Nevertheless, both models are for-
mally equivalent to the reduced one, which shows that it is possible to integrate various details in
the analysis.

8.1 Competing about a replacement option

Consider a duopolistic market in which two firms produce a homogeneous product or service.
The firms are in price competition à la Bertrand, so they are notmaking profits. There is, however,
an option to replace the current good by a differentiated one. We think, e.g., of a new product, for
which an exclusive license is available, or of a geographic differentiation. Using the replacement
option requires a certain investment I > 0. By differentiation, both firms become monopolists
and start making profits. Howmuch each firm gains when one of them uses the option depends
ondifferent uncertainty factors. These factors are likely to be correlated if the degree of differenti-
ation is low, but even then it is not certainwhich of the twomonopoly positions ismore profitable
in the long run. Based on the observed relevant factors, also the estimates of the reward and the
externality from the replacement option evolve. Now suppose the per-period monopoly prof-
its for the established and the differentiated good are respectively given by geometric Brownian
motions (πF

t ), (πL
t ) satisfying

dπF
t =µFπ

F
t d t +σFπ

F
t d B (1)t and dπL

t =µLπ
L
t d t +σLπ

L
t d B (2)t ,

where (B (1)t )and (B
(2)
t )are correlatedBrownianmotionsas inSection2. If thefirmsdiscountprofits

at a rate r >max{0,µF ,µL} and if some firmuses the replacement option at time t ∈R+, then this
firm’s expected net profit is

E
�

∫ ∞

t

e −r sπL
s d s − e −r t I

�

�

�

�

Ft

�

= e −r t
�

πL
t

r −µL
− I
�

(10)

and that of the other firm is

E
�

∫ ∞

t

e −r sπF
s d s

�

�

�

�

Ft

�

= e −r t
�

πF
t

r −µF

�

. (11)

These payoffs are a special case of the reduced model in Section 2. When x0 = (r − µF )−1πF
0 ,

µX = µF , σX = σF , y0 = (r −µL )−1πL
0 , µY = µL , σY = σL , and C = 0, then the payoffs L t and Ft

cally, no points that are exactly on the grid that is used in the finite-difference approximation.
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defined in equations (1) and (2) are identical to the present payoffs (10) and (11).

8.2 Technology adoption with uncertain reward and spillovers

Now we consider an option to adopt some new technology, such that the firms stay in the same
market, but exercising the option affects both firms’ profit streams. This model is initially more
complex, but it is also a more direct extension of standard, one-dimensional models and, thus,
particularly useful for comparative studies (see Section 9.1).

Suppose both firms’ revenue streams are, at first, given by some stochastic process (πt ). There
might alsobea certainoperating cost, which is a constant c0 ∈R. Adopting thenew technology re-
quires a fixed investmentK ∈R. Thenew technology then increases the revenueby somemarkup
(m L

t ) and changes the operating cost to cL ∈R. There is some spillover from the new technology
to the other firm, reflected by another revenuemarkup (m F

t ) and operating cost cF ∈R. Depend-
ing on how the perspectives for the revenue and different markups evolve, it may at any time be
more favorable to adopt the technology or to wait, in order to adopt it later or to benefit from
spillovers.

Suppose the initial revenue stream and the markups are geometric Brownian motions satis-
fying

dπt =µππt d t +σππt d Bπt , d m L
t =µL m L

t d t +σL m L
t d B L

t , and
d m F

t =µF m F
t d t +σF m F

t d B F
t ,

where, similarly as before, (Bπt ), (B L
t ), and (B F

t ) are Brownian motions with pairwise correlation
ρπ,L ,ρπ,F ,ρL ,F ∈ (−1, 1). Then also thepost-adoption revenues (m L

t πt ) and (m F
t πt ) are geometric

Brownian motions. Therefore, if some firm adopts the new technology at time t ∈R+, this firm’s
expected net profit is

E
�

∫ t

0

e −r s
�

πs − c0

�

d s +

∫ ∞

t

e −r s
��

m L
s +1
�

πs − cL

�

d s − e −r t K

�

�

�

�

Ft

�

= E
�

∫ ∞

0

e −r s
�

πs − c0

�

d s +

∫ ∞

t

e −r s
�

m L
s πs − (cL − c0)
�

d s

�

�

�

�

Ft

�

− e −r t K

= E
�

∫ ∞

0

e −r s
�

πs − c0

�

d s

�

�

�

�

Ft

�

+ e −r t
�m L

t πt

r −µY
−

cL − c0

r
−K
�

(12)
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for µY =µL +µπ+σLσπρπ,L , assuming r >max{µπ,µY }. The other firm’s expected profit is

E
�

∫ t

0

e −r s
�

πs − c0

�

d s +

∫ ∞

t

e −r s
��

m F
s +1
�

πs − cF

�

d s

�

�

�

�

Ft

�

= E
�

∫ ∞

0

e −r s
�

πs − c0

�

d s

�

�

�

�

Ft

�

+ e −r t
�m F

t πt

r −µX
−

cF − c0

r

�

(13)

forµX =µF +µπ+σFσπρπ,F , assuming also r >µX . To relate these payoffs to the reducedmodel
in Section 2, let Nt denote the respective first term in (12) and (13). By r >µπ, (Nt ) is a uniformly
integrable martingale. Hence, independently of the firms’ strategies, adding (Nt ) to both (L t ) and
(Ft ) amounts to an additional payoffNϑ in (4) or (8) and, thus, does not alter the set of equilibria.7

As the respective second terms in (12) and (13) are special cases of L t and Ft defined in equations
(1) and (2), all results for the reduced model apply to the present model. Given µX and µY as
already specified above, the complete remaining specification is

x0 = (r −µX )
−1
�

m F
0 π0

�

, y0 = (r −µY )
−1
�

m L
0 π0

�

,

σX =
�

σ2
F +2σFσπρπ,F +σ

2
π

�1/2, σY =
�

σ2
L +2σLσπρπ,L +σ

2
π

�1/2,
B (1)t =σ

−1
X

�

σF B F
t +σπBπt
�

, B (2)t =σ
−1
Y

�

σL B L
t +σπBπt
�

,

C =
cF − c0

r
, I = K +

cL − c0

r
.

Assume σ2
F +σ

2
π > 0, which implies σX > 0, and σ2

L +σ
2
π > 0, which implies σY > 0. Then (B (1)t )

and (B (2)t ) are two Brownian motions with correlation ρ = (σXσY )−1(σFσLρL ,F +σFσπρπ,F +

σLσπρπ,L +σ2
π). Assume also σ2

L +σ
2
F > 0 to ensure ρ2 < 1. Finally, assume K + (cL − c0)/r ≥ 0,

so that I ≥ 0, and also K + (cL − cF )/r ≥ 0, so that C ≤ I .

9 Relation of our results to the literature

We are next going to relate the novel effects we have found to the existing literature in two ways.
First, we will show that we assumed the minimal structure for these effects to arise. To do so, we
will consider both the one-dimensional version of our model (in Subsection 9.1), which is much
closer to many models in the literature, and also the two-dimensional deterministic version (in
Appendix C). In these simpler models, none of the effects that we have observed occur: nei-
ther does the anticipation of preemption affect the cost of waiting, nor is there any uncertainty
whether investmentwill happen during attrition or preemption. Hence, we really had to consider
the non-degenerate two-dimensional model, and uncertainty makes a qualitative difference in

7The martingale could even be different for the two firms and capture some idiosyncratic aspects.
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our case.8

Second, we will point out (in Subsection 9.2) how our results contribute to the discussion
in the empirical literature about first- and second-mover advantages associated with strategic
investments.

9.1 The role of (two-dimensional) uncertainty

Inorder to showthat there isno feedbackeffectofpreemptiononattrition in typical one-dimensional
strategic real-optionmodels, we consider a one-dimensional versionof the application fromSub-
section 8.2, which has the same basic structure as the models in, e.g., Smets (1991); Grenadier
(1996); Weeds (2002); Thijssen et al. (2012); Riedel and Steg (2017). Nevertheless, our results
can also be compared to one-dimensional models that capture different economic aspects, but
where the equilibrium construction is based on similar optimal stopping problems (such as, e.g.,
in Agrawal et al., 2016).

Hence, consider two firms that each have an option to make an investment to increase the
firm’s profitability. This investment involves a sunk cost K > 0. The only uncertainty affecting
revenues before and after the investment is now summarized by the single factor (πt ). Both firms’
operating profits depend again on which firm already has invested, but this dependence is now
reflected by constant multipliers Dkℓ > 0 for k ,ℓ ∈ {0, 1}, where k refers to the firm in question, ℓ
to its competitor, and k = 1 or ℓ = 1 means the corresponding firm has invested. Thus, in com-
parison to Subsection 8.2, there are constant markupsm L

0 =D10−D00 andm F
0 =D01−D00 for the

leader and the follower, respectively, and we set all additional operating costs to zero.
As usual, we assume D10 >D00, so that there is a direct benefit from the first investment. We

deviate, however, from the usual assumption thatD01 <D00, because this wouldmean a negative
externality on the other firm’s profits, and that the investment decisions are like strategic substi-
tutes. Instead, we assume D01 > D00 in order to have a positive externality and strategic comple-
ments. We limit the externality by assuming that D01 < D10, because otherwise there would be
only a second-mover advantage and no preemption at all. Finally, we assume for simplicity that
there is no second investment.9

It is possible to analyze this model in terms of the one-dimensional geometric Brownianmo-
tion (Yt ) given by Yt := D10−D00

r−µπ πt , so the state space reduces to R+ (see Appendix B for details).
Specifically, we can verify subgame-perfect equilibria both in pure and mixed strategies as in
Theorems 6 and 10, but these equilibria are now fully characterized by the preemption thresh-
old yP := D10−D00

D10−D01
K = m L

0

m L
0 −m F

0
K .

As before, preemption is a binding constraint for the time of the first investment if and only
8In many one-dimensional strategic real-option models, the structure of equilibria often stays the same, whether

there is uncertainty or other reasons for waiting (see, e.g., Steg, 2018).
9This could also be justified by economic reasons (e.g., if there is patent protection in technology adoption or if the

second investor cannot significantly enhance profits, so that D11 ≤D01).
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if the preemption region extends below the unconstrained leader’s investment threshold, which
is now if yP < y ∗. But it is not optimal anymore for the leader to invest any earlier, so investment
happens only by preemptivemoves, i.e., once Yt hits [yP ,∞). Thus, anticipating preemption be-
comes pointless, and there is no doubt that investment will happenwith a first-mover advantage.
Both effects are also absent if yP ≥ y ∗. Then the equilibrium outcome is simply that some firm
invests as soon as Yt hits [y ∗,∞), i.e., as if there was no competition at all, and it is ex ante clear
whether there will be preemption (if the state will first hit [yP ,∞)) or a second-mover advantage
for the follower (if the state will first hit [y ∗, yP )).

9.2 First- and Second-Mover Advantages in the Empirical Literature

In the last few decades there has been a lively discussion in the management and marketing lit-
erature on whether or not there is a first-mover advantage for innovating firms. In an extensive
review and synthesis of papers published in top-tier journals, Zachary et al. (2015) conclude that,
while important, innovation timing is only one of several determinants. They write that “[w]e
owe it to the field, and to the managers who we advise, to broaden our thinking about entry con-
siderations or we will just perpetuate the myth that ‘being first creates a competitive advantage’
without [any] caveat” (Zachary et al., 2015, p. 1410).

In ourmodel, and even in the equilibria we have characterized, it is indeed a priori uncertain
whether therewill be afirst- or second-mover advantage at the optimal timeof investment. More-
over, our analysis provides a detailed picture of the strategic trade-offs the firms have to make in
their timing decisions. This can potentially be used to explain some empirically observed phe-
nomena.

For example, Christensen et al. (1998) study strategies for survival in fast-changing industries
such as the rigid disk drive industry. They find that first-mover advantages typically apply only if,
at entry, firms choose architectural innovation as a technology strategy. However, this works only
before a dominant designhas been established. Once there is an establisheddesign, firms are bet-
ter off adopting it. So, if first-mover advantages are not often present, the question arises whether
one can count more on second-mover advantages. But that too is not generally the case. For ex-
ample, Min et al. (2006, p. 30) conclude that “market pioneers are often the first to fail in really
new product-markets. However, this is not true in incremental new markets, in which market
pioneers have consistently lower survival risks than early followers.” In the context of environ-
mental innovation, Cleff and Rennings (2014) find that both first- and second-mover advantages
arise in successful innovation. Summarizing the literature, they find that there are several factors
leading to successful timing strategies. These factors are: (i) luck, (ii) technological leadership
(LiebermanandMontgomery, 1988), (iii) industry, firm, andproduct-specific factors (Gilbert and
Birnbaum–More, 1996), and (iv) leading time,market dynamic, and typeof innovation (Minet al.,
2006).
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Our theoretical results canbe seenat least as apartial explanation for the contradictory results
in the empirical literature. Since there is an inherent uncertainty whether investment will entail
a first- or second-mover advantage, we highlight the role that “luck” plays in successful timing
decisions (Cleff andRennings, 2014). In innovation contexts, this uncertainty implies that a firm’s
strategy should change over time in light of the best available evidence about an innovation’s
relative profitability, and such a dynamic strategy in turn impacts the likelihood of an innovation
taking place while there is a first- or second-mover advantage. Several factors inherent in the
type of innovation influence these likelihoods, which can provide direction for further empirical
investigations.

10 Conclusion and future research

We have found that positive externalities with uncertain magnitude imply that additional strate-
gic considerations become necessary to evaluate real options properly. First, to see when a firm
needs to prepare for preemption, the value of exercising the option must be considered relative
to the externality. This means that preemption is also possible when the expected profit is not
particularly high. Consequently, there is an additional risk to take into account in the timing de-
cision, which translates into a higher waiting cost and, hence, an earlier optimal exercise time.

These observations warrant further study. We have here extended the standardmodel for risk
factors to a two-dimensional setting, which is still quite an explicit assumption, of course. It has
allowed us to prove analytic results and to quantify the equilibrium incentives in terms of basic
factors. Therefore, we have gained deeper economic and managerial insights than would have
been possible at a more general level. However, it is clear that our methodological contribution
can also be used to consider alternative models, e.g., where the dynamics of the two exogenous
risk factors are represented by other diffusions.

A further avenue for future research is to enrich the economic environment by introducing a
continuation value for the follower, so that a better understanding of the interplay between first-
and second-mover advantages can be obtained. This could even be extended to a model where
firms can invest repeatedly. Such an extension, however, will require a richer model of subgames
and, particularly, histories (of multiple actions) in order to define time-consistent strategies ap-
propriately, and, moreover, the solution of even more complex, interdependent stopping prob-
lems.

Finally, our game-theoretic analysis was significantly helped by assuming symmetric players,
but in reality competing firmsmay be known to differ, e.g., with respect to their costs. Therefore,
it would be a valuable task to see if and how our results change when the firms are asymmetric.

We complete this section by a more detailed discussion of the three mentioned directions to
modify or extend ourmodel, i.e., alternative stochastic dynamics, additional investment options,
or asymmetric firms.
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Alternative stochastic dynamics

We have chosen two geometric Brownianmotions in order to be able to prove our results analyt-
ically. However, we expect that qualitatively similar results hold for other dynamics as well, be-
cause the nature of the constrained optimal stopping problem that is central to our analysis does
not depend on specific assumptions regarding the underlying uncertainty. Indeed, if the setting
remains symmetric with respect to the players, it is possible to construct subgame-perfect equi-
libria that have the same structure as ours without assuming any particular dynamics, i.e., more
general—butmuch less explicit—versions of Theorems 6 and 10 hold.10 In addition, many of our
further arguments are at least general enough to consider alternative diffusion models. For in-
stance, the proofs of Propositions 5 and 9 mostly exploit the fact that there is a non-decreasing
stopping boundary b (x ). Hence, themain task would be to prove Propositions 3 and 11 for other
dynamics, which would require custom methods due to the two-dimensional setting. Here we
used certain path properties of geometric Brownianmotion (notably themultiplicative structure
to make path comparisons and the representation as functions of standard Brownian motion
paths to verify a specific integrability property). We anticipate that very similar arguments will
work for arithmetic Brownian motion, but other diffusions would generally need some different
steps.

Additional investment option for the follower

We assumed that only one firm can invest. Hence, the follower enjoys a positive externality when
the leader invests, but there is no further possibility for the follower to invest later on, e.g., when
the leader’s investment turns out to be very profitable and the externality not. Supposewe extend
our model such that the follower has the option to invest the same sum I as the leader at an
arbitrary stopping time τ that occurs after the leader’s investment. This investment will yield
the follower the additional reward a Yt , where a ∈ (0, 1) is some given share. Accounting for the
follower’s option value does not change the general shape of the preemption region, but the exact
boundary of P is affected in three ways that can be seen in Figure 5. Both the intercept and the
slope of the boundary increase, implying that P shrinks. Moreover, the boundary of P becomes
strictly convex where y < y ∗/a , i.e., in the continuation region for the follower, but it transitions
smoothly into a straight line for higher values of y . Due to the similar shape of P , we expect that
our qualitative results will persist.

10Essentially, only certain continuity and integrability conditions are required, see Steg (2015).
11The parameter values that were used to produce Figure 5 are r = 0.1, µY = 0.05,σY = 0.3, I = 1, C = 0, and a = 0.5.

These values imply βY ≈ 1.436 and y ∗ ≈ 3.29.
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Figure 5: Change of the preemption region due to an additional follower option.11

Asymmetric investment costs

In parts, our results can be extended easily to asymmetric firms with individual investment costs
I i and C i . Assume w.l.o.g. that I 2−C 2 ≥ I 1−C 1. Then a first-mover advantage for firm 2 implies
the same for firm 1, so that the preemption region becomes P = {(x , y ) ∈ R2

+ | y > x + I 2 −C 2}.
Now consider the constrained problem (6) for each firm. Propositions 3 and 5 still apply, simply
setting I = I 2 andC =C 2 for firm 2, but I = I 1 andC = I 1− I 2+C 2 for firm 1 (to fix the sameP by
I −C = I 2−C 2). We can actually compare the individual solutions by ranking I 1 and I 2. Suppose
in fact I 2 ≥ I 1. Then, like in the symmetric case, whenever firm 1 is willing to wait, so is firm 2,
becausewehaveτ′ ≥τ⇒ (L 2

τ′−L 2
τ)−(L

1
τ′−L 1

τ) = (e
−rτ′−e −rτ)(I 1−I 2)≥ 0 a.s. for any two stopping

times τ and τ′. Furthermore, when firm 1 stops before the state enters the preemption region,
it is still no disadvantage for firm 2 to become follower instead of leader. Therefore, we obtain a
subgame-perfect equilibrium by the same arguments used to prove Theorem 6 if we ensure that
firm 1 obtains the leader payoff at the stopping time that solves its constrained problem (6). For
thisweneed adifferent tie-breakwhen it is optimal to let the state hit somepart of thepreemption
region where firm 1 has a strict first-mover advantage, i.e., ifP extends below ŷ (cf. Figure 1) and
the assumed inequality I 2−C 2 ≥ I 1−C 1 is strict. But here we are helped by the fact that firm 2 is
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still indifferent on the boundary of P , because it justifies to assume that firm 1 indeed becomes
leader by strict preference.12 Other arguments are needed, however, if I 1 > I 2, because then firm
2 wants to stop first, while firm 1 has a strict first-mover advantage.

A Proofs

Proof of Proposition 3. First, consider the degenerate case y0 = 0, i.e., Yt ≡ 0 for all t ∈R+. Then
theproblem (6) is in fact unconstrained, because X t +I −C ≥ 0= Yt impliesτP ≡∞. The solution
is, thus, given by τ = τy ∗ ≤ τP . Specifically, L t is now deterministic and d L t = e −r t r I d t . If
I > 0, which is if and only if y ∗ > 0, then L t is strictly increasing and τy ∗ ≡ ∞ is the unique
solution. If I = 0, then y ∗ = 0 and τy ∗ ≡ 0 is optimal, but any other τ ∈ T as well. Similarly,
for any other value y0 ∈ R+, if y ∗ ≤ I − C , then τy ∗ ≤ τP is still feasible and attains the value
supτ∈T E [Lτ]≥ supτ∈T : τ≤τP E [Lτ].

Now suppose y ∗ > I −C . For initial states (X0, Y0) = (x0, y0) ̸∈P , the constraint in problem (6)
can be formulated equivalently by “freezing” the reward LτP for any t ≥ τP , i.e., by considering
the auxiliary reward process L̄ t := Lmin{t ,τP } and ignoring the constraint. Therefore, the value of
the constrained problem (6) is the same as

VL̄ (x0, y0) := sup
τ≥0

E
�

L̄τ
�

. (14)

Defining a value function VL̄ : R2
+→ R by (14) for arbitrary initial values (x0, y0) ∈ R2

+ and noting
that L̄0 = y0− I , the continuation region of the state space for this problem is

C := {(x , y ) ∈R2
+ |VL̄ (x , y )> y − I } ⊆P c .

By the strong Markov property and the path continuity of (L̄ t ), it is optimal to stop as soon as
(X t , Yt ) exits C (see Krylov (1980)).

We are now going to establish the boundary of the continuation region C in the whole state
space by strong path comparisons. Therefore, denote the solution to (3) for an arbitrary initial
condition (X0, Y0) = (x , y ) ∈R2

+ by (X x , Y y ) = (x X 1, y Y 1). Bydefinitionof the continuation region,
for any (x0, y0) ∈ C, there exists a stopping time τ∗ ∈ (0,τP ] (a.s.) such that VL̄ (x0, y0) ≥ E [L̄τ∗ ] =

E [e −rτ∗ (Y y0
τ∗ − I )] > L̄0 = y0 − I . Now suppose ϵ ∈ (0, y0], implying that (X x0

t , Y
y0−ϵ

t ) = (X x0
t , Y

y0
t −

ϵY 1
t ) starts at (x0, y0 − ϵ) ∈ P c and τ∗ ≤ τP ≤ inf{t ≥ 0 | (X x0

t , Y
y0−ϵ

t ) ∈ P}. Hence, VL̄ (x0, y0 − ϵ) ≥
E [e −rτ∗ (Y y0−ϵ

τ∗ − I )] = E [e −rτ∗ (Y y0
τ∗ − I )− e −rτ∗ϵY 1

τ∗ ] > y0 − I − E [e −rτ∗ϵY 1
τ∗ ] ≥ y0 − I − ϵ. The last

inequality is due to (e −r t Y 1
t ) being a supermartingale by r > µY . This shows that (x0, y0) ∈ C ⇒

∀ϵ ∈ (0, y0] : (x0, y0 − ϵ) ∈ C, so we can define b (x ) := sup{y ≥ 0 |VL̄ (x , y ) > y − I } for every x ∈R+
for which the latter set is nonempty and then conclude VL̄ (x , y )> y − I for all y ∈ [0, b (x )). For all

12This outcome can also be obtained endogenously by extended strategies as in Riedel and Steg (2017).

24



other x ∈ R+, we set b (x ) := 0. Now y < b (x )⇒ (x , y ) ∈ C and y > b (x )⇒ (x , y ) ̸∈ C hold for all
(x , y ) ∈R2

+. We will address the points on the boundary in the last step of the proof.
The following bounds hold for this choice of b . First, b (x ) ≤ x + I −C , because whenever y

exceeds this bound, then (x , y ) ∈ P ⊆ Cc , and the bound is non-negative by I −C ≥ 0. Second,
b (x )≥min{ ŷ , x+I −C }, where ŷ = r

r−µY
I . Indeed, for any (X0, Y0) = (x0, y0) ∈R2

+with y0 < x0+I −
C ,τP > 0. Moreover, thedrift of (L t ) is−e −r t (r−µY )(Yt− ŷ )d t by Itō’s formula, andas r >µY , this
drift is positive whenever Yt < ŷ . Thus, if also y0 < ŷ , then setting τ=min{τP , inf{t ≥ 0 |Yt ≥ ŷ }}
implies τ ∈ (0,τP ] and L̄0 = L0 < E [Lτ] = E [L̄τ] ≤ VL̄ (x0, y0), so that b (x0) ≥ y0. Third, we can
establish that b (x )≥ I −C by showing that, if I −C > 0, then L̄0 = L0 < E [Lτ]≤ VL̄ (x0, y0) for any
(x0, y0) ∈R2

+ with y0 < I −C andτ= inf{t ≥ 0 |Yt ≥ I −C } ≤τP . For Y0 = y0 < I −C and the givenτ,
standard results for geometric Brownianmotion yield E [Lτ] = (y0/(I −C ))βY (−C ). Therefore, and
sinceβY > 1, E [Lτ]−L0 is a continuous and strictly concave function of y0 onR+, which vanishes
for y0 = I −C (when τ ≡ 0) and takes the value I for y0 = 0 (when τ ≡ ∞), where I > 0 given
y ∗ > I −C , so that indeed E [Lτ]− L0 > 0 for all y0 ∈ [0, I −C ).

To show the monotonicity of b , suppose (X0, Y0) = (x0, y0) ∈ C, let τ∗ ≤τP be as before, and fix
arbitrary ϵ > 0. Then (X x0+ϵ , Y y0 ) = (X x0+ϵX 1, Y y0 ) starts at (x0+ϵ, y0) ∈P c , andτ∗ ≤τP ≤ inf{t ≥
0 | (X x0+ϵ

t , Y
y0

t ) ∈ P}. Now VL̄ (x0 + ϵ, y0) ≥ E [e −rτ∗ (Y y0
τ∗ − I )] > y0 − I , whence also (x0 + ϵ, y0) ∈ C.

Therefore, b (x0+ ϵ)≥ b (x0).
The continuity of b in x0 = 0 holds by b (x ) ∈ [I − C , x + I − C ]. To verify the continuity of

b in x0 > 0, we now show that if (x0, y0) belongs to C, then also the whole line {(x , y ) ∈ R2
+ | x ∈

(0, x0], y = x y0/x0}.13 As the first step, we check that, given (X0, Y0) = (x0, y0) ∈ P c , τP ≤ inf{t ≥
0 | (X x

t , Y
y

t ) ∈P} for any point (x , y ) on the specified line. Indeed, for any (x , y ) ∈R2
+,

Y
y

t −X x
t ≤ I −C ⇔ y Y 1

t − x X 1
t ≤ I −C .

If y = x y0/x0, this becomes

x

x0

�

y0Y 1
t − x0X 1

t

�

≤ I −C .

As I −C ≥ 0, the condition for (x , y ) is implied by the one for (x0, y0) if x ∈ [0, x0]. Therefore, if we
fix any point on the line {(x , y ) ∈ R2

+ | x ∈ (0, x0], y = x y0/x0}, we have τ∗ ≤ inf{t ≥ 0 | (X x
t , Y

y
t ) ∈

P}, where τ∗ as before satisfies E [e −rτ∗ (Y y0
τ∗ − I )] > y0 − I for the given (x0, y0) ∈ C. In particular,

(x , y ) ∈P c . Now suppose that (x , y ) ̸∈ C. Then y − I =VL̄ (x , y )≥ E [e −rτ∗ (Y y
τ∗ − I )] = E [e −rτ∗ (Y y0

τ∗ −
13A graphical illustration helps to convey the continuity argument for b (x ).

y

y0

x0

b (x )

C
Cc

x
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I )−e −rτ∗ (y0− y )Y 1
τ∗ ]> y0− I −E [e −rτ∗ (y0− y )Y 1

τ∗ ]≥ y0− I −(y0− y ) = y − I , a contradiction (where
we again used the fact that (e −r t Y 1) is a supermartingale). Thus, (x , y ) ∈ C.

Finally, we argue that (x0, y0) ̸∈ C if y0 = b (x0), except if x0 = y0 = b (x0) = 0. Indeed, if y0 = 0

and y ∗ > I − C ≥ 0, then, as argued in the beginning of the proof, τ =∞ uniquely solves the
constrained problem (6). In particular, VL̄ (0, 0) > L̄0 = −I and (0, 0) ∈ C. Next, note that y ∗ >

I −C ≥ 0 implies also ŷ > 0, so that b (x ) ≥ min{ ŷ , x + I −C } > 0 for all x > 0. Therefore, it is
impossible that x0 > 0= y0 = b (x0). Now suppose y0 = b (x0)> 0. Then (X t , Yt ) exits C immediately
with probability one. To show this, first consider also x0 > 0. For proving the continuity of b (x ),
we have shown that b (x +h ) ≤ b (x ) +h b (x )/x for any x , h > 0. Together with the monotonicity
of b and X0 = x0 > 0, this implies {Yt > b (X t )} ⊇ {Yt > Y0} ∩ {Yt > Y0X t /X0} = {(µY −σ2

Y /2)t +

σY B (2)t > 0}∩ {(µY −σ2
Y /2)t +σY B (2)t − (µX −σ2

X /2)t −σX B (1)t > 0}. Rewriting the latter two sets,
the result now follows from Lemma 15. Indeed, (B (1), B (2))⊤ = ΣW for an invertible matrix Σ and
2-dimensional Brownian motion W by Remark 12. Letting Σ̃=

�−σX σY
0 σY

�

and then Σ̂= Σ̃Σ, which
are both invertible, as well as µ = (−(µX −σ2

X /2) +µY −σ2
Y ,µY −σ2

Y /2)
⊤, the intersection of the

two sets is {min{Z (1)t , Z (2)t } > 0} for (Z (1)t , Z (2)t )
⊤ = tµ+ Σ̂Wt . Finally, consider y0 = b (x0) > 0 = x0.

Then {Yt > b (X t )}= {Yt > Y0}, and Lemma 15 applies with d = 1.

Proof of Proposition 5. Let (L̄ t ) be defined as in the proof of Proposition 3, and recall the corre-
sponding value function VL̄ defined by (14). Similarly, let VL : R2

+→R be the value function of the
unconstrained stopping problem, i.e., defined by VL (x0, y0) = supτ∈T E [Lτ] for arbitrary initial
conditions (X0, Y0) ≡ (x0, y0) ∈ R2

+ (which is, thus, actually constant in x0). For any (x0, y0) with
y0 ≥ y ∗, τy ∗ ≡ 0 implies y0− I = VL (x0, y0)≥ VL̄ (x0, y0)≥ y0− I , so that (x0, y0) ∈ Cc and b (x0)≤ y0.
This shows that b (x )≤ y ∗ for all x ∈R+. Now suppose by way of contradiction that there is some
x̂ ∈R+ such that b (x̂ ) = y ∗ > I −C , implying y ∗ > 0 and b (x ) = y ∗ for all x > x̂ bymonotonicity of
b . For all x0 ≥ x̂ and y0 = y ∗, we thushave (x0, y0) ̸∈ C andhenceVL̄ (x0, y0) = L̄0 = y ∗−I =VL (x0, y0).
In Proposition 9 (i), we show that

VL̄ (x0, y0)−E
�

e −rτVL̄ (Xτ, Yτ)
�

= E
�

∫ τ

0

1{(X t ,Yt )∈Cc }e
−r t (r −µY )(Yt − ŷ )d t

�

for any stopping time τ ∈ [0,τP ]. Similarly, for the unconstrained problem,

VL (x0, y0)−E
�

e −rτVL (Xτ, Yτ)
�

= E
�

∫ τ

0

1{Yt≥y ∗}e
−r t (r −µY )(Yt − ŷ )d t

�

.

Let now x0 > x̂ , y0 = y ∗ and τ =min{inf{t ≥ 0 |X t ≤ x̂ },τP}, so τ ∈ (0,τP ] and the two integrals
on the respective right-hand side agree. However, VL̄ (Xτ, Yτ) < VL (Xτ, Yτ) on {Yτ < y ∗}, because
then the unconstrained optimal stopping time, which is unique for y ∗ > 0, is not admissible in
the constrained problem for max{y0, I −C } < y ∗. The event {Yτ < y ∗} has positive probability
by our non-degeneracy assumption, which contradicts that all other terms in the previous two
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displays are equal, respectively.

Proof of Theorem 6. Time-consistency is easily verified, because all given plans are first hitting
times of sets that do not depend on ϑ. It remains to check that τϑi and τϑj are mutual best replies
for any ϑ ∈ T . By continuity of (L t ) and (Ft ), and L t ≥ Ft ⇒ Mt ≥ Ft , we have MτP (ϑ) ≥ FτP (ϑ).
Therefore, if firm j uses the plan τϑj = τP (ϑ), then V ϑi (τi ,τϑj ) ≤ V ϑi (min{τi ,τP (ϑ)},τϑj ) for any
plan τi ≥ ϑ. Therefore τϑi is optimal for firm i if it satisfies τϑi ≤τP (ϑ) and attains

ess sup
τ∈T : τ≥ϑ

E
�

1{τ<τP (ϑ)}Lτ+1{τ≥τP (ϑ)}MτP (ϑ)

�

�

�Fϑ

�

.

As P ⊆ Cc , we have indeed τϑi ≤ τP (ϑ). On the event {τP (ϑ) = ϑ} ∈Fϑ, then also τϑi = ϑ, which
is trivially optimal. On the complement {τP (ϑ) > ϑ} ∈ Fϑ, we have (Xϑ, Yϑ) ̸∈ P and LτP (ϑ) =

FτP (ϑ) =MτP (ϑ) by continuity of (L t ) and (Ft ), so that τϑi is optimal by Proposition 3 and the strong
Markov property. By symmetry, τϑj is optimal for firm j on the event {τP (ϑ) = ϑ} ∈ Fϑ, since
then τϑi = τϑj = τP (ϑ). On the complement {τP (ϑ) > ϑ} ∈Fϑ, we have Fτϑi ≥ Lτϑi by τ

ϑ
i ≤ τP (ϑ)

and continuity of (L t ) and F (t ), so that also Fτϑi ≥Mτϑi
. Moreover, for any stopping time τ j ≥ ϑ,

the optimality of τϑi implies Lτ j
≤ E [Lτϑi |Fτ j

] on the event {τ j < τ
ϑ
i } ∈Fτ j

, so that the law of
iterated expectations yields E [1{τ j<τ

ϑ
i }

Lτ j
|Fϑ] ≤ E [1{τ j<τ

ϑ
i }

Lτϑi |Fϑ]. Together, for any stopping
time τ j ≥ ϑ then V ϑj (τ j ,τϑi ) ≤ E [Fτϑi |Fϑ] = V ϑj (τ

ϑ
j ,τϑi ). The last equality follows from τϑj ≥ τϑi ,

where τϑj =τϑi only on {τϑi =τP (ϑ)}, so that Mτϑi
= Fτϑi as noted before.

Proof of Proposition 9. (i) First consider the case y0 = 0, i.e., Yt ≡ 0 for all t ∈ R+. Then the
claimed rate is actually zero, clearly if ŷ = 0, and also if ŷ > 0, because then (X t , Yt ) ∈ C by b (x )> 0

for all x > 0 and (0, 0) ∈ C. But also the waiting cost in the constrained problem (6) is zero if y0 = 0,
because τ= τP ≡∞ is optimal then due to I ≥ 0. If y0 > x0 = 0, then X t ≡ 0 for all t ∈R+, so that
a one-dimensional variant of the following argument for the case x0, y0 > 0 applies.

Recall, from the proof of Proposition 3, the auxiliary reward process L̄ = (L̄ t ) defined by L̄ t =

Lmin{t ,τP }, so that the value of the constrained problem (6) is the same asVL̄ (x0, y0) = supτ≥0 E [L̄τ]

for arbitrary initial values (x0, y0) ∈R2
+. Now we use the terminology of the general theory of op-

timal stopping. The Snell envelope UL̄ = (UL̄ (t )) is the maximal value that can still be attained
if one does not stop before t , here given by UL̄ (t ) = e −r t VL̄ (X t , Yt ) for every t ∈ [0,τP ] (a.s.).
It can be characterized as the smallest supermartingale dominating the payoff process L̄ , so it
has a decomposition UL̄ =M L̄ −DL̄ with a martingale M L̄ = (M L̄ (t )) and a non-decreasing pro-
cess DL̄ = (DL̄ (t )) starting from DL̄ (0) ≡ 0, called the compensator. Hence, for every τ̂ ∈ T ,
UL̄ (0)− E [UL̄ (τ̂)] = E [DL̄ (τ̂)] ≥ 0 is the expected loss if one considers stopping only at stopping
times τ ≥ τ̂. UL̄ has continuous paths, because VL̄ (·) is a continuous function; see, e.g., Krylov
(1980). Proposition 9 claims that DL̄ is just the negative of the drift of L̄ in the stopping region
Cc . In Jacka (1993), this is shown to be true if the local time of the non-negative semimartingale
UL̄ − L̄ spent at zero, denoted by L 0(UL̄ − L̄ ) = (L 0

t (UL̄ − L̄ )), is zero for all t ∈R+ (a.s.).
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We are going to verify that this sufficient condition holds by applying the argument used for
Theorem 6 in Jacka (1993). Itō’s Lemma shows that L̄ is a continuous semimartingale with finite
variation part At :=

∫ t

0
−1{s<τP }e

−r s (r −µY )(Ys − ŷ )d s . Denote its decreasing part by (A−t ), which
satisfies

d A−t = 1{Yt> ŷ } e
−r t (r −µY )(Yt − ŷ )d t

for all t < τP . By Theorem 3 in Jacka (1993), d L 0
t (UL̄ − L̄ )≤ 1{UL̄ (t )=L̄ t ,t<τP }2 d A−t , and as in Theo-

rem 6 therein, the measure d L 0(UL̄ − L̄ ) is supported by {(ω, t ) ∈Ω×R+ | (X t (ω), Yt (ω)) ∈ ∂ C}. For
all t ∈R+, it holds that

E
�

L 0
t (UL̄ − L̄ )
�

≤ E
�

2

∫ t

0

1{(X s ,Ys )∈∂ C,s<τP }d A−s

�

≤ E
�

2

∫ t

0

1{(X s ,Ys )∈∂ C}d A−s

�

.

Note that d A− has aMarkovian density with respect to Lebesguemeasure onR+ as shown above,
and that our underlying diffusion (X t , Yt ) has a log-normal transition distribution, which, thus,
has a density with respect to Lebesgue measure on R2

+. Moreover, ∂ C = {(x , y ) ∈ R2
+ | y = b (x )}

has Lebesgue measure zero in R2
+. Therefore, like in the proof of Theorem 6 in Jacka (1993), we

conclude that L 0
t (UL̄ − L̄ ) = 0 for all t ∈R+ (a.s.).

(ii)Webeginwith the case x0 = y0 = I−C = 0. ThenalsoX t = Yt = I−C = 0, so that (X t , Yt ) ∈P ,
resp. Ft = L t , for all t ∈ R+. Therefore, τP =∞ ̸= inf{t ≥ 0 | (X t , Yt ) ∈ P} = 0. Next, if y0 = 0 and
max{x0, I −C }> 0, then also Yt = 0<max{X t , I −C }, so that (X t , Yt ) ∈P

c for all t ∈R+. Therefore,
τP = inf{t ≥ 0 | (X t , Yt ) ∈P}=∞ in this case.

Finally, we argue that if y0 > 0 and (x0, y0) ∈ ∂ P , then τP = 0 a.s. First consider x0 > 0. Then
{(X t , Yt ) ∈P} ⊇ {Yt > Y0}∩{X t < X0}= {(µY −σ2

Y /2)t +σY B (2)t > 0}∩{−(µX −σ2
X /2)t −σX B (1)t > 0}.

Rewriting the latter two sets, the result follows fromLemma15. Indeed,wehave (B (1), B (2))⊤ =ΣW

for an invertible matrix Σ and 2-dimensional Brownian motion W by Remark 12. Letting Σ̃ =
�−σX 0

0 σY

�

and then Σ̂ = Σ̃Σ, which are both invertible, as well as µ = (−(µX −σ2
X /2),µY −σ2

Y /2)
⊤,

the intersection of the two sets is {min{Z (1)t , Z (2)t } > 0} for (Z (1)t , Z (2)t )
⊤ = tµ+ Σ̂Wt . Now consider

x0 = 0. Then {(X t , Yt ) ∈P}= {Yt > Y0}, and Lemma 15 applies with d = 1.

Proof of Theorem 10. First, note that the process (at ) is well defined, because x + I −C − y > 0

for all (x , y ) ∈A ⊆ P c . Second, at ≥ 0, because y ≥ ŷ for all (x , y ) ∈A. Indeed, by Proposition 3,
y ≥ b (x ) for all (x , y ) ∈ Cc , and b (x )< ŷ only if b (x ) = x+I −C , so that (x , y ) ∈ Cc and ŷ > y imply
(x , y ) ∈P ⊆Ac . Third, (at ) is adapted to (Ft ), because at is defined by a measurable function of
(X t , Yt ). Therefore, the solutionof thedifferential equation (9),which isG ϑi (t ) = 1−exp(−

∫ t

ϑ
as d s )

for all t ∈ [ϑ,τP (ϑ)), is non-decreasing, taking values in [0, 1], and continuous. Thus, togetherwith
G ϑi (t ) = 1 for all t ≥ τP (ϑ), G ϑi is a feasible mixed plan for firm i in the subgame starting at ϑ.
Time-consistency is satisfied, because the hazard rate at and the set P do not depend on ϑ.

Now fix any i ∈ {1, 2} and let j denote the respective other firm. To verify that G ϑi is a best
reply against G ϑj , it suffices to consider only mixed plans Gi that satisfy Gi (τP (ϑ)) = 1, because
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G ϑj (τP (ϑ)) = 1 and MτP (ϑ) ≥ FτP (ϑ). In particular, G ϑi is optimal on the event {τP (ϑ) = ϑ} ∈ Fϑ.
On the complement {τP (ϑ) > ϑ} ∈ Fϑ, we can rewrite the payoff from Gi using Gi (τP (ϑ)) =

G ϑj (τP (ϑ)) = 1, Fubini’s Theorem, and the continuity ofG ϑj (t ) in all t <τP (ϑ) as

V ϑi
�

Gi ,G ϑj
�

= E
�

∫

[0,τP (ϑ))

�

1−G ϑj (s )
�

L s d Gi (s ) +

∫

[0,τP (ϑ)]

�

∫

[0,s )
Fu d G ϑj (u )
�

d Gi (s )

+ (1−Gi (τP (ϑ)−)
��

1−G ϑj (τP (ϑ)−)
�

MτP (ϑ)

�

�

�

�

Fϑ

�

.

Furthermore, since MτP (ϑ) = LτP (ϑ) on {τP (ϑ) > ϑ}, (1−Gi (τP (ϑ)−)) = ∆Gi (τP (ϑ)), and G ϑj (s ) =

G ϑj (s−) for all s ∈ [0,τP (ϑ)), we obtain

V ϑi
�

Gi ,G ϑj
�

= E
�

∫

[0,τP (ϑ)]
Sϑi (s )d Gi (s )

�

�

�

�

Fϑ

�

,

where Sϑi (s ) = (1 −G ϑj (s−))L s +
∫

[0,s ) Fu d G ϑj (u ). Therefore, Gi = G ϑi is optimal if and only if it
increases when it is optimal to stop the process (Sϑi (t )) on [ϑ,τP (ϑ)]. We now argue that this is the
case anywhere in the attrition regionA or at τP (ϑ).

Consider any stopping timeτ ∈ [ϑ,τP (ϑ)]and rewriteSϑi (τ) = (1−G ϑj (τ−))Lτ+
∫

[0,τ) Lu d G ϑj (u )+
∫

[0,τ)(Fu −Lu )d G ϑj (u ), so that, as Fu −Lu = e −r u (Xu + I −C −Yu ) and d G ϑj (u ) = (1−G ϑj (u ))au d u

for all u ∈ [ϑ,τP (ϑ)),

Sϑi (τ) =
�

1−G ϑj (τ−)
�

L t +

∫

[0,τ)
Lu d G ϑj (u ) +

∫

[0,τ)

�

1−G ϑj (u )
�

1{(Xu ,Yu )∈A}e
−r u (r −µY )(Yu − ŷ )d u .

Denoting 1{t≥ϑ}
∫ t

ϑ
1{(Xu ,Yu )∈A}e

−r u (r −µY )(Yu − ŷ )d u byDt , applying integration by parts for the
continuous and finite-variation process (Dt ), and Dϑ = 0 then yield

Sϑi (τ) =
�

1−G ϑj (τ−)
�

(Lτ+Dτ) +

∫

[0,τ)
(Lu +Du )d G ϑj (u )

≤
�

1−G ϑj (τ−)
��

e −rτVL̄ (Xτ, Yτ) +Dτ
�

+

∫

[0,τ)

�

e −r u VL̄ (Xu , Yu ) +Du

�

d G ϑj (u ),

where VL̄ (x , y ) is the value function of the constrained problem (6) defined by equation (14) in
the proof of Proposition 3. In order to determine the expectation of this upper bound for Sϑi (τ)

by Proposition 9 (i), note that Dt equals the waiting cost
∫ t

ϑ
1{(Xu ,Yu )∈Cc }e

−r u (r −µY )(Yu − ŷ )d u

for all t ∈ [ϑ,τP (ϑ)] (a.s.). Indeed, by Proposition 9 (ii), (X t , Yt ) ∈ P
c for all t ∈ [ϑ,τP (ϑ)) (a.s.),

except if x0 = y0 = I −C = 0. In the latter case, however, Dt and the waiting cost are both zero,
because the proof of Proposition 9 (i) started by arguing that if y0 = 0, i.e., Yt ≡ 0 for all t ∈R+, but
ŷ > 0, then (X t , Yt ) ∈ C ⊆ Ac . Therefore, E [e −rϑVL̄ (Xϑ, Yϑ)] = E [Dτ′ + e −rτ′VL̄ (Xτ′ , Yτ′ )] for every
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stopping time τ′ ∈ [ϑ,τP (ϑ)]. Hence, by a change of variable as in Lemma B.2 in Riedel and Steg
(2017), E [Sϑi (τ)]≤ E [e −rϑVL̄ (Xϑ, Yϑ)], andG ϑi is optimal if it attains this bound. Indeed,G ϑi (t ) and
G ϑj (t ) increase only when t ∈ [ϑ,τP (ϑ)] and (X t , Yt ) ∈ A ⊆ Cc , so that then L t = e −r t (Yt − I ) =

e −r t VL̄ (X t , Yt ). Therefore, if G ϑi increases at τ, then E [Sϑi (τ)] = E [e −rϑVL̄ (Xϑ, Yϑ)], so that, by the
change of variable, also E [

∫

[0,τP (ϑ)]
Sϑi (s )d G ϑi (s )] = E [e −rϑVL̄ (Xϑ, Yϑ)].

Proof of Proposition 11. The following proof applies for any setA⊆R2
+. First, note that τP (ϑ)≡

∞ if Y0 = y0 = 0. Therefore, consider Y0 = y0 > 0, so that τP (ϑ) = inf{t ≥ ϑ |Yt ≥ X t + I −C } (a.s.)
by Proposition 9 (ii). We need to show that

∫ τP (ϑ)

0

d G ϑi (t )

1−G ϑi (t )
=

∫ τP (ϑ)

ϑ

1{(X t ,Yt )∈A}
(r −µY )(Yt − ŷ )
X t + I −C −Yt

d t <∞ (15)

on {τP (ϑ)<∞} (a.s.). As (Yt ) is continuous, it is bounded on [0,τP (ϑ)]when this interval is finite.
Hence, wemay just use (X t + I −C −Yt )−1 as the integrand in (15). By the strongMarkov property,
we set ϑ ≡ 0. Hence, we will prove that

∫ τ0

0

(X t −Yt +a )−1 d t <∞ (16)

on {τ0 <∞} (a.s.) for any fixed level a ≥ 0 and the stopping time τϵ := inf{t ≥ 0 |X t − Yt +a ≤ ϵ}
with ϵ = 0. Define the process (Zt ) by Zt := X t − Yt + a to simplify notation, and suppose a > 0

(the special case a = 0 will be treated at the very end of the proof).
As a first step and tool, we derive the weaker result E [

∫ τ0∧T

0
ln(Zt )d t ] ∈R for any time T > 0

(which will imply also
∫ τ0

0
|ln(Zt )| d t <∞ on {τ0 <∞} (a.s.) by the arguments towards the end

of the proof).
Define the function f : R+→R by

f (x ) = x ln(x )− x ∈ [−1, x 2]

and the function F : R+→R by F (x ) =
∫ x

0
f (y )d y ∈ [−x , x 3], such that F ′′(x ) = ln(x ) for all x > 0.
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For localization purposes, fix an ϵ > 0 and a time T > 0. By Itō’s formula,

F (Zτϵ∧T ) = F (Z0)+

∫ τϵ∧T

0

f (Zt )d Zt +
1

2

∫ τϵ∧T

0

ln(Zt )d [Z ]t

= F (Z0)+

∫ τϵ∧T

0

f (Zt )
�

µX X t −µY Yt

�

d t

+

∫ τϵ∧T

0

f (Zt )
�

σX X t d B (1)t −σY Yt d B (2)t

�

+
1

2

∫ τϵ∧T

0

ln(Zt )
�

σ2
X X 2

t +σ
2
Y Y 2

t −2ρσXσY X t Yt
︸ ︷︷ ︸

=:σ2(X t ,Yt )

�

d t .

We want to establish limϵ↘0 E [F (Zτϵ∧T )], first in terms of the integrals, for which we need some
estimates.

In order to eliminate the second, stochastic integral by taking expectations, it is sufficient to
verify that 1{t<τ0} f (Zt )X t and 1{t<τ0} f (Zt )Yt are square P ⊗d t -integrable on Ω× [0, T ]. We have
�

� f (Zt )
�

� ≤ 1+Z 2
t . For t ≤ τ0, furthermore 0 ≤ Zt ≤ X t + a by Yt ≥ 0, and hence Z 2

t ≤ (X t + a )2 ≤
2X 2

t + 2a 2. The sought square-integrability with X follows now from the P ⊗ d t -integrability of
X n

t on Ω× [0, T ] for any n ∈N and analogously that for Y thanks to 0≤ Yt ≤ X t +a for t ≤τ0.
The same estimates guarantee that the expectation of the first integral converges to the finite

expectation at τ0 as ϵ↘ 0. For the third integral, we have ln(Zt ) ≤ Zt ≤ X t +a . The second term
σ2(X t , Yt ) is bounded from below by (σX X t −σY Yt )2 ≥ 0 and from above by (σX X t +σY Yt )2 ≤
((σX +σY )X t +σY a )2 ≤ 2(σX +σY )2X 2

t +2σ2
Y a 2 for t ≤τ0 (supposingw.l.o.g.σX ,σY > 0). Hence,

the positive part of the integrand is bounded by a P ⊗d t -integrable process on Ω× [0, T ], while
the negative part converges monotonically, and we may take the limit of the expectation of the
whole integral.

That the latter is finite follows from analyzing the limit of the LHS, limϵ↘0 E [F (Zτϵ∧T )], di-
rectly. We have F (Zτϵ∧T ) = 1{τϵ≤T }F (ϵ) +1{T<τϵ}F (ZT ), and it is continuous in ϵ↘ 0. For T < τ0,
again 0 ≤ ZT ≤ XT + a and, thus, |F (ZT )| ≤ |ZT |+ |ZT |3 ≤ (XT + a ) + (XT + a )3. As also |F (ϵ)| ≤ 1

for all ϵ ≤ 1,
�

�F (Zτϵ∧T )
�

� is bounded by an integrable random variable as ϵ ↘ 0. Consequently,
limϵ↘0 E [F (Zτϵ∧T )] = E [F (Zτ0∧T )] ∈ R, and also E [

∫ τ0∧T

0
ln(Zt )σ2(X t , Yt )d t ] ∈ R on the RHS. In

the integral, wemay ignore the termσ2(X t , Yt ), which completes the first step. Indeed, with
�

�ρ
�

�<

1we can haveσ2(X t , Yt ) = 0 only if X t = Yt = 0, i.e., if Zt = a . Therefore, inf{σ2(X t , Yt ) |Zt ≤ ϵ}> 0

for any fixed ϵ ∈ (0, a ), soσ2(X t , Yt ) does not “kill” the downside of ln(Zt ) and

E
�

∫ τ0∧T

0

ln(Zt )d t
�

∈R.

In the following, we furthermore need E [
∫ τ0∧T

0
ln(Zt )X t d t ] ∈ R, which obtains as follows.
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With
�

�ρ
�

�< 1, inf{σ2(X t , Yt ) |Zt ≤ ϵ} is attained only when the constraint binds, i.e., Yt = X t +a−ϵ.
Thus, for Zt ≤ ϵ, σ2(X t , Yt ) ≥σ2(X t , X t +a − ϵ). The latter is a quadratic function of X t , with X 2

t

having coefficient σ2(1, 1) > 0, given
�

�ρ
�

� < 1. The quadratic function hence exceeds X for all X

sufficiently large, i.e., we can pick K > 0 such that σ2(X t , Yt ) ≥ X t on {Zt ≤ ϵ} ∩ {X t ≥ K }. Thus,
X t does not “blow up” the downside of ln(Zt )more thanσ2(X t , Yt ).

We are now ready to analyze

f (Zτϵ∧T ) = f (Z0)+

∫ τϵ∧T

0

ln(Zt )d Zt +
1

2

∫ τϵ∧T

0

1

Zt
d [Z ]t

= f (Z0)+

∫ τϵ∧T

0

ln(Zt )
�

µX X t −µY Yt

�

d t

+

∫ τϵ∧T

0

ln(Zt )
�

σX X t d B (1)t −σY Yt d B (2)t

�

+
1

2

∫ τϵ∧T

0

1

Zt
σ2(X t , Yt )d t

when taking the limit ϵ↘ 0 under expectations as before. By our final observations of step one,
the first integral converges (note again Yt ≤ X t +a for t ≤ τ0). In the second, stochastic integral,
we now have |ln(Zt )| ≤ |ln(ϵ)|+ |Zt | for t ≤ τϵ , an even smaller bound than above, making the
expectation vanish. In the third integral, σ2(X t , Yt )/Zt ≥ 0 for t ≤ τ0, so monotone convergence
holds.

On the LHS,
�

� f (Zτϵ∧T )
�

� is bounded by an integrable random variable for all ϵ ≤ 1 analogously
to thefirst step, implying limϵ↘0 E [ f (Zτϵ∧T )] = E [ f (Zτ0∧T )] ∈Rand, thus, E [

∫ τ0∧T

0
σ2(X t , Yt )/Zt d t ]<

∞. By the same arguments brought forward at the end of the first step, we can again ignore
σ2(X t , Yt ).

With E [
∫ τ0∧T

0
1/Zt d t ] <∞, P [{τ0 ≤ T } ∩ {

∫ τ0

0
1/Zt d t =∞}] = 0. As T was arbitrary, we

may take the union over all integer T to conclude P [{τ0 <∞}∩ {
∫ τ0

0
1/Zt d t =∞}] = 0. This

completes the proof of (16) for the case a > 0 (and that of (15) for I −C > 0).
Some modification is due for the case a = 0 if x0 > y0 (otherwise τ0 ≡ 0 and (16) is triv-

ial). Then σ2(X t , Yt ) is not bounded away from 0 for Zt small, it may be an important factor
in the integrability of ln(Zt )σ2(X t , Yt ) when (X t , Yt ) is close to the origin. In order to infer the
required well-behaved limit of E [

∫ τϵ∧T

0
ln(Zt )
�

µX X t −µY Yt

�

d t ] and to finally remove σ2(X t , Yt )

from
∫ τ0

0
σ2(X t , Yt )/Zt d t , it is possible to use another localization procedure: Fix a small δ > 0

and use the minimum of σδ := inf{t ≥ 0 |X t + Yt < δ} and τϵ ∧ T everywhere above. Then
σ2(X t , Yt ) is bounded away from 0 on [0,σδ ∧ τ0] for

�

�ρ
�

� < 1 and again bounded below by a
quadratic function with X 2

t having coefficient σ2(1, 1) > 0. The result now obtains as above for
all paths with X t +Yt ≥δ on [0,τ0]. As δ > 0 is indeed arbitrary, and any path with Y0 = y0 > 0 is by
continuity bounded away from the origin on [0,τ0]when the latter is finite, the claim follows.
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Supplement to

Strategic investment with positive externalities
Jan-Henrik Steg, Jacco J. J. Thijssen

B Comparison to one-dimensional models

Herewe analyze in detail the one-dimensional version of ourmodel considered in Subsection 9.1.
As in many other models in the literature, there are two firms that each have an option to make
an investment to increase the firm’s profitability. This investment involves a sunk cost K > 0. The
uncertainty affecting flowprofits before and after the investment is summarized by a single factor
(πt )with geometric Brownian motion dynamics

dπt =µππt d t +σππt d Bπt .

Assume π0 > 0 as well asσπ > 0. Both firms’ operating profits also depend on which firm already
has invested. This is reflected by multipliers Dkℓ > 0 for k ,ℓ ∈ {0, 1}, where k refers to the firm in
question, ℓ to its competitor, and k = 1 or ℓ = 1 means the corresponding firm has invested. All
cash flows are then discounted at a common rate r >max{0,µπ}.

We assume D10 >D00, so that there is a direct benefit from the first investment. In the litera-
ture, it is often assumed that D01 <D00, which means there is a negative externality on the other
firm’s profits, and that the investment decisions are like strategic substitutes. Instead, we con-
sider a positive externality, or strategic complements, and assume D01 > D00. However, we limit
the externality by assumingD01 <D10; otherwise, wewould have only a second-mover advantage
and no preemption at all. Finally, we assume for simplicity that there is no second investment.
This could also be justified by economic reasons (e.g., if there is patent protection in technology
adoption or if the second investor cannot significantly enhance profits, so that D11 ≤D01).

Without loss of generality, let D00 = 1. Then this model is a version of that from Section 8.2
with no explicit operating costs, i.e., c0 = cL = cF = 0, the same geometric Brownian motion (πt ),
but constant markups corresponding to

m L
0 =D10−D00 > 0, m F

0 =D01−D00 > 0, and µL =µF =σL =σF = 0.

The specification of the reducedmodel used to represent the payoffs (12) and (13) in terms of the
strategically irrelevant martingale (Nt ) and the payoffs L t and Ft defined in equations (1) and (2)
then implies

Yt =
D10−D00

r −µπ
πt and X t =

D01−D00

r −µπ
πt =

D01−D00

D10−D00
Yt .

Due to the single risk factor, (X t ) and (Yt ) are now perfectly correlated. This means we cannot
directly apply the results for the reduced model, where we assumed

�

�ρ
�

� < 1. However, in order
to identify the attrition region A, it is enough to know the dynamics of (L t ) and the preemption
regionP . In this regard, the presentmodel agrees with another special case of the reducedmodel
that is indeed covered by our results. The present model has C = 0 and I = K , so

L t > Ft ⇔ Yt −X t > K ⇔ Yt >
D10−D00

D10−D01
K =: yP .

1



Now consider another specification of the reduced model with two independent Brownian mo-
tions (B (1)t ) and (B

(2)
t ) (i.e., ρ = 0), x0 = 0, arbitrary µX ∈R and σX ∈R \ {0}, the same y0, µY , and

σY as in the one-dimensional model, and still I = K , but C = D00−D01
D10−D01

K . Then C < I and X t ≡ 0
for all t ∈R+, so that

L t > Ft ⇔ Yt > I −C ⇔ Yt > yP .

Therefore, the preemption regions and the laws of (Yt ) are the same for these twomodels, andwe
can use Proposition 3 to identify the respective attrition regions and Theorems 6 and 10 to obtain
subgame-perfect equilibria.

These equilibria are now fully characterized by the preemption threshold yP . We know that
preemption is a constraint for the time of the first investment if and only if y ∗ > yP . Then Propo-
sition 3 tells us that it is not optimal for the leader to invest before preemption starts (by b (0) =
I −C ). This means anticipating preemption does not affect the firms’ behavior. The attrition re-
gion is actually empty in this case, and investment happens only by preemptive moves. There
is also no feedback effect from preemption if y ∗ ≤ yP . Then Theorem 6 can be readily adapted
to show that, in equilibrium, some firm invests as soon as Yt hits [y ∗,∞), i.e., as if there was no
competition at all.

In the one-dimensional model, y ∗ > yP holds in the following cases: (i) The profit growth
rate’smeanµπ or varianceσ2

π is sufficiently high; (ii) the investor’s benefitD10−D00 is sufficiently
big or the externalityD01−D00 sufficiently small; (iii) there is sufficient supply of financing, i.e., r
low enough.

C The deterministic case

Herewearegoing toargue thatuncertaintymakesaqualitativedifference, butnot the two-dimensional
state alone. Therefore, we consider thedeterministic versionof ourmodel and show that preemp-
tion has no feedback effect then, as well as that, even in the equilibrium with mixed strategies,
there is no uncertainty whether investment will happen from attrition or preemption.

LetσX =σY = 0, so X t = X0e µX t and Yt = Y0e µY t . Moreover, assume µY > 0 and µY >µX , so
if the value of the investment is positive, it eventually outgrows that of the externality; this case is
most similar to the stochastic model. The condition for a first-mover advantage L t > Ft can now
be written as

e µY t
�

Y0−X0e −(µY −µX )t
�

> I −C .

Given thatµY > 0,µY >µX , and I ≥C , this shows that the state enters the preemption regionP in
finite time if and only if Y0 > 0, and then it will never leaveP anymore. Let tP = inf{t ≥ 0 | (X t , Yt ) ∈
P} (which now satisfies tP =min{t ≥ 0 | (X t , Yt ) ∈P}<∞ if Y0 > 0 and tP =∞ if Y0 = 0).

Furthermore, L t is nowstrictly increasingas longasYt < ŷ andstrictlydecreasingonce Yt > ŷ .
Hence, the solution of the constrained problem (6) becomes in fact the “naive” policy of waiting
until the unconstrained optimal threshold y ∗ = ŷ or the constraint is reached. This means that
anticipating preemption has no effect in the deterministic model. Consequently, the continua-
tion regionbecomes C = {(x , y ) ∈R2

+ | y < b (x ) or y = 0}with the simpleboundary b (x ) =min{x+
I −C , y ∗}, and the attrition region becomesA= {(x , y ) ∈R2

+ | y
∗ ≤ y < x + I −C and y > 0}. With

these adjusted regions, Theorems 6 and 10 remain true.
However, it is now already known at time t = 0 whether the preemption constraint is binding

or not. Indeed, it binds only when Y0 > 0 and Y0 < y ∗. Then y ∗ > 0, and Yt reaches y ∗ at t ∗ =
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1
µY

ln( y ∗

Y0
) ∈ (0,∞). Thus, (X t ∗ , Yt ∗ ) ∈P if and only if

X0

�

y ∗

Y0

�

µX
µY

< y ∗− (I −C ), (17)

which is if and only if C > I − y ∗ =− µY
r−µY

I and X0 sufficiently small. In this case, investment will
happen preemptively. If “>” holds instead in (17) (or if y ∗ ≤ Y0 < X0+ I −C ), then investment will
happenwithprobability onewhen there is still a second-mover advantage andbeforepreemption
ever starts, also in the equilibrium with mixed strategies.14

Therefore, in addition to the missing feedback effect, it is in the deterministic model also ex
ante clearwhich strategicmotive drives investment. Knowing theparameters and the initial state,
it is possible to predict whether preemption or attrition will determine the equilibrium outcome.

D Resolving simultaneous option exercise

Weassumeda tie-breaking rule, so that eachfirm’s conditionally expectedpayoff isMt =
1
2 (L t+Ft )

when they simultaneously try to exercise the option at any time t ∈R+. This particular assump-
tion isnot crucial for our results. All of themcontinue toholdunchanged if (Mt ) is any continuous,
adapted process satisfying

L t > Ft ⇒ Mt ≥ Ft

and Ft ≥ L t ⇒ Ft ≥Mt

for all t ∈R+. Using these conditions, it is also possible to endogenize the solution of the coordi-
nation problem arising when both firms try to exercise the option at the same time, in particular
when they attempt to preempt each other in order to win a first-mover advantage.

Specifically, assume that if both firms do exercise the option simultaneously, this outcome
is not strictly preferred to letting only the competitor invest and enjoying the externality with
payoff Ft instead. Simultaneous exercise is, in this sense, a coordination failure. The firms’ trade-
off between the desire to preempt the competitor and the fear to fail to coordinate can then be
resolved by allowing for a further randomization device at any given time. This idea goes back
to Fudenberg and Tirole (1985) and is formalized in terms of strategy extensions for stochastic
timing games in Riedel and Steg (2017). By Proposition 3.1 in Riedel and Steg (2017), those exten-
sions yield equilibrium payoffs FτP (ϑ) if, in the subgame starting at arbitrary ϑ, no firm exercises
the option before the time τP (ϑ) = inf{t ≥ ϑ |L t > Ft } and then the firms try to preempt each

14To see this, it suffices, in analogy to Proposition 11 and its proof, to verify that
∫ tP

0

d t

X t −Yt +a
=∞

if tP = inf{t ≥ 0 |X t − Yt +a ≤ 0} ∈ (0,∞), because the only case we are interested in is YtP > y ∗, so that Yt is bounded
away from y ∗ near tP , which iswhere thegiven integral explodes. Indeed, lettingZt = X t−Yt+a , wehave limt→tP Zt = 0
and d Zt = (µX X0e µX t −µY Y0e µY t )d t . Hence,

∞= lim
t→tP
− ln(Zt ) =− ln(Z0)−

∫ tP

0

µX X0e µX t −µY Y0e µY t

X t −Yt +a
d t .

As the numerator in the last integral is bounded if the interval [0, tP ] is finite, the claim follows.
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other. Moreover, Proposition 2.3 in Steg (2018) shows that any subgame-perfect equilibrium in
which the firms use the strategy extensions only for preemption, but no further randomization,
persists if using the extensions is allowed at any time. Therefore, it is possible to work with the
given equilibrium continuation payoffs and consider only non-extended strategies for verifying
subgame-perfect equilibria. The latter result, which is for pure strategies as in our Definitions 1
and 2, can be generalized to mixed strategies as in our Definitions 7 and 8.

E Further technical details

Remark 12. By correlated Brownianmotions B (1) and B (2) wemean that B := (B (1), B (2))⊤ is a con-
tinuous, (Ft )-adapted process with values in R2 that starts at B0 = (0, 0)⊤ a.s., and that has incre-
ments Bt −Bs that are independent ofFs and normally distributed withmean (0, 0)⊤ and covari-
ancematrix (t −s )

�

1 ρ
ρ 1

�

for any t > s ≥ 0. Aswe assume
�

�ρ
�

�< 1, we candefine the invertiblematrix
Σ :=
�p

1−ρ2 ρ
0 1

�

, so thatΣΣ⊤ =
�

1 ρ
ρ 1

�

, resp.Σ−1
�

1 ρ
ρ 1

�

(Σ−1)⊤ =
�

1 0
0 1

�

. ThenW = (W (1), W (2))⊤ :=Σ−1B
is a standard two-dimensional Brownian motion and B =ΣW .

Remark 13. If (X t ) is a geometric Brownianmotion, i.e., satisfying X0 = x0 and d X t =µX X t d t +
σX X t d B (1)t for some x0 ∈ R+, µX ,σX ∈ R, and Brownian motion (B (1)t ), and r ∈ R is such that
r >µX , then (e −r t X t ) is boundedby an integrable randomvariable and converges to zero in L 1(P )
as t →∞. Indeed, e −r t X t ≥ 0 and E [e −r t X t ] = x0e −(r−µX )t → 0 as t →∞. Moreover, if σX > 0,
then we have the upper bound supt e −r t X t = x0eσX Z with Z = supt B (1)t − t (r −µX +σ2

X /2)/σX ,
which is exponentially distributed with rate 2(r −µX )/σX +σX (see, e.g., Revuz and Yor (1999),
Exercise (3.12) 4◦). Therefore, E [supt e −r t X t ] = x0(1+σ2

X /2(r −µX )) is finite. The case σX < 0 is
analogous, and ifσX = 0, then e −r t X t = x0e −(r−µX )t is strictly monotonic.

Lemma 14. Suppose r,µY ,σY ∈R, and r > µY . LetQ(β ) := 1
2σ

2
Y β (β −1) +µY β − r and then βY

be the unique β ∈R satisfyingQ(β ) = 0 and β > 1. Then βY
βY −1 >

r
r−µY

, and βY is strictly decreasing
in µY ,σ2

Y , and −r .

Proof. Given that r > µY and βY > 1, βY
βY −1 >

r
r−µY

if and only if r > βY µY . If µY ≤ 0, r > βY µY

follows directly from r > µY and βY > 1. If µY > 0, then r > µY > 0 implies Q(r /µY ) > 0, so that
βY ∈ (1, r /µY ) byQ(1)< 0. Therefore, r >βY µY also if µY > 0. βY is strictly decreasing in µY ,σ2

Y ,
and −r , becauseQ(β ) is strictly increasing in µY ,σ2

Y , and −r for any β > 1.

Lemma 15. Suppose that d ∈ N, W is a d -dimensional Brownian motion starting at 0 ∈ Rd , µ ∈
Rd , and Σ is an invertible d ×d matrix. Define Zt = (Z

(1)
t , . . . , Z (d )t )

⊤ := tµ+ΣWt for every t ∈R+.
Then inf{t ≥ 0 |min{Z (1)t , . . . , Z (d )t }> 0}= 0 a.s.

Proof. Let Z̃t := Σ−1Zt for every t ∈ R+ and Rd
++ := {z ∈ Rd |min{z1, . . . , zd } > 0}. Then Zt ∈

Rd
++⇔ Z̃t ∈ {Σ−1z |z ∈ Rd

++} =: C , so we need to show that inf{t ≥ 0 | Z̃t ∈ C } = 0 a.s. The set
C ⊆Rd is a cone, becauseRd

++ is a cone and the transformΣ−1z is linear. C also has a non-empty
interior, because it is the preimage of the non-empty and open set Rd

++ under the continuous
and surjective mapping z̃ 7→ z = Σz̃ . Our proof thus asks for a generalization of Zaremba’s cone
condition (seeTheorem4.2.19 inKaratzas andShreve, 1991) toBrownianmotionwithdrift, which
is here Z̃t = t µ̃+Wt with µ̃ := Σ−1µ. As Z̃t is normally distributed with mean t µ̃ and covariance
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matrix t Id , where Id is the d ×d identity matrix, we have

P [Z̃t ∈C ] =

∫

C

1

(2πt )d /2
exp

�

−
∥z̃ − t µ̃∥2

2t

�

d z̃ =

∫

C

1

(2π)d /2
exp

�

−
∥y −
p

t µ̃∥2

2

�

d y

using the change of variable y = t −1/2 z̃ , such that z̃ ∈ C ⇔ y ∈ C . By Fatou’s Lemma we thus
have

lim inf
t↘0

P [Z̃t ∈C ]≥
∫

C

1

(2π)d /2
exp

�

−
∥y ∥2

2

�

d y > 0,

since C has non-empty interior. This implies that P [inf{t ≥ 0 | Z̃t ∈ C } = 0] > 0, and then this
probability must indeed be one by Blumenthal’s zero-one law.

Remark 16. Themathematical question underlying Proposition 11 is of interest in its own right.
With the same arguments used in the proof (which then become much simpler) one can show
that for a Brownian motion B started at a > 0 one has

∫ τ0

0

1

Bt
d t <∞

a.s., where τ0 = inf{t ≥ 0 |Bt ≤ 0}.

F A finite difference approximation to b and V ∗

Let’s first suppose that the boundary b has already been found, so that the continuation region
C is known. On this set, the equilibrium value function, V ∗, should satisfy the partial differential
equation (PDE):

1

2
σ2

X (V
∗)′′x x +

1

2
σ2

Y (V
∗)′′y y +ρσXσY (V

∗)′′x y +µX (V
∗)′x +µY (V

∗)′y − r V ∗ = 0. (18)

(See any standard reference on optimal stopping theory, e.g., Øksendal (2000).) The PDE (18)
does not have constant coefficients, whichmakes solving it numerically less stable. We, therefore,
use the transformations U = log(X ) and Z = log(Y ), so that the state space is now R2. We then
introduce a function V̂ on R2, with the property that V̂ (u , z ) = V ∗(x , y ), for all u = log(x ), z =
log(y ), and (x , y ) ∈R2

+. The PDE (18) can now be rewritten in terms of the function V̂ as

LV̂ (u , z ) :=
1

2
σ2

X V̂ ′′u u (u , z ) +
1

2
σ2

Y V̂ ′′z z (u , z ) +ρσXσY V̂ ′′u z (u , z ) + (µX −σ2
X /2)V̂

′
u (u , z )

+ (µY −σ2
Y /2)V̂

′
z (u , z )− r V̂ (u , z )

= 0.

(19)

The next step is to discretize the state space R2 into a finite grid of Nu equally-spaced steps
in the u-direction and Nz equally-spaced steps in the z -direction, with step sizes ∆u and ∆z ,
respectively. The state space will now be reduced to a finite “box” [u , ū ]× [z , z̄ ]. Here, u , ū , z , and
z̄ are chosen to be sufficiently large/small to ensure that limiting behavior of the value function
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can confidently be transferred to these boundaries. It is immediately clear that we can take z̄ =
log(y ∗), which we will do from here on.

The grid we take consists of points

(u + ( j −1)∆x , z̄ − (i −1)∆z ), j = 1, . . . , Nu , i = 1, . . . , Nz ,

where
∆x =

x̄ − x

Nu −1
, and ∆z =

z̄ − z

Nz −1
,

respectively. That is, we approximate the function V̂ at points (u , z ), where

u ∈Nu := {u , u +∆, . . . , x̄ }, and z ∈Nz := {z , z +∆, . . . , z̄ }.

The following (central difference) approximations for the derivatives will be used:

V̂ ′u (u , z )≈
V̂ (u +∆u , z )− V̂ (u −∆u , z )

2∆u

V̂ ′z (u , z )≈
V̂ (u , z +∆z )− V̂ (u , z −∆z )

2∆z

V̂ ′′u u (u , z )≈
V̂ (u +∆u , z )−2V̂ (u , z ) + V̂ (u −∆u , z )

∆u 2

V̂ ′′z z (u , z )≈
V̂ (u , z +∆z )−2V̂ (u , z ) + V̂ (u , z −∆z )

∆z 2

V̂ ′′u z (u , z )≈
�

V̂ (u +∆u , z +∆z )− V̂ (u +∆u , z )− V̂ (u , z +∆z ) +2V̂ (u , z )

− V̂ (u −∆u , z )− V̂ (u , z −∆z ) + V̂ (u −∆u , z −∆z )
�

/(2∆u∆z ).

(20)

Plugging these approximations into the transformed PDE (19), we get the following approxi-
mation:
�

r +
σ2

X

∆u 2
+
σ2

Y

∆z 2

�

V̂ (u , z ) =

�

1

2

σ2
X

∆u 2
+
µX − 1

2σ
2
X

2∆u

�

V̂ (u +∆u , z )

+

�

1

2

σ2
X

∆u 2
−
µX − 1

2σ
2
X

2∆u

�

V̂ (u −∆u , z )

+

�

1

2

σ2
Y

∆z 2
+
µY − 1

2σ
2
Y

2∆z

�

V̂ (u , z +∆z )

+

�

1

2

σ2
Y

∆z 2
−
µY − 1

2σ
2
Y

2∆z

�

V̂ (u , z −∆z )

+
1

2

ρσXσY

∆u∆z

�

V̂ (u +∆u , z +∆z ) + V̂ (u −∆u , z −∆z )
�

.

(21)

The boundary conditions that we impose are as follows.
1. If y = 0, then no firm will ever invest. Therefore, each firm will incur only the value zero. That
is, for all u < ū it holds that

lim
z→−∞

V̂ (u , z ) = 0.

We implement this boundary by imposing it at z .
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2. At (exp(u ), exp(z̄ )) ∈P c , we know that we are in the attrition region and, thus, that

V̂ (u , z̄ ) = exp(z̄ )− I .

Similarly, we know for every (exp(u ), exp(z )) ∈P that

V̂ (u , z ) =
1

2
(exp(z )− I +exp(u )−C ).

3. At x = 0, we know that preemption will take place at y = I −C (that is, at y = b (0)) and, thus,
that the value function there equals

V ∗(0, y ) =

¨
� y

I−C

�βY (−C ) if y < I −C ,
1
2 (y − I −C ) if y ≥ I −C .

This is implemented by imposing

V̂ (u , z ) =

(

�

exp(z )
I−C

�βY
(−C ) if z < log(I −C ),

1
2 (exp(z )− I −C ) if z ≥ log(I −C ).

4. Finally, as x →∞, the probability of the event of reaching P before y ∗ vanishes. Therefore,
limx→∞ b (x ) = y ∗ and the limit behavior of the value function for large x is

V ∗(x , y ) =

(

�

y
y ∗

�βY
(y ∗− I ) if y < y ∗,

y − I if y ≥ y ∗.

This is implemented by imposing

V̂ (ū , z ) =

(

�

exp(z )
exp(z̄ )

�βY
(exp(z̄ )− I ) if z < z̄ ,

exp(z )− I if z = z̄ .

Combing these boundary conditions with the approximation (21) gives a system of linear
equations that, generically, will have a unique solution. This solution gives approximations to
V̂ at all points in the grid.

Since V ∗ is the solution to a free-boundary problem, we have to find the boundary x 7→ b (x )
as well as the function V̂ itself. This is achieved by applying an iterative scheme. The algorithm
exists of two steps that are repeated until convergence to a solution has taken place. In the first
step, a continuation region C0 ⊆Nu ×Nz is hypothesized, which is used to find a finite-difference
approximation V̂ 0 to V ∗ on C0. We then use the variational inequality for optimal stopping (see,
e.g., Øksendal and Sulem, 2007)

V I (u , z ) :=max
�

LV̂ (u , z ),−I − V̂ (u , z )
	

= 0, all (u , z ) ∈R2.

This is achieved by approximating the L operator using the differences in (20), denoted by L∆,
applied to V̂ 0. This gives us a vector of “error” terms, V I 0 = (V I (u , z ))(u ,z )∈Nu×Nz

, for which we
compute ∥V I (u , z )∥∞.

If this error is too large, we construct a new continuation region C1 where, for all (u , z ) ∈Nu ×

7



Nz , we take
(u , z ) ∈ C1 ⇐⇒ L∆V̂ 0(u , z )>−I − V̂ 0(0, z ).

We then repeat the procedure with this new continuation region. It is well-known that this pro-
cedure converges for small enough∆u and∆z ; see, e.g., Øksendal and Sulem (2007) for details.

8


