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Abstract

In this paper, we develop a theoretical model that links the demand for telecare
to the length of stay in hospital and formulate three models that can be used to
derive the treatment effect by making various assumptions about the probability
distribution of the outcome measure. We then fit the models to data and
estimate them using a strategy that controls for the effects of confounding
variables and unobservable factors, and compare the treatment effects with
that of the Propensity Score Matching (PSM) technique which adopts a quasi-
experimental study design. To ensure comparability, the covariates are kept
identical in all cases. An important finding that emerges from our analysis
is that the treatment effects derived from our econometric models of interest
are better than that obtained from an experimental study design as the latter
does not account for all the relevant unobservable factors. In particular, the
results show that estimating the treatment effect of telecare in the way that an
experimental study design entails fails to account for the systematic variations
in individuals’ health production functions within each experimental arm.

Keywords: Demand for telecare, econometric models, health production.

1 Introduction

The use of devices to monitor individuals’ health and safety at home–commonly re-
ferred to as telecare–may complement or substitute for social care and unpaid care.
Telecare covers a wide range of devices from the basic community alarm, which al-
lows the users to call for help by simply pressing a button, to more sophisticated
devices that allow for remote exchange of clinical data between the users and their
care providers and virtual consulting using audio and video technology (Barlow et
al., 2007[1]; Brownsell, 2008[2]). The use of telecare is beneficial to both the users
and their carers. For instance, telecare reduces the need for residential care mainly
through delayed admissions and also offers increased choice and independence for the
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users. Telecare can also reduce pressures on carers by freeing up some of their time
thus giving them more personal freedom (Clark et al., 2007[3]; Giordano, Clark and
Goodwin, 2011[4]).

Although the health economics literature abounds with several outcome measures
ranging from functional performance measures such as lower body strength and level
of assistance in performing activities of daily living (see, for example, Kjerstad and
Tuntland, 2016[5]; Parsons, 2013[6], and Lewin et al., 2013[7]) to measures of health
and well-being such as Quality Adjusted Life Year (QALY) and social care related
quality of life (see, for example, Henderson et al., 2014[8]; Steventon et al., 2013[9],
and Jones, 2009[10]), we consider the length of stay in hospital as our outcome mea-
sure of interest. This measure is ideal as it is an indicator of both individuals’ general
health and the strength of the health system (see, for example, Almashrafi et al.,
2016[11]; Steel and Cylus, 2012[12], and Fernandez et al., 2018[13]). The length of
stay in hospital is also of great interest to health policy makers who aim at designing
policies that would reduce the prevalence of health care associated illnesses and gen-
eral inpatient costs as well as supporting self-management of chronic illnesses (see,
for example, Dulworth and Pyenson, 2004[14] and Angelis, 2010[15]).

In this paper, we present a novel framework for estimating the effect of the demand
for telecare on the length of stay in hospital. We argue that the use of telecare could
substitute for some health care services that would have otherwise been provided in
hospital, thereby resulting in a shorter length of stay in hospital. It could be the case,
therefore, that telecare users have a comparatively short length of stay in hospital
because in the event of hospitalization, their health care providers opt to discharge
them as soon as they are medically fit to be discharged given that most of them
can be monitored remotely. It could also be the case that the timely response by
health care providers due to telecare use enables telecare users to avert serious health
complications that would have seen them stay longer in hospital. Because individuals
have different biological endowments, which are typically unobservable, their health
states and expected length of stay in hospital could vary even when using the same
telecare devices.

We also argue that the consumption bundles of telecare users comprise several
affordable health enhancing inputs in addition to telecare but telecare users choose
telecare to improve their health status. Accordingly, that telecare improves individ-
uals’ welfare by shortening their length of stay in hospital and also that it improves
health implies that telecare use is an input in both the individuals’ utility functions
and health production functions. This conceptualization makes our framework to
have a considerable advantage over the experimental studies in the literature as it
enables us to estimate the treatment effect whilst allowing individuals’ health pro-
duction to vary. Furthermore, it is also appealing to economists and health planners
who need to design policies based on measures of effectiveness that are obtained from
real-world settings.

Economists interested in conducting impact evaluations usually use economic the-
ory to justify the causal inferences that they make and our particular framework is
no different. In addition to thinking of telecare use as a demand relation, in which
case telecare users choose whether or not to use telecare based on prevailing market
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conditions, we also broadly classify the predictors of the length of stay in hospital
as ‘predisposing’, ‘enabling’ and ‘need’ factors following the Andersen’s Behavioral
Model of Health Services Use (see Andersen and Newman, 1973[16] and Andersen,
1995[17] for a comprehensive discussion of these factors). The predisposing factors
are factors such as age, sex and area of residence that could make individuals to be
more likely to have a longer length of stay in hospital (see, for example, Agboado,
2012[18] and Brown, 2011[19] who find that older individuals have a longer length
of stay in hospital than their younger counterparts on average; Heinz, 2013[20] who
notes that rural residents are more likely to have a longer length of stay in hospi-
tal than the individuals who reside in urban areas, other factors held constant, and
Keistinen et al., 1996[21], Saynajakangas et al., 2004[22] and Liu, 2001[23] who note
that males have a longer length of stay in hospital than females, holding other factors
constant). Enabling factors are factors such as individuals’ income levels and access
to health care services that enable or impede service use and could thus in turn have
an impact on the length of stay in hospital. Since we argue that telecare users may
have a comparatively short length of stay in hospital by using telecare devices to sub-
stitute for some of the services provided by their care providers, it follows then that
the use of telecare is an enabling factor in our case. The need factors are factors such
as multimorbidity and polypharmacy that are indicative of individuals’ care needs.
We therefore expect that, all things equal, a high level of need is associated with a
relatively longer length of stay in hospital (see, for example, Agboado, 2012[18]).

To set the scene for the analytical problem in this paper, consider a hypothet-
ical population comprising several individuals who use health care services. These
individuals have a greater predisposition to use health care services to improve their
health and well-being than their peers and can afford to purchase whatever services
they want, but a number of them choose to use telecare instead of the other services
for some reason. We recognize that individuals have unique health endowments that
directly affect their observable health status whether or not they use health care ser-
vices and because of this heterogeneity, their likelihood of being hospitalized due to
health deterioration may differ even when they all decide to use the same form of
care. We may also observe systematic variations in their length of stay in hospital
due to this heterogeneity and not necessarily because of their differences in use of
services. This is illustrated in Figure 1.

According to the figure, the length of stay in hospital is related to ‘predisposing’,
‘enabling’ and ‘need’ factors. The conceptual framework also shows that the observed
variation in the length of stay in hospital may be brought about by factors operating
at the health and social care system. We can further observe from the figure that
a particular individual’s length of stay in hospital is influenced by the individual’s
level of endowment and preferences regarding the use of health care services, albeit
indirectly. The model developed in this paper causally links the decisions made
by individuals to use telecare to their expected length of stay in hospital whilst
disentangling the effects of unobservable confounding.

The majority of the previous studies have examined the effectiveness of telecare
using experimental study designs. A systematic review of the literature (Momanyi,
2019[24]) showed that there are some studies that use randomized controlled trials
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Figure 1: An illustration of individuals’ utility maximizing behavior

(see, for example, Steventon et al., 2013[9]; Hirani et al., 2013[25], and Henderson et
al., 2014[8]) and others that use quasi-experimental study designs such as the PSM
technique and the Alternating Treatment Design (ATD) (see, for example, Doughty
et al., 2010[26] and Akematsu and Tsuji, 2012[28, 29]). Of these studies, it is only
the studies by Akematsu and Tsuji and Steventon et al., (2013)[9] that investigate
the effect of telecare on the length of stay in hospital. The studies by Akematsu and
Tsuji find that telecare use leads to a decrease in the number of treatment days but
their analytic sample is a potentially highly selected group of individuals, whereas
the study by Steventon et al., (2013)[9] does not find telecare use to be a significant
predictor of the length of stay in hospital. In order to encapsulate the mechanics of
our proposed framework and, therefore, extend the literature, we use a unique dataset
that contains non-experimental data from four different information sources.

In particular, our unique dataset is a merger of the Scottish Morbidity Records
(SMRs), prescribing data (which contains information on prescribed medications in
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Scotland), Self-Directed Support (SDS) data (which contains information on the de-
cisions made by the individuals using social care services in Scotland regarding the
provision of the services that they receive as well as data on several demographic
characteristics) and the Homecare Census data for five local council areas in Scot-
land during the 2010/2011 financial year. The SMRs contain episode level data on
acute hospital admissions (SMR01) and psychiatric care admissions (SMR04). We
construct our outcome measure of interest as the number of days that a particular in-
dividual spends in hospital while receiving treatment. We also take advantage of the
episode level data structure to generate time series data with repeated cross-sections
over the 52 weeks of the 2010/2011 financial year. We construct variables for age, sex,
client group (which is a categorical variable with the following categories: ‘Dementia
and Mental Health’, ‘Learning disability’, ‘Frail elderly’ and ‘Physical disability’),
telecare use, area of residence and comorbidity status; which serve as the covariates
for the empirical analysis. The variable for telecare use comprises the use of devices
such as linked pill dispensers, linked smoke detectors, bogus caller buttons, property
exit sensors and automated motion sensors, among others.

Our objective in this paper, therefore, is to formulate three econometric models
that can be used to derive the causal impact of telecare on the length of stay in
hospital in a real-world setting and compare the results with that of an experimental
study design. We specifically use the PSM technique for this demonstration exercise
due to its popularity in the literature in estimating causal effects using observational
data. The rest of the paper progresses as follows: Section 2 introduces a theory
of the demand for telecare; Section 3 discusses the formulated econometric models;
Section 4 applies the formulated models to real-world data, and Section 5 concludes.
An Appendix A provides the proofs of our most important results.

2 A theory of the demand for telecare

2.1 Notation and definitions

In order to operationalize the theoretical model for this study, we consider a con-
strained utility maximizing problem where individuals maximize utility and, by ex-
tension, their health status, H, by using several utility generating inputs. Let D ⊂ Rn

denote a set of utility generating inputs that an individual can consume at a partic-
ular point in time with notation n in Rn indicating that individuals consume a finite
amount of goods and services. Let also d ∈ D represent individuals’ non-negative
consumption bundles such that d = Rn

+ or more formally, d ∈ Rn : d ≥ 0 for all
n = 1, . . . , N . Recall that since individuals simultaneously maximize utility and im-
prove their health status, there exists S ∈ d such that S = {X ,K} and S ⊆ d. Here,
X ∈ S denotes the set of inputs that are directly associated with utility gains and
K ∈ S the set of health-related inputs that yield utility by improving H.

If we let B = {P ,N}, where P is a set of predisposing factors and N a set of
need factors, so that we now have X ∈ Rn such that X ≥ 0∀n = 1, . . . , N,K ∈ Rn

+

and B, d,S ∈ Rn such that B, d,S ≥ 0 for all n = 1, . . . , N , then ∃P ∈ X and also
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∃N ∈ X such that P = {P1 + P2 + . . .+ Pn} ⊊ X , N = {N1 +N2 + . . .+Nn} ⊊ X
and B ⊆ X . Because telecare use, T , is a health-related enabling factor, we have
T ,Q ∈ K such that T =

∑n
i=1 Ti ⊊ K and Q =

∑n
i=1Qi ⊊ K. There also exists

S ∈ S such that S = {B,K} = {P ,N , T ,Q} and S ⊂ S. The basic utility function
for a particular individual is thus expressed as follows:

U = u(S,H) = u

(
n∑

i=1

Pi, {N1 + . . .+Nn}, {T1 + . . .+ Tn},
n∑

i=1

Qi,H

)
(2.1)

Following Grossman (1972)[30], health seeking individuals demand health because
good health is desirable and they thus invest in T and Q in order to produce their own
health. We can, therefore, express a particular individual’s health production function
at a certain point in time as H = H(T ,Q, µ), where µ denotes the unobservable
biological endowment that affects the individual’s health status.

Remark 1. Throughout this paper, the letters P,N, T,Q,K andH may also denote
the utility generating inputs in Equation (2.1). We, therefore, have that P ∈ P ,
N ⊂ N , T ∈ T , Q ⊃ Q, K ⊃ K and H ∈ H. Since P , N , T , Q, K and H contain
more elements than P,N, T,Q,K and H, one may think of P , N , T , Q and K as
sets of all the utility generating inputs that a particular individual can conceivably
consume and H as a health production function with all the health enhancing inputs
that the individual can conceivably acquire.

Remark 2. The sets P , N , T and Q are represented as sums of their constituent
elements because individuals typically consume a combination of inputs. We expect
U = u(., .) to be additively separable in T and Q but not necessarily in P and N .
Since P , N , T and Q are also disjoint sets, we have that T ∪(P∩N ) = (T ∪P)∩(T ∪
N ) = T = K△Q = K∪Q\K∩Q and that χ(K△Q) = χK⊕χQ = T . It is also the case
that [T ∈ K△Q] = [T ∈ K]⊕[T ∈ Q] and that T ∩(P∪N ) = (T ∩P)∪(T ∩N ) = {}.
We also have that

⋃
K,B∈S S = P +N + T +Q since ∃ at least one utility generating

input l ∈ S such that l is a member of at least one of P ,N , T and Q .

Definition 1. Suppose that A and M are such that A ⊂ Z and M ⊂ Z. Then A
and M are said to be disjoint sets if A ∩M ⇔ ∅.

In addition to the constraints that we have imposed on individuals’ consumption
bundles in that S ∈ Rn

>0, individuals are also limited to the inputs that they can
afford. A feasible consumption bundle for a particular individual, therefore, is that
which the individual is able to acquire given the individual’s budget.

Definition 2. Let S
′
denote the set of utility generating inputs in S that are also

part of P ,N , T and Q depending on a particular individual’s consumption pattern.
Let also w denote the individual’s wealth level and p the vector of prices for inputs S

′
.

Then the individual’s feasible consumption bundle consists of the utility generating
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inputs in the set {S ′ ∈ S : p.S
′ ≤ w}. For a market economy where the consumers are

price takers, this set is the so called Walrasian budget set (see, for example, Banerjee
and Maskin, 1996[31] and Serrano and Volij, 2000[32]). The corresponding budget
constraint can, therefore, be written as p1.S

′
1 + . . .+ pn.S

′
n ≤ w.

2.2 Model assumptions

We make three key assumptions that enable us to conduct our analysis. These as-
sumptions provide a theoretical basis upon which we can make causal inferences about
the expected relationship between the demand for telecare and our outcome measure
of interest.

Assumption 1 (Implicit input prices). For all {P,N, T,Q} ∈ S
′
, there exists

P = {pP , pN , pT , pQ} such that pP ∈ P, pN ∈ N, pT ∈ T and pQ ∈ Q.

Assumption 1 states that the utility generating input prices are implicit. We make
this assumption because there are some utility generating inputs in our modeling
framework such as T and Q that are traded in the market place and others such
as P and N that do not have natural markets. We also do not have data on the
actual input prices for T and Q but we know that individuals usually incur costs
(which may include opportunity costs and other intangible costs) in the course of
acquiring inputs. Even though P and N are not marketed, we can still be able to
rigorously think about their cost implications. For instance, an elderly individual
with a chronic condition is expected to have a comparatively high use of health and
social care resources, all else equal. The difference in resource use between the elderly
individual with a chronic condition and another individual who is neither elderly nor
suffering from a chronic condition can be thought of as the price associated with P
and N . Furthermore, the fact that we are able to observe S

′
means that the input

costs have already been incurred. The implication of this assumption, therefore, is
that we are able to conduct our analysis in the absence of observable prices and still
have theoretical validity.

Assumption 2 (Weak axiom of revealed preference). The choice structure
C(M) for a particular individual who uses T is such that if for some budget set M ∈
M and M ∈ S

′
with T,Q ∈ M and the individual chooses T such that T ∈ C(M),

then ∀M ′ ∈ M with T,Q ∈ M
′
and Q ∈ C(M

′
),
∨

m ∈ C(M
′
) that is T so that we

also have T ∈ C(M
′
). Suppose that ∃Y ⊂ S and Y ̸⊂ K but S

′ ∈ S now contains Y.
Then we may have that (i) T ≻ Q ⇔ T ≽ Q but not Q ≽ T ; (ii) Q ≻ Y ⇔ Q ≽ Y
but not Y ≽ Q, and (iii) Y ≻ T ⇔ Y ≽ T but not T ≽ Y .

Assumption 2 states that a telecare user prefers to use T instead of Q whenever
presented with a feasible consumption bundle that contains both T and Q. So in
the event that input Q is chosen, it must be the case that T is also chosen. This
assumption is rather conservative as it does not require an individual’s preference
relation ≽ to be transitive as is the case with the strong and generalized axioms of
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revealed preference (Samuelson, 1938[33]; Houthakker, 1950[34]; Varian, 1982[35]).
Therefore, if an alternative set of utility generating inputs Y is to be considered such
that Y is not part of either T or Q, then a situation may arise where (i) telecare use
is at least as preferable as Q but Q is not at least as preferable as telecare use; (ii)
Q is at least as preferable as Y but Y is not at least as preferable as Q, and (iii) Y is
at least as preferable as telecare use but telecare use is not at least as preferable as
Y . By making this assumption, we acknowledge that individuals’ preferences could
change over time given that their biological endowments are typically unobservable
and it may also no longer be possible to slow down the expected deterioration of H
with the same set of inputs that were previously efficacious. Assumption 2 is thus
the reasonable stance to take as it is not uncommon for health seeking individuals–
particularly those suffering from chronic conditions such as cancer–with a predefined
ranking of preferences for health inputs to reconsider their earlier treatment choices
at a later point in time having lost faith in their effectiveness and resort to some form
of palliative care or even no treatment at all.

Assumption 3 (Wealth equivalence). Any feasible consumption bundle S
′
that

is represented by S
′
(p, w) price wealth situation must be such that w = w

′
for all

w ∈ W, ceteris paribus, if ∥Ui : RL
+ × R → R∥∞ = φ for all i = i, . . . , n. If this is

not the case, it follows then that

i. Since p.S
′ ≤ w,∃ some S

′
(p, w) ∈ S where w

′
>w and thus sup{|f(S ′

, H)|}
where S

′
(p, w

′
) ∈ S is greater than

∨
S,H∈U{U : S(p, w) ∈ S}, other factors held

constant.

ii. There could be instances where pQ ̸= pT .

Assumption 3 states that the wealth levels for all individuals have to be the same
if we are to attribute utility gains to the consumption of utility generating inputs.
This assumption is useful since we are interested in deriving the maximal utility that
is gotten from the consumption of T . Because the budget constraint is represented by
the inequality ≤ w, we know that the utility functions of the less affluent individuals
yield lower utility than those of their more affluent counterparts, all else equal, due
to the fact that they have to deplete their wealth to acquire a given consumption
bundle. In order to eliminate such instances, therefore, the analysis is limited to the
wealth levels that are just sufficient to purchase the utility generating inputs i.e. the
budget hyperplane or equivalently the budget line when considering only two inputs
in the consumption bundle. This is demonstrated in Figure 2 for a hypothetical case
of K1 and B2 as the utility generating inputs. According to the figure, the feasible
consumption bundle that maximizes utility comprises the quantities of K1 and B2

at the point of tangency between a particular individual’s indifference curve and the
individual’s budget constraint. Since the analysis focuses only on the individuals who
have just enough resources needed to acquire the utility generating inputs and we also
know that telecare users choose T instead of Q to be part of their utility functions,
it follows then that the price of Q, denoted by pQ, is the relative price of T , holding
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0

S
′
(p

′
, w)

U = u(S,H)

K∗
1

B∗
2

w

K1

B2

Indifference curve
Budget line

w = K∗
1 .pK + B∗

2.pB

Figure 2: Individuals’ utility maximizing consumption bundle at point w

other factors constant. Accordingly, a particular individual who is a telecare user
chooses to use telecare strictly because of preference and not because it costs less
than its substitutes.

We now proceed to present Theorem 1 having made the assumptions needed to
identify the demand for telecare. The theorem shows how one can derive the demand
function for telecare given a particular individual’s budget constraint and the indi-
vidual’s health production function. We show that the demand for telecare depends
in part on an individual’s unobservable biological endowment.

Theorem 1. Suppose Assumptions 1− 3 all hold and let pBQ ⊂ p such that pBQ =
{pP , pN , pQ}. Then for any utility maximizing behavior that is characterized by U =
u(S

′
BQ, H) with p = {pB, pK} as the input prices, the demand function for T will be

given by T = t(p, w, µ) and the indirect utility function by V = v(B, T, pBQ, w, µ).

PROOF OF THEOREM 1: By Assumptions (1) and (3), U = u(., .) can be maxi-
mized s.t {p.S ′

= w = p1.S
′
1 + . . .+ pn.S

′
n} and H = H(T,Q, µ). Recall that since S

′

is defined as S
′ ∈ S such that S = {B, K} with P,N ∈ B and K = {T,Q}, we can
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also write the optimization problem as shown in the following expression:

max
{B,T}∈S,H

U (P,N, T,H) s.t w = pPP + pNN + pTT + pQQ and H = H (T,Q, µ)

Using the Lagrange method, the Augmented Objective Function (AOF) for the opti-
mization problem is given by

L (B, T,H : λ, λ2) = U(.) + λ (pPP + pNN + pTT + pQQ− w) + λ2H(.)

= U(.) + λpPP + λpNN + λpTT + λpQQ− λw + λ2H(.)

= U(.) + (λpPP + λpNN + λpTT + λpQQ− λw) + λ2H(.)

Note that the AOF is such that L(., ., . : λ, λ2) has the utility function U = U(.),
four price components of P,N, T and Q, and components λw and λ2H(.). We
obtain the first order conditions needed to get sup{U : Rn

+ → R} by computing
(dL/d/T ), (dL/dλ) and (dL/dλ2) and then equating the differentials to zero. For the
case of (dL/d/T ) we, therefore, have that

dL
dT

=
∂U

∂T
+

∂U

∂N
× dN

dT
+

∂U

∂P
× dP

dT
+

∂U

∂H
× dH

dT

+
d (λpTT )

dT
+

∂λ2H(.)

∂T
+

∂λ2H(.)

∂Q
× dQ

dT
+

∂λ2H(.)

∂µ
× dµ

dT

dL
dT

=
∂U

∂T
+

∂U

∂N
× d

dT

(∫
T

dN

dT
dT

)
+

∂U

∂P
× d

dT

(∫
T

dP

dT
dT

)
+

∂U

∂H
× d

dT

(∫
T

dH

dT
dT

)
+

∂(λpTT )

∂T
× dT

dT
+

∂λ2H(.)

∂T

+
∂λ2H(.)

∂Q
× d

dT

(∫
T

dQ

dT
dT

)
+ µ

dL
dT

=
∂U

∂T
+

∂U

∂N
× d

dT

(∫
T

dN

dT
dT

)
+

∂U

∂P
× d

dT

(∫
T

dP

dT
dT

)
+

∂U

∂H
× d

dT

(∫
T

dH

dT
dT

)
+

∂(λpTT )

∂T
+

∂λ2H(.)

∂T

+
∂λ2H(.)

∂Q
× d

dT

(∫
T

dQ

dT
dT

)
+ µ

Suppose that ∃ζ ⊂ R such that ζ contains (∂U/∂T ), (∂U/∂N), (∂U/∂P ) and (∂U/∂H)
where (∂(.)/∂(.)) ∈ ζ are the partial derivatives of U = U(.) with respect to P,N, T
and H, and also that ∃J = {(∂H/∂T ), (∂H/∂Q)} where (∂(.)/∂(.)) ∈ J are the
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partial derivatives of H = H(.) with respect to T and Q. Then

dL
dT

= ζT + ζN × d

dT

(∫
T

dN

dT
dT

)
+ ζP × d

dT

(∫
T

dP

dT
dT

)
+ ζH × d

dT

(∫
T

dH

dT
dT

)
+

∂(λpTT )

∂T
+ λ2JT

+ λ2JQ × d

dT

(∫
T

dQ

dT
dT

)
+ µ

which can also be expressed as

dL
dT

= ζT + ζN × d

dT

(∫
T

dN

dT
dT

)
+ ζP × d

dT

(∫
T

dP

dT
dT

)
+ ζH × d

dT

(∫
T

dH

dT
dT

)
+ λpT + λ2JT

+ λ2JQ × d

dT

(∫
T

dQ

dT
dT

)
+ µ

so that dL is given by

dL = ζTdT + ζN × d

(∫
T

dN

dT
dT

)
+ ζP × d

(∫
T

dP

dT
dT

)
+ ζH × d

(∫
T

dH

dT
dT

)
+ λpTdT + λ2JTdT

+ λ2JQ × d

(∫
T

dQ

dT
dT

)
+ µ

Following the same logic that was used to derive dL by first computing (dL/d/T ),
we can also derive dL by computing (dL/dλ) and (dL/dλ2) as

dL =

[
pP

(∫
λ

dP

dλ
dλ

)]
dλ+

[
pN

(∫
λ

dN

dλ
dλ

)]
dλ+

[
pT

(∫
λ

dT

dλ
dλ

)]
dλ

+

[
pQ

(∫
λ

dQ

dλ
dλ

)]
dλ− wdλ

and

dL = H (.) dλ2

By equating dL to zero, we can write the demand equation for T by solving for the
integrals and writing T on the left-hand side as follows:

T =

∑
B,T,H∈A

ζAdA
pTdλ

+

∑
T,Q∈K

λ2JKdK

pTdλ
−
∑
B,Q∈S′

pBQS
′
BQ

pT
+

λdT

dλ
+

w

pT
+ µ (2.2)
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Equation 2.2 shows that the demand for T for a particular individual can be ar-
rived at by computing (i) the maximal utility that results from T,N and P when
the budget constraints are relaxed i.e. [(∂U/∂T )/pT × (dT/dλ)] + [(∂U/∂N)/pT ×
(dN/dλ)] + [(∂U/∂P )/pT × (dP/dλ)] + [(∂U/∂H)/pT × (dH/dλ)]; (ii) the maximal
utility that results from the consumption of T and Q when the budget constraints
are relaxed and when the individual has become more efficient at producing health
i.e. [λ2(∂H/∂T )/pT × (dT/dλ)] + [λ2(∂H/∂Q)/pT × (dQ/dλ)]; (iii) the quantity of T
that would be demanded if all the resources earmarked for acquiring N,P and Q were
to be used to acquire T i.e. [(pNN/pT ) + (pPP/pT ) + (pQQ/pT )]; (iv) the maximal
utility that would result from T due to a unit relaxation of the budget constraints i.e.
(λdT/dλ); (v) the quantity of T that would be demanded if the individual’s entire
wealth were to be used to acquire T i.e. w/pT , and the individual’s unobservable
biological endowment.

Lemma 1. Given Assumptions (1), (2) and (3), for as long as T assumes the
general form specified in Equation 2.2, then (i) T ∝ (1/pT , pQ), T ∝ pN , T ∝ pP ,
T ∝ µ and T ∝ w must always be true, and (ii) T and Q are normal.

Lemma 1 allows for inferences to be made regarding the expected relationships be-
tween the quantity of T demanded, the input prices, the unobservable health produc-
tion technology and individuals’ wealth levels following economic theory and mathe-
matical intuition. By Lemma 1, we can express T in Equation 2.2 as T = t(p, w, µ).
This completes the first part of the proof.

The input demand functions for P,N andQ can also be derived in the same fashion
as the derivation of T = t(., ., .) to yield P = r(p, w, µ) as the demand function for
P , N = n(p, w, µ) as the demand function for N and Q = q(p, w, µ) as the demand
function for Q. By Assumption 2, if T ≽ Q then T is chosen ∀K ′

(p, w) ∈ S where
K

′
= {T,Q}. Furthermore, if T ≽ Q then by Assumption 3 we also know that

K
′
(pQ, w) ≡ K

′
(pT , w) since w = w for all users of T and Q. We can, therefore,

formulate the indirect utility function V = v(B, T, pBQ, w, µ) by first substituting
Q = q(.) into H = H(T,Q, µ) and further substituting the resultant function into
U = U(.). This completes the second part of the proof.

Corollary 1. Suppose that Assumptions (1), (2) and (3) hold and let the empirical
specification of V = v(.) be Y = f(x). Let also

1. lim
|X|→∞

Y = E(Y |X)

2. lim
|X|→∞

Ŷ = E(Ŷ |X)

Then ∥E(Y |X)− E(Ŷ |X)∥ = δ such that (i) δ = {ϵ, µ} and (ii) ϵ ⊥ µ.

Corollary 1 points out, loosely speaking, that the empirical version of the indi-
rect utility function does not sufficiently explain the utility maximizing behavior of
a particular individual since part of the individual’s health production technology is
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unobservable. A closer look at the indirect utility function and health production
function also shows that an endogeneity problem could arise in the course of estimat-
ing the impact of the demand for telecare on the length of stay in hospital since T is
contained in both functions. We suspect that telecare use is potentially endogenous
as individuals typically choose whether or not to use telecare and, therefore, the un-
observable factors guiding their choices might be correlated with the length of stay
in hospital. Notice from Equation 2.1 that because a particular individual’s utility is
directly related to the individual’s level of endowment and that a telecare user chooses
to use telecare, a problem of unobserved heterogeneity could arise if the differences in
endowments and preferences within the study population cause the effect of telecare
on the length of stay in hospital to differ among various individuals.

3 Econometric model

3.1 Model setup

We estimate the treatment effect using a count regression model since the variable
for the length of stay in hospital, Y , is a count variable (Long and Freese, 2006[36];
McLeod, 2011[37]; Atkins et al., 2013[38]). In particular, we have that Yit ∈ Z+

0

where the weekly cross-sections over the 2010/2011 financial year are indexed by
t ∈ (1, . . . , 52) and i denotes the cross-section unit at time t. We assume that Yit is
generated by an unobservable Poisson process that is given by the following equation:

Pr(Yit = v) =
exp (−λ)λv

v!
(3.1)

where λ is the Poisson parameter being estimated and v is the observable count.
Suppose that some of our covariates of interest i.e. age, sex, client group, rurality

and comorbidity status are represented by X⃗ such that X = {Xi, . . . , Xn} where
n = 5 are P ,N ∈ S and X ∈ supp(X). Suppose furthermore that the variable for
telecare use, T ∈ (0, 1), represents T ∈ K and T is such that ∀ values of T ∈ Z2 :
Z2 = {0, 1}, we have that f(T )>0. Because the outcome variable, Yit, is such that
Y = {0, 1, 2, . . . , n} ∈ N0 for all i and t with Yit ∈ supp(Yit), we can write the basic
count regression model relating X = {Xjit}5j=1 and Tit to Yit as shown in Equations
(3.2) and (3.3).

λ = exp

(
β0 +

5∑
j=1

βjXjit + ωTit

)
(3.2)

log λ = β0 +
5∑

j=1

βjXjit + ωTit (3.3)

where β and ω are the coefficients being estimated.
Notice from Equation 3.1 that since Yit ∈ Z∗, the specification of Pr(. = .) with

exp(.) ensures that Pr(Yit = v) ̸= 0. This is because for all y ∈ Y , it must be the case
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that exp(.)>0. A special characteristic of the model is that it assumes equidispersion
(Karazsia and VanDulmen, 2008[39]; Zou, 2004[40]; Grogger and Carson, 1991[41];
Atkins et al., 2013[38]) i.e. E(Yit|XitTit) = λ = Var(Yit|XitTit). To put it simply, the
expected value of Yit is equal to its variance.

Following Lloyd, (2007)[42] and McCullagh and Nelder, (1989)[43], if we let λ be a
gamma random variable λ ∼ Γ(s, θ) with a shape parameter, s, and a scale parameter,
θ, then λ = exp(.) in Equation 3.2 and log λ = (.) in Equation 3.3 would become
Negative Binomial Models with Var(Yit|Xit, Tit) = λ(1 + αλ) and E(Yit|Xit, Tit) = λ;
implying that there is overdispersion in the data since Var(Yit|Xit, Tit) is greater than
E(Yit|Xit, Tit). Unlike the Poisson Model where Var(Yit|.) = E(Yit|.) for all i and
t, the Negative Binomial Model is less restrictive as it allows for the variance of Yit

to exceed its expected value. Furthermore, since the variance of Yit is expressed as
λ(1 + αλ) in the Negative Binomial Model formulation, the Poisson Model would be
nested as a special case, specifically when α = 0. The Negative Binomial Model is
given by the following equation:

log r = β0 +

5∑
j=1

βjXjit + ωTit (3.4)

where r is the estimated parameter of interest and r ∼ poisson(θ) such that θ ∼
gamma(r, Pr

1−Pr
).

Various versions of the Negative Binomial Model may be formulated depending
on the nature of overdispersion. For example, one may simply use a basic Negative
Binomial Model and rely on its statistical properties to handle the underlying overdis-
persion. Alternatively, one may use a zero–inflated Negative Binomial Model when
the probability distribution of Y is such that Y = {0, 1, 2, . . . , n} ∈ Zn for all i and
t, and Y also contains more zeros than would normally be expected of a gamma–
poisson mixed distribution (Chipeta et al., 2014[44]; Atkins and Gallop, 2007[45]) or
a zero–truncated Negative Binomial Model when the outcome measure contains only
positive integers (Grogger and Carson, 1991[41]).

In this paper, we present the empirical results of the three formulations and com-
pare the treatment effects with that derived from the PSM technique. The first
Model, Model 1, is a basic Negative Binomial Model; the second model, Model 2,
is a zero–inflated Negative Binomial Model, whereas the third model, Model 3, is a
zero–truncated Negative Binomial Model.

Model 1. We let the observable count, v, be represented as a function of X and
T in a modeling framework such that v is determined by a linear predictor, η, which
is equal to f(X,T ). We let also r be the unobservable process generating Yit such
that r ∼ poisson(θ) and θ ∼ gamma(r, Pr/1−Pr). Then the regression model would
be the one shown in Equation 3.4 where Var(Yit|Xit, Tit) = λ(1 + αλ); implying that
E(Yit|Xit, Tit) = λ < Var(Yit|Xit, Tit). Since we have that log r = Xβ

′
+ Tω and

that v : X,T 7→ f(X,T ), it follows then that ∃ a log link function g that transforms
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the expectation of Y to Xβ
′
+ Tω. Accordingly, formulating the model in this way

is similar to specifying a generalized linear model with a log link function (Turner,
2008[46]; McCullagh and Nelder, 1989[43]). The model can, therefore, also be written
as shown in Equation (3.5).

Model 2. We let r be composed of two data generating processes. The first process
is a Bernoulli process ab = (a1, a2, a3, . . .) generating the structural zeros such that
∀ai ∈ ab we have ai ∈ {0, 1} where ai = 1 generates Yit = {0} when v is unobserved
i.e. v = ∅ and ai = 0 generates Yit = {0} when v = 0. Furthermore, ab is such that
∀ai ∈ ab we have that Pr(ai = 1) = p and correspondingly Pr(ai = 0) = 1− p. Since
ai = 1 generates Yit : v = ∅ and ai = 0 generates Yit : v = 0, it follows then that the
probability that Yit = 0 is constant i.e. Pr(Yit|v = ∅) = p and Pr(Yit|v = 0) = 1− p.

The second data generating process is a gamma–poisson process z that generates
Yit such that z ∼ poisson(θ) and θ ∼ gamma(z, p/1− p), and ∃ some Yit ∈ N0 where
Yit = 0. In our case, Yit is such that ∃Yv=0, Yv=∅ ∈ Y for all i and t where Yv=0 = {0}
and Yv=∅ = {0} with Yv=0 representing day case charges and Yv=∅ representing the
observations for the individuals who were never hospitalized during the period of
analysis. We can, therefore, conceptualize Yv=0+ = {0, 1, 2, . . . , n} ∈ N∗∪{0}∀i and t
such that Yv=0 ⊂ Yv=0+ and Yv=∅ ̸⊂ Yv=0+ . Given that r = {ab, z}, the corresponding
empirical model log r = (.) is a two–part model. The first part is a logit model that
predicts Pr(Yv=∅|X,T ) for all i and t. The second part is a Negative Binomial Model
that predicts Pr(Yv=0+|X,T )∀i and t by accounting for Pr(Yv=∅|Xit, Tit) and has its
usual properties i.e. Γ(s, θ) and Var(Yv=0+|X,T ) = λ(1 + αλ)>E(Yv=0+ |X,T ) for all
i and t. The model can be summarized as Equations (3.6) and (3.7).

Model 3. We let Yit be truncated at zero such that ∃Y0̸∈v ∈ Y for all i and t
where Y0̸∈v = {1, 2, . . . , n} ∈ N and Y0 ̸∈v ⊂ Y ∀i and t. Since Y0̸∈v ∈ Z+ unlike Yv=0+

in Model 2 where Yv=0+ ∈ N∗ ∪ {0}, there exists c that generates Y0̸∈v such that
c ∼ truncated–poisson(θ) and θ ∼ gamma(c, p/1 − p). Because c effectively follows
a truncated–Negative Binomial distribution, it can be shown that E(Y0 ̸∈v|X,T ) =
λ[1−FNB(0)]

−1 for all i and t, and Var(Y0̸∈v|X,T ) is equal to E(Y0̸∈v|X,T )/FNB(0)
α

multiplied by the product of 1− [FNB(0)]
1+α and E(Y0̸∈v|X,T )∀i and t where FNB(0)

denotes the cdf. for the Negative Binomial distribution evaluated at v = 0 and α
is the dispersion parameter indicating the extent of overdispersion in Y0̸∈v (see, for
example, Grogger and Carson, 1991[41]). The model is expressed as Equation 3.8.

PSM technique. We let T ∈ {0, 1} be such that ∃TT=1 ⊂ T and TT=0 ⊂ T so
that TT=1 represents the observations for T when individual i uses telecare at time
t and TT=0 represents the observations for variable T when individual i does not
use telecare at time t. We let also YT=1 denote the outcomes for telecare users and
YT=0 denote the outcomes for those individuals who do not use telecare ∀i and t.
Given that X = {X1, X2, . . . , X5} ∈ N0 and T ∈ Zn

2 : Z2 = {0, 1}, there exists

Pr(T̂ = 1|X) = σ1 and Pr(T̂ = 0|X) = σ2∀i and t, also known as propensity scores,
such that 0 < σ1, σ2 < 1. We then match each observation denoted by TT=1 to a
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single observation denoted by TT=0 whose propensity score is closest according to
X = {Xjit}5j=1. If YT=0, YT=1 ⊥ Tit|Xit ⇒ YT=0, YT=1 ⊥ (σ1, σ2), then the average
treatment effect of telecare is computed as E(YT=1|X,TT=1)−E(YT=0|X,TT=0)∀i and
t. See Rosenbaum and Rubin (1983)[47] for a more substantive discussion.

g (Yit) = ηit = β0 +

5∑
j=1

βjXjit + ωTit + ϵit (3.5)

Pr (Yv=∅|Xit, Tit) = λ (η) : η = f (Xit, Tit) (3.6)

log z = β0 +

5∑
j=1

βjXjit + ωTit (3.7)

log c = β0 +

5∑
j=1

βjXjit + ωTit (3.8)

where Λ is the logistic link function and ϵ is a stochastic random error term.
An important point to note is that Models (1), (2) and (3) make assumptions about

the probability distributions of r, c and z but do not make any assumption about the
distributions of X and T . The PSM technique, on the other hand, does not make
any assumption about the probability distribution of the unobservable process that
generates v but it matches the observations in the analytic sample into two groups
with more or less similar distributions for X and T .

Proposition 1. Suppose that Y = f(X,T ) is the empirical specification of V = v(.)
in Theorem 1 and that Assumptions 1–3 all hold. Suppose also that ∃YT=1, YT=0 ∈ Y ∀i
and t such that YT=0, YT=1 ⊂ Y . Then we have that Y ⊥̸⊥ T |X∀i and t, and also that
E(YT=0|T = 1)− E(YT=0|T = 0) = Υ with Υ ̸= 0.

Proposition 1 suggests that estimating the treatment effect of telecare using the
PSM technique as well as the other experimental study designs–including quasi–
experiments and randomized controlled trials–would not be appropriate. In particu-
lar, it asserts that since the indirect utility function of a particular individual contains
the individual’s unobservable biological endowment as one of its arguments, we ex-
pect that telecare users differ from non-users as they (telecare users) typically have
comparatively poor health hence their need to use telecare. As such, we also expect
their potential outcomes to be different; which implies that the decision whether or
not to use telecare is not random. This is consistent with the discussions in the previ-
ous section that the use of telecare is potentially endogenous and that we could also
have a problem of unobserved heterogeneity to contend with.

Because we have only information on the length of stay in hospital for those in-
dividuals who were admitted to hospital or psychiatric care during the 2010/2011
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financial year, there could also be an additional problem of sample selection. Fur-
thermore, as is expected of linked datasets, sample selection could also be brought
about by missing data. We, therefore, have to estimate our econometric models with
a strategy that controls for the potential endogeneity of telecare use, potential un-
observed heterogeneity and potential selectivity bias as failure to do so would render
our estimated treatment effects inconsistent.

3.2 Model identification

We need to properly identify the variable for telecare use as well as the issue of
sample selection in order to be able to estimate the treatment effect. Since the
matching exercise in the PSM technique may not always yield balanced samples, we
impute the missing data with the average propensity score of similar subjects in the
opposite group (see, for example, Hill, 2014[48]). For Models 1–3, identification is
done by way of instrumental variables. The basic idea is that since telecare use is
potentially endogenous because it is a choice variable and admission to hospital is not
likely to be random, there are other variables besides our covariates of interest that
are correlated with both the telecare variable and the likelihood of being admitted
to hospital. Since we are seeking to address both a potential endogeneity problem as
well as a potential selectivity issue simultaneously, we need two instrumental variables
for exact identification. The variables that serve as instruments, however, should be
strong predictors of telecare use and hospitalization but not determined in the three
formulated models. Said another way, the instruments should be strongly correlated
with both telecare use and admission to hospital but not included in the models of
primary interest. See Murray (2006)[49] and Pokropek (2016)[50] for a substantive
discussion of model identification using instrumental variables.

In this paper, we use the proportion of telecare users in each local council area in
Scotland and the Scottish Index of Multiple Deprivation (SIMD) constructed as an
ordinal variable with 10 categories as instrumental variables. The SIMD is a measure
of area level deprivation for about 7, 000 small areas in Scotland (also referred to as
data zones) in regard to employment, population, health, crime, access to services,
housing and income distribution (see Scottish Government, 2020[51] for a more de-
tailed discussion of the index). The instrumental variable is constructed such that
the lowest category, Category 1, is for the most well-off areas, whereas the highest
category, Category 10, is for the most deprived areas.

We expect the proportion of telecare users to be related to telecare use in that the
higher the proportion of telecare users in a particular local council area, the higher
the likelihood that a particular individual who resides in that local council area used
telecare, holding other factors constant. Similarly, we expect an inverse relationship
between the variable for telecare use and that for area level deprivation since the
higher the level of deprivation, the lower the likelihood of accessing health and social
care services including telecare. We, however, do not expect our chosen instrumental
variables to be determined in the main models since they are aggregated measures at
the population level and are, therefore, not influenced by any particular individual.
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3.3 Estimation strategy

We estimate all the econometric models using Maximum Likelihood Estimation (MLE)
in STATA statistical software. The PSM technique discussed in Section 3.1 is im-
plemented using the teffects psmatch command with the propensity scores in this
case computed as the predicted probabilities of telecare use and not using telecare
given the study covariates.

In order to control for the potential endogeneity of telecare use and unobserved
heterogeneity in the three Negative Binomial Models that we have formulated, we use
the Two–Stage Residual Inclusion (2SRI) approach due to Terza, Basu and Rathouz
(2008)[52]. This technique involves estimating the reduced form model of telecare
use shown in Equation 3.9–that relates our study covariates i.e. X = {Xjit}5j=1 and
chosen instruments i.e. Z = {Zjit}2j=1 to the variable for telecare use–using a probit
model, obtaining the residuals of the model and then including, in the substantive
models, the estimated residuals together with an interaction of the residuals with the
telecare variable as controls for the potential endogeneity of telecare use and potential
unobserved heterogeneity respectively. The models are said to suffer from endogene-
ity and unobserved heterogeneity if their control terms are found to be statistically
significant. This approach has been shown to result in consistent estimates of the
treatment effects in non-linear models unlike the other methods in the literature such
as the Two–Stage Predictor Substitution (2SPS) technique and the IV estimator that
entail replacing the treatment variable of interest with its fitted values (see, for ex-
ample, Terza, Basu and Rathouz, 2008[52]).

In order to control for potential selectivity bias, we first obtain the residuals1 of
the sample selection probit model shown in Equation 3.10 that relates X and Z to an
indicator of whether or not the outcome measure is observed, which is denoted by I.
We then include the residuals together with variable I in our main models following
Vella (1992)[53]2 Statistical significance of the coefficients of the control terms for
potential selectivity bias is indicative of sample selection.

We also include a time trend variable t in our substantive models to control for
unexplained trend variations. In Models (1), (2) and (3) this variable is constructed
as the number of weeks before the March 2011 census because while the study data
is generated as time series data, the Homecare Census dataset which contains the
telecare variable covers only the March 2011 census week. The coefficient of this
variable, therefore, indicates the trend in the observed length of stay in hospital
before the census week, holding the other covariates in the models constant. An

1The residuals used to control for the potential endogeneity of telecare use and potential selectivity
bias are also known as generalized or deviance residuals and are computed as ϕ(.)/Φ(.) for the
observations denoted by T = 1 and I = 1, and −ϕ(.)/1 − Φ(.) for the observations denoted by
T = 0 and I = 0, where ϕ(.) and Φ(.) are the pdf. and cdf. for each observation respectively. See
Gourieroux et al., (1987)[54] for a substantive discussion of generalized residuals.

2The approach due to Vella (1992)[53] that we use to correct for potential selectivity bias is very
similar to the other approaches in the literature such as the approach due to Heckman (1979)[55] and
the one due to Olsen (1980)[56] in the sense that all these techniques use elements of the selection
equation to construct control function variables which serve as the correction terms for potential
selectivity bias. One may, therefore, use any of them as desired.
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advantage of including the time trend variable from a theoretical standpoint is that
even though individuals’ biological endowments are unobservable, we may still be able
to control for some variation due to these endowments since the time trend variable
is observable. The three Negative Binomial Models are thus specified as shown in
Equations (3.11), (3.12) and (3.13).

Pr (Tit = 1) = Φ

β0 +

study covariates︷ ︸︸ ︷
5∑

j=1

βjXjit +

2∑
j=1

ωjZjit + ωttit

 (3.9)

Pr (Iit = 1) = Φ

β0 +

5∑
j=1

βjXjit +

instruments︷ ︸︸ ︷
2∑

j=1

ωjZjit+ωttit

 (3.10)

log r = β0 +

5∑
j=1

βjXjit + ωTit + ωt1t1it + ωξξit + ωTξTξit + ωξsξsit + ωII︸ ︷︷ ︸
control function terms for potential bias

(3.11)

log z = β0 +

5∑
j=1

βjXjit + ωTit + ωt1t1it + ωξξit + ωTξTξit + ωξsξsit + ωII︸ ︷︷ ︸
control function terms for potential bias

(3.12)

log c = β0 +

5∑
j=1

βjXjit + ωTit + ωt1t1it + ωξξit + ωTξTξit + ωξsξsit + ωII︸ ︷︷ ︸
control function terms for potential bias

(3.13)

where Equations (3.11), (3.12) and (3.13) are our three Negative Binomial Models

of interest discussed in Section 3.1. In particular, Equation 3.11 i.e. log r = (.) is the
basic Negative Binomial Model represented by Model 1, Equation 3.12 i.e. log z = (.)
is the zero–inflated model variant represented by Model 2, and Equation 3.13 i.e.
log c = (.) is the zero–truncated model formulation represented by Model 3.

Proposition 2. Suppose that (i) Assumption 1, Assumption 2 and Assumption 3
hold; (ii) the indirect utility function V = v(.) can be estimated as Y = f(X,T, t);
(iii) the demand function for telecare, T = t(.), can be estimated as T = k(X,Z, t)
with ξ as the estimated residuals of the demand equation, and (iv) I ∈ {0, 1} =
g(X,Z, t) is a sample selection equation for Y : I = 1 if Y ∈ supp(Y ) and I = 0
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otherwise with ξs as the estimated residuals of the sample selection equation. Suppose
also that (i) ∃GTX = {Xm×n, Tm×1} ∈ Rm×n with rk(n) that explains almost all the
variation in Y such that Y − Ŷ ≈ 0 and (ii) Y can be estimated using strategies
s1 = {Y |X,T}, s2 = {Y |X, T̂ , t}, s3 = {Y |X,T, t, ξ}, s4 = {Y |X,T, t, ξ, T ξ} and
s5 = {Y |X,T, t, ξ, T ξ, ξs, I} which are defined as follows:

s1 : Y = ω +Xm×n.bX + Tm×1.bT + ϵ1

s2 : Y = ω +Xm×n.bX + T̂m×1.bT̂ + t.bt + ϵ2

s3 : Y = ω +Xm×n.bX + Tm×1.bT + t.bt + ξ.bξ + ϵ3

s4 : Y = ω +Xm×n.bX + Tm×1.bT + t.bt + ξ.bξ + Tξ.bTξ + ϵ4

s5 : Y = ω +Xm×n.bX + Tm×1.bT + t.bt + ξ.bξ + Tξ.bTξ + ξs.bξs + I.bI + ϵ5

Then (i) Vt−1 ≡ Vt when estimating Y using s1; (ii) s1 and s2 are not sufficient; (iii)
E(I, ξs) ≈ E(T, ξ) when estimating Y using s3, and (iv) E(I, ξs) ≈ 0 when estimating
Y using s4.

Proposition 2 shows that our estimation strategy which entails controlling for the
potential endogeneity of telecare use, potential unobserved heterogeneity, potential
selectivity bias and unexplained trend variations in tandem results in a better estimate
of the treatment effect than that which is obtained from an experimental study design
in the sense that it controls for the influence of unobservable factors in a general way.
It states that even if it were possible for us to estimate the expected length of stay
in hospital using the best possible predictors of the outcome measure, we would still
not be able to account for all the confounding as there are unobservable factors that
influence the outcome. Furthermore, if we were to do our estimation at only one point
in time, then we would inadvertently assume that individuals’ utility functions are
time invariant. Yet this is not likely to be the case as we expect individuals’ stock of
health capital to depreciate over time, holding other factors constant.

In the event that we were to purge all unobservable confounding that causes
systematic variation in a particular individual’s expected length of stay in hospital,
by for instance substituting T with its fitted values, T̂ , then this would not be plausible
as it would be akin to having identical biological endowments for telecare users. If we
were to assume that individuals are admitted to hospital just by random chance and
it turned out to be the wrong assumption to make, then any attempt to estimate the
treatment effect would not be sufficient even when using the best possible predictors
of the outcome and accounting for the possibility of systematic variations in the
outcome measure due to individuals’ unobservable biological endowments.

4 Empirical illustration

4.1 Description of the study covariates

In this section, we describe the study covariates for the three Negative Binomial
Models formulated in Section 3 and the PSM technique. Table 1 gives the definitions
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Table 1: Variable Definitions

Variable Definition
Age Age in years at time t.
Sex 1 if female, 0 otherwise.
Area of residence 1 if a particular individual was living in a rural

area at time t, 0 otherwise.
Client group 1 if a particular individual had a diagnosis

of dementia or other mental illness,
2 if a particular individual had a learning disability,
3 if a particular individual had a physical disability,
4 if a particular individual was frail.

Telecare use 1 if a particular individual used telecare devices,
0 otherwise.

Comorbidity status 1 if a particular individual had three or more
comorbid conditions at time t, 0 otherwise.

Length of stay in hospital The number of days that a particular
individual stays in hospital to receive treatment.

Inclusion into the sample 1 if the outcome variable for a particular individual
at time t is included in the estimation sample,
0 otherwise.

SIMD-decile 10 categories of the Scottish Index of Multiple
Deprivation in ascending order.

Proportion of telecare users A variable indicating the proportion of telecare
users in each local council area.

Project ID A unique reference number for each individual in
the dataset.

Telecare residuals The residuals obtained from a reduced form model
of telecare use.

Control for sample selection bias A control for potential sample selection bias
following Vella (1992)[53].

Time trend A time trend variable where the unit of time is
1 week.

Time trend 1 A count variable for the number of weeks before the
March 2011 census.

of our variables of interest while Table 2 presents some descriptive statistics.
The data for the study in this paper is such that there are certain individuals

who were not admitted to hospital during the 2010/2011 financial year and we are,
therefore, not able to observe their outcomes; there are other individuals who were
admitted to hospital during the period of analysis but did not use homecare services
and we are thus not able to observe their treatment status, and there are some
other individuals who were admitted to hospital but we do not observe some of their
covariates due to missingness. Since the outcome measure is available only in the
SMRs, the estimation samples for our analyses can be drawn only for the individuals
who were hospitalized.

According to Table 1, we note that there are several types of variables in the
sense that there are some variables with categories, whereas there are other variables
that do not have any categories. There are also some variables that represent counts,
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Table 2: Descriptive statistics

Study population Study sample

n m n m
Age 48,749 75.5 21,580 75.0
Male 48,749 0.35 21,580 0.35
Female 48,749 0.65 21,580 0.65
Area of residence 48,584 0.09 21,517 0.09
Telecare use 49,025 0.11 21,580 0.10
Dementia and Mental Health 49,025 0.06 21,580 0.06
Learning disability 49,025 0.30 21,580 0.27
Physical disability 49,025 0.16 21,580 0.17
Frail elderly 49,025 0.48 21,580 0.50
Comorbidity status 49,025 0.36 21,580 0.43
SIMD-decile 48,644 5.00 21,553 5.00
Length of stay in hospital 26,285 4.00 21,580 2.00
Time trend 49,025 40.0 21,580 28.0
Time trend 1 49,025 12.0 21,580 24.0
Number of homecare clients 25,982 10,590

Notes: n = number of observations; m = arithmetic mean or median or pro-
portion where applicable.

whereas there are other variables that are continuous. Of the categorical variables, we
also note that there are some indicator variables–also known as binary variables–and
other variables with multiple categories. In particular, the table shows that there
are five binary variables i.e. area of residence, telecare use, sex, comorbidity status
and inclusion into the sample; two continuous variables i.e. age and proportion of
telecare users in each local council area; three count variables i.e. the two time trend
variables and the variable for the length of stay in hospital; one nominal variable i.e.
client group, one ordinal variable i.e SIMD-decile, and a variable that identifies each
individual in the dataset i.e. project ID.

Table 2 shows the distributions of our variables of interest in the entire population
of homecare clients i.e. the study population and in the population of individuals who
were admitted to hospital during the analytic period i.e. the study sample. A closer
look at Table 2 shows that the table has five columns. The first column contains
the variable names; the second column contains the number of observations for each
variable in the study population; the third column contains the proportions of the
indicator variables–or the mean values for the continuous variables and the median
values for the count and ordinal variables–in the study population; the fourth column
contains the number of observations for each variable in the study sample, while the
fifth column contains the proportions of the indicator variables–or the mean values for
the continuous variables and the median values for the count and ordinal variables–in
the study sample.

The results in Columns (3) and (5) of Table 2 show that the mean age of the
homecare clients in both the study population and study sample is approximately 75
years. The descriptive statistics also show that about half of the total observations
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belonged to the individuals who were considered to be frail; approximately 16% and
17% of the observations in the study population and study sample respectively were
for the physically disabled homecare clients; about 6% of the observations in both the
study population and study sample were for the individuals who had a diagnosis of
dementia or other mental illness, and approximately 30% and 27% of the observations
in the study population and study sample respectively were for the individuals who
had learning disabilities. The results further show that about 40% of the total obser-
vations belonged to the individuals with three or more comorbid conditions; implying
that a substantial proportion of the population were living with multiple conditions.

4.2 Empirical results

In this section, we present the empirical results of our econometric models of interest.
Table 3 contains the estimated coefficients of the reduced form model of telecare use
shown in Equation 3.9 and the sample selection model shown in Equation 3.10. Table
4 contains the estimated average treatment effect of telecare on the length of stay in
hospital using the PSM technique as well as the exponentiated coefficients of our
formulated Negative Binomial Models. Table 5 contains the empirical results of five
variants of the basic Negative Binomial Model represented by Model 1.

The estimated coefficients of the reduced form model of telecare use and the sample
selection model are presented as average marginal effects. The average marginal effect
of a particular covariate is interpreted as the change in the probability of observing the
outcome measure due to a unit change in the covariate (Long and Freese, 2006[36]).
According to the results in the table, we can observe that the two instrumental
variables have their expected signs and are statistically significant at 5% level of
significance. In particular, the results show that, holding other factors constant, the
variable for the proportion of telecare users in each local council area is directly related
to telecare use, whereas the higher the area level deprivation, the lower the likelihood
of using telecare controlling for the other covariates in the model. The results also
show that the variables for age and client group are statistically significant at 5%
significance level. More specifically, the results indicate that an increase in age by
one year is associated with an increase in the probability of telecare use by 0.006, other
factors held constant. We can also observe from the table that the individuals with
dementia or other mental illnesses and those with learning or physical disabilities are
more likely to use telecare than their counterparts, although the effect of ‘physical
disability’ on telecare use is not statistically significant at 5% level of significance.
Furthermore, the results also show that about 0.01% of the observed probability of
telecare use is unexplained by the model, other factors held constant, since the average
marginal effect of the time trend variable is 0.0001 and statistically significant at 5%
level of significance.

Looking at Column 2 of the table, we note that the probability of inclusion into the
sample for individuals with dementia or other mental illnesses is approximately 18%
lower than that for the frail elderly, holding other factors constant. We also note that
the average marginal effect of comorbidity status is −0.066; implying that a particular
individual with three or more comorbid conditions has a lower probability of being
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Table 3: The first stage models

(1) (2)

T = 1 I = 1
Age 0.006 0.002

(5.24) (1.58)
Square of age −0.0001 −0.00003

(5.58) (3.36)
Sex −0.008 0.009

(1.24) (1.54)
Area of residence 0.011 −0.009

(0.97) (0.89)
Dementia and Mental Health 0.042 −0.183

(5.81) (25.76)
Learning disability 0.032 −0.004

(2.78) (0.38)
Physical disability 0.001 −0.043

(0.10) (5.01)
Comorbidity status −0.005 −0.066

(0.83) (11.99)
SIMD-decile −2.033 −0.636

(9.77) (2.89)
Proportion of telecare users 1.219 −0.681

(27.00) (17.98)
Time trend 0.0001 −0.008

(0.72) (51.25)
Number of observations 48,571 48,571
Number of homecare clients 25,598 25,598

Notes: The table presents the average marginal effects for the
reduced form model of telecare use and the sample selection
model with the Robust Z statistics in parenthesis. The standard
errors used to compute the Z statistics are clustered by Project
ID. Z statistics greater than or equal to 1.96 imply statistical
significance at 5% level of significance. We include the square
of age as an additional explanatory variable to control for the
potential non-linear effect of age on the outcome variables. The
reference category for client group is ‘Frail elderly’.

included in the sample than another individual with fewer comorbid conditions by
about 0.7%, holding other factors constant. The results further show that there is
a general decrease in the probability of sample selection over time by 0.8% since
the average marginal effect of the time trend variable is −0.008 and statistically
significant at 5% level of significance; the higher the area level deprivation, the lower
the probability of sample selection, other factors held constant, and the higher the
proportion of telecare users in a particular local council area, the lower the likelihood
that an individual who was residing in that local council area was included in the
sample, all things equal.

The exponentiated coefficients of our formulated Negative Binomial Models in
Table 4 are presented as Incidence Rate Ratios (IRRs). The IRRs are computed as
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Table 4: Empirical results for Models 1-3 and the PSM technique

Variable (1) (2) (3)
Age 1.042 1.048 1.054

(5.76) (6.01) (4.93)
Square of age 0.999 0.999 0.999

(7.33) (7.73) (6.39)
Comorbidity status 2.639 2.437 2.090

(10.48) (10.45) (6.65)
Dementia and Mental Health 0.510 0.483 0.420

(11.17) (11.65) (10.63)
Learning disability 1.699 1.484 2.091

(6.88) (4.63) (6.65)
Physical disability 0.964 0.933 0.970

(0.78) (1.37) (0.45)
Telecare use 0.568 0.620 0.488

(4.27) (3.18) (3.87)
Sex 0.887 0.915 0.863

(3.64) (2.53) (3.09)
Area of residence 1.245 1.244 1.375

(4.31) (4.04) (4.29)
Time trend 1 1.035 1.036 1.038

(8.09) (8.03) (7.26)
Telecare residuals 0.013 0.011 0.04

(10.45) (10.22) (10.22)
Selection equation residuals 0.003 0.002 0.001

(11.13) (11.16) (11.15)
Telecare interacted with residuals 38.362 19.560 88.104

(3.76) (2.71) (3.41)
Wald test for weak 824.41
instruments; χ2(p− value) (0.00)
Wald Chi-square test; 411.78 391.38 47.03
χ2, (p-value) (0.0000) (0.0000) (0.0000)
Likelihood ratio test α = 1.142 α = 1.512 logα = 22.910
for α = 0 or logα = −∞(p− value) (0.00) (0.00) (0.00)
PSM technique −0.439
ATE(p− value) (0.508)
Number of observations 15, 157 21, 511 15, 157
Number of homecare clients 8, 590 10, 586 8, 590

Notes: ATE=Average Treatment Effect. The variable for inclusion into the sample was
omitted due to collinearity. Robust Z-statistics are in parentheses and the standard errors
used to compute them have been clustered by Project ID. Z-statistics greater than or equal to
1.96 imply that the Incidence Rate Ratio is statistically significant at 5% level of significance.
The reference category for the client group variable is ‘Frail elderly’.

exp(β) = d, where d is the IRR and β is the estimated coefficient. d is interpreted as a
change in the outcome measure by (exp(β)−1)% for every unit change in a particular
covariate (see, for example, Winklemann, 2008[57]). The second column of the table,
labeled (1) contains the IRRs for Model 1. The third column, labeled (2) contains
the IRRs for Model 2. The fourth column, labeled (3) contains the IRRs for Model
3. The average treatment effect derived using the PSM technique and the p-value of
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its associated test statistic are indicated below the empirical results of Model 1.
In order to validate the three formulated models, a preliminary analysis was con-

ducted to assess the appropriateness of generating time series data for our empirical
illustration by investigating parameter stability over time. In particular, the analysis
entailed interacting the covariates in the econometric models of primary interest with
the time trend variable, including the interaction terms as additional regressors in the
model, and then inspecting the coefficients of the interaction terms (see, for example,
Rafferty, Walthery and King-Hele, 2015[58]). The results of this exercise showed that
the IRRs of the interaction terms are either not statistically significant at 5% level of
significance or are approximately equal to one, which implies that the effects of our
study covariates have not changed over time. See the supplementary material for a
more in-depth discussion of the assessment as well as the full model specification.

A joint significance test was also conducted on the estimated coefficients of the
two instrumental variables in the reduced form model of telecare use and the sample
selection model to test for weak instruments. The results of this test (presented in
Table 4) show that the instrumental variables are not weak since their estimated
coefficients are significantly different from zero (χ2 = 824.4; p-value = 0.0000). We
also conducted a likelihood ratio test on the dispersion parameter, α, to determine
whether or not the Negative Binomial Model is the appropriate one to use in our
case (Lloyd, 2007[42]). The results of this test (presented in Table 4) confirm the
appropriateness of using the Negative Binomial Model since the dispersion parameter
is greater than one and statistically significant across all the formulated models.
A further joint significance test on the estimated coefficients of our three Negative
Binomial Models of interest was conducted using the Wald Chi-square test. The
results of this test (presented in Table 4) show that the explanatory variables included
in the formulated models help in explaining the observed variation in the length of
stay in hospital

The empirical results of the PSM technique presented in Table 4 show that the use
of telecare reduces the expected length of stay in hospital but it is not a significant
predictor. In particular, the average treatment effect is −0.439 with a p-value of
0.508. Looking at the other empirical results presented in the table, we can observe
that the IRRs are robust across the three models in the sense that the effects of the
covariates remain unchanged. In particular, we note that older individuals, males,
individuals residing in rural areas, individuals with learning disabilities and those
with three or more comorbid conditions have a comparatively long expected length of
stay in hospital, holding other factors constant, whereas individuals with dementia or
other mental illnesses and telecare users have a relatively shorter expected length of
stay in hospital than their counterparts, all else equal. The results also show that it
is important to control for the endogeneity of telecare use, unobserved heterogeneity
and selectivity bias in tandem as the coefficients of all the control function variables
are statistically significant at 5% level of significance.

The results in Table 5 confirm the importance of controlling for all the estimation
issues simultaneously. According to the table, we note that the variable for telecare
use is significant only in the variant of Model 1, labeled (5), that controls for un-
observed heterogeneity. Furthermore, the results suggest that if we were to use the
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Table 5: Incidence Rate Ratios for five variants of Model 1

Variable (1) (2) (3) (4) (5)
Age 1.001 1.001 1.003 1.042 1.042

(0.08) (0.09) (0.29) (5.87) (5.76)
Square of age 0.999 0.999 0.999 0.999 0.999

(0.32) (0.40) (0.64) (7.38) (7.33)
Comorbidity status 1.010 1.002 1.003 2.330 2.639

(0.27) (0.07) (0.09) (10.25) (10.48)
Dementia and Mental Health 0.890 0.894 0.890 0.516 0.510

(2.16) (2.03) (2.11) (10.96) (11.17)
Learning disability 1.684 1.648 1.676 1.734 1.699

(5.49) (5.19) (5.33) (7.00) (6.88)
Physical disability 1.061 1.062 1.059 0.962 0.964

(1.09) (1.10) (1.04) (0.82) (0.78)
Telecare use 0.999 1.008 1.022 0.937 0.568

(0.01) (0.09) (0.24) (1.19) (4.27)
Sex 1.013 1.020 1.015 0.889 0.877

(0.34) (0.52) (0.37) (3.55) (3.64)
Area of residence 1.119 1.127 1.119 1.244 1.245

(2.22) (2.33) (2.19) (4.17) (4.31)
Time trend 1 0.991 0.991 1.034 1.035

(5.87) (5.89) (7.81) (8.09)
Telecare residuals 0.644 0.018 0.013

(1.38) (9.80) (10.45)
Selection equation residuals 0.003 0.003

(10.84) (11.13)
Telecare interacted with residuals 38.362

(3.76)
Number of observations 15,158 15,158 15,157 15,157 15,157
Number of homecare clients 8,591 8,591 8,590 8,590 8,590

Notes: The variable for inclusion into the sample was omitted due to collinearity. Robust Z-statistics
are in parentheses and the standard errors used to compute them have been clustered by Project
ID. Z-statistics greater than or equal to 1.96 imply that the Incidence Rate Ratio is statistically
significant at 5% significance level. The reference category for client group is ‘Frail elderly’.

other estimation strategies besides the one that is used in the column labeled (5) then
the IRR of telecare would be approximately equal to one; implying that telecare use
would have been found to have very little effect on the length of stay in hospital.

5 Conclusions

This paper presents three econometric models that can be used to estimate the effect
of telecare use on the length of stay in hospital. A theory of the demand for telecare
is first developed to explain a particular individual’s relative preference for telecare in
light of the prices faced by the individual and the individual’s wealth level. Since our
analytical problem is such that there are some goods and services which are obtained
from the market place and others for which no market exists, we make several neces-
sary assumptions that allow us to properly identify individuals’ demand behavior. We
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conceptualize telecare as a health input in a particular individual’s health production
function that also enables the individual to maximize utility. Accordingly, we have
that telecare users choose to use telecare instead of the other competing services in
order to achieve welfare gains via health production.

Because the true health status of a particular individual is unknown to us largely
due to the individual’s unobservable biological component, the health production
function is defined as a function of both observable health inputs such as telecare as
well as the individual’s unobservable biological component. We prove that the demand
for telecare can be decomposed into six components that explain the relationship
between the quantities of the utility generating inputs consumed and their price levels
in different scenarios. We show that for a particular individual who uses telecare,
the consumption of telecare increases when the economic conditions improve due
to the individual’s relative preference for telecare. Moreover, the theory developed
in this paper posits that the individuals who choose to use telecare would demand
more telecare if the resources used to acquire the other utility generating inputs
were to be reallocated to acquiring telecare. Since telecare is one of the individual’s
observable health inputs, the increased consumption of telecare would imply that
the individual has become more efficient at producing health, ceteris paribus. The
demand function for telecare also acknowledges that we are not able to observe all
the factors that determine a particular individual’s choice to use telecare due to our
inability to observe the individual’s unobservable endowment.

We also prove that the consumption of telecare for a particular individual not only
depends on its own price and the individual’s level of wealth, but also on the prices
of the other utility generating inputs. Given the specification of the indirect utility
function in Theorem 1, perhaps the most important result is Corollary 1. Here, we
show that because part of a particular individual’s utility function is unobservable,
we cannot sufficiently explain the individual’s utility maximizing behavior even with
perfect data. The implication of this result is that the study design and estimation
strategy that one uses to estimate the impact of telecare matters since the unobserv-
able component of the indirect utility function is handled differently. In particular, if
one uses an experimental study design to elicit the causal effect, then the design would
not be able to randomize the unobservable component. In the event that there are
systematic variations in each study arm, then the estimated treatment effect would
further be compromised. We show in Proposition 1 that the expected differences be-
tween telecare users and non-users render experimental study designs insufficient as
some of these differences are typically unobservable. We, therefore, conjecture that
this could be the reason why the randomized controlled trials in the literature that
look into the effectiveness of telecare do not find significantly different health and
service outcomes between telecare users and non-users (see, for example, Hirani et
al., 2013[25]; Henderson et al., 2014[8], and Steventon et al., 2013[9]).

In this paper, we employ an estimation strategy that allows us to control for the
unobservable component in the health production function in a way that an experi-
mental study design cannot. We use a flexible control function approach that controls
for unobservable systematic variations within the population of telecare users in addi-
tion to incidental truncation using several econometric techniques. This approach has
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been used by several other studies in the econometrics literature to address potential
endogeneity, potential unobserved heterogeneity and potential selectivity bias in their
models (see, for example, Tchetgen, 2014[59]; Momanyi, 2019[24]; Petrin, 2009[60];
Mwabu, 2009[61], and Awiti, 2014[62]). We however extend the literature, particu-
larly those studies that estimate the health production function whether directly or
indirectly, by formulating a model that considers an individual’s health production
to be a dynamic process. Since we expect individuals’ stock of health capital to
decrease over time, other factors held constant, we prove in Proposition 2 that the
estimation strategies that do not employ time series analyses make a theoretically
invalid assumption by assuming that individuals’ utilities and, by extension, their
stock of health capital remains fixed over time.

We also show in Proposition 2 that the strategies that entail substituting the
treatment variable with an estimate of its predicted values are not sufficient in esti-
mating the treatment effect as they do not control for all the relevant unobservable
factors. Terza, Basu and Rathouz (2008)[52] also made a similar observation as they
noted that the 2SRI approach is consistent in non-linear models, whereas the 2SPS
technique is not. We, therefore, conjecture that using the fixed effects regression
model to account for bias in panel data may also not be ideal as it accounts only for
the influence of individual level time-invariant unobservable factors. Since our overall
objective is to relate the demand for telecare to the length of stay in hospital, we make
various assumptions about the probability distribution of the outcome measure and
formulate three variants of the Negative Binomial Model i.e. a basic Negative Bino-
mial Model, a zero–inflated Negative Binomial Model and a zero–truncated Negative
Binomial Model. We then use linked administrative health and social care data to
estimate their treatment effects and compare the treatment effects with that derived
from the PSM technique, which adopts a quasi-experimental study design.

A potential limitation of the study data, however, is that we are not able to
observe all the covariate levels for those who were not admitted to hospital due to
missingness and, as such, the effective estimation samples do not include their ob-
servations. Accordingly, the basic Negative Binomial Model does not consider zero
counts, whereas the zero–inflated component of the zero–inflated Negative Binomial
Model does not contain the outcomes of the individuals who were never hospitalized
during the analytic period. Future research could, therefore, employ better data.
Nevertheless, we have no reason to believe that our estimated results would be differ-
ent with better data as the missing data neither precludes the estimation of consistent
treatment effects nor invalidates the results of the basic Negative Binomial Model and
the zero–inflated model variant. The empirical results of all the three Negative Bi-
nomial Models and the PSM technique show that telecare use is expected to reduce
the length of stay in hospital, holding other factors constant, but while the treatment
effects in the three Negative Binomial Models are statistically significant at 5% level
of significance, the treatment effect in the PSM technique is not.

A sensitivity analysis based on the basic Negative Binomial Model shows that we
observe a significant treatment effect only after accounting for unobserved hetero-
geneity, underscoring the need to control for the potential systematic variations in
the unobservable component of individuals’ health production functions. Because our

29



Demand for telecare and hospital length of stay

econometric models of interest are multivariable, the empirical results also show that
males, rural residents, individuals with learning disabilities and those with comor-
bidities have, on average, a longer length of stay in hospital than their counterparts.

The present work builds on the studies in the health economics literature that
investigate patients’ length of stay in hospital (see, for example, Echevin and Fortin,
2014[63]; Martin and Smith, 1996[64]; Fenn and Davies, 1990[65]; Nawata, 2006[66];
Fernandez et al., 2018[13], and McLeod, 2011[37]) and could be extended by modeling
several variables in addition to telecare that are endogenously determined with the
length of stay in hospital. Future work could also test the theoretical model and
estimation strategy developed in this paper on a non-parametric estimator that does
not assume any particular distribution for the data generating process such as the
one employed by McLeod (2011)[37] as well as model other outcome measures besides
the length of stay in hospital.
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A Appendix A: Proofs for main results

A.1 Proof of Lemma 1

Because we can write T as T = (.)1/pT + C1 + µ and T = (.)pBQ + C2 + µ such that
(i) C1, C2 ∈ R; (ii) µ, pT ̸∈ C1; (iii) µ, pBQ ̸∈ C2; (iv) C1, C2 = [−∞,∞], and (v)
µ ∈ T,H = H(.) is unobservable; there exists a function f1 ∈ F : pT 7→ T for all
T ∈ S and pT ∈ p, and also ∃f2 ∈ F : pBQ 7→ T∀T ∈ S and pBQ ∈ p so that T may be
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expressed as T = t(pT ) and T = t(pBQ). Similarly, since we also have T = (.)w+C3+µ
such that µ,w ̸∈ C3 and C3 ∈ R = [−∞,∞]; there exists f3 ∈ F : w 7→ T for all
T ∈ S and w ∈ W so that T is represented as T = t(w). And because we also
have T = (.)µ + C4 such that C4 ∈ R and µ ̸∈ C4, ∃f4 ∈ F : µ 7→ T∀T ∈ S and
µ ∈ H = H(.) so that T may also be written as T = t(µ). Accordingly, we have
that T = t(pT , pBQ, w, µ). To see this for w, pT , pBQ ∈ {−∞,∞}, let lim

w,p→∞
T = τ1

and lim
w,p→−∞

T = τ2. We expect that p = {pT , pBQ}, w, µ ∈ τ1 and τ2 is such that

T ∝ 1/pT , T ∝ pN , T ∝ pQ, T ∝ pP , T ∝ w and T ∝ µ. By Assumption 2, we
know that ∀S ′

(p, w) ∈ S, if T ≽ Q, then T is substituted for Q. Since we have that
T = (.)1/pT +C1+µ and T = (.)pBQ+C2+µ, it follows then that f1 : −∆pT ⇒ +∆T
and f2 : +∆pBQ ⇒ +∆T . But because we also have that w = w in Assumption 3
for both users of T and Q, pT = pQ all else equal. Consequently, we have that
−∆pT ⇒ +∆w ⇒ +∆T if T ≽ Q and −∆pQ ⇒ +∆w ⇒ +∆Q if Q ≽ T . T and Q
can, therefore, be said to be normal since pT = pQ ⇒ T,Q ∈ K ∝ 1/(pT , pQ) and, as
such, +∆w ⇒ +∆T,Q ∈ K.

A.2 Proof of Corollary 1

We use an analytical approach to provide the proof. Consider a family of datasets
G ∈ Rm×n such that ∀G′ ∈ G∃x′s ∈ G

′
so that Gi ∈ G = Xm×i with rank(Gi) = i

for i = 1, . . . , n and i ∈ Z+. By Assumption 1, let X ∈ G
′
represent P,N, T,Q ∈ S.

Consider also a hypothetical outcome variable Y ∈ N∗∪{0} such that Y = α+bX+ϵ is
the empirical specification of V = v(.) and Gn = Xm×n explains Y so well that Y ∼ Ŷ .
Let also X ∈ G

′
, Y ∼ N (0, 1) and Y ⊥ X ∈ G

′
for expositional simplicity. We first

use Xm×1 with ρ(Xm×1) = 1 to estimate Y such that Y = α1+Xm×1.b1+ϵŶ1
and b1 =

(XT
m×1Xm×1)

−1XT
m×1Y . Since G1 ⊂ Gn, we expect that Y − Ŷ1 = ϵŶ1

̸= 0. We then
pick Xm×2 = G2 with rk(Xm×2) = 2 and estimate Y such that Y = α2+Xm×2.b2+ϵŶ2

and b2 = (XT
m×2Xm×2)

−1XT
m×2Y . Given that |Xm×2|>|Xm×1| and G1, G2 ⊂ Gn, we

have that Y − Ŷ2 = ϵŶ2
< ϵŶ1

. We then pick Xm×3 with full rank and estimate
Y such that Y = α3 + Xm×3.b3 + ϵŶ3

and b3 = (XT
m×3Xm×3)

−1XT
m×3Y . Because

|Xm×3|>|Xm×2|>|Xm×1| and G1, G2, G3 ⊂ Gn, it follows then that Y − Ŷ3 = ϵŶ3
<

ϵŶ2
< ϵŶ1

. We continue picking datasets G
′ ∈ G such that |Xm×k−1| < |Xm×k| and

computing ϵŶ for each Gi ∈ G up to Gn−1. Since |Xm×n−1| < |Xm×n|, we have that
ϵŶn−1

is written as
ϵ1
ϵ2
...
ϵm

 =


Y1

Y2
...
Ym

−


1 X11 X12 · · · X1n−1

1 X21 X22 · · · X2n−1
...

...
...

. . .
...

1 Xm1 Xm2 · · · Xmn−1




b0

b1
...

bn−1


and by induction ϵŶk−1

≫ ϵŶk
. Since we also have that corr(T, µ) ̸= 0 in Theorem

1, we know that if we were to estimate ϵŶn
using Gn = Xm×n, then Y − Ŷn must

contain µ and we would thus not have Y ∼ Ŷn. Accordingly, ∥E(Y |X) − E(Ŷ |X)∥
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must also have µ in addition to ϵ∀Gi ∈ G implying that ϵ ⊥ µ. We can, therefore,
write ∥E(Y |X)− E(Ŷ |X)∥ = δ = {ϵ, µ}.

A.3 Proof of Proposition 1

We provide the proof by contradiction. Conversely, let Y ⊥⊥ T |X∀i and t, and
E(YT=0|T = 1)− E(YT=0|T = 0) = 0. Let also TT=1, TT=0 ⊂ T be such that TT=1 ⇒
T = 1 and TT=0 ⇒ T = 0. Suppose that ∃GT=1 ∈ Rm×n such that ŶT=1 estimated
by GT=1 = {Xm×n}T=1 with rank(n) is the best predictor of YT=1. Correspondingly,
suppose also that ∃GT=0 ∈ Rm×n such that dataset GT=0 = {Xm×n}T=0 with ρ(n)
estimates YT=0 with a great deal of precision so that YT=0 ∼ ŶT=0. Then by the
definition of V = v(.) and T = t(.), it must be the case that µT=1 ∈ TT=1t(.) is
equal to µT=0 ∈ TT=0t(.) if the difference between E(YT=0|T = 1) and E(YT=0|T = 0)
is to be equal to zero. Since µT=1, µT=0 ∈ H = H(.) is unobservable, however, it
is not reasonable to expect that µT=1 = µT=0. Furthermore, by the definition of
V = v(.) ⇒ Y = f(X,T ) where Y is our outcome measure of interest we know that
corr(Y, µ) ̸= 0 and thus the claim that Y ⊥⊥ T |X∀i and t cannot be true. Moreover,
by Assumption 1 we know that ∃P,N ∈ T = t(.) since pS ∈ S

′
and because by

Assumption 2 we also have that T ≽ Q ⇒ T is chosen instead of Q, it is highly
plausible that ∃m ∈ T = t(.) such that m ̸∈ P,N and corr(m,Y ) ̸= 0. Accordingly,
we must have that Y ⊥̸⊥ T |X∀i and t.

A.4 Proof of Proposition 2

Consider a population N with i individuals such that N ∈ N = {1, 2, . . . , i}. Since we
have that T ∈ Z2 : Z2 = {0, 1} and Y = {0, 1, 2, . . . , n} ∈ N0 for all i individuals in
population N, let TT=1 represent T = {1}∀i ∈ N and TT=0 represent T = {0}∀i ∈ N.
Correspondingly, let also YT=1 represent Y : T = {1} and YT=0 represent Y : T =
{0}∀i ∈ N. It follows then that YT=1, YT=0, TT=1 and TT=0 are such that YT=1, YT=0 ∈
Y ∀i and t in population N and TT=1, TT=0 ⊂ T∀i and t in population N. Since GTX =
{Xm×n, Tm×1} with ρ(n) explains Y almost perfectly, we must have that |Y | ∼ |Ŷ |
which implies that E(YT=0|T = 1) ∼ E(YT=0|T = 0) in order for s1 = {Y |X,T} and
s2 = {Y |X, T̂ , t} to be sufficient. But by Theorem 1, we have that µ ∈ V = v(.) and
µ ∈ T = t(.). And by Corollary 1, we also have that ϵ ⊥ µ ⇒ µ ∈ V = v(.) ⇒ µ ∈ Y
even though ϵ ̸∈ T̂ . Accordingly, Y ⊥̸⊥ T |X and Y ⊥̸⊥ T̂ |X. We, therefore, cannot say
that s1 = {Y |X,T} and s2 = {Y |X, T̂ , t} are sufficient. Moreover, by the definition
of s1, we must have that Yt−1 ≡ Yt ⇒ Vt−1 ≡ Vt since it is applicable ∀i and t in
population N. Because by the definition of T = t(.) we have that µ ∈ T = t(.) for all
i ∈ N, it is reasonable to expect that ∃m ∈ N such that Tm∈N = t(.) ̸= Tm̸∈N = t(.)
and consequently that [Ym∈N = f(X,T, t)] ̸= [Ym̸∈N = f(X,T, t)]. Furthermore, from
I = g(X,Z, t) we have that Y = f(X,T, t) ⇐⇒ y ∈ Y : f(y) ̸= 0. Accordingly,
s3 can be sufficient if and only if E(T, ξ) ≈ 0 and E(Y |I = 1) ∼ E(Y |I = 0) ⇒
E(I, ξs) ≈ 0, all else equal. Strategy s4 can be sufficient if and only if E(Y |I =
1)− E(Y |I = 0) ≈ 0 ⇒ E(I, ξs) ≈ 0, controlling for the other explanatory variables.
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Glossary

Control Function Approach. A statistical technique for estimating regression co-
efficients that involves including additional explanatory variables in the regression
model to control for bias.
Experimental study design. A study design that computes the treatment effect
of a particular intervention as the difference in the expected outcomes between the
individuals who used the intervention i.e. the treatment group and another group
of individuals who did not use the intervention i.e. the control group, all else equal.
Experimental study designs may either be randomized or non-randomized. Random-
ized experimental designs, also known as randomized controlled trials, entail random
assignment of individuals into either the treatment group or control group, whereas
non-randomized experimental designs, also known as quasi-experiments, lack random
assignment.
Health Production. The process by which the health status and/or well-being of a
particular individual is improved via the use of health enhancing goods and services.
Indifference curve. A graph showing the combinations of inputs chosen by a par-
ticular individual that yield the same level of utility.
Propensity Score Matching (PSM) technique. An experimental study design
that estimates the treatment effect of an intervention by matching the users of the
intervention with those who did not use the intervention but of similar characteristics.
Rank of a matrix. The total number of columns or rows in a matrix that are lin-
early independent. It is usually denoted by rk(B), ρ(B) or rank(B), where B is the
matrix of interest. Matrix B is said to have full rank if the rank number equals the
maximum number of linearly independent columns or rows.
Unobservable factors. Unobserved entities that may have a substantive effect on
outcomes but cannot be measured.
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