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Bidding CHP portfolios consistently into sequential reserve and electricity spot markets  by Philip 

Beran, Christian Furtwängler, Christopher Jahns*, Arne Vogler and Christoph Weber 

 

Abstract 

 

The profitable exploitation of asset portfolios in the European electricity markets has become more 

challenging in recent years. This is particularly true for combined heat and power (CHP) generation 

units that are often facing must-run conditions due to heat demands that need to be satisfied. Including 

the use of flexibility from storage technologies is key to optimize power plant operation margins and 

therefore it is crucial to adequately account for price uncertainties in the European market design. 

Stochastic optimization is thus frequently suggested for an optimal bidding and dispatch of said 

portfolios. 

In our contribution, we develop a novel chain of one weekly and five daily two-stage stochastic 

optimizations with recourse to identify the optimal bidding strategies for CHP portfolios to all relevant 

markets, including the key European electricity market segments, i.e., hourly day-ahead and quarter-

hourly intraday opening auctions, and control reserve markets, i.e., primary (FCR), secondary (aFRR) 

and tertiary (mFRR) reserve auctions. We test our model by means of a rolling-horizon approach on 

historical data and contrast our model’s performance with regards to objective function improvement 

and computation time for various numbers of scenarios. We furthermore benchmark the model against 

its deterministic representation with and without perfect information.  

We find that stochastic optimization may substantially increase portfolio returns, without impairing the 

usability of stochastic optimization frameworks in real-world contexts, a result that is stable with and 

without the consideration of heat provision and with different market designs regarding FCR provision 

periods.  
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1 Introduction 

The transformation of the energy system towards carbon neutrality drives the need for technologies that 

enable a coupling of different energy sectors. Decarbonizing heat supply of households and industrial 

processes is a significant challenge for overall energy system-wide decarbonization. In the EU, the 

heating sector was responsible for 42 % of the final energy consumption in 2015, and the avoidance of 

usage of fossil fuels by enabling sector coupling is thus perceived as an attractive strategy to achieve 

this goal (Thomaßen et al., 2021).  

District heating networks and their flexible mix of generation technologies such as combined heat and 

power generation plants are thereby an established method of simultaneous electricity and heat provision 

to large-scale and small-scale customers. These portfolios may provide various energy types and 

services at the same time, such as electricity, heat and various qualities of reserve power. As additionally 

timestep-overarching restrictions (such as the operation of storage systems) need to be considered, 

identifying the optimal marketing strategies for such portfolios is challenging. In sequential markets, 

coordinated decisions thereby need to be made under multiple price uncertainties, which makes portfolio 

managers often struggle to operate their assets in an optimal manner. 

To our knowledge, no comprehensive approach for decision support in a sequence of interdependent 

markets has been proposed so far. Even though the formulation of optimal marketing problems for CHP 

portfolios to short-term electricity markets by the help of stochastic optimization has been subject to a 

number of recent publications, such as Kumbartzky et al. (2017), Ackermann et al. (2019), and Dietrich 

et al. (2020). However, the approach proposed in this paper extends the existing literature by the 

consideration of three different reserve power products (FCR, aFRR, mFRR) and corresponding 

optimized bidding approaches. Also we develop an enhanced spot market bidding approach which 

robustifies the derived bids. A third novelty is an ex-post evaluation method, which enables to assess 

consistently the benefits of stochastic optimization in a backtesting setting. 

This paper hence addresses the following research questions: 1) How can the sequence of all short-term 

markets relevant for CHP portfolio management be handled in a stochastic optimization framework? 2) 

How can uncertainty regarding electricity prices be modelled and corresponding discrete scenarios be 

generated for use in stochastic optimization? 3) How can optimal reserve power bids be derived based 

on the generated scenarios? and 4) What are the benefits of stochastic optimization for portfolio 

managers and what number of scenarios provides the best tradeoff relative to increase in computational 

burden? 

The paper is structured as follows: After reviewing relevant literature on stochastic optimization of CHP 

in auction-based electricity markets in Section 2, Section 3 focuses on the methodology implemented 

for the stochastic programming conducted in this paper. Therefore, the stochastic program structure is 

first designed reflecting the real-world settings for assets participating in short-term electricity and 
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reserve markets (Section 3.1). Subsequently, the methodology of modelling short-term electricity price 

uncertainties, including scenario reduction (Section 3.2), and the chosen approach for determination of 

optimal reserve bidding (Section 3.3) are outlined. In the last step, the portfolio optimization model is 

described in Section 3.4. Section 4 then describes the investigated cases used for evaluation of the 

implemented approach, including the characteristics of the assumed portfolio and the investigated 

sensitivities. In Section 5, the obtained results are summarized and discussed. Finally, Section 6 

concludes this paper and answers the research questions above. 

2 Literature Review: Stochastic Optimization of CHP portfolios 

and coordinated bidding in European Electricity Markets 

The use of stochastic optimization along with corresponding probability scenarios can provide 

additional value to generation companies when commercializing a power plant portfolio compared to 

single deterministic runs (Dietrich et al., 2020). The key issue with such approaches is the required 

reduction of complexity to keep the model solvable in an acceptable amount of time while maintaining 

close to optimal results. Earlier studies on the stochastic optimization of CHP units have been reviewed 

in Kumbartzky et al. (2017) and Dietrich et al. (2020). Subsequently, the focus is therefore on the state 

of the art regarding the coverage of all relevant short-term markets for CHP plants in stochastic 

optimization approaches. Key aspects of stochastic optimization models for CHP portfolios in the 

European markets include the bidding into spot markets based on the bidding curve approach and the 

possibility to submit optimized bids for the multiple reserve power products (FCR, aFRR, mFRR). 

In the European spot market design, a piecewise-linear curve of price-quantity combinations is 

submitted (EPEXSPOT, 2021). The construction of a bidding curve requires multiple price-quantity 

combinations. The optimization problem can be formulated as a mixed-integer linear program (Fleten 

& Kristoffersen, 2007), either using a discrete set of fixed prices or a set of discrete quantities. Two 

examples of the optimization of CHP units that include the construction of a piecewise linear function 

are described by Dietrich et al. (2020) and Ackermann et al. (2019). Dietrich et al. (2020) use a multi-

stage stochastic program to optimize the bidding of a portfolio including a CHP unit in the German Day-

Ahead spot market. Ackermann et al. (2019) optimize the bidding of a single CHP unit with a heat 

storage. Additionally, Ackermann et al. (2019) compare the simplistic “flat-bidding” approach, where 

only one price-quantity combination is submitted, with the bidding curve approach. With “flat-bidding” 

the quantity is not adjusted according to the realized market price, which may lead to costly trades for 

unexpected market realizations. When using bidding curves without the possibility to make small 

corrections in the Intraday market, price outliers can still result in expensive start-ups and shutdowns or 

even infeasibilities (Klaboe & Fosso, 2013). This is because only a subset of all possible price paths is 

considered and intertemporal constraints apply that cannot be adequately accounted for when submitting 

simple bidding curves without the ability to submit complex bids. Ackermann et al. (2019) found a 
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negative value for the bidding curve construction compared to the flat-bidding approach. We suspect 

that the reason for this counterintuitive result is the missing possibility to adjust the market position after 

the Day-Ahead market clearing. Hence, we conclude that a stochastic optimization model for the bidding 

on the electricity spot market should use the bidding curve approach but should as well include the 

possibility to adjust the market position after the auction.  

The inclusion of a reserve market (or balancing market) is notably considered in Kumbartzky et al. 

(2017). Like the implementation of the Day-Ahead market, Kumbartzky et al. (2017) use a discrete set 

of prices to include the reserve market in a mixed-integer program. This approach is computationally 

expensive as many binary variables are added, especially if multiple reserve products are to be 

considered. Hence, Kumbartzky et al. (2017) consider a simple portfolio without intertemporal 

constraints and only one reserve product. This is quite common in the literature, e.g. Böhringer et al. 

(2019) use a similar model. In contrast, Toubeau et al. (2018) pursue a different approach. They 

formulate a non-linear model with continuous variables for prices and quantities using a genetic 

algorithm for the optimization. They test the model with a virtual power plant portfolio with data from 

the Belgian Day-Ahead, reserve, and Intraday market. A typical day approach is used to reduce the 

computational burden. They justify this approach by stating that they are optimizing reserve markets 

with a mid-term horizon of a month or a week. While this approach might be appropriate for the medium-

term traded markets, the bidding for reserve products in core European markets often happens day-ahead 

and we can assume that the forecasts are reliable and should be accounted for in the optimization. In 

short, the inclusion of the reserve markets with a discrete set of prices is often used but computationally 

expensive and will be suboptimal when multiple reserve products are considered. The approach from 

Toubeau et al. (2018) can be used for multiple products by reducing the complexity using the typical 

day approach while neglecting important information from more recent observations.  

In a more recent publication, Kraft et al. (2023) develop a three-stage stochastic program including day-

ahead and intraday spot markets along with one reserve market. While not considering bidding curves, 

they further reformulate the model to include the risk exposure while adding the conditional value at 

risk in the objective. They show that the model can be a valuable tool for portfolio management based 

on a case study with a simple portfolio consisting of biomass power plants a s set of PV plants.  

Nolzen et al. (2025) explore a similar setting including balancing, day-ahead, intraday markets together 

with a portfolio of industrial multi-energy plants including CHP, (gas and electrode) boilers and chillers. 

Given that they focus on the marketing of flexibilities, they model the continuous intraday market 

trading using financial option theory.  

Siddique et al. (2024) also consider portfolios related to district heating, yet their application focus is on 

large-scale heat-pumps rather than CHP units. In terms of balancing markets, they consider a future 

regulation market with energy bids very shortly before delivery. This market design differs substantially 

from balancing market designs with early capacity auctions as considered in the other papers. A key 
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finding is that such a novel design incentivizes day-ahead trading as these quantities may be used for 

regulation energy markets.  

Löhndorf and Wozabal (2022) as well as Miskiw et al. (2025) explore coordinated bidding strategies in 

the case of price impacts on the markets. While Löhndorf and Wozabal (2022) focus on battery storage, 

Miskiw et al. (2025) consider combined portfolios based on PV and biomass plants. Also the latter 

include a (single) reserve market whereas Löhndorf and Wozabal (2022) exclusively consider day-ahead 

and intraday markets. 

Besides this limitation to at most one reserve market, the papers generally also do not evaluate the impact 

of the number of scenarios on the results of stochastic optimization. To our knowledge, the tradeoff 

between the improvement and the additional computational burden has not been evaluated in the 

literature. Dietrich et al. (2020) provide an overview of how many price scenarios have been used in 

various publications for bidding in the Day-Ahead market. Most authors use ten or fewer price scenarios, 

while one publication (Ackermann et al. (2019)) stands out by using 100 scenarios.  

In conclusion, Ackermann et al. (2019) and Dietrich et al. (2020) provide good examples of the 

construction of bidding curves in CHP portfolios optimization. In both models, trading in reserve 

markets was not considered. Kumbartzky et al. (2017) combined the bidding curve approach with 

trading in reserve markets. However, this approach might be too computationally intensive for a 

complex portfolio and multiple reserve products. With the typical day approach of Toubeau et al. (2018), 

the bidding on multiple reserve markets is feasible, but with the drawback that more recent information 

is neglected. Kraft et al. (2023), as well as Löhndorf and Wozabal (2022) and  Miskiw et al. (2025) 

provide sophisticated approaches but do not include bidding curves and the portfolios do not include 

CHP units or thermal storages. Especially storage technologies tend to have a huge impact on the 

performance and are crucial for the flexibility of CHP portfolios. Therefore, the focus of this paper is 

on a novel model that considers all sequential short-term markets and can be applied to a complex CHP 

portfolio without taking too much time to solve the model. 

3 Methodology 

In Figure 1, the general approach for applying stochastic optimization to a given decision problem is 

sketched. At least the four core aspects listed here – decision structure, uncertainty representation, 
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scenario generation and stochastic program – need to be considered to investigate an optimization 

problem under uncertainty by means of stochastic optimization.  

 

Figure 1: Basic approach to use stochastic optimization for decision support 

The remainder of this section is mainly structured according to the mentioned core aspects, whereby the 

second and third aspect are discussed jointly, and an additional problem-specific aspect (optimal reserve 

bidding) is included as well: In Section 3.1, the stochastic program structure implemented in this paper 

is introduced. Subsequently, Section 3.2 describes the modelling of the uncertain parameters of the 

investigated problem and the scenario reduction. In Section 3.3, the used methodology of optimal 

reserve bid computation is introduced. Finally, in Section 3.4, we provide insight into the portfolio 

optimization problem solved by our approach. However, the comprehensive optimization problem 

description is given in the Appendix of this paper. 

3.1 Stochastic Program Structure 

The investigated problem in this paper is the determination of an optimal marketing strategy of a small 

asset portfolio manager, marketing his assets simultaneously in up to three different types of markets, 

namely short-term wholesale (active) power markets, reserve power markets and a local heat market. 

Combined heat and power plants may hereby often supply to all three mentioned markets at the same 

time. 

We assume in the following that the portfolio manager has to fulfill heat delivery obligations which are 

remunerated at a constant heat price exogenously set over a longer period of time1. Consequently, heat 

 
1 A comprehensive overview about different pricing mechanisms in district heating networks is given in Li 
et al. (2015). While real-time pricing with changes in heat prices during the day is in general possible, it is 
not the dominant pricing mechanism in heating due to the often-monopolistic ownership structure of local 
heating provision. 
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revenues are not impacted by short-term portfolio optimization decisions except for the unlikely case 

that heat demand is not served. Therefore, heat revenues may be dropped from the optimization model’s 

objective function. However, the restrictions imposed by the heat demand to be covered at each time-

step need to be considered explicitly as optimization constraints in the portfolio optimization.  

Our model is set in the German market environment. The short-term markets that drive marketing and 

operation decisions of small portfolio manager examined in the following are 

1. Frequency Containment Reserve (FCR) Auction 

2. Automatic Frequency Restoration Reserve (aFRR) Auction 

3. Manual Frequency Restoration Reserve (mFRR)2 Auction 

4. Day-Ahead (DA) Power Auction  

5. Intraday Opening (IDO)3 Power Auction 

These markets are cleared by a one-shot auction each, with different rules regarding bid selection. Most 

notably, markets 1 to 3 are cleared considering a pay-as-bid allocation rule, markets 4 and 5 implement 

a uniform pricing regime. 

Figure 2 gives an overview on the temporal interdependence of these five markets. The market 

framework that most of our investigations in this paper are originally based upon are product 

specifications corresponding to the market situation until July 2019. However, we also include more 

recent market specifications concerning the FCR auction in our later application section (cf. subsection 

4.4). An in-depth description of characteristics of the mentioned reserve market products (1-3) is given 

by Ocker et al. (2018) and Furtwängler and Weber (2019). However, these markets have been subject 

to frequent market design changes in the recent past, including changes of procurement period durations 

of individual reserve products, and changes of the implemented auction clearing mechanisms4. What 

 
2 FCR, aFRR and mFRR are often denoted by their traditional names (primary, secondary and tertiary/minute 
reserve) in German literature. 
3 There additionally exists a sixth market that represents an opportunity to market electricity shortly before 
delivery, starting right after the IDO is cleared, the so called continuous intraday market (IDC) of hourly 
and quarter-hourly electricity contracts. This market is not directly addressed in this paper for various 
reasons. The three most important aspects are: 

(i) This market is a real-time market with a complex market dynamics. Market participants may 
submit so-called Limit Orders und Market Orders that interact continuously with an Order 
Book of previous, non-executed Limit Orders of other market participants (and other special 
products, like so-called Iceberg Orders) – a very dynamic process that is not easily included 
into the stochastic program developed in this paper. 

(ii) There is very limited data available on historical transactions that can reliably inform the 
stochastic modelling of uncertainties. 

(iii) The continuous nature of said markets requires real-time decisions that are not well-
compatible with a stochastic optimization approach given the computationally expensive 
nature of stochastic optimization. 

4 aFRR and mFRR are taking place one day ahead of delivery and cover four-hour time segments, with 
separate products for positive and negative reserve provision. Until 2019, the FCR auction took place on 
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remains unchanged is that FCR is a bidirectional reserve product covering both positive and negative 

reserve and that aFRR and mFRR both encompass dedicated separate positive and negative reserve 

products with delivery periods of four hours. 

The wholesale electricity markets (4 and 5) investigated in this paper represent the most common day-

ahead electricity marketing opportunities in Germany. Their most important distinctions are their time 

of auction (noon for DA, 3 p.m. for IDO) and their covered contracts. While the DA covers hourly 

products, the IDO represents the first opportunity to trade electricity on a quarter-hourly basis. For a 

more detailed description of available electricity products, the form of bid submission and evaluation, 

see (Dietrich et al., 2020).  

 

Figure 2: Decision interdependencies between different power markets in Germany before July 2019 

The timeframes between result announcements of an auction and the closure of the following auction 

(minus result processing times by the market participant itself before and after the optimization) 

represent an upper boundary for acceptable decision (and therefore also computation) times. The shortest 

timespan between two subsequent decisions until July 2019 was the time in between the aFRR auction 

result announcement and the mFRR auction, respectively the time in between the mFRR auction result 

announcement and the DA auction (both one hour). Taking a conservative estimate of 15 minutes of 

result processing time after the previous decision step and the bidding upload for the following step, the 

maximum computation time for both mFRR and DA decisions should not exceed 45 minutes if the 

marketer has participated in the earlier auction(s). 

The later the decision is made, the more granular the product is, regarding the length of the traded period. 

While FCR covers one 168 hour-long period, aFRR and mFRR cover six four-hour periods, the DA 

Auction 24 one-hour periods and the IDO 96 quarter-hourly periods. Marketing at any step needs to 

 
3 p.m. on Tuesdays and covered the whole following week, so 168 hours in total (Bundesnetzagentur 
(BNetzA) (2011)). Therefore, determining the optimal marketing opportunity ahead of the FCR auction 
required the consideration of time periods that were more than twelve days ahead. In July 2019, daily FCR 
provision was introduced. This auction then initially took place two days ahead of delivery and the FCR 
product covered the 24 hours of the respective day. Since July 2020, the auctions are held before the aFRR 
auctions one day before delivery and cover four hour periods BNetzA (2018), just like aFRR BNetzA 
(2017a) and mFRR BNetzA (2017b). The pay-as-bid auction clearing mechanism first sequentially 
evaluated power and energy bids, then for a time, a mixed-price evaluation was adopted in 2018, but 
again halted and abolished in 2019 after a legal decision, reinstating the old clearing mechanism energate 
messenger (2019). 
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account for both the decisions that were already made in earlier steps, as well as the anticipation of 

future steps and their upcoming marketing opportunities. 

At all decision steps an individual bidding and operation optimization problem must be solved, which 

is described in more detail in section 3.4. Thereby, the uncertainty is represented by a scenario tree, 

consisting of a root node with deterministic information and branches containing individual stochastic 

scenario paths with a combined probability of 1, thus a scenario fan. As a result, a two-stage optimization 

model is solved at each decision step. For the FCR step, the optimization horizon consists of a total of 

300 hours, whereas the following steps all consist of a total of 240 quarter-hours, or 60 hours. Depending 

on the decision-step at hand, the optimization considers an hourly or quarter-hourly time resolution, i.e., 

for weekly FCR optimization an hourly resolution is chosen to limit the computational burden of a 

stochastic optimization. Quarter-hourly electricity products are not modelled in this case. 

For each step, the same toolchain is used, consisting of eight modules. Both one-time auctions and 

multiple subsequent marketing decisions can be investigated, resulting in one or multiple iterative runs 

of these modules.  

Module 1 loads needed input data, either from external databases or from previous optimization results, 

if applied in a multi-run setting. Module 2 identifies the current decision step under investigation and 

sets up relevant parameters. In Module 3, the relevant uncertain parameters are modelled, i.e. the 

electricity prices from the short-term electricity markets considered (Markets 4 and 55) which are also 

key inputs for the determination of optimal reserve bids (Module 5). Module 4 reduces the received 

price scenario paths by applying the scenario reduction algorithm described by Heitsch and Römisch 

(2003). The methodology for both modules is presented in more detail in section 3.2. 

Module 5 determines the reserve marketing bids based on the reduced uncertain price paths. The 

computed optimal bid prices are entering the optimization as fixed values, while the corresponding 

quantity of the reserve bid is re-optimized in the stochastic program. This is explained in more detail in 

section 3.3. Module 6 takes the results of the previous modules and converts them into inputs for a 

stochastic unit commitment and dispatch model that is called and produces results in Module 7. All 

results are collected by Module 8. In case of a multi-run, i.e., when model performances are backtested 

with historical data as in the remainder of this paper, a “Market Simulation” function is called that 

mimics the market clearing of the decision that was optimized last. In case this is a reserve market (FCR, 

aFRR, mFRR, 1-3), bid prices are compared to the (historical) marginal clearing price of the market. If 

the bid price is lower than or equal to the marginal market price, the bid is accepted in its entirety and 

the portfolio manager receives his/her bidding price for the marketed amount (pay-as-bid). In case of 

the short-term electricity markets (DA, IDO, 4-5), the portfolio manager’s bidding curve that is 

 
5 Reserve prices of markets 1-3 are not modelled as an uncertain timeseries due to their differing allocation rule. 

Instead, historical reserve price distributions are considered alongside the opportunity costs induced by the short-

term electricity markets 4-5 
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optimized in Module 7 is evaluated for each hourly or quarter-hourly product, determining the marketed 

amount using the actual historical price as input. 

If multiple days are investigated in a row, i.e., in a backtesting application, an additional optimization is 

conducted after the IDO decision step that does not actually represent a marketing opportunity but 

enables the portfolio operator to adjust his/her plant generation schedule one last time after the last 

market result of the day (IDO) has become available, resulting in the final plant operation schedule used 

for profit computation. Additionally, the portfolio operator has the opportunity to adjust the market 

position if technically necessary6, which reflects possible adjustments in the IDC, but results in a penalty. 

This “Dispatch” run will be discussed in further detail in section 4.2. 

3.2 Modelling of Price Uncertainties 

3.2.1 Modelling of Day-Ahead Electricity Prices 

To adequately characterize the uncertainty from day-ahead electricity prices, we forecast the underlying 

multivariate distribution, where the dimensionality of said distribution depends on the decision-step at 

hand. In the present study, all forecasts are communicated in the form of electricity price ensemble 

forecasts, that is, a collection of day-ahead electricity price paths with each ensemble member 

representing a draw from the predicted multivariate distribution. 

We base the electricity price ensemble forecasts on the following time-series model, which constitutes 

a variant of the so-called expert model from the electricity price forecasting literature (Uniejewski et al., 

2018; Weron & Ziel, 2019; Ziel & Weron, 2018). 

𝑝𝑡,ℎ = 𝛽ℎ,0(𝑡) + 𝛽ℎ,1(𝑡)𝑝𝑡−1,ℎ + 𝛽ℎ,2(𝑡)𝑝𝑡−2,ℎ + 𝛽ℎ,3(𝑡)𝑝𝑡−7,ℎ + 𝛽ℎ,4(𝑡)𝑝𝑡−1,24 + 𝜀𝑡,ℎ (1) 

The electricity price of a particular hour ℎ on day 𝑡 is modelled as a function of the day-ahead price of 

the same hour lagged by one, two and seven days as well as the last day-ahead price of the previous day. 

It should be noted that all coefficients are time-varying, meaning that a coefficient is modelled as the 

sum of a constant term, a second-order Fourier approximation for seasonal effects and three dummy 

variables that capture calendar information. The dummies reflect whether the day of the forecast 

constitutes a Monday, Saturday or Sunday. In addition, all public holidays are modelled as either 

Saturday or Sunday, depending on whether they constitute local or nationwide public holiday. The days 

after a public holiday are modelled as Monday. 

 
6 For example, the market simulation evaluation of the IDO piece-wise linear bidding curve may result in 
marketed quantities leading to a plant schedule incompatible with technical constraints like minimal plant 
production constraints. The occurrence of this effect cannot be avoided entirely with piece-wise linear 
curves as bidding amounts are always interpolated between two “kinks” of the bidding curve, and 
conventional power plant production ranges are usually non-convex due to minimum stable production 
levels.  
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𝛽ℎ,𝑖(𝑡) = 𝛽ℎ,𝑖,0 + 𝛽ℎ,𝑖,1 sin (
2𝜋𝑡

365.24
) + 𝛽ℎ,𝑖,2 cos (

2𝜋𝑡

365.24
) + 𝛽ℎ,𝑖,3 sin (

4𝜋𝑡

365.24
)

+ 𝛽ℎ,𝑖,4 cos (
4𝜋𝑡

365.24
) + 𝛽ℎ,𝑖,5𝐷𝑡

𝑀𝑜 + 𝛽ℎ,𝑖,6𝐷𝑡
𝑆𝑎 + 𝛽ℎ,𝑖,7𝐷𝑡

𝑆𝑢 

 

(2) 

To generate an electricity price ensemble forecast based on the preceding time-series model, a recursive 

simulation scheme is employed. First, all coefficients are estimated using the LASSO (Least Absolute 

Shrinkage and Selection Operator) method based on a rolling window of 730 days. The LASSO 

estimator is used to address the issue of the high dimensionality of the coefficient vector and provides 

automatic variable selection ((Uniejewski & Weron, 2018; Ziel, 2016).The coefficients and relevant 

variables are now fixed for the simulation. Second, the one-day-ahead price forecast is calculated from 

the historical data and a twenty-four-dimensional vector of random disturbances is added to initialize 

the first ensemble path. The present study considers a parametric approach to generate said disturbances, 

as they are drawn from a multivariate normal distribution that is fitted to the residuals from the 

estimation stage to preserve the within-day dependence structure of electricity prices. Third, using the 

historical data, the one-day-ahead forecast and a newly sampled disturbance vector, the two-day-ahead 

forecast is calculated, and this recursion is repeated until all prices up to the required horizon of the 

decision step at hand have been calculated for the first ensemble path. To obtain the electricity price 

ensemble forecast, the second and third step is repeated until the desired number of ensemble paths has 

been reached. 

3.2.2 Modelling of Intraday Opening (IDO) Electricity Prices 

The electricity prices of the IDO power auction and the preceding day-ahead auction are closely related. 

First, the quarter-hourly resolution of the IDO auction allows for further optimization of hourly 

schedules resulting from the day-ahead auction. Second, the IDO auction provides the opportunity to 

react to changes in one’s information set from forecast updates received after the day-ahead auction. In 

the context of stochastic optimization investigated in this study, it is therefore essential to consistently 

capture the linkage between the electricity prices of the two auctions. We therefore consider an approach 

that constructs the ensemble forecasts of intraday prices based on the previously calculated ensemble 

forecast of day-ahead prices. To this end, we do not model intraday prices directly but model the price 

deviation 𝑑𝑡,𝑞ℎ between the intraday price of a particular quarter-hour and the day-ahead price of the 

corresponding hour; that is, 𝑑𝑡,𝑞ℎ = 𝑝𝑡,ℎ − 𝑝𝑡,𝑞ℎ. 

The price deviation 𝑑𝑡,𝑞ℎ is represented by the following time-series model, inspired by the time-series 

model for day-ahead prices introduced above. 
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𝑑𝑡,𝑞ℎ = 𝛽𝑞ℎ,0(𝑡) + 𝛽𝑞ℎ,1(𝑡)𝑑𝑡−1,𝑞ℎ + 𝛽𝑞ℎ,2(𝑡)𝑑𝑡−2,𝑞ℎ + 𝛽𝑞ℎ,3(𝑡)𝑑𝑡−7,𝑞ℎ + 𝛽𝑞ℎ,4(𝑡)𝑑𝑡−1
𝑚𝑎𝑥

+ 𝛽
𝑞ℎ,5
(𝑡)𝑑𝑡−1

𝑚𝑖𝑛 + 𝛽
𝑞ℎ,6
(𝑡)𝑑𝑡−1,96 + 𝜀𝑡,𝑞ℎ 

 

(3) 

 

𝛽
𝑞ℎ,𝑖
(𝑡) = 𝛽

𝑞ℎ,𝑖,0
+ 𝛽

𝑞ℎ,𝑖,1
sin (

2𝜋𝑡

365.24
)+ 𝛽

𝑞ℎ,𝑖,2
cos (

2𝜋𝑡

365.24
) + 𝛽

𝑞ℎ,𝑖,3
sin (

4𝜋𝑡

365.24
)

+ 𝛽
𝑞ℎ,𝑖,4

cos (
4𝜋𝑡

365.24
) + 𝛽

𝑞ℎ,𝑖,5
𝐷𝑡
𝑀𝑜 + 𝛽

𝑞ℎ,𝑖,6
𝐷𝑡
𝑆𝑎 + 𝛽

𝑞ℎ,𝑖,7
𝐷𝑡
𝑆𝑢 

(4) 

The price deviation of a particular quarter-hour 𝑞ℎ on day 𝑡 is modelled as a function of the price 

deviation of the same quarter-hour lagged by one, two and seven days as well as the maximum, minimum 

and last price deviation of the previous day. It should be noted that all coefficients are again time-

varying. 

We estimate the model coefficient using the LASSO method based on a rolling window of 365 days. 

The ensemble forecast of price deviations is constructed from a recursive simulation scheme as 

described above with the sole difference that the random disturbances are drawn from a ninety-six-

dimensional normal distribution. A combination of paths from the price deviation ensemble with paths 

from the day-ahead price ensemble lends a consistent intraday price ensemble forecast. 

3.2.3 Scenario Reduction 

The scenario reduction algorithm was implemented following the concept of Heitsch and Römisch 

(2003) and Dupačová et al. (2003). We used the variant “forward selection” based on the squared 

Euclidean distance. This and similar approaches have proven useful and are predominantly used in the 

literature (Ziel, 2021). In this method, real simulated price paths are selected based on the Wasserstein 

metric. The use of the Wasserstein metric is supported by stability theory for stochastic programs 

(Rujeerapaiboon et al. (2018)).  

3.3 Modelling of Reserve Bidding 

The bid for the reserve market in Germany includes a quantity-price combination for the supply of power 

and one for the supply of energy. In this setting, it is assumed that the portfolio operator always bids an 

energy price equal to his costs to reduce the complexity of the decision in the model. To incorporate the 

reserve market decision into a mixed-integer linear program, some authors have used a discrete set of 

prices (see Section 2) from which the bid price is selected in the optimisation. To further reduce the 

complexity, we rely on one single possible bid price which is optimized within Module 5 beforehand 

the stochastic optimization in Module 7. Hence, the decision is decomposed in two parts. In the first 

part, the combined price and quantity bid is optimized following Swider and Weber (2007). In the second 

part, the power price 𝑝𝐵 is fixed while the quantity is optimized within a detailed optimization to reassure 

or adjust the previous optimized quantity of the bid (see section 3.4). In essence, the reserve bidding 
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tool is used to optimize the bid with a detailed representation of the stochastic properties of the reserve 

price and a highly simplified representation of the portfolios’ capabilities. In this way, we determine a 

near-optimal bid price while reducing the computational cost by neglecting irrelevant bid price options 

in the detailed stochastic program. 

Swider and Weber (2007) formulated a non-linear optimization problem for the power bid in the German 

reserve markets. The strengths of the model of are the inclusion of partially accepted bids and including 

the bidding-price impact on future auctions. The objective function is: 

max
𝑝𝐵

Π = 𝐿𝐴̃(𝑝𝐵; 𝐿𝐵)(𝑝𝐵 + 𝛥𝑝𝑣̃(𝑝𝐵) − 𝑐𝐵), (5) 

where Π is the expected profit, 𝐿𝐴̃(𝑝𝐵; 𝐿𝐵) is the expected accepted capacity dependent on the bid price 

𝑝𝐵 and the bidding capacity 𝐿𝐵, 𝛥𝑝𝑣̃(𝑝𝐵) is the expected loss due to the price-impact on future auctions 

dependent on the power bid 𝑝𝐵 and the expected bid costs 𝑐𝐵 which are the costs that arise when the bid 

is accepted. In this application 𝛥𝑝𝑣̃(𝑝𝐵) is estimated using an ARIMA process. In contrast to Swider 

and Weber we use discrete probability distributions to estimate the expected accepted reserve capacity 

𝐿𝐴 to account for the frequent occurrence of reserve power prices of zero. The probability distributions 

are estimated with an autoregressive quantile regression model (Jahns & Weber, 2019). Within this 

framework, the costs of 𝑐𝐵 are estimated using a simplification of must-run and opportunity costs  (see 

Furtwängler and Weber (2019)). The must-run costs arise if the unit makes a loss while selling the 

produced electricity on the spot market but still must run at a minimum capacity due to the obligation 

to provide reserve power. The simplified form of the must-run costs for a unit 𝑢 at time step 𝑡 can be 

defined as follows. 

𝐶𝑢,𝑡
𝑀𝑢𝑠𝑡𝑟𝑢𝑛 = 𝑚𝑎𝑥{𝑃𝑢

𝑀𝑖𝑛( 𝑐𝑢
𝑉𝑎𝑟 − 𝑝𝑡

𝑆𝑝𝑜𝑡
), 0} (6) 

where 𝑃𝑢
𝑀𝑖𝑛 is the minimum stable power plant production (including the band for negative reserve) of 

unit 𝑢, 𝑐𝑢
𝑣𝑎𝑟 represent the variable costs per produced MWh and 𝑝𝑡

𝑆𝑝𝑜𝑡
is the realized spot price at time 

step 𝑡. For units that already have a must-run condition, for example because of accepted bids in previous 

market reserve power auctions or the obligation to produce heat, must-run costs are not considered. The 

relative opportunity costs per contracted MW in the reserve market can be calculated as follows.  

𝑐𝑢,𝑡
𝑂𝑝𝑝

=  𝑚𝑎𝑥{𝑝𝑡
𝑆𝑝𝑜𝑡

 − 𝑐𝑢
𝑉𝑎𝑟, 0} (7) 

The opportunity costs do not apply for negative reserve products. Subsequently, we use the expected 

value of both cost components derived from the simulated price paths described in Section 3.2.  

Costs may be reduced by splitting the total bidding capacity 𝐿𝐵 between different units and even varying 

this split across time steps. Therefore, we use the following mixed integer optimization problem to 

calculate the total expected costs 𝐶𝐵 of a marketed capacity 𝐿𝐵. The objective function is: 
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𝑚𝑖𝑛
𝑃𝑢,𝑡
𝑅𝑒𝑠,𝑜𝑢,𝑡 

𝐶𝐵 =∑𝑃𝑢,𝑡
𝑅𝑒𝑠

𝑢,𝑡

𝑐𝑢,𝑡
𝑂𝑝𝑝

+ 𝑜𝑢,𝑡 𝐶𝑢,𝑡
𝑀𝑢𝑠𝑡𝑟𝑢𝑛 (8) 

where 𝑃𝑢,𝑡
𝑅𝑒𝑠 is the reserve capacity provided by unit 𝑢 at time step 𝑡 and 𝑜𝑢,𝑡  is a binary variable, 

indicating whether unit 𝑢 is running. The first constraint ensures that the total reserve power provided 

by all units in the portfolio is equal to the bidding capacity. 

∑𝑝𝑢,𝑡
𝑅𝑒𝑠

𝑢

= 𝐿𝐵  ∀𝑡 (9) 

The second constraint enforces that units are on when providing reserve power. 

𝑃𝑢,𝑡
𝑅𝑒𝑠  < 𝑜𝑢,𝑡 𝑃𝑢

𝑅𝑒𝑠𝑀𝑎𝑥  ∀𝑢, 𝑡 (10) 

Using this minimization problem to estimate the costs for an accepted bid with a bidding capacity 𝐿𝐵, 

we iterate over all possible bidding capacities to find the highest expected profit and the optimal bidding 

price 𝑝𝐵. The approximation neglects the effects of intertemporal constraints or the usage of storages. 

Even though the costs are simplified, the power price should still be reliable, as the costs only have a 

limited effect on the optimal bid when the price impact on future auctions is taken into account (Swider 

and Weber (2007)).  

3.4 Portfolio Optimization Model 

The stochastic exogenous parameters obtained from the modelling described in the previous sections, 

i.e., electricity price scenarios and corresponding consistent reserve price bids, are eventually fed into a 

mixed-integer linear program, implemented in GAMS. The model implements a unit commitment model 

within a stochastic optimization framework. Hereby, the prior work of Thorin et al. (2005), Weber and 

Woll (2006), Kempgens (2018) and Dietrich et al. (2020) is extended. A comprehensive overview over 

the implemented model restrictions relevant for the following application study is given in Appendix 

1.2. 

Contrary to its predecessors, the model is now equipped to model all three different European reserve 

products described in subsection 3.3, namely FCR, aFRR, and mFRR, in addition to the uncertainty 

modelling of the two electricity wholesale products (DA and IDO) specified in subsection 3.2. Instead 

of using a standalone GAMS implementation, including backtesting procedures as in Dietrich et al. 

(2020), the optimization model is embedded within the larger automatized model framework and called 

by dedicated MATLAB functions. Additionally, the model incorporates new restrictions compared to 

the previous investigations, enabling the consideration of additional plant types, such as wind production 

sites.  

The timeframe optimized by this model spans 60 hours, respectively 240 quarter-hours for the short-

term markets (aFRR, mFRR, DA, IDO). The rolling-horizon approach matches the approach taken in 

Dietrich et al. (2020), with 12 hours of the auction day (Day 1 in Figure 3) itself being considered, as 

well as the all 24 hours of the delivery period (Day 2) and the 24 hours of the subsequent day (Day 3). 
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The latter day is included to achieve a more realistic end-of-day operation of storage technologies for 

Day 2 and thus a less myopic unit commitment towards the end of the delivery period under 

investigation. The market results of the remaining hours of Day 1 are already known from previous 

auctions, therefore the first 12 hours are modelled deterministically. 

 

Figure 3: Time period and stochastic tree structure covered by stochastic optimization model (60 hour version) 

(Dietrich et al., 2020). 

Analogously, for the weekly FCR auction, a timeframe of 300 hours is investigated, starting from noon 

on Tuesday (day of the auction, six days ahead of delivery) until Sunday the week after (last day of the 

delivery period). 

The methodology of calculating reserve bid prices was already discussed in the previous section. 

Bidding decisions to the wholesale power markets (DA and IDO) are computed by constructing a piece-

wise linear, price/quantity-bidding curve for all time-periods of a day, whereby the supporting points of 

said curve are given by price levels that are previously computed from price scenario simulations. The 

method applied for their identification (a k-means algorithm) is the same as in Dietrich et al. (2020). 

The amount that would be bid by the stochastic optimization model in a time step whenever a stochastic 

price scenario falls into an interval, is optimized jointly with the primal variables describing portfolio 

operation (like electricity and heat output or charging and discharging of storages). Market rules require 

the bidding curves to be monotonic increasing for each time-step (EPEXSPOT, 2021), therefore prices 

within a higher price interval need to result in an equal or higher sold electricity amount. 

A problem arises in the extreme parts of the bidding curve. The intervals outside the scenario price range 

do not contribute to the objective of the optimization and are therefore set randomly by the solver. This 

leads to expensive or even infeasible schedules if the real price is outside the scenario price range. This 

happens rarely, but it happens – and if it does, it affects feasibility or, if slack variables are included to 

ensure feasibility, the objective function value, distorting the optimality of the found solution. It is not 

possible to put constraints on the curve using an approximation of the maximum capacity, as the unit 

commitment decision put constraints on the maximum capacity within the optimization. Complementing 

Dietrich et al. (2020), we introduce new constraints for the construction of the bidding. These ensure a 
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flat curve on the outer parts of the curve. The outer parts are defined as the intervals outside the simulated 

price range, including the interval with the smallest and the interval with the highest price, respectively. 

This is depicted in Figure 4. The left side of the figure shows an example curve without the new 

constraints, and the right side with the new constraints. The black dotted lines represent the interval 

boundaries at which the bidding curve may have a kink. The orange dashed lines represent scenario 

prices. The prices of the scenario are fixed, while the corresponding quantity on the y-axis can be 

optimized by changing the shape of the bidding curve. Due to the flat curves in the outer parts, every 

actual realization of the electricity price induces a quantity that has been selected as part of an optimized 

schedule for at least one scenario price path. 

 

Figure 4: Example for the new constraint that ensure a flat bidding curve in the lateral areas 

As a special case, the formulated optimization problem also includes the traditional deterministic 

optimization. It is obtained by setting up a stochastic optimization with just one scenario.  

4 Investigated Cases 

In this section, the generation portfolio used for the investigation of different optimization setups is 

presented in subsection 4.1. Subsection 4.2 then presents the case with stochastic optimization under 

uncertainty, the case that best reflects the actual decision-making environments of asset portfolio 

holders. In subsection 4.3, alternative optimization approaches are presented to introduce benchmark 

cases. Finally, subsection 4.4 reflects on recent market design changes for the FCR product and 

addresses the expected change in results. 

4.1 Case Study Characteristics – Portfolio under Study 

We investigate a portfolio close to a real-world application7, that includes a diverse mix of four plants 

delivering power and/or heat with different degrees of freedom regarding their generation patterns, as 

 
7 The portfolio and realized heat demand curves used for validation are the same which were also used in 
the final report of the research project “StoOpt.NRW” (Beran et al. (2019)), in which the framework 
presented in this paper was developed (cf. the Acknowledgments). 
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well as one renewable source and a heat storage. The heat providing technologies of the portfolio, 

including the heat storage, feed into a local heating grid with a given heat demand that needs to be 

always satisfied exactly meaning that both under- and overproduction of heat is not allowed. Three 

plants may provide reserve to one of the reserve markets (FCR, aFRR, mFRR), of which two plants are 

combined heat and power plants. The renewable plant only participates in the power market and is 

entitled to feed-in premium payments under the so-called EEG market premium model8. Table 1provides 

an overview of the assumed plant parameters. This portfolio is named power and heat portfolio P1 for 

the remainder of this paper.  

As a sensitivity, we also investigate a similar portfolio without consideration of the heat side. Thus, the 

heat storage and heat boiler are deleted from the portfolio and both CHP plants are modelled as simple 

electric (condensing) turbines, i.e., assuming the same electricity conversion efficiencies, minimum and 

maximum power restrictions and reserve marketing capabilities as in the reference portfolio P1. This 

portfolio without consideration of heat demands is in the following referred to as power portfolio P2. 

As no heat delivery obligations need to be fulfilled, this represents a more flexible portfolio, since no 

heat-induced must-run conditions hamper the electricity and reserve price-driven operation of the CHP 

plants.  

 
8 The market premium model under the German Renewable Act (“Erneuerbare-Energien-Gesetz”, EEG - 
(Gesetz für den Ausbau erneuerbarer Energien (Erneuerbare-Energien-Gesetz), 2023)) is part of a 
mechanism that obliges renewable plants beyond a certain size to market their produced electricity directly 
to the electricity wholesale market, rather than just receiving a fixed guaranteed feed-in-tariff for their 
renewable production. A so-called market premium is thereby added to the revenues the plant operator 
obtains from direct electricity sales. This market premium is computed as the positive difference of the 
plant’s guaranteed remuneration under the EEG and the technology-specific average market value of 
renewable production in the current month. 
This mechanism is intended to prevent overproduction in times of high renewable infeed and low 
electricity demand, as it implies that plant operators need to react to market signals rather than 
unconditionally providing their infeed to the grid. 
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Table 1: Overview of assumed plant characteristics in investigated power and heat portfolio P1 

  CHP 

PLANT 

1 

CHP 

PLANT 

2 

CONVENTIONAL 

POWER PLANT 

WIND 

FARM 

HEAT 

BOILER 

HEAT 

STORAGE 

FUEL Unit coal gas coal wind gas - 

CHP-DOF9  2 1 - - - - 

MAX. POWER  [MWel] 100 120 100 not 

modelled10  

- - 

MIN. POWER  [MWel] 40 48 50 0  - - 

MAX. HEAT  [MWth] 220 80 - - 50 250 

MAX. POWER 

FCR  

[MWel] 1 2 1 - - - 

MAX. POWER 

AFRR  

[MWel] 8 10 8 - - - 

MAX. POWER 

MFRR  

[MWel] 25 30 25 0 - - 

MAX. 

CAPACITY 

[MWhth] - - - - - 250 

MEAN 

EFFICIENCY  

[-] 0.26 0.39 0.52 not 

modelled 

0.82 0.999511 

START UP 

COSTS  

[€] 7500 1000 3000 0 0 - 

 

4.2 Stochastic Bidding under Uncertainty 

The first investigated case is the real-life case of marketing the portfolio assets listed in section 4.1 under 

uncertainty according to the market rules prior to July 2019 (weekly FCR reserve provision) by making 

use of stochastic optimization. Different numbers of scenarios are thereby tested and the uncertain 

parameters are modelled using the methodology described in Section 3.2.  

The model is applied in a rolling-horizon back-testing application for four four-week periods within 

different seasons of the year 2016, using actual data from electricity markets (energate messenger, 

2021), reserve markets (50hertz et al., 2021b) and fuel markets (energate messenger, 2021) as well as 

an authentic heat demand timeseries of the modelled portfolio (Beran et al., 2019). A representative 

wind production availability timeseries is generated by scaling down the available wind infeed data for 

Germany published by the German TSOs for 2016 (50hertz et al., 2021a) by the factor 1,000.  

 
9 DOF = Degrees of Freedom, describing the relationship between electricity and heat output of the CHP 
plant. A CHP plant with DOF=1 produces electricity and heat at a fixed ratio (e.g. in the case of so-called 
backpressure turbines), a plant with DOF=2 may alter the combination of electricity and heat output within 
a technically defined two-dimensional range (e.g. in the case of extraction condensing turbines), cf. Figure 

11 in the Appendix for the graphical interpretation of said restrictions. 
10 As the hourly maximum production capability of the wind plant is included directly within the model as 
a timeseries, there is no need to include the wind plant’s generator maximum capacity or efficiency in the 
model. The maximum hourly value in the used timeseries is 35.5 MW. 
11 The self-discharge of the heat storage per timestep is supposed to amount to 0.05 % of the current energy 
content. No heat charging or discharging efficiency losses are assumed. Thus, the mean efficiency of the 
heat storage amounts to almost 1. 
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The delivery periods chosen for evaluation of the respective seasons are12 

• Monday, January 4th, 2016 until Sunday, January 31st, 2016 (Winter), 

• Monday, April 4th, until Sunday, May 1st, 2016 (Spring), 

• Monday, July 4th, until Sunday, July 31st, 2016 (Summer), and 

• Monday, September 5th, until Sunday, October 2nd (Autumn). 

The sequence of marketing decisions that follow for a back-testing application, building on the market 

environment and stochastic decision structure described in section 3.1, can be seen in Figure 5. In the 

dispatch run it is possible to adjust the market position compared to the IDO, yet a penalty of 70 €/MWh 

is applied. 

  

Figure 5: Decision sequence in a long-run (backtesting) application before July 2019 

Adjustments to the application case that reflect more recent market developments are addressed in 

Section 4.4. 

Decisions are determined using the stochastic optimization model described in Section 3.4 after reducing 

the market price simulations to a different number of scenarios 𝑛 by making use of the methodology 

described in Section 3.2. A higher 𝑛 thereby implies a higher diversity of possible outcomes for 

individual points in time that can be accounted for in constructing the spot market bidding curves, as 

well as a diverse set of plant schedules that help identifying the optimal dispatch of storage technologies. 

Therefore, an improvement of the objective function value is expected, if the number of scenarios 𝑛 is 

 
12 For the first weekly FCR auction (on Tuesdays in the week before), the respective weekly auction is 

simulated before the first daily (aFRR) auction, thus dating 5 days before the respective period starts. All 

daily auctions between this FCR auction and the aFRR auction on the first day of the delivery period are 

neglected. 
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increased. To identify the overall benefit of stochastic optimization, however, these results need to be 

benchmarked to deterministic approaches, which are presented in the following section. 

4.3 Alternative Optimization Approaches 

4.3.1 Deterministic Bidding with Perfect Foresight (with Rolling Horizon) 

Decisions that are made under uncertainty are imperfect by nature. However, stochastic optimization 

helps to recover some of the objective function losses that cannot be realized given a lack of perfect 

information.  

The first alternative problem that is investigated in this paper answers the question how good the 

portfolio under study could perform if every decision was made under perfect information in the 

investigated timeframes (𝑃𝐼𝑅𝐻)13. Instead of assuming uncertain wholesale prices, actual electricity 

price realizations are fed into the deterministic (one scenario) version of the optimization model. 

Similarly, also the tool computing the optimal reserve bids is equipped with perfect information on the 

resulting reserve prices and thus delivers optimal bid prices for different bid sizes under price certainty. 

As a result of the considerations listed above, this approach delivers an objective function value that 

may be seen as an upper benchmark for the achievable objective function value from stochastic 

optimization.  

4.3.2 Deterministic Bidding under Uncertainty 

If perfect information is not available, the optimization may obviously still be carried out in a 

deterministic manner, by choosing the ex-ante expected value of the price realizations as optimization 

input. This is also referred to as the “Expected Value Problem” (𝐸𝑉𝑅𝐻) in the literature (Birge, 1982). 

The objective value that is obtained by solving this problem is by the nature of uncertainty worse than 

(or at maximum equal to) the objective value of an optimization with perfect information or a stochastic 

optimization approach including uncertainty parameter information – however, solving it is a lot less 

computationally expensive than stochastic optimization and might even be the only possible way to 

obtain results that enable decision-making under uncertainty in real-world applications, notably when 

decision lead times are very short.  

Conceptually, a deterministic optimization under uncertainty assuming the expected value as the 

parameter’s realization can also be framed as a stochastic optimization with 𝑛 = 1 scenarios. As a 

stochastic optimization with 𝑛 > 1 increases the information contained in the modelled parameters 

 
13 Note that this case is not a textbook case with perfect foresight, as the limited time horizon of the 
optimization problem itself and the rolling-window approach applied in the backtesting application still 
lead to suboptimal intertemporal results compared to an integrated optimization over the whole long-term 
period studied (here: 28 days). Therefore, the results of an optimization with rolling horizon with perfect 
information will always be worse than the results of long-term optimization without rolling horizon.  
We do not further explore this difference in this paper, as our focus remains on the actual daily marketing 
decisions of portfolio holders –nevertheless, we would like to point the reader at this distinction. We thus 
use the superscript 𝑅𝐻 to reflect this in our following notation. 
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compared to the deterministic case by including distribution information while maintaining the same 

expected value, this one scenario case provides a lower benchmark based on which the benefits of 

stochastic optimization may be assessed. 

The difference in objective value that is obtained by solving the problem described in Section 4.3.1 and 

the deterministic optimization conducted here is also often denoted as the Expected Value of Perfect 

Information (𝐸𝑉𝑃𝐼𝑅𝐻). We define this value following the approach of Dietrich et al. (2020) by14: 

𝐸𝑉𝑃𝐼𝑅𝐻 = |𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑃𝐼𝑅𝐻) − 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝐸𝑉𝑅𝐻)| (11) 

In Dietrich et al. (2020), a methodology for evaluating the benefits of stochastic optimization (BSO) is 

proposed that derives information about the merits of stochastic optimization in case stochastic 

optimization results are compared to deterministic solutions with and without perfect information. The 

BSO will be used as a measure in absolute values, cf. eq. (12), describing the increase in target function 

value compared to the expected value problem, but could also be formulated as a target function 

percentage increase, as in Dietrich et al. (2020). 

𝐵𝑆𝑂𝑛
𝑅𝐻 = 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑆𝑂𝑛

𝑅𝐻) − 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝐸𝑉𝑅𝐻) (12) 

In the following, we further define the EVPI that can be recovered by stochastic optimization with n 

scenarios (EVPI recovered) as a relative parameter that improves the comparability between different 

stochastic optimization application problems.  

𝐸𝑉𝑃𝐼𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑛
𝑅𝐻 = {

𝐵𝑆𝑂𝑛
𝑅𝐻

𝐸𝑉𝑃𝐼𝑅𝐻
⋅ 100%, 𝑖𝑓 𝐸𝑉𝑃𝐼𝑅𝐻 > 0 

0%,        𝑖𝑓 𝐸𝑉𝑃𝐼𝑅𝐻 = 0 

 (13) 

 

4.4 Sensitivity Analysis: Daily Frequency Containment Reserve (FCR) 

Auction  

In this sensitivity analysis, the setting described in Sections 3 and 4.2 is altered by replacing the weekly 

FCR auction by a daily with a 24-hour delivery period for the next day. The auction happens one hour 

before the aFRR auction. Therefore, another daily optimization with a horizon of 60 hours for the FCR 

auction is added and the weekly FCR optimization with a 300 horizon is withdrawn in this case.  

As only weekly auction prices are available, daily auction prices must be simulated. We chose a model 

to simulate prices that are coherent with the mean, variance, and the auction results of the observed 

weekly auctions, which is described in the following. The price of reserve provision for a week is the 

sum of the prices for the individual weekdays. Hence, 𝑝𝑊 = ∑ 𝑝ωω , where ω is a set of all weekdays 

 
14 The problem investigated in this paper is a profit maximization problem, therefore 𝐸𝑉𝑃𝐼𝑅𝐻 is always 
greater than or equal to zero, even without taking the absolute value of the difference 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝑃𝐼𝑅𝐻) −
𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒(𝐸𝑉𝑅𝐻). However, by using the absolute value in this definition, the formula may also be directly 
applied to the case of a minimization problem. 
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from Monday to Sunday and 𝑝𝑊 is the price for the reserve provision for the whole week. It is assumed 

that the price 𝑝𝑊 and 𝑝𝜔 price auction prices are independently normal distributed and that every 𝑝𝜔 for 

every weekday has the same mean and variance. Therefore, 𝑝𝑊  ∼  𝒩(μ,  σ
2) and 𝑝𝜔   ∼  𝒩(μ𝑑 ,  σ𝑑

2) 

where μ𝑊 and σ𝑊
2  are the mean and variance of the FCR prices for a week and μ𝑑 and σ𝑑

2  are the mean 

and variance of the FCR prices in dependence of the weekday respectively. This implies that 7μ𝑑 = μ𝑤 

and 7σ𝑑
2 = σ𝑊

2 . To simulate daily FCR prices we draw random numbers 𝑝ω ∀ ω where the sum of the 

realizations 𝑝𝜔 of the weekdays equals the realization 𝑝𝑤 of 𝑝𝑤. Hence, the simulated daily prices are 

coherent with weekly observations (Appendix). For this we use the conditional multivariate normal 

distribution that ensures that the sum of the simulated daily prices 𝑝𝜔 matches the weekly prices 𝑝𝑊. 

This distribution was estimated and was used to simulate the marginal and minimal auction prices 

separately. 

As the costs of provision for a shorter period is lower, while the price level stays the same, we expect 

that the overall profit remain unchanged or increase compared to the profit with weekly auctions. The 

smaller planning horizon should lead to a smaller uncertainty regarding the Day-Ahead and Intraday 

prices. Therefore, we expect that the merit of the stochastic optimization should be reduced. 

5 Results 

We apply the sequence of models introduced in Section 3 to the portfolio in Section 4.1 in the back-

testing applications described in Sections 4.2-4.4. 

All runs are carried out on a virtual desktop PC with a processing core of 2.6 GHz, and RAM of 24 GB, 

whereby no parallel runs are started. The stochastic, mixed-integer optimization problems are solved by 

using the CPLEX MIP solver version 12.9 with small deviations from standard settings15. The GAMS 

setting threads, representing the number of cores used by the program is set to 7 to enable a faster 

solution of the linear dual problem and hence, the probability that a dual solution is found within the 

optimization time limit is increased. For the GAMS options, an absolute optimality criterion of OptCA 

= 1,000 (euros) is set. The maximum computation time of the optimization model is set to 900 (for the 

60-hour model), respectively 1,800 seconds (for the 300-hour model) by use of the option RESLIM.  

5.1 Stochastic Case 

The results for the stochastic optimizations with n=5, n=10, n=15 and n=20 scenarios are depicted in 

Figure 6 for portfolio P1. The months investigated induce different overall profit levels. During the 

wintertime, higher electricity prices induce an overall higher profit level, whereas during the 

summertime, prices, and thus also profits, are substantially lower. As could be expected, the profits rise 

with an increasing number of scenarios, i.e. stochastic optimization with n=5 leads to lower profits than 

 
15 The option mipstart=1 is used to generate discrete starting values for the mixed integer program. Rinsheur 
is set to 50, meaning that Relaxation Induced Neighborhood Search (RINS) is invoked each fiftieth node in 
the MIP tree.  
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with n=20 scenarios. For example, portfolio P1 increases its profit by more than 32,000 € during the 

winter month and more than 22,000 € during the summer. However, the biggest increase in absolute 

terms occurs in spring, where the profit is increased by more than 46,000 € during the investigated 

month.  

 

Figure 6: Results for stochastic cases for portfolio P1 

However, individual instances where an increase in scenarios does not result in increasing profit can 

also be observed. In the summer month, the highest profit is achieved with n=15 scenarios, instead of 

n=20 scenarios. This is due to the combination of an increased computational burden at higher numbers 

of scenarios and the 15-minute time limit that is set to ensure compliance with the auction schedule. The 

share of optimizations terminated by the 15-minute resource limit depending on the scenario number is 

depicted in Figure 7. The number of prematurely terminated optimizations increases substantially for 

scenario numbers of n=10 or higher and is particularly high in summer16.  

 

Figure 7: Relative number of 60-hour optimizations terminated by reaching the set maximum time limit 

For portfolio P2, the overall profits rise compared to the heat portfolio across all seasons – given that 

revenues from heat sales are not considered. As for portfolio P1, profits rise when increasing the number 

 
16 This is a consequence of fewer must-run conditions for the marketed CHP plants due to low heat demand 
during the summer period. Consequently, a higher number of binary operation variables has to be actively 
decided upon by the solver, increasing optimization time. 
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of scenarios fed into the stochastic optimization. The differences between the 5 and 20 scenario cases 

increase as well, with about 38,000 € for the winter month and even 49,500 € for the summer month. As 

before, this biggest increase in profit is realized in spring, with more than 56,000 € of additional returns. 

Contrary to portfolio P1, there is no optimization run for this electricity-only portfolio that reaches the 

15-minute optimization time limit. 

 

Figure 8: Results for stochastic cases for portfolio P2 

5.2 Comparison to Alternative Optimization Approaches 

Having assessed the stochastic cases, we now benchmark these results against deterministic 

representations of the decision problem at hand. Therefore, we compute the deterministic (one-scenario) 

outcome under uncertainty and the deterministic optimization including perfect information with limited 

horizon.  

Table 2: Profits and benefit of stochastic optimization for P1 

Scenarios n 1 (𝑬𝑽𝑹𝑯) 5 10 15 20 1 (𝑷𝑰𝑹𝑯) 

profit [k€] 4,158 4,795 4,910 4,920 4,939 5,119 

𝐸𝑉𝑃𝐼𝑅𝐻[k€] - - - - - 961 

𝐵𝑆𝑂𝑛
𝑅𝐻 [k€] - 636 752 761 781 - 

𝐸𝑉𝑃𝐼𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑛
𝑅𝐻  

[%] 

- 66.3 78.3 79.3 81.3 - 

 

For portfolio P1, the cumulative results over all investigated months are listed in Table 2 and depicted 

in the left half of Figure 9. The right half of Figure 9 displays the average computation time needed per 

decision. The optimization time limit of 15 minutes mentioned above prevents an over-proportional 

increase in average computation time with rising scenario numbers, since this induces an increasing 

share of optimization runs aborted after 15 minutes. Nevertheless, average computation times are 

increasing substantially with increasing scenario numbers. The upper computation time boundary for 

the stochastic optimization thereby induces a sigmoid behavior of average computation time 

development.  
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Figure 9: Comparison of EVPI recovered by stochastic optimization and increase in computation time for P1 

For the electricity-only portfolio P2, the cumulative results over all investigated months with regards to 

profits and the benefit of stochastic optimization behave similarly to the case of P1 (cf. Table 3). 

Notably, the share of EVPI recovered for 𝑛 = 20 scenarios is the same for both portfolios. The 

computation time, however, shows only a marginal increase for P2, indicating that the computation time 

is rather driven by overhead processes and not much by the scenario number.  

Table 3: Profits and benefit of stochastic optimization for P2 

Scenarios n 1 (𝑬𝑽𝑹𝑯) 5 10 15 20 1 (𝑷𝑰𝑹𝑯) 

profit [k€] 4,543 5,458 5,580 5,630 5,640 5,892 

𝐸𝑉𝑃𝐼𝑅𝐻 [k€] - - - - - 1,348 

𝐵𝑆𝑂𝑛
𝑅𝐻 [k€] - 914 1,036 1,087 1,096 - 

𝐸𝑉𝑃𝐼𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑛
𝑅𝐻  

[%] 

- 67.8 76.9 80.6 81.3 - 

 

 

Figure 10: Comparison of EVPI recovered by stochastic optimization and increase in computation time for P2 

The comparison of the deterministic benchmarks to the stochastic optimizations of Section 5.1 suggests 

that the increasing profits obtained with a more detailed representation of uncertainty in the electricity 

marketing problem at hand are largely independent of the complexity (or rigidity) of the additional 

constraints that the underlying power plant assets face when heat is considered. The achievable profits 
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may differ between portfolios P1 and P2 in absolute values, but the share of recoverable information 

value compared to the deterministic benchmark is similar. However, the computation time that is needed 

to achieve said increase is much lower for P2. Put differently, the benefits of stochastic optimization 

relative to its computational expensiveness decline more substantially for P1 than for P2. As a result, a 

lower scenario number might be the preferable option for decision support in real-world applications, 

especially if time constraints are tight. In the example of portfolio P1, a further increase of just 3% of 

recovered EVPI between 𝑛 = 10 and 𝑛 = 20 is paid by an average computation time increase of 50% 

(7.2 instead of 4.8 minutes).  

5.3 Sensitivity Analysis: Alternative Market Design  

We additionally perform our analysis for the alternative market design explained in Section 4.4. We find 

similar results for portfolio P1, if the primary reserve product tenders are limited to daily blocks, as can 

be seen in Table 4. Interestingly, the overall profits that can be realized under uncertainty for P1 are 

lower with the daily reserve product – contrary to our initial expectations. In case of perfect foresight, 

the profits are yet slightly higher, which aligns with the expectation that reserve prices for short-term 

tenders for single days are more volatile than weekly prices. Therefore, primary reserve provision with 

perfect foresight may take advantage of hours with high revenues from reserve markets and exploit the 

opportunity cost differences between reserve market revenues and electricity sales. Managing this trade-

off turns out to be much harder under uncertainty, as the lower profits for the scenarios with uncertainty 

show. Meanwhile, as the number of traded reserve products increases, also the computational 

expensiveness increases for higher scenario cases. The higher number of prematurely stopped 

optimization runs may contribute to a lower absolute profit. Both the expected value of perfect 

information and the value of stochastic optimization as indicated by the 𝐵𝑆𝑂𝑛
𝑅𝐻 increase with daily 

reserve auctions - in line with our expectations. Yet, the share of 𝐸𝑉𝑃𝐼𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑛
𝑅𝐻  does not exhibit a 

clear trend.  

Table 4: Change in profits and benefits of stochastic optimization compared to Table 2 under the sensitivity 

analysis: daily primary reserve auction 

Scenarios n 1 (𝑬𝑽𝑹𝑯) 5 10 15 20 1 (𝑷𝑰𝑹𝑯) 

D
el

ta
  

(V
a

lu
e W

ee
kl

y 
-V

a
lu

e D
a
il

y)
 profit [k€] -151 -16 -44 -29 -11 6 

𝐸𝑉𝑃𝐼𝑅𝐻 [k€] - - - - - 157 

𝐵𝑆𝑂𝑛
𝑅𝐻 [k€] - 135 107 121 140 - 

𝐸𝑉𝑃𝐼𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑛
𝑅𝐻  

[%] 

- 3 -2 0 1 - 

 

For portfolio P2, the results show overall similar tendencies. The difference between the profits in case 

of weekly and daily reserve provision are yet somewhat smaller. Moreover, the profits obtained when 

using stochastic representations now generally outperform those under weekly reserve provision periods 
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described in Table 3. With portfolio P2, the value of stochastic optimization is clearly higher in terms 

of the 𝐵𝑆𝑂𝑛
𝑅𝐻 and the share of 𝐸𝑉𝑃𝐼𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑛

𝑅𝐻 in a daily auction scheme. 

The direct comparison between the two portfolios indicates that the increase in computation time, 

coupled with a termination of the optimizations after 15 minutes, likely leads to a performance 

degradation for P1. The results for P2 with a lower average computation time and almost no termination 

due to the time limit are in line with the expected results.  

The average computation time decreases, as there is no need for weekly optimization anymore. 

However, the total number of optimizations per week increases from 5 ⋅ 7 + 1 = 36 to 6 ∗ 7 = 42 under 

the modified market design. As a result, the relative advantage regarding the total cumulative 

optimization time for one week is negligible.  

Table 5: Changes in profits and benefits of stochastic optimization compared to Table 3 under the sensitivity 

analysis: daily primary reserve auction  

Scenarios n 1 (𝑬𝑽𝑹𝑯) 5 10 15 20 1 (𝑷𝑰𝑹𝑯) 

D
el

ta
  

(V
a

lu
e W

ee
kl

y 
-V

a
lu

e D
a
il

y)
 

profit [k€] 7 35 31 28 29 3 

𝐸𝑉𝑃𝐼𝑅𝐻 [k€] - - - - - 5 

𝐵𝑆𝑂𝑛
𝑅𝐻 [k€] - 27 23 20 21 - 

𝐸𝑉𝑃𝐼𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑𝑛
𝑅𝐻  

[%] 

- 2 2 2 2 - 

 

6 Conclusion 

In this paper, we introduce a new stochastic optimization model tailored towards the market structure of 

the European reserve and electricity markets, including the optimized bidding into three subsequent 

reserve markets, and the participation in the Day-Ahead and Intraday Opening auctions of EPEX SPOT. 

Therefore, an elaborate chain of programs is executed to model electricity price uncertainties, perform 

a scenario reduction of the modelled price paths, derive optimal reserve power bids based on the reduced 

price paths and finally generate inputs and execute a two-stage stochastic optimization unit commitment 

model. The toolchain is set up for both weekly and daily optimization cycles, based on underlying 

weekly or daily reserve product tenders. 

We investigate varying numbers of price scenarios and evaluate the resulting benefit of stochastic 

optimization and the share of the expected value of perfect information that may be recovered, all by 

applying a rolling-horizon approach. We contrast between plant portfolios with and without heat 

delivery obligations by investigating both combined heat and power plants as well as condensing turbine 

power plants with a comparable generation cost structure based on real market data of the year 2016. 

Furthermore, we investigate the effects of a market design change, reflecting the switch from weekly to 
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daily reserve tenders for Frequency Containment Reserve in 2019 in a sensitivity analysis. The results 

indicate a higher value of the stochastic optimization for the new market design. 

We find that the underlying electricity price uncertainty can be adequately modelled by a time series 

model based on a multivariate normal distribution. For the reserve bid modelling, we adapt the approach 

of Swider and Weber (2007) to generate optimized reserve bids. This approach combines a detailed 

depiction of the stochastic characteristics of reserve markets with a simplified estimation of the cost of 

provision. With this, it is possible to neglect irrelevant price options in the detailed stochastic program 

to substantially decrease the computation time. We find that under the given assumptions and modelling 

choices, the implemented approach yields substantial benefits of stochastic optimization compared to 

the deterministic problem under uncertainty, a result in line with previous findings in the literature. With 

a scenario number of 𝑛 = 20, more than 80% of the value lost from introducing uncertainty in the model 

framework can be recovered by the stochastic representation of the problem. For the portfolio cases 

modelled in this paper, significant value can be added for the portfolio managers by introducing 

stochastic optimization, i.e., monthly profits may be raised by a magnitude of ten thousands of euros. 

This result is stable across portfolios with and without the inclusion of rigid restrictions such as the 

modelling of additional constraints regarding heat demand. A sensitivity analysis excluding weekly 

reserve products and focusing on daily optimization cycles confirms this finding.  

In line with prior work (e.g. Dietrich et al. (2020)), we observe that high scenario numbers substantially 

increase the computational burden of stochastic optimization for diversified portfolios providing 

electricity, reserve power and heat. We find that this effect is most noticeable in summer periods when 

heat demand is low. Including a computation time limit of 15 minutes for the stochastic optimization, 

ensures that a fairly good solution may be found despite not always fulfilling the optimality criterion for 

higher scenario numbers; however, the relative benefit of stochastic optimization compared to the 

increase in computational expensiveness is impacted quite negatively. As a result, reducing scenario 

numbers for the optimization of diversified and complex portfolios is an attractive measure to strike a 

good balance between exploiting the benefits of stochastic uncertainty representation and an adequate 

computation time for real-world applications.  
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Appendix 1: Portfolio Optimization Model 

This section contains the full description of the portfolio optimization model introduced in Section 3.4, 

which is an extension of the model formulation included in (Dietrich et al., 2020). The implementation 

of this MILP model in GAMS consists of an objective function and about 50 further types of equality 

and inequality constraints. For the sake of simplicity, some constraints are hereby displayed jointly that 

are represented by more than one constraint in the actually implemented model. 

Appendix 1.1: Nomenclature 

The tables below list all relevant indices, sets, variables and parameters as used in the model description. 

Table 6: Nomenclature for indices 

Indices  Description 

𝑛 scenario node 

ℎ hour 

𝑡 quarter hour 

𝑤 week 

tb (four-hour reserve) time block 

𝑢 power/heat unit 

𝑓 fuel type 

ℎ𝑠 heating system 

𝑖 intervals for quarter-hourly bidding curve 

𝑖ℎ intervals for hourly bidding curve 

𝑑𝑒𝑡 deterministic 

 

Table 7: Nomenclature for sets 

Index sets Description 

𝑁 Set of all scenarios 𝑛 

𝑊 Set of all distinct weeks 𝑤 during the investigated period 

𝑇𝐵 Set of all (four-hour reserve) time blocks 𝑡𝑏 

𝑇 Set of all quarter-hourly time-steps 𝑡 

𝐻 Set of all hourly time-steps ℎ 

𝑈 Set of all power or heat producing units 𝑢 

𝐹 Set of all fuels 𝑓 

𝑈𝑏𝑜𝑖𝑙𝑒𝑟 ∈ 𝑈 Set of all heat boilers, subset of 𝑈 

𝑈ℎ𝑒𝑎𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒  ∈ 𝑈 Set of all heat storages, subset of 𝑈 

𝑈𝑐𝑜𝑛𝑑  ∈ 𝑈 Set of all condensing turbines, subset of 𝑈 



 
 

VIII 

𝑈𝑐ℎ𝑝  ∈ 𝑈 Set of all combined heat and power units, subset of 𝑈 

𝑈𝑐ℎ𝑝1𝑑𝑜𝑓  ∈ 𝑈𝑐ℎ𝑝 
Set of all combined heat and power units with a production with one 

degree of freedom, subset of 𝑈𝑐ℎ𝑝 

𝑈𝑐ℎ𝑝2𝑑𝑜𝑓  ∈ 𝑈𝑐ℎ𝑝 
Set of all combined heat and power units with a production with two 

degrees of freedom, subset of 𝑈𝑐ℎ𝑝 

𝑈𝑓  ∈ 𝑈 Set of all units combusting fuel 𝑓, subset of 𝑈 

𝑈𝐸𝐸𝐺 ∈ 𝑈 Set of all units under the Renewable remuneration scheme, subset of 𝑈 

𝑁𝐻 Set of consistent hour/scenario combinations (𝑛, ℎ) 

𝑁𝑇 Set of consistent quarter-hour/scenario combinations (𝑛, 𝑡) 

𝐻𝑇 Set of consistent quarter-hour/hour mappings (ℎ, 𝑡) 

𝑊𝑇 Set of consistent quarter-hour/week mappings (𝑤, 𝑡) 

𝑇𝐵𝑇 Set of consistent quarter-hour/four-hour time block mappings (tb,t) 

𝑇𝐼 Mapping of quarter-hourly price simulations 𝑃𝑛,𝑡
𝐼𝐷  to intervals for quarter-

hourly bidding curve 𝑖 for each scenario 𝑛 

𝑇𝐼 ∗ 

Mapping of quarter-hourly price simulations 𝑃𝑛,𝑡
𝐼𝐷  to intervals for quarter-

hourly bidding curve 𝑖 for each scenario 𝑛. Only intervals on the left and 

right side of the bidding curve starting with the interval with the highest 

and lowest simulated price respectively. 

𝐻𝐼𝐻 Mapping of hourly price simulations 𝑃𝑛,ℎ
𝐷𝐴 to intervals for hourly bidding 

curve 𝑖ℎ for each scenario 𝑛 

𝐻𝐼𝐻 ∗ 

Mapping of hourly price simulations 𝑃𝑛,ℎ
𝐷𝐴 to intervals for hourly bidding 

curve 𝑖ℎ for each scenario 𝑛. Only intervals on the left and right side of 

the bidding curve starting with the interval with the highest and lowest 

simulated price respectively. 

𝑇𝑑𝑒𝑡 ∈ 𝑇 Quarter-hourly time-steps 𝑡 belonging to the deterministic time-horizon 

of the stochastic optimization 

𝑇𝑆𝑡𝑎𝑟𝑡 ∈ 𝑇 First quarter-hourly time-step of the set of time-steps 𝑇 

𝑇𝐸𝑛𝑑 ∈ 𝑇 Last quarter-hourly time-step of the set of time-steps 𝑇 

𝐻𝑑𝑒𝑡 Hourly time-steps ℎ belonging to the deterministic time-horizon of the 

stochastic optimization 

 

Table 8: Nomenclature for variables 

Variables Unit Range Description 

𝑝𝑛,ℎ
𝐷𝐴  MWel ℝ Net marketed power in DA Auction per hour ℎ in scenario 𝑛 

𝑝𝑛,𝑡
𝐼𝐷  MWel ℝ Net marketed power in ID Auction per quarter hour 𝑡  

in scenario 𝑛 

𝑝𝑛,𝑢,𝑡
𝑃𝑜𝑤𝑒𝑟 MWel ℝ0

+ Produced power by unit 𝑢 in quarter hour 𝑡 in scenario 𝑛 



 

IX 

𝑝𝑛,𝑢,𝑡
𝐹𝐶𝑅  MWel ℝ0

+ FCR power provided by unit 𝑢 in quarter hour 𝑡 in scenario 𝑛 

𝑝𝑛,𝑢,𝑡
𝐹𝑅𝑅𝑎,𝑝𝑜𝑠

 MWel ℝ0
+ 

Positive aFRR power provided by unit 𝑢 in quarter hour 𝑡 in 

scenario 𝑛 

𝑝𝑛,𝑢,𝑡
𝐹𝑅𝑅𝑎,𝑛𝑒𝑔

 MWel ℝ0
+ 

Negative aFRR power provided by unit 𝑢 in quarter hour 𝑡 in 

scenario 𝑛 

𝑝𝑛,𝑢,𝑡
𝐹𝑅𝑅𝑚,𝑝𝑜𝑠

 MWel ℝ0
+ 

Positive mFRR power provided by unit 𝑢 in quarter hour 𝑡 in 

scenario 𝑛 

𝑝𝑛,𝑢,𝑡
𝐹𝑅𝑅𝑚,𝑛𝑒𝑔

 MWel ℝ0
+ 

Negative mFRR power provided by unit 𝑢 in quarter hour 𝑡 in 

scenario 𝑛 

𝑞𝑛,𝑢,𝑡
𝐹𝑢𝑒𝑙 MWth ℝ0

+ Used fuel by unit 𝑢 in quarter hour 𝑡 in scenario 𝑛 

𝑞𝑛,𝑓,𝑡
𝐹𝑢𝑒𝑙 MWth ℝ0

+ Used fuel by fuel type 𝑓 in quarter hour 𝑡 in scenario 𝑛 

𝑞𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡 MWth ℝ 

Produced heat by unit 𝑢 in quarter hour 𝑡 in scenario 𝑛  

(may be negative for charging heat storages) 

𝑣𝑜𝑙𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡 MWhth ℝ0

+ 
Heat storage filling level by unit 𝑢 in quarter hour 𝑡  
in scenario 𝑛 

𝑜𝑛,𝑢,𝑡 - {0; 1} 
Binary power plant operation variable (1: on, 0: off) for unit 𝑢 in 

quarter hour 𝑡 in scenario 𝑛 

𝑢𝑝𝑛,𝑢,𝑡 - {0; 1} 
Binary power plant operation variable (1: plant starting,  

0: plant not starting) for unit 𝑢 in quarter hour 𝑡 in scenario 𝑛 

𝑝𝑡,𝑖
𝐼𝐷,𝑙𝑏

 MWel ℝ 
Power amount bid at the left boundary of the quarter hourly price 

interval 𝑖 for quarter hour 𝑡 

𝑝𝑡,𝑖
𝐼𝐷,𝑟𝑏

 MWel ℝ 
Power amount bid at the right boundary of the quarter hourly price 

interval 𝑖 for quarter hour 𝑡 

𝑝ℎ,𝑖ℎ
𝐷𝐴,𝑙𝑏ℎ

 MWel ℝ 
Power amount bid at the left boundary of the hourly price interval 

𝑖ℎ for hour ℎ 

𝑝ℎ,𝑖ℎ
𝐷𝐴,𝑟𝑏ℎ

 MWel ℝ 
Power amount bid at the right boundary of the hourly price interval 

𝑖ℎ for hour ℎ 

𝑜𝑤
𝐹𝐶𝑅 - {0;1} 

Binary variable indicating whether FCR is marketed / a FCR bid is 

submitted for week 𝑤 

𝑜𝑡𝑏
𝑝𝑟𝑜𝑑

 - {0;1} 

Binary variable indicating whether reserve product 𝑝𝑟𝑜𝑑 ∈
𝐹𝑅𝑅𝑎, 𝑝𝑜𝑠; 𝐹𝑅𝑅𝑎, 𝑛𝑒𝑔; 𝐹𝑅𝑅𝑚, 𝑝𝑜𝑠; 𝐹𝑅𝑅𝑚, 𝑛𝑒𝑔 is marketed / a 

bid is submitted for 𝑝𝑟𝑜𝑑 in four-hour time block 𝑡𝑏 

𝑝𝑤
𝐹𝐶𝑅 MWel ℤ0

+ Marketed power in FCR auction per week 𝑤 

𝑝𝑡𝑏
𝑝𝑟𝑜𝑑

 MWel ℤ0
+ 

Marketed power in reserve product 𝑝𝑟𝑜𝑑 ∈
𝐹𝑅𝑅𝑎, 𝑝𝑜𝑠; 𝐹𝑅𝑅𝑎, 𝑛𝑒𝑔; 𝐹𝑅𝑅𝑚, 𝑝𝑜𝑠; 𝐹𝑅𝑅𝑚, 𝑛𝑒𝑔 per four-hour 

time block 𝑡𝑏 

 

Table 9: Nomenclature for parameters 

Parameters Unit Range Description 
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𝜑𝑛 - [0,1] Scenario probability of scenario 𝑛 

𝑃𝑛,ℎ
𝐷𝐴 €/MWhel ℝ DA Auction Price of hour ℎ in scenario 𝑛 

𝑃𝑛,𝑡
𝐼𝐷  €/MWhel ℝ ID Auction Price of quarter-hour 𝑡 in scenario 𝑛 

𝑃𝑤
𝐹𝐶𝑅 €/MWel ℝ0

+ FCR price in week 𝑤 

𝑃𝑡𝑏
𝐹𝑅𝑅𝑎,𝑝𝑜𝑠

 €/MWel ℝ0
+ Positive aFRR price in four-hour time block 𝑡𝑏 

𝑃𝑡𝑏
𝐹𝑅𝑅𝑎,𝑛𝑒𝑔

 €/MWel ℝ0
+ Negative aFRR price in four-hour time block 𝑡𝑏 

𝑃𝑡𝑏
𝐹𝑅𝑅𝑚,𝑝𝑜𝑠

 €/MWel ℝ0
+ Positive mFRR price in four-hour time block 𝑡𝑏 

𝑃𝑡𝑏
𝐹𝑅𝑅𝑚,𝑛𝑒𝑔

 €/MWel ℝ0
+ Negative mFRR price in four-hour time block 𝑡𝑏 

𝑇𝑢
𝐶𝑜𝑚𝑝

 €/MWel ℝ0
+ EEG compensation payment for produced power of unit 

𝑢 

𝐶𝑛,𝑓,𝑡
𝐹𝑢𝑒𝑙 €/MWth ℝ0

+ Fuel costs (excl. CO2) for fuel 𝑓 in quarter-hour 𝑡 in 

scenario 𝑛 

𝐶𝑛,𝑡
𝐶𝑂2 €/t CO2 ℝ0

+ CO2 costs in quarter-hour 𝑡 in scenario 𝑛 

𝐶𝑢
𝑠𝑡𝑎𝑟𝑡 €/ start ℝ0

+ Starting costs of plant 𝑢 

𝐸𝐹𝑓
𝐶𝑂2 t CO2/ 

MWth 
ℝ0
+ CO2 emission factor of fuel 𝑓 

∆ℎ h  Duration of one hour (1h) 

∆𝑡 h  Duration of one quarter-hour (1/4 h) 

𝐷𝑡
𝑃𝑜𝑤𝑒𝑟 kWel ℝ0

+ 
Power demand position in quarter -hour 𝑡 (from 

previous marketing in hourly and quarter hourly 

markets) 

𝐷𝑡
𝐻𝑒𝑎𝑡 kWth ℝ0

+ Local heat demand in quarter hour 𝑡 

𝑄𝑢
𝐻𝑒𝑎𝑡,𝑚𝑎𝑥

 kWth ℝ0
+ Maximum heat production capacity of unit 𝑢 

𝜂𝑢 - [0,1] Boiler efficiency of unit 𝑢 

𝑄𝑢
𝐻𝑒𝑎𝑡,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑚𝑎𝑥

 kWth ℝ0
+ Maximum heat storage discharge capacity of unit 𝑢 

𝑄𝑢
𝐻𝑒𝑎𝑡,𝑐ℎ𝑎𝑟𝑔𝑒𝑚𝑎𝑥

 kWth ℝ0
+ Maximum heat storage charge capacity of unit 𝑢 

𝑉𝑢
𝐻𝑒𝑎𝑡,𝑚𝑎𝑥

 kWhth ℝ0
+ Maximum heat storage filling level of unit 𝑢 

𝑉𝑢
𝐻𝑒𝑎𝑡,𝑆𝑡𝑎𝑟𝑡

 kWhth ℝ0
+ Heat storage filling start level of unit 𝑢 

𝑉𝑢
𝐻𝑒𝑎𝑡,𝐸𝑛𝑑

 kWhth ℝ0
+ Heat storage filling end level of unit 𝑢 

𝜂𝑢
𝐿𝑜𝑠𝑠𝑒𝑠 - [0,1] Heat storage efficiency of unit 𝑢 

𝑃𝑢
𝑀𝑎𝑥 MWel ℝ0

+ Maximum power plant production limit of unit 𝑢 

𝑃𝑢
𝑀𝑖𝑛 MWel ℝ0

+ 
Minimum stable power plant production limit  

(if power plant is running) of unit 𝑢 

𝑏𝑐ℎ𝑝1𝑑𝑜𝑓
𝑏𝑝

 MWth 

/MWel 
ℝ0
+ 

Slope of the backpressure curve (pq-diagram)  

of one degree-of-freedom CHP unit 𝑐ℎ𝑝1𝑑𝑜𝑓 

𝑎𝑐ℎ𝑝1𝑑𝑜𝑓
𝑏𝑝

 MWth ℝ Section of the backpressure curve (pq-diagram)  

of one degree-of-freedom CHP unit 𝑐ℎ𝑝1𝑑𝑜𝑓 

𝑏𝑐ℎ𝑝1𝑑𝑜𝑓
𝐹𝑢𝑒𝑙  MWth 

/MWel 
ℝ0
+ 

Slope of the fuel consumption curve of one degree-of-

freedom CHP unit 𝑐ℎ𝑝1𝑑𝑜𝑓 
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𝑎𝑐ℎ𝑝1𝑑𝑜𝑓
𝐹𝑢𝑒𝑙  

MWth ℝ0
+ 

Minimal fuel consumption, section of the fuel 

consumption curve of one degree-of-freedom CHP unit 

𝑐ℎ𝑝1𝑑𝑜𝑓 

𝑏𝑐ℎ𝑝2𝑑𝑜𝑓
𝑒𝑐,1

 
MWth 

/MWel 
ℝ0
+ 

Slope of the maximum production curve (pq-diagram) of 

two degree-of-freedom CHP unit 𝑐ℎ𝑝2𝑑𝑜𝑓 

𝑎𝑐ℎ𝑝2𝑑𝑜𝑓
𝑒𝑐,1

 MWth ℝ 
Section of the maximum production curve (pq-diagram) 

of two degree-of-freedom CHP unit 𝑐ℎ𝑝2𝑑𝑜𝑓 

𝑏𝑐ℎ𝑝2𝑑𝑜𝑓
𝑒𝑐,2

 
MWth 

/MWel 
ℝ0
+ 

Slope of the minimum production curve (pq-diagram) of 

two degree-of-freedom CHP unit 𝑐ℎ𝑝2𝑑𝑜𝑓 

𝑎𝑐ℎ𝑝2𝑑𝑜𝑓
𝑒𝑐2  MWth ℝ 

Section of the minimum production curve (pq-diagram) 

of two degree-of-freedom CHP unit 𝑐ℎ𝑝2𝑑𝑜𝑓 

𝑏𝑐ℎ𝑝2𝑑𝑜𝑓
𝑒𝑐,3

 MWth 

/MWel 
ℝ0
+ 

Slope of the backpressire curve (pq-diagram) of two 

degree-of-freedom CHP unit 𝑐ℎ𝑝2𝑑𝑜𝑓 

𝑎𝑐ℎ𝑝2𝑑𝑜𝑓
𝑒𝑐3  MWth ℝ Section of the backpressure curve (pq-diagram) of two 

degree-of-freedom CHP unit 𝑐ℎ𝑝2𝑑𝑜𝑓 

𝑏𝑐ℎ𝑝2𝑑𝑜𝑓
𝐹𝑢𝑒𝑙  

MWth 

/MWel 
ℝ0
+ 

Slope of the marginal fuel consumption curve for 

additional electricity produced of two degree-of-freedom 

CHP unit 𝑐ℎ𝑝2𝑑𝑜𝑓  

𝑐𝑐ℎ𝑝2𝑑𝑜𝑓
𝐹𝑢𝑒𝑙  

MWth 

/MWel 
ℝ0
+ 

Slope of the marginal fuel consumption curve for 

additional electricity produced of two degree-of-freedom 

CHP unit 𝑐ℎ𝑝2𝑑𝑜𝑓 

𝑎𝑐ℎ𝑝1𝑑𝑜𝑓
𝐹𝑢𝑒𝑙  

MWth ℝ0
+ 

Minimal fuel consumption, section of the fuel 

consumption curve of two degree-of-freedom CHP unit 

𝑐ℎ𝑝2𝑑𝑜𝑓 

𝑂𝑃𝑢 - ℝ0
+ Minimum operation period number of plant 𝑢 

𝑆𝐷𝑢 - ℝ0
+ Minimum shut-down period number of plant 𝑢 

𝜆𝑛,𝑡 
- [0,1] 

Linearization parameter for the position of quarter-

hourly spot prices within the quarter-hourly bidding 

curve in quarter-hour 𝑡 in scenario 𝑛 

𝜆𝑛,ℎ 
- [0,1] 

Linearization parameter for the position of hourly spot 

prices within the hourly bidding curve in hour ℎ in 

scenario 𝑛 

𝑃𝑝𝑟𝑜𝑑,𝑚𝑖𝑛 
MWel {1} 

Minimum bid size for the reserve product 𝑝𝑟𝑜𝑑 ∈
𝐹𝐶𝑅; 𝐹𝑅𝑅𝑎, 𝑝𝑜𝑠; 𝐹𝑅𝑅𝑎, 𝑛𝑒𝑔; 𝐹𝑅𝑅𝑚, 𝑝𝑜𝑠; 𝐹𝑅𝑅𝑚, 𝑛𝑒𝑔 

auction determined by the market operator  

 

Appendix 1.2: Model formulation 

The objective function includes the revenues obtained in the reserve and spot markets, further revenue 

streams through Renewable infeed premia and the costs associated with power and heat generation, 

consisting of fuel cost, CO2 cost and plant start-up costs: 



 
 

XII 

max
𝑝𝑛,ℎ
𝐷𝐴,𝑝𝑛,𝑡

𝐼𝐷 ,𝑞𝑛,𝑢,𝑡
𝑃𝑜𝑤𝑒𝑟,𝑞𝑛,𝑢,𝑡

𝐹𝑢𝑒𝑙,𝑞𝑛,𝑡
𝐻𝑒𝑎𝑡

∑ 𝑝𝑤
𝐹𝐶𝑅 ⋅ 𝑃𝑤

𝐹𝐶𝑅

𝑤∈𝑊

+ ∑ 𝑝𝑡𝑏
𝐹𝑅𝑅𝑎,𝑝𝑜𝑠

⋅

𝑡𝑏|(𝑡𝑏,𝑡)∈𝑇𝐵𝑇

𝑃𝑡𝑏
𝐹𝑅𝑅𝑎,𝑝𝑜𝑠

+ 𝑝𝑡𝑏
𝐹𝑅𝑅𝑎,𝑛𝑒𝑔

⋅ 𝑃𝑡𝑏
𝐹𝑅𝑅𝑎,𝑛𝑒𝑔

+ 𝑝𝑡𝑏
𝐹𝑅𝑅𝑚,𝑝𝑜𝑠

⋅ 𝑃𝑡𝑏
𝐹𝑅𝑅𝑚,𝑝𝑜𝑠

+ 𝑝𝑡𝑏
𝐹𝑅𝑅𝑚,𝑛𝑒𝑔

⋅ 𝑃𝑡𝑏
𝐹𝑅𝑅𝑚,𝑛𝑒𝑔

+∑𝜑𝑛
𝑛∈𝑁

⋅ ( ∑ 𝑝𝑛,ℎ
𝐷𝐴 ⋅ 𝑃𝑛,ℎ

𝐷𝐴 ⋅ Δℎ

ℎ|(𝑛,ℎ)∈𝑁𝐻

+ ( ∑ (𝑝𝑛,𝑡
𝐼𝐷 ⋅ 𝑃𝑛,𝑡

𝐼𝐷 + ∑ 𝑝𝑛,𝑢,𝑡
𝑃𝑜𝑤𝑒𝑟 ⋅ 𝑇𝑢

𝐶𝑜𝑚𝑝

𝑢∈𝑈𝐸𝐸𝐺

−∑𝑞𝑛,𝑓,𝑡
𝐹𝑢𝑒𝑙 ⋅ 𝐶𝑛,𝑓,𝑡

𝐹𝑢𝑒𝑙

𝑓∈𝐹𝑡|(𝑛,𝑡)∈𝑁𝑇

+ 𝐸𝐹𝑓
𝐶𝑂2 ⋅ 𝐶𝑛,𝑡

𝐶𝑂2 −∑𝐶𝑢
𝑠𝑡𝑎𝑟𝑡 ⋅ 𝑢𝑝𝑛,𝑢,𝑡

𝑢∈𝑈

)) ⋅ Δ𝑡) 

(14) 

   

There are both electric and heat balance equations implemented in the model. The electric balance 

equation balances the trading position and the physical fulfilment of said position: 

∀ (𝑛, ℎ) ∈ 𝑁𝐻 ∧ ∀ (𝑛, 𝑡) ∈  𝑁𝑇 ∧ ∀ (ℎ, 𝑡)  ∈  𝐻𝑇:  

∑𝑝𝑛,𝑢,𝑡
𝑃𝑜𝑤𝑒𝑟

𝑢∈𝑈

= 𝐷𝑡
𝑃𝑜𝑤𝑒𝑟 + 𝐷ℎ

𝑃𝑜𝑤𝑒𝑟 + 𝑝𝑛,𝑡
𝐼𝐷 + 𝑝𝑛,ℎ

𝐷𝐴   
(15) 

For the local heating system, the following balance equation holds: 

∀ (𝑛, 𝑡)  ∈  𝑁𝑇 ∧ ∀ ℎ𝑠 ∈ 𝐻𝑆: ∑ 𝑞𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡 = 𝐷𝑡

𝐻𝑒𝑎𝑡

(𝑢)|(𝑢,ℎ𝑠)

 (16) 

For the individual fuels, the following balance equation holds: 

∀ (𝑛, 𝑡)  ∈  𝑁𝑇 ∧ ∀ 𝑓 ∈ 𝐹, 𝑈 ∈ 𝑈𝑓 : ∑ 𝑞𝑛,𝑢,𝑡
𝐹𝑢𝑒𝑙 = 𝑞𝑛,𝑓,𝑡

𝐹𝑢𝑒𝑙

(𝑢)|(𝑢,𝑓)

 (17) 

For heating boilers, the following constraints apply, describing the maximum production capacity (18) 

and the boiler efficiency (19): 

∀ (𝑛, 𝑡)  ∈  𝑁𝑇, 𝑢 ∈  𝑈𝑏𝑜𝑖𝑙𝑒𝑟 ∶  𝑞𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡  ≤  𝑄𝑢

𝐻𝑒𝑎𝑡,𝑚𝑎𝑥  (18) 

∀ (𝑛, 𝑡)  ∈  𝑁𝑇, 𝑢 ∈  𝑈𝑏𝑜𝑖𝑙𝑒𝑟: 𝑞𝑛,𝑢,𝑡
𝐹𝑢𝑒𝑙 =

𝑞𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡

𝜂𝑢
  

(19) 

The heat storages are subject to the following constraints, describing maximum storage level changes 

((20), (21)), maximum storage level (22), and storage level changes between time-steps (23), as well as 

start (24) and end storage levels (25): 



 

XIII 

∀ (𝑛, 𝑡)  ∈  𝑁𝑇, ∀ 𝑢 ∈  𝑈ℎ𝑒𝑎𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒:  𝑞𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡  ≤  𝑄𝑢

𝐻𝑒𝑎𝑡,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑚𝑎𝑥
  (20) 

∀ (𝑛, 𝑡)  ∈  𝑁𝑇, ∀ 𝑢 ∈  𝑈ℎ𝑒𝑎𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒:  𝑞𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡  ≥  −𝑄𝑢

𝐻𝑒𝑎𝑡,𝑐ℎ𝑎𝑟𝑔𝑒𝑚𝑎𝑥
  (21) 

∀ (𝑛, 𝑡)  ∈  𝑁𝑇, ∀ 𝑢 ∈  𝑈ℎ𝑒𝑎𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒:  𝑣𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡  ≤  𝑉𝑢

𝐻𝑒𝑎𝑡,𝑚𝑎𝑥
 (22) 

∀ (𝑛, 𝑡)  ∈  𝑁𝑇, ∀ 𝑢 ∈  𝑈ℎ𝑒𝑎𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒:  𝑣𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡 = 𝑣𝑛,𝑢,𝑡−1

𝐻𝑒𝑎𝑡 ⋅ 𝜂𝑢
𝐿𝑜𝑠𝑠𝑒𝑠 − 𝑞𝑛,𝑢,𝑡

𝐻𝑒𝑎𝑡 ⋅ ∆𝑡 (23) 

∀ 𝑡 ∈ {𝑇𝑆𝑡𝑎𝑟𝑡}, ∀ 𝑢 ∈  𝑈ℎ𝑒𝑎𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒:  𝑣𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡 = 𝑉𝑢

𝐻𝑒𝑎𝑡,𝑆𝑡𝑎𝑟𝑡 ⋅ 𝜂𝑢
𝐿𝑜𝑠𝑠𝑒𝑠 − 𝑞𝑛,𝑢,𝑡

𝐻𝑒𝑎𝑡 ⋅ ∆𝑡 
(24) 

∀ 𝑡 ∈ {𝑇𝐸𝑛𝑑}, (𝑛, 𝑡)  ∈  𝑁𝑇, ∀ 𝑢 ∈  𝑈ℎ𝑒𝑎𝑡𝑠𝑡𝑜𝑟𝑎𝑔𝑒 ∶  𝑣𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡 = 𝑉𝑢

𝐻𝑒𝑎𝑡,𝐸𝑛𝑑
 (25) 

  For all electric units also delivering heat 𝑈𝑐ℎ𝑝 ∈ 𝑈, the maximum heat constraint is given by: 

∀ 𝑢 ∈ 𝑈𝑐ℎ𝑝:  𝑞𝑛,𝑢,𝑡
𝐻𝑒𝑎𝑡 ≤ 𝑄𝑢

𝐻𝑒𝑎𝑡,𝑚𝑎𝑥
 (26) 

The limits for electricity production are defined by the maximum and minimum power capacities 𝑃𝑢
𝑀𝑎𝑥 

and 𝑃𝑢
𝑀𝑖𝑛, as well as by the marketed reserve power that is provided by the respective plant: 

∀ 𝑢 ∈ 𝑈𝑐ℎ𝑝 ∪ 𝑈𝑐𝑜𝑛𝑑:  𝑝𝑛,𝑢,𝑡
𝑃𝑜𝑤𝑒𝑟 ≤ 𝑜𝑛,𝑢,𝑡 ⋅ 𝑃𝑢

𝑀𝑎𝑥 + 𝑝𝑛,𝑢,𝑡
𝐹𝐶𝑅 + 𝑝𝑛,𝑢,𝑡

𝐹𝑅𝑅𝑎,𝑝𝑜𝑠
+ 𝑝𝑛,𝑢,𝑡

𝐹𝑅𝑅𝑚,𝑝𝑜𝑠
 

(27) 

∀ 𝑢 ∈ 𝑈𝑐ℎ𝑝 ∪ 𝑈𝑐𝑜𝑛𝑑:  𝑝𝑛,𝑢,𝑡
𝑃𝑜𝑤𝑒𝑟 ≥ 𝑜𝑛,𝑢,𝑡 ⋅ 𝑃𝑢

𝑀𝑖𝑛 + 𝑝𝑛,𝑢,𝑡
𝐹𝐶𝑅 + 𝑝𝑛,𝑢,𝑡

𝐹𝑅𝑅𝑎,𝑛𝑒𝑔
+ 𝑝𝑛,𝑢,𝑡

𝐹𝑅𝑅𝑚,𝑛𝑒𝑔
 (28) 

For all combined heat and power producing units 𝑢 ∈ 𝑈𝑐ℎ𝑝 in the system with only one degree of 

freedom, in this case, CHP with backpressure turbines, the following equations hold to describe the 

relationship of produced electricity and produced heat (also often denoted as pq-diagram, (29)), as well 

as the CHP fuel consumption depending on electricity production (30): 

∀ 𝑢 ∈ 𝑈𝑐ℎ𝑝1𝑑𝑜𝑓:   𝑞𝑛,𝑐ℎ𝑝1𝑑𝑜𝑓,𝑡
ℎ𝑒𝑎𝑡 = 𝑎𝑐ℎ𝑝

𝑏𝑝
⋅ 𝑜𝑛,𝑐ℎ𝑝1𝑑𝑜𝑓,𝑡 + 𝑏𝑐ℎ𝑝1𝑑𝑜𝑓

𝑏𝑝
⋅ 𝑝𝑛,𝑐ℎ𝑝1𝑑𝑜𝑓,𝑡
𝑒𝑙𝑒𝑐  (29) 

∀ 𝑢 ∈ 𝑈𝑐ℎ𝑝1𝑑𝑜𝑓:   𝑞𝑛,𝑐ℎ𝑝1𝑑𝑜𝑓,𝑡
𝐹𝑢𝑒𝑙 = 𝑎𝑐ℎ𝑝1𝑑𝑜𝑓

𝐹𝑢𝑒𝑙 ⋅ 𝑜𝑛,𝑐ℎ𝑝1𝑑𝑜𝑓,𝑡 + 𝑏𝑐ℎ𝑝1𝑑𝑜𝑓
𝐹𝑢𝑒𝑙 ⋅ 𝑝𝑛,𝑐ℎ𝑝1𝑑𝑜𝑓,𝑡

𝑒𝑙𝑒𝑐  (30) 

In their case, the relationship between a certain electricity output and the corresponding heat output is 

biunique.  

In contrast to this, for CHP plants with two degrees of freedom allow variations of the allowed power 

and heat output pairs. We model the resulting pq-diagram by the help of three inequations ((31),(32) and 

(33)) that need to be satisfied simultaneously if the plants are operating. 



 
 

XIV 

∀ 𝑢 ∈ 𝑈𝑐ℎ𝑝2𝑑𝑜𝑓:   𝑝𝑛,𝑐ℎ𝑝2𝑑𝑜𝑓,𝑡
𝑒𝑙𝑒𝑐 ≤ 𝑎𝑐ℎ𝑝2𝑑𝑜𝑓

𝑒𝑐,1 ⋅ 𝑞𝑛,𝑐ℎ𝑝2𝑑𝑜𝑓,𝑡
ℎ𝑒𝑎𝑡 + 𝑜𝑛,𝑐ℎ𝑝2𝑑𝑜𝑓,𝑡 ⋅ 𝑏𝑐ℎ𝑝2𝑑𝑜𝑓

𝑒𝑐,1  (31) 

∀ 𝑢 ∈ 𝑈𝑐ℎ𝑝2𝑑𝑜𝑓:   𝑝𝑛,𝑐ℎ𝑝2𝑑𝑜𝑓,𝑡
𝑒𝑙𝑒𝑐 ≥ 𝑎𝑐ℎ𝑝2𝑑𝑜𝑓

𝑒𝑐,2 ⋅ 𝑞𝑛,𝑐ℎ𝑝2𝑑𝑜𝑓,𝑡
ℎ𝑒𝑎𝑡 + 𝑜𝑛,𝑐ℎ𝑝2𝑑𝑜𝑓,𝑡 ⋅ 𝑏𝑐ℎ𝑝2𝑑𝑜𝑓

𝑒𝑐,2  (32) 

∀ 𝑢 ∈ 𝑈𝑐ℎ𝑝2𝑑𝑜𝑓:   𝑝𝑛,𝑐ℎ𝑝2𝑑𝑜𝑓,𝑡
𝑒𝑙𝑒𝑐 ≥ 𝑎𝑐ℎ𝑝2𝑑𝑜𝑓

𝑒𝑐,3 ⋅ 𝑞𝑛,𝑐ℎ𝑝2𝑑𝑜𝑓,𝑡
ℎ𝑒𝑎𝑡 + 𝑜𝑛,𝑐ℎ𝑝2𝑑𝑜𝑓,𝑡 ⋅ 𝑏𝑐ℎ𝑝2𝑑𝑜𝑓

𝑒𝑐,3  (33) 

An illustration of the constraints reflecting CHP production ranges can be found in Figure 11.  

 

 

Figure 11: Graphical illustration of pq-diagram constraints 

The fuel consumption equation of these power plants needs to be reflect and differentiate between both 

the marginal fuel consumption by electricity production and the marginal fuel consumption by heat 

production. 

 

∀ 𝑢 ∈ 𝑈𝑐ℎ𝑝2𝑑𝑜𝑓:   𝑞𝑛,𝑐ℎ𝑝2𝑑𝑜𝑓,𝑡
𝐹𝑢𝑒𝑙 = 𝑎𝑐ℎ𝑝2𝑑𝑜𝑓

𝐹𝑢𝑒𝑙 ⋅ 𝑜𝑛,𝑐ℎ𝑝2𝑑𝑜𝑓,𝑡 + 𝑏𝑐ℎ𝑝2𝑑𝑜𝑓
𝐹𝑢𝑒𝑙 ⋅ 𝑝𝑛,𝑐ℎ𝑝2𝑑𝑜𝑓,𝑡

𝑒𝑙𝑒𝑐 +

𝑐𝑐ℎ𝑝2𝑑𝑜𝑓
𝐹𝑢𝑒𝑙 ⋅ 𝑞𝑛,𝑐ℎ𝑝2𝑑𝑜𝑓,𝑡

𝐻𝑒𝑎𝑡  

(34) 

The minimum operation time and minimum shut down times of the CHP plants are modelled by use of 

further binary variables and by introducing further time-coupling constraints, which describe minimum 

operation time (35), minimum shut-down time (36) and the definition of a power plant start (37): 

∀ (𝑛, 𝑡) ∈  𝑁𝑇, (𝑛, 𝑡 − 1) ∈ 𝑁𝑇, 𝑢 ∈ 𝑈𝑐ℎ𝑝 ∶ ∑ 𝑢𝑝𝑛,𝑢,𝑡′

𝑡

𝑡′=𝑡−𝑂𝑃𝑢+1

≤ 𝑜𝑛,𝑢,𝑡 (35) 
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(29)

( 0)
( 0)

(28) (28)

( 1)
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( 5)



 

XV 

∀ (𝑛, 𝑡) ∈  𝑁𝑇, (𝑛, 𝑡 − 1) ∈ 𝑁𝑇, 𝑢 ∈ 𝑈𝑐ℎ𝑝 ∶ ∑ 𝑢𝑝𝑛,𝑢,𝑡′

𝑡

𝑡′=𝑡−𝑆𝐷𝑢+1

≤ 1 − 𝑜𝑛,𝑢,𝑡−𝑆𝐷𝑢 
(36) 

∀ (𝑛, 𝑡) ∈  𝑁𝑇, (𝑛, 𝑡 − 1) ∈ 𝑁𝑇, 𝑢 ∈ 𝑈𝑐ℎ𝑝 ∶ 𝑢𝑝𝑛,𝑢,𝑡 ≥ 𝑜𝑛,𝑢,𝑡 − 𝑜𝑛,𝑢,𝑡−1 (37) 

The electricity production of renewable energy sources (like wind) is restricted by the actual available 

(wind) potential 𝑤𝑝𝑡 at a certain point in time 𝑡. 

∀ 𝑢 ∈ 𝑈𝑐ℎ𝑝:  𝑝𝑛,𝑢,𝑡
𝑃𝑜𝑤𝑒𝑟 ≤ 𝑤𝑝𝑡 (38) 

Forbidden marketing in the deterministic part of the optimization ((41), (44)), as well as minimum ((39), 

(42), (45)) and maximum ((40), (43), (46)) marketing amounts for each interval of the bidding curve for 

Day Ahead Auction ((39), (40), (41)), Intraday Opening Auction ((42), (43), (45)) and Combined 

marketing to both auctions ((45), (46)) are described by the following restrictions: 

∀(𝑡, 𝑖) ∈ 𝑇𝐼 ∧ (𝑤, 𝑡) ∈ 𝑊𝑇 ∧ (𝑡𝑏, 𝑡) ∈ 𝑇𝐵𝑇: 𝑝𝑡,𝑖
𝐼𝐷,𝑙𝑏 ≥ 𝑝𝑤

𝐹𝐶𝑅 + 𝑝𝑡𝑏
𝐹𝑅𝑅𝑎,𝑝𝑜𝑠

+ 𝑝𝑡𝑏
𝐹𝑅𝑅𝑚,𝑝𝑜𝑠

 

(39) 

∀(𝑡, 𝑖) ∈ 𝑇𝐼 ∧ (𝑤, 𝑡) ∈ 𝑊𝑇 ∧ (𝑡𝑏, 𝑡) ∈ 𝑇𝐵𝑇: 𝑝𝑡,𝑖
𝐼𝐷,𝑟𝑏

≤∑𝑃𝑢
𝑀𝑎𝑥

𝑢

− 𝑝𝑤
𝐹𝐶𝑅 − 𝑝𝑡𝑏

𝐹𝑅𝑅𝑎,𝑛𝑒𝑔
− 𝑝𝑡𝑏

𝐹𝑅𝑅𝑚,𝑛𝑒𝑔
 

(40) 

∀ 𝑡 ∈  𝑇𝑑𝑒𝑡 ∶  𝑝𝑛,𝑡
𝐼𝐷 = 0 (41) 

∀(ℎ, 𝑖ℎ) ∈ 𝐻𝐼𝐻 ∧ (𝑤, 𝑡) ∈ 𝑊𝑇 ∧ (𝑡𝑏, 𝑡) ∈ 𝑇𝐵𝑇: 𝑝ℎ,𝑖ℎ
𝐷𝐴,𝑙𝑏ℎ ≥ 𝑝𝑤

𝐹𝐶𝑅 + 𝑝𝑡𝑏
𝐹𝑅𝑅𝑎,𝑝𝑜𝑠

+ 𝑝𝑡𝑏
𝐹𝑅𝑅𝑚,𝑝𝑜𝑠

 (42) 

∀(𝐻, 𝑖ℎ) ∈ 𝐻𝐼𝐻 ∧ (𝑤, 𝑡) ∈ 𝑊𝑇 ∧ (𝑡𝑏, 𝑡) ∈ 𝑇𝐵𝑇: 𝑝ℎ,𝑖ℎ
𝐷𝐴,𝑟𝑏ℎ

≤∑𝑃𝑢
𝑀𝑎𝑥

𝑢

− 𝑝𝑤
𝐹𝐶𝑅 − 𝑝𝑡𝑏

𝐹𝑅𝑅𝑎,𝑛𝑒𝑔
− 𝑝𝑡𝑏

𝐹𝑅𝑅𝑚,𝑛𝑒𝑔
 

(43) 

∀ ℎ ∈  𝐻𝑑𝑒𝑡 ∶  𝑝𝑛,ℎ
𝐷𝐴 = 0 (44) 

∀ (ℎ, 𝑖ℎ)  ∈ 𝐻𝐼𝐻 ∧ (ℎ, 𝑡)  ∈  𝐻𝑇 ∶  𝑝ℎ,𝑖ℎ
𝐷𝐴,𝑙𝑏ℎ + 𝑝𝑡,𝑖

𝐼𝐷,𝑙𝑏 ≥ 𝑝𝑤
𝐹𝐶𝑅 + 𝑝𝑡𝑏

𝐹𝑅𝑅𝑎,𝑝𝑜𝑠
+ 𝑝𝑡𝑏

𝐹𝑅𝑅𝑚,𝑝𝑜𝑠
 (45) 



 
 

XVI 

∀ (ℎ, 𝑖ℎ)  ∈ 𝐻𝐼𝐻 ∧ (ℎ, 𝑡)  ∈  𝐻𝑇 ∶  𝑝ℎ,𝑖ℎ
𝐷𝐴,𝑟𝑏ℎ + 𝑝𝑡,𝑖

𝐼𝐷,𝑟𝑏

≤∑𝑃𝑢
𝑀𝑎𝑥

𝑢

− 𝑝𝑤
𝐹𝐶𝑅 − 𝑝𝑡𝑏

𝐹𝑅𝑅𝑎,𝑛𝑒𝑔
− 𝑝𝑡𝑏

𝐹𝑅𝑅𝑚,𝑛𝑒𝑔
 

(46) 

The following restrictions model the linearization of the optimized bidding curves within the bidding 

curve intervals and are defined for both the Day Ahead ((50),(51),(52)) and Intraday Opening Auction 

((47),(48),(49)) bidding curves: 

∀ (𝑡, 𝑖) ∈  𝑇𝐼 ∧   (𝑛, 𝑡) ∈  𝑁𝑇 ∶  𝑝𝑛,𝑡
𝐼𝐷 = (1 − 𝜆𝑛,𝑡) ⋅ 𝑝𝑡,𝑖

𝐼𝐷,𝑙𝑏 + 𝜆𝑛,𝑡 ⋅ 𝑝𝑡,𝑖
𝐼𝐷,𝑟𝑏

 
(47) 

∀ (𝑡, 𝑖)  ∈  𝑇𝐼 ∶  𝑝𝑡,𝑖
𝐼𝐷,𝑙𝑏  ≤  𝑝𝑡,𝑖

𝐼𝐷,𝑟𝑏
 

(48) 

∀ (𝑡, 𝑖) ∈  𝑇𝐼, 𝑖 < 𝐼 ∶  𝑝𝑡,𝑖
𝐼𝐷,𝑟𝑏 = 𝑝𝑡,𝑖+1

𝐼𝐷,𝑙𝑏
 

(49) 

∀ (ℎ, 𝑖ℎ) ∈  𝐻𝐼𝐻 ∧  (𝑛, ℎ) ∈ 𝑁𝐻 ∶  𝑝𝑛,ℎ
𝐷𝐴 = (1 − 𝜆𝑛,ℎ) ⋅ 𝑝ℎ,𝑖ℎ

𝐷𝐴,𝑙𝑏ℎ + 𝜆𝑛,ℎ ⋅ 𝑝ℎ,𝑖ℎ
𝐷𝐴,𝑟𝑏ℎ

 

(50) 

∀ (𝑛, ℎ)  ∈  𝑁𝐻 ∶  𝑝ℎ,𝑖ℎ
𝐷𝐴,𝑙𝑏ℎ  ≤  𝑝ℎ,𝑖ℎ

𝐷𝐴,𝑟𝑏ℎ
 

(51) 

∀ (ℎ, 𝑖ℎ) ∈  𝐻𝐼𝐻, 𝑖ℎ < 𝐼𝐻 ∶  𝑝ℎ,𝑖ℎ
𝐷𝐴,𝑟𝑏ℎ = 𝑝ℎ,𝑖ℎ+1

𝐷𝐴,𝑙𝑏ℎ
 (52) 

Another restriction ensures that the bidding curve is left and right side of the bidding curve starting with 

the interval with the highest and lowest simulated price respectively  

∀ (𝑡, 𝑖)  ∈  𝑇𝐼 ∗ / ∶  𝑝𝑡,𝑖
𝐼𝐷,𝑙𝑏  =  𝑝𝑡,𝑖

𝐼𝐷,𝑟𝑏
 (53) 

∀ (𝑡, 𝑖)  ∈  𝐻𝐼𝐻 ∗: 𝑝ℎ,𝑖ℎ
𝐷𝐴,𝑙𝑏ℎ  =  𝑝ℎ,𝑖ℎ

𝐷𝐴,𝑟𝑏ℎ
 (54) 

Finally, the condition avoiding arbitrage trades between hours and quarter-hours in the 1st Optimization 

is given by: 

∀ (𝑛, 𝑡)  ∈  𝑁𝑇 ∶  ∑ 𝑝𝑛,𝑡
𝐼𝐷

(ℎ,𝑡)∈ 𝐻𝑇

 =  0 (55) 

The developed model is executable with both quarter-hourly products and hourly time products, as well 

as only hourly products considered (for the weekly FCR optimization). In the latter case, the restrictions 

(39), (40), (41), (45), (46), (47), (48), (49) and (55) are not considered. Additionally, for the former case, 

there is the option to only consider a quarter-hourly resolution, to reduce computational complexity. In 

this case, restrictions (42), (43), (44), (45), (46), (50), (51), (52) and (55) are neglected. For the Day-

Ahead Auction, the realized marketed amount is then derived from the average marketed amount of the 

respective quarter-hours belonging to one hour. 
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The marketing of reserve products is modelled for each reserve product type individually. For the FCR 

auction, the following four restrictions apply:  

If reserve is marketed, the bid needs to exceed the minimum bid size (1 MW for all products, as only 

one bid is submitted by the portfolio holder). Thus, a binary variable 𝑜𝑤
𝐹𝐶𝑅 models the submission of an 

FCR bid. 

∀ 𝑤 ∈  𝑊 ∶  𝑝𝑤
𝐹𝐶𝑅  ≥  𝑃𝐹𝐶𝑅,𝑚𝑖𝑛 ⋅ 𝑜𝑤

𝐹𝐶𝑅 
(56) 

Each individual unit 𝑢 has a maximum FCR power 𝑃𝑢
𝑀𝑎𝑥,𝐹𝐶𝑅

 it can deliver within the reserve activation 

time-period (30 seconds). The reserve power market provision of the overall therefore mustn’t exceed 

the sum of the individual plant’s reserve provision capabilities. If a plant may not provide reserve, 

𝑃𝑢
𝑀𝑎𝑥,𝐹𝐶𝑅

 is set to zero. 

∀ 𝑤 ∈  𝑊 ∶  𝑝𝑤
𝐹𝐶𝑅  ≤ 𝑜𝑤

𝐹𝐶𝑅 ⋅∑𝑃𝑢
𝐹𝐶𝑅,𝑚𝑎𝑥

𝑢

  (57) 

The sum of all reserve power provision by individual plants in each time-step 𝑡 needs to equal the total 

marketed reserve power of the portfolio in the corresponding week 𝑤. 

∀ 𝑤 ∈  𝑊 ∧ (𝑤, 𝑡) ∈ 𝑊𝑇 ∶  𝑝𝑤
𝐹𝐶𝑅 = ∑ 𝑝𝑛,𝑢,𝑡

𝐹𝐶𝑅

𝑢∈𝑈

 (58) 

The individual plants 𝑢 are also restricted by their maximum reserve provision capability, thus the 

following restriction holds: 

∀ (𝑛, 𝑡) ∈ 𝑁𝑇, 𝑢 ∈ 𝑈: 𝑝𝑛,𝑢,𝑡
𝐹𝐶𝑅  ≤ 𝑃𝑢

𝐹𝐶𝑅,𝑚𝑎𝑥  
(59) 

The aFRR and mFRR auctioning is modelled analogously to FCR provision and do not differ for aFRR 

and mFRR, as well as for positive and negative reserve direction. Thus, these restrictions are in the 

following listed jointly, without further differentiation and explanation:  

∀ 𝑝𝑟𝑜𝑑 ∈ {𝐹𝑅𝑅𝑎, 𝑝𝑜𝑠; 𝐹𝑅𝑅𝑎, 𝑛𝑒𝑔; 𝐹𝑅𝑅𝑚, 𝑝𝑜𝑠; 𝐹𝑅𝑅𝑚, 𝑛𝑒𝑔}: 

∀ 𝑡𝑏 ∈  𝑇𝐵 ∶  𝑝𝑡𝑏
𝑝𝑟𝑜𝑑

 ≥  𝑃𝑝𝑟𝑜𝑑,𝑚𝑖𝑛 ⋅ 𝑜𝑡𝑏
𝑝𝑟𝑜𝑑

 
(60) 

∀ 𝑤 ∈  𝑇𝐵 ∶  𝑝𝑡𝑏
𝑝𝑟𝑜𝑑

 ≤ 𝑜𝑡𝑏
𝑝𝑟𝑜𝑑

⋅∑𝑃𝑢
𝑝𝑟𝑜𝑑,𝑚𝑎𝑥

𝑢

  (61) 

∀ 𝑤 ∈  𝑇𝐵 ∧ (𝑡𝑏, 𝑡) ∈ 𝑇𝐵𝑇 ∶  𝑝𝑡𝑏
𝑝𝑟𝑜𝑑

= ∑ 𝑝𝑛,𝑢,𝑡
𝑝𝑟𝑜𝑑

𝑢∈𝑈

 (62) 

∀ (𝑛, 𝑡) ∈ 𝑁𝑇, 𝑢 ∈ 𝑈: 𝑝𝑛,𝑢,𝑡
𝑝𝑟𝑜𝑑

 ≤ 𝑃𝑢
𝑝𝑟𝑜𝑑,𝑚𝑎𝑥

  (63) 
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Besides the mentioned restrictions, the model implements a couple of restrictions that were not 

considered in the application studies of this paper, including restrictions for the modelling of electric 

storages such as batteries or pumped hydro storages, restrictions for the modelling of Power-to-Heat 

plants, restrictions for the modelling of Power-to-Gas and connected gas storage facilities, as well as 

load change velocity (ramping) restrictions. Readers interested in the implementation are invited to 

contact the corresponding author of this paper for further information. 

 

Appendix 1.3: Conditional density of daily FCR price simulation 

 

We want to find the conditional distribution of ({ 𝑃𝑀𝑜𝑛𝑑𝑎𝑦  ⋯𝑃𝑆𝑢𝑛𝑑𝑎𝑦 |  Σ𝜔 𝑃𝜔 = 𝑝_𝑤} where 𝑝_𝑤 a 

constant, 𝑃𝜔   ∼  𝒩(𝜇𝑑 ,  𝜎d
2) and 𝜔 is a set of weekdays17. As we lose one degree of freedom this is 

equivalent to ({ 𝑃𝑀𝑜𝑛𝑑𝑎𝑦  ⋯𝑃𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦 |  Σ𝜔 𝑃𝜔 = 𝑝_𝑤} with 𝑃𝑆𝑢𝑛𝑑𝑎𝑦    =  𝑝𝑤    −   ∑ 𝑝𝜔𝜔  \ {𝑆𝑢𝑛𝑑𝑎𝑦}   

 

Starting with the vector 

(

  
 

𝑃𝑀𝑜𝑛𝑑𝑎𝑦
⋮

𝑃𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦

∑𝑃𝜔
𝜔 )

  
 
. (64) 

 

This vector follows a multivariate normal distribution with the mean 

𝜇 = (

𝜇𝑑
⋮
𝜇𝑑
7𝜇𝑑

) (65) 

 

and the variance covariance matrix 

Σ = 𝜎𝑑
2 (
𝐼6×6 𝟏6×1
𝟏1×6 7

). (66) 

Where 𝐼6×6 is the identity matrix and 𝟏 is a matrix filled with ones. 

 
17 Inspired by https://stats.stackexchange.com/questions/97213/r-pick-10-random-numbers-

from-standard-normal-distribution-whose-sum-equals-5 

 

https://stats.stackexchange.com/questions/97213/r-pick-10-random-numbers-from-standard-normal-distribution-whose-sum-equals-5
https://stats.stackexchange.com/questions/97213/r-pick-10-random-numbers-from-standard-normal-distribution-whose-sum-equals-5


 

XIX 

The following is taken from Eaton (1983, pp. 116–117). 

If N-dimensional vector 𝑥 is partitioned as follows, 

𝑥 = [
𝑥1
𝑥2
] .   

The accordingly 𝜇 and Σ are portioned as follows, 

𝜇 = [
𝜇1
𝜇2
]   

and 

Σ = [
Σ11 Σ21
Σ12 Σ22

] .   

Then the distribution of 𝑥1 conditional on 𝑥2 = 𝑎 is multivariate normal (𝑥_1 |𝑥_2   ∼  𝒩(𝜇̅, Σ̅) 

where 

  𝜇̅  =  𝜇1  +  Σ12 Σ22
−1 (𝑎 −  𝜇2) 

and  

Σ̅ = Σ11 − Σ12Σ22
−1Σ21. 

 

 

Therefore, one can conclude that  ({ 𝑃𝑀𝑜𝑛𝑑𝑎𝑦  ⋯𝑃𝑆𝑎𝑡𝑢𝑟𝑑𝑎𝑦 |  Σ𝜔 𝑃𝜔 = 𝑝_𝑤} is multivariate normal 

distributed with the mean  

 𝜇̅  =  𝜇𝑑 + 𝟏1×6𝜎𝑑
2
1

7𝜎𝑑
2
(𝑝𝑤 − 7𝜇𝑑) (67) 

 

And the variance covariance matrix 

Σ̅  =  𝐼6×6  − 𝟏1×6𝜎𝑑
2
1

7𝜎𝑑
2 𝟏6×1 (68) 

 

Which can be simplified to 

𝜇̅  = 𝜇𝑑 + 𝟏6×1  (
1

7
𝑝𝑤 − 𝜇𝑑) (69) 

 

and 



 
 

XX 

Σ̅  = 𝐼6×6 − 𝟏6×6  
6

7
 𝜎𝑑
2. (70) 
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