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ABSTRACT

In this paper, we propose a two-step procedure based on the group LASSO estimator in combination with a backward elimination
algorithm to detect multiple structural breaks in linear regressions with multivariate responses. Applying the two-step estimator,
we jointly detect the number and location of structural breaks and provide consistent estimates of the coefficients. Our framework

is flexible enough to allow for a mix of integrated and stationary regressors, as well as deterministic terms. Using simulation

experiments, we show that the proposed two-step estimator performs competitively against the likelihood-based approach in finite

samples. However, the two-step estimator is computationally much more efficient. An economic application to the identification
of structural breaks in the term structure of interest rates illustrates this methodology.

JEL Classification: C32, C52
MSC2020 Classification: 62E20, 62M10, 91B84

1 | Introduction

Accounting for structural breaks is crucial in time series analy-
sis, particularly in settings involving long spans of data, where
the models are more likely to be affected by multiple structural
breaks. More specifically, we focus on systems of equations with
a mix of integrated and stationary regressors. Thus far, the litera-
ture on structural breaks has provided only a few methods appli-
cable to linear regressions with multiple equations and integrated
regressors see, for example, [1-3]. Without prior knowledge
about the structural breaks, methods are needed that precisely
determine the number of structural breaks and their timing, and
simultaneously estimate the model’s coefficients.

Considering the increasingly larger sample sizes in empiri-
cal studies, [4] cautions against the use of algorithms that
are O(T") for n>1 which become impractical for suffi-
ciently large 7. The currently available methods to solve
change-point problems in models that we consider in this
paper consist of likelihood-based approaches using dynamic
programming techniques [5, 6] and are characterised by
quadratic computational costs (7 = 2). While these approaches
are generally very precise, they are not computationally effi-
cient in situations where T is large. Consequently, we pro-
pose to lower the computational burden and design a struc-
tural break detection algorithm that is feasible for large T
systems.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly

cited.
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We consider a penalised regression approach based on the group
LASSO estimator to account for multiple structural breaks in
such systems, which has not been explored in the literature yet.
Although estimators based on the penalised regression principle
have become popular in the context of change-point problems,
few prior studies apply them to linear regressions with integrated
regressors [7, 8] or linear regressions with multivariate responses
[9, 10]. While existing approaches follow a specific-to-general
principle utilising a likelihood-based approach to sequentially
increase the number of breaks in a model [1-3, 11], we take
a general-to-specific approach shrinking down the number of
breakpoint candidates to find the best fitting model. While the
likelihood-based approach employs dynamic programming tech-
niques and is computationally efficient in rather short samples
with (possibly) many structural breaks, the proposed model selec-
tion approach is particularly useful for long samples with a mod-
erate number of structural breaks. It can be shown that it has
linear computational costs (7 = 1). Therefore, it is a well-suited
solution to account for structural breaks in the long-run relation-
ships between trending variables.

In this paper, we extend the two-step estimator proposed in [12]
for univariate structural break autoregressive (SBAR) processes.
To do so, we modify the group LARS algorithm specifically tai-
lored for univariate change-point problems and extend it to cover
multivariate systems. Moreover, we generalise the model speci-
fication and allow for a mix of stationary and integrated regres-
sors as well as deterministic trends. Consequently, our approach
is flexible enough to model structural breaks in several special
cases like, e.g., seemingly unrelated regression (SUR) models and
dynamically augmented cointegrating regressions.!

The idea to perceive the change-point problem in linear regres-
sions as a model selection problem has spawned a diverse lit-
erature see, for example, [8, 10, 12-14]. In principle, it is pos-
sible to shift and turn the regression hyperplane at every point
in time using appropriate indicator variables. Finding the true
structural breaks corresponds to selecting relevant indicators and
eliminating irrelevant indicators, thereby optimising the fit under
sparsity. This leads to a high-dimensional penalised regression
model with the total number of parameters of the model close to
the number of observations. LASSO-type estimators, introduced
by [15], have attractive properties in high-dimensional settings
with a sparse model structure. Their objective function includes a
penalty for non-zero parameters and a tuning parameter controls
the sparsity of the selected model. However, quite restrictive reg-
ularity conditions about the design matrix (restricted eigenvalue
condition [16] or strong irrepresentable condition [17]) need to be
imposed to ensure simultaneous variable selection and parameter
estimation consistency. Unfortunately, these conditions are usu-
ally violated in change-point settings, where adjacent columns of
the design matrix differ only by one entry and the design matrix
is highly collinear if the sample size grows large. Consequently,
the conventional LASSO-type estimators need to be improved to
both estimate and select the true model consistently.

[13] are among the first to use penalised regression methods
to detect structural breaks. They focus on a piecewise con-
stant white noise process and detect structural breaks using
a total variation penalty [14] use the group fused LASSO for
detection of piecewise constant signals and [12] develop the

aforementioned two-step method [18], [19] and [20] consider
LASSO-type estimators for the detection of multiple structural
breaks in linear regressions [21] propose an alternative strat-
egy to eliminate superfluous breakpoints identified by the group
LASSO estimator. They suggest a second step adaptive group
LASSO which performs comparably to the backward elimina-
tion algorithm suggested in [12] [7] consider cointegration tests
in the presence of structural breaks in the long-run relationship
and estimate those breaks with an adaptive LASSO estimator [8]
uses the adaptive group LASSO estimator to estimate structural
breaks in single-equation cointegrating regressions. The estima-
tor developed in this paper can be understood as an extension of
the [8] approach to multiple equation cointegrated systems, so
that structural change of more than one equilibrium relationship
can be modelled.

Another general-to-specific approach to detect structural breaks
is the indicator saturation approach described, inter alia, in [22]
and [23]. Similar to a penalised regression approach, the start-
ing point is a saturated model with break indicators for every
observation, but instead of estimating the regression with an
objective function that induces sparsity, a backward elimina-
tion path is constructed, removing, one-by-one, non-significant
regressors. Outliers can be identified jointly with structural
breaks if the search path is designed accordingly. Moreover, this
approach to break detection imposes no minimum break length
and reliably controls for the false discovery rate. It thus con-
stitutes a very general break detection algorithm but it is con-
siderably slower than the LARS algorithm [24]. Recently, this
approach has also been used to model structural breaks in coin-
tegrated vector autoregressions [25].

Work on multiple structural change models in the context of
a system of multivariate equations is relatively scarce [26, 27]
considers a general time-varying structure for the reduced-rank
matrix of a vector error correction model (VECM) so that both the
cointegrating vector and the adjustment dynamics may change
over time. Similarly, [28] develops a test for changing cointe-
grating vectors and adjustment coefficients at a single unknown
breakpoint [3] concentrate on dating and estimating a single
structural break in vector autoregressions (VARs) and multiple
equation cointegrating regressions [11] consider the restricted
quasi-maximum likelihood estimation of and inference for mul-
tiple structural changes in a system of equations. A sequen-
tial break test can be used to determine the number of struc-
tural breaks. In related studies, [29], [1] and [2] extend the
likelihood-based approach in several directions.?

Recently, the model selection approach has been applied by
[9] and [10] to estimate change-points in piece-wise stationary
VARs. While the former study estimates the change-points for
each equation separately, thereby decomposing the problem into
smaller single-equation problems, the latter uses a fused LASSO
penalty to deal with high-dimensional VAR systems.

In the following, we provide a rigorous analysis of the statis-
tical properties of the proposed two-step estimator and exten-
sive simulation experiments to analyse its finite sample prop-
erties. We conduct our technical analysis under relatively mild
assumptions about the error term process. Prior studies employ-
ing LASSO-type estimators to detect structural breaks assume
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(Gaussian) white noise error terms see, for example, [9, 10, 12],
which can be useful to model (V)AR processes. However, this
assumption is too restrictive in (multiple equations) linear regres-
sions with integrated regressors often having serially correlated
errors. Naturally, it becomes more difficult to detect structural
breaks if the error term process is serially correlated. Under those
assumptions, we show that our estimator is able to consistently
estimate the number of structural breaks and their timing and
jointly estimate the model’s coefficients.

We use simulation experiments to evaluate our new approach
against existing approaches like the likelihood-based approach
by, inter alia, [11], [1] and [2]. It is shown that the two-step
estimator has competitive finite sample properties with a slight
reduction in precision, but substantially improved computa-
tional efficiency. Reducing the computational burden over the
likelihood-based approach is an important advantage when large
sample sizes are available, and a moderate number of structural
breaks is expected, as is often the case in empirical applications
involving trending regressors. Another advantage is the joint esti-
mation of the number of breaks, their timing, and the model’s
coefficients. In the likelihood-based framework, the number of
breaks has to be determined based on the evaluation of two tests
with the usual implications regarding size and power.> In con-
trast, the approach taken in this paper does not rely on statistical
testing, instead, we determine the number of breaks as the num-
ber of non-zero groups estimated by the group LASSO estimator,
which is then further reduced by a second step backward elimina-
tion algorithm. While we also need to ensure that each identified
regime has a sufficient number of observations to estimate the
coefficient changes, we need a much smaller trimming parameter
than commonly applied in the literature e.g., 15% of the sample
between breakpoints as suggested in [2, 11]. Hence, the two-step
estimator is able to detect breaks near the boundary much more
reliably than the likelihood-based approach. Furthermore, since
we detect structural breaks by the Euclidean norm of the group
of coefficient changes, the precision of the group LASSO estima-
tor is mostly determined by the total magnitude of each break.
This implies that we do not rely on a distinction between com-
mon and partial breaks, which is important for the properties of
hypothesis tests conducted in the likelihood-based approach to
determine the number of breaks. In total, both approaches are
conceptually very different, so one approach can serve as a valu-
able robustness check for the model specification chosen by the
other approach.

Finally, we apply the two-step estimator to a term structure model
of US interest rates to demonstrate its properties in a real-world
setting. Relying on the reduced computational burden of the pro-
posed estimator, we are able to estimate the term structure model
with daily data over a period of 30 years and detect four important
structural breaks. Our results reveal substantial differences in the
parametrisation of the resulting five term structure regimes. The
estimates of the proportionality coefficient are smaller than one
in every regime and the long-run implications of the expectations
hypothesis are rejected in three out of five regimes.

The paper is organised as follows. Section 2 outlines the proposed
model selection procedure to estimate structural breaks in multi-
variate systems and presents our main technical results. Section 3
is devoted to the Monte Carlo simulation study. Section 4 reports

the results of an empirical application of our methodology to
the term structure of US interest rates, and Section 5 con-
cludes. Proofs of all theorems in the paper are provided in the
Mathematical Appendix.

2 | Methodology

Using penalised regression techniques for structural break detec-
tion, we aim to divide a set of breakpoint candidates into two
groups of active and inactive breakpoints. Our starting points are
[12] and [8], where a two-step procedure is proposed to detect
and estimate multiple structural breaks in autoregressive pro-
cesses and single equation cointegrating regressions, respectively.
Here, the model of interest is a multiple equations system of
linear regressions with integrated and stationary regressors, ¢
equations, and T time periods.

2.1 | FirstStep Estimator
We consider the following potentially cointegrated system in tri-
angular form

Y, = AX, + 6t + u+ Bw, +u, (=12, ...

ey
X, =X_,+¢

where Y] is a ¢ X 1 vector of dependent variables, X, is a r x 1
vector of integrated regressors, w, is a s X 1 vector of stationary
variables, u, and &, are I(0) error processes. The coefficient matri-
ces A and B have dimensions ¢ X r and ¢ X s, respectively. We
study the asymptotic properties of our estimator under the fol-
lowing assumptions about the involved processes:

Assumption 1.

a u, = Z;iocjet—j =C(L)g, & = Z;.;()Djet—j = D(L)e,, C(1)
and D(1) are full rank, Z;’;Oj IC;|l < o and Z;';Oj
ID;|| < o0, (¢, e,) are i.i.d. with finite 4 + a (a > 0) moment.
w, is a mean-zero second-order stationary process with uni-
formly bounded 4 + ¢ moment. The long-run covariance
matrix Q. = ¥ E&¢&_ is positive definite.

j=—

b. Further, we require that

4+e

t
1
s&p E T;X,qiui < oo,
for1</<r, 1<t<T andsomee >0

and
4+e

t
1
Sl;p E T;w”u, < 0o,

for1</<s, 1<t<T andsomee >0

Assumption 2. The error process u, is independent of the
regressors for all leads and lags.
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The error term processes are assumed to be linear processes in
Assumption 1, satisfying the required conditions to ensure the
validity of the functional central limit theorem for partial sum
processes constructed from them (see, e.g., Theorem 3.4 in [30]
and its multivariate extension in [31]). Further, w, is given as a
stationary process with a sufficiently well-behaved distribution.
Note that these assumptions could be replaced by other suffi-
cient conditions that conform with a strong invariance principle
or functional central limit theorem. We assume that €, is pos-
itive definite, which implies that X, is non-cointegrated. This
ensures that the coefficients of X, have the standard 7 rate of con-
vergence. Assumption 2 is chosen for technical reasons but it is
less restrictive than it initially seems considering that w, might
include the leads and lags of changes in X, (see, e.g., [32], [33]
and [34] for treatment of second-order biased estimators in the
context of cointegrating regressions).*

Assumption 1 allows for serially correlated error terms but this
conflicts with endogenous regressors like lagged dependent vari-
ables. The results presented in the following remain valid for
endogenous regressors as long as the errors are not permitted to
be serially correlated [5, discuss this issue on page 51].5

We follow [1] and [2] and apply scaling factors in Equation (1) so
that the order of all regressors is the same.® To simplify notation,
we write the system of equations in its stacked form as

Y, =(Z ® D +u, )

where Z, = (T7Y2X!,T~',1,w!)’ and 6 = Vec(A, 5, u, B) is a
d = q(r+ 2+ s) column vector, concatenating the coefficients
for each regressor over all equations. The operator Vec(-) stacks
the rows of a matrix into a column vector, ® denotes the Kro-
necker product and [ is a g X ¢ identity matrix. While model (1)
allows for very flexible specifications and covers several special
cases (e.g., SUR models for A =0 and § = 0, VAR(s) models for
A=0and §=0 and w, =(Y,_,, ...,Y,_,), or pure cointegrat-
ing regressions for 6 = y = 0 and B = 0), our main focus is on
a full model specification with a mix of integrated and station-
ary regressors. For example, if w, contains the leads and lags of
changes in X,, we estimate structural breaks in a dynamically
augmented cointegrating regression with multivariate responses.
Assumption 2 is violated in VAR models, which invalidates our
technical analysis for this specification. Hence, we refer to [10]
for the appropriate assumptions to show that LASSO-type esti-
mators can be used to estimate piece-wise stationary VAR mod-
els. If it is known to the researcher that some of the coef-
ficients do not change, it is possible to introduce a selection
matrix S to consider only partial structural breaks in the sense
that some coefficients are constant over the entire sampling
period. This allows the researcher to estimate the respective coef-
ficients with full efficiency. The selection matrix contains ele-
ments that are either 0 or 1 and hence, specifies which regres-
sors appear in each equation.” For example, we can use the
selection matrix to focus only on breaks in the matrix A4, i.e.,
detecting breaks in the long-run coefficients of a cointegrating
regression but leaving the matrix B constant over the sample
period.

We assume that the system includes m, true structural breaks.
Multiple (partial) structural breaks in the regression coefficients

can be expressed using the following model
Y, =(Z,® Do, + ). dt,)(Z, ® S’ SO, +u, 3)
k=1

where d(t;) =0for¢ <t, and d(¢,) = 1 for ¢ > t,. The total num-
ber of potential structural breaks or breakpoint candidates in
this model is denoted by m, 0, is the baseline coefficient vec-
tor, and 0,k, k=1, ...,m are regime-dependent changes in the
regression coefficients. In situations where m > m,, our structural
break model in Equation (3) considers more structural breaks
than necessary, which implies that the true coefficient vector does
not change at some 7,, i.e., 010 = 0. For the breakpoints or break
dates 7, it holds by general convention that 1 =¢, <#; <--- <
t,, <t,.1 =T + 1. The relative timing of breakpoints is denoted
by 7, =1, /T,k € {1, ..., m}. We assume that there is a change
in at least one coefficient matrix at each true structural break,
so that ||59,°k|| # 0. To simplify the notation, we assume that
all coefficients change at all breakpoints for the remainder of
the paper.

In case of an unknown number and timing of structural breaks,
each point in time has to be considered as a potential breakpoint.
Therefore, it is helpful to estimate the model in Equation (3) with
m =T under the condition that the set 6(T) = {6,,0,, ...,0;}
exhibits a certain sparse nature so that the total number of dis-
tinct vectors in the set equals the true number of breaks m,. To
use a convenient matrix notation, we define

Z, 0 0 -0
Z, 7, 0 - 0
z=\z, 7z, z, - © @)
Zr Zy Zy o Zp
Y= .Y, U=, ....uy) and 6T)=(0,.....0,).

Furthermore, we define Y =Vec()), Z=1Q® Z, and U =
Vec(U'). Now, the system for m = T breakpoint candidates can
be rewritten as

Y=2Z0T)+U (5)

where Y € R7%1, Z ¢ RT%<T4 (T) € RT¥*! and U e RT#4,
Note that this model specification reorders the groups so that
O(T) contains the breakpoint candidates for each equation suc-
cessively, i.e., 0, = K6, with commutation matrix K. We assume
that at least one of the baseline coefficients is non-zero to dis-
tinguish between active and inactive breakpoints without mak-
ing any case-by-case considerations. This implies that the vector
of true coefficients 6°(T) contains my + 1 non-zero groups and
0, # 0. For the remainder of this paper, 6, = 0 means that 0, has
all entries equaling zero and 0, # 0 means that 6, has at least
one non-zero entry. We define the index sets A={1<i<
T : 6? # 0} denoting the indices of truly non-zero coeffi-
cients (including the baseline coefficient) and A = {i > 2 : 0? #
0} denoting the non-zero parameter changes. The set A, =
{71.1,, ...,1;} denotes the /i breakpoints estimated in the first
step, i.e., indices of those coefficient changes which are estimated
to be non-zero. |A| denotes the cardinality of the set .A and .A¢
denotes the complementary set.
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We propose to estimate the set of coefficient changes 6(T)
by minimising the following penalised least squares objective
function [35]:

T
Q"0 = 1Y = ZODI + 47 Y 10/ ©)

i=1

where A is a tuning parameter and || - || denotes the L,-norm.
Minimising the objective function in (6) yields the group LASSO
estimator, which is denoted by (T)). Using a group penalty for
0,, in principle, we assume common breaks across all equations
as defined by [11] and [2]. However, it should be noted that
the issue of distinguishing between common or partial breaks is
crucial for the specification of hypothesis tests required for the
likelihood-based approach to detect the true number of breaks,
but it is not as important for the group LASSO estimator. Since
we detect structural breaks by the Euclidean norm of the group
of coefficient changes (vectorising all coefficient matrices), only
the total magnitude of each break enters our objective function.
Consequently, prior knowledge about partial breaks would not
improve our sensitivity in detecting those breaks as much as it
would in the likelihood-based approach.

Using these definitions, we frame the detection of structural
breaks as a model selection problem and are able to use efficient
algorithms from this strand of the literature [12, 36, 37] to elimi-
nate irrelevant breakpoint candidates. Depending on the value of
Ar, a sparse solution is obtained so that the number of non-zero
groups corresponds to the number of estimated breaks and the
coefficient changes at each breakpoint are contained within the
non-zero groups.®

2.2 | Asymptotic Properties of the First Step
Estimator

We show in the following that the group LASSO estimator for
structural breaks in a system of linear regression equations is
consistent in terms of prediction error but inherits the same prob-
lems, namely estimation inefficiency and model selection incon-
sistency, as shown for univariate AR models [12], single-equation
cointegrating regressions [8], and piecewise-stationary VAR mod-
els [9]. As discussed in [12], any two adjacent columns of the
matrix Z only differ by one entry. Consequently, the restricted
eigenvalue condition [16] does not hold in our setting and we can-
not establish our consistency proofs based on this assumption.

Further assumptions about the timing of true breakpoints (r,‘:,
k=1, ...,my) and the magnitude of coefficient changes have to
be stated to continue our analysis.

Assumption 3.

a. The break magnitudes are bounded to satisfy
s 0 —
my =min, ¢, 1 16, l|| >v>0 and M, = MaX; gy 41
i

165 || <V < .
IFI

b. miny e, 41 16) = 10_,1/Tyy — o for some y; — 0 and
vr/Ar = 0 asT — oo.

The first inequality of Assumption 3 (i) is a necessary condition
to ensure that a structural break occurs at t? and the sec-
ond part excludes the possibility of infinitely large parame-
ter changes.” We do not consider breaks with local-to-zero
behaviour in this setting (see [3] for assumptions used in this
context). This assumption is not believed to be restrictive for the
intended empirical applications. In the case of a full specification
with integrated regressors, applied researchers aim to estimate
structural long-run relationships that are often needed for their
follow-up analysis, e.g., in a cointegrated VAR as in [38]. Essen-
tially, they need optimal in-sample forecasts in terms of mean
squared error of the cointegrating regressions under structural
instability to consistently estimate deviations from the long-run
equilibrium [39] show that in-sample forecasts are largely unaf-
fected by local-to-zero breaks. Assumption 3 (ii) requires that the
length of the regimes between breaks increases with the sample
size albeit slower than T'. If ;- is chosen with a slow enough rate,
which depends on the tuning parameter sequence A, it allows us
to consistently detect and estimate the true break fractions.

The first result for the first step estimator shows that it is consis-
tent in terms of prediction error if the tuning parameter A, grows
at the right rate.

Theorem 1. Under Assumptions 1 and 3, if Ap=
2dcy(log T /T)V* for some c, > 0, then there exists some C > 0
such that with probability greater than 1 — <

ctlogT’

LNZ(00) - @) < deo( 5T ) iy + DM,

Remark 1. The corresponding convergence rate for univari-
ate piecewise stationary autoregressive processes given in [12] is
y/log T'/T. However, they assume f-mixing stationary processes
with a white noise error term so that the necessary tail bounds
can be derived. Instead, Assumption 1 in this paper only requires
that the error terms of the system follow stationary processes
with some additional moment conditions, i.e., allows for seri-
ally correlated errors. The convergence rate given in [10] is not
directly comparable because the VAR system is assumed to be
high-dimensional with the number of equations increasing with
T and a different penalty is used to handle the growing number
of time series. Expectedly, [9] find the same rate as [12].

The next result shows that the number of estimated breaks is
at least as large as the true number of breaks. Furthermore,
the location of the breakpoints can be estimated within an
Tyr-neighbourhood of their true location. To state the theorem,
we have to define the Hausdorff distance between the set of esti-
mated breakpoints and the set of true breakpoints. We follow [40]
and define dj; (A, B) = max,cp min,.,|b —a| with d(A4,0) =
d (@, B) = 1, where @ is the empty set.

Theorem 2. If Assumptions 1-3 hold, thenas T —

P(lA7| 2 my) 1

and
P(dy(Ap, A) <Typ) > 1
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Remark 2. When m, is known, we can show that the break-
points are estimated with the same convergence rate (Lemma 4
in the Mathematical Appendix). Setting y, =logT /T and A, =
O(log T /(T loglog T)), the convergence rate is identical to the one
found by [12], assuming Gaussian white noise errors. Note that
the tuning parameter can be set differently than in Theorem 1
as the consistency in prediction error is not important for the
proof. For the optimal convergence rate, the tuning parame-
ter must be set conforming to a rate that has a higher order
than the one in Theorem 1 and thus penalises the coefficient
changes more strongly. Finally, [10] show that the rate could be
as low as (loglog T'log q)/T for high-dimensional piecewise sta-
tionary VAR processes with Gaussian white noise error terms,
where ¢ denotes the number of variables in the VAR system
andg > T.

Remark 3. The second part of Theorem 2 implies that the
Hausdorff distance from the set of estimated breakpoints to the
true breakpoints diverges slower than the sample size. Conse-
quently, the Hausdorff distance of the relative location to their
true location of the breakpoints converges to zero at rate log T /T
and therefore is only slightly above the optimal rate 1/7T for
estimators of break fractions in regression models [41, 42]. This
provides us with a consistency result for the estimated break
fractions in the first step and gives us justification to consider
multiple structural breaks at once, since the Hausdorff distance
evaluates the joint location of all breakpoints.

2.3 | Second Step Estimator

To obtain a consistent estimator for the number of breaks, their
timing and coefficient changes, we need to design a second step
refinement reducing the number of superfluous breaks. Immedi-
ate candidates are using a backward elimination algorithm (BEA)
optimising some information criterion [9, 10, 12] or applying the
adaptive group LASSO estimator as a second step using the group
LASSO estimates as weights [8, 21]. In the following, we out-
line the former approach and discuss the latter approach in Sup-
porting Information B because the BEA produces more accurate
results in our simulation experiments.'®

According to Theorem 2, the group LASSO estimator slightly
overselects breaks under the right tuning. To distinguish between
active and non-active breakpoints in the set .4;, we employ an
information criterion for the second step, which consists of a
goodness-of-fit measure, here the sum of squared residuals, and
a penalty term as a function of the number of breaks. We define

9 1 < j < masthe least squares estimator of 9? based on break-
pomts estimated in the first step. Further, we define the sum of
squared residuals over all g equations as

m+11;-1 ~

t)_ZZHY zj: o, @)

Jj=1r=t;_, s=1

Sp(ty ..

where E, = (Zt’ ® I). For m and the breakpoints t = (¢, ..., ¢,),
we can define the information criterion (IC)
IC(m,t) = Sp(ty, ....1,) + moy (8)

where oy is the penalty term that is further characterised below
in Theorem 3. We estimate the number of breaks and the timing
by solving

(m, 1) = arg min

me(l,... AT}

I1C(m, 1) 9)

If the maximum number of breaks in the first step algorithm is
chosen to be small, the evaluation of the information criterion for
each combination of breakpoints can be achieved easily. The fol-
lowing result shows that minimising the IC gives us a consistent
estimator for m, and A.

Theorem 3. If Assumptions 1-3 hold and w satisfies the con-
ditionslim;_,, Ty /oy = 0 and lim;_ , w;/ min |12 =% | =0,
1<i<m, ! !

then, as T — oo, (i, 1) satisfies
P(fn\ = mo) -1
and it exists a constant B > 0 such that

P(max|?—r|<BTyT>_>1

1<i<m,

Remark 4. The conditions for w; given in the theorem, com-
bined with the assumption that y; /A, — o0 as T — oo, deter-
mine the penalty term of the IC. Through y,, the penalty term
is linked to the tuning parameter of the group LASSO estimator.
For example, using the sequence of tuning parameters found in
Theorem 1 and being of order O(log T /T)/*, the conditions are
satisfied for w; = CT**logT for some C > 0. For practical pur-
poses, C can be set in analogy to the construction of the BIC so
that the second term in Equation (8) penalises the total number
of non-zero coefficients.

Remark 5. Theorem 3 shows that the second step refinement
leads to a consistent estimation of the true number of breaks. The
second property is stronger than the one expressed in Theorem 2
and does not refer to the Hausdorff distance but shows that every
breakpoint is identified within a T'y;- neighbourhood.

If | A, | is relatively large, evaluating every combination of break-
points again becomes computationally intensive. Hence, we fol-
low [12] and use a backward elimination algorithm to succes-
sively remove the most redundant breakpoint that corresponds
to the largest reduction of the IC until no further improvement is
possible. This means that including this breakpoint improves the
fit sufficiently to outweigh the costs of estimating the coefficients
for an additional regime. The details of the algorithm are outlined
in Supporting Information A.'! We denote the set of estimated
breakpoints obtained from the BEA by A% = (Pl‘ .. I oo ). The
next theorem shows that the estimator based on the BEA has
identical asymptotic properties.

Theorem 4. For the same conditions as in Theorem 3, it holds
for T — o that
P(|A*T‘| = mo) -1

and it exists a constant B > 0 such that

- <
P<1r<rllz<1,)§0|t t | BTyT> -1
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Using the BEA, it is also possible to optimise another information
criterion, say the BIC, for each regime to eliminate some vari-
ables from all equations. This allows us to investigate whether
some variables lose importance during parts of the sample period.
Depending on the chosen model structure, this could even be
interpreted as some variables dropping out of the long-run equi-
librium relationship for a certain period.

Applying scaling factors to the integrated regressors and the lin-
ear trend in our model ensures that all regressors have the same
order.AIn turn, this means that the OLS estimator in the second

step, 0 I has the same convergence rates for all coefficients in the
model. In principle, it is also possible to conduct post-LASSO OLS
estimation (after the second step) without scaling factors to bene-
fit from higher convergence rates of the estimator for coefficients
of trending variables.

3 | Simulation

We conduct simulation experiments to assess the finite sample
performance of the two-step estimator with respect to the speed
and accuracy in finding the exact number of breaks and their
location. In principle, we can optimise (6) directly using a coor-
dinate descent algorithm like the one proposed in [43] for a grid
of A, values. However, such an algorithm is not computationally
efficient for change-point problems. Thus, for the simulations
and the empirical application, we rely on a modified group LARS
algorithm that approximates the solution for the first step and
the BEA for the second step. The choice of the tuning parame-
ter A, is translated into pre-specifying the maximum number of
breakpoint candidates M, i.e., the maximum number of non-zero
groups in O(T) that is returned when the LARS implementa-
tion is used. The modified group LARS algorithm evaluates each
point in time as a breakpoint candidate but returns only the M
most relevant breaks. According to Theorem 2, we know that
the group LASSO estimator overselects breaks in the first step.
Hence, M should be set large enough to encompass all true break-
points and some additional falsely selected non-zero groups. The
BEA then asymptotically guarantees that the set of change-points
is attained in the second step. Further, the minimum distance
between breaks needs to be specified based on the number of
coefficients in the model to guarantee that these coefficients can
be estimated accurately in each regime. Details about the modi-
fied group LARS algorithm, the BEA, and additional simulation
results are included in Supporting Information A.

We consider model specifications with one, two and four break-
points, respectively. The following DGP is employed to model a
multiple equations cointegrating regression with multiple struc-
tural breaks,

Y, =AX +6t+u+Buw, +u, u ~N(OZZ)
Xt = Xt—l + ét, 6; ~ N(0, 25) (10)
w, =dw,_; +e, e, ~N(0,ZXZ,)

where X, = (X,,, Xy, ... Xn) s 2,5 = 62, 2 = O'? and %, ; =
af, fori=1,...,q, i.e. the innovations of our generated pro-
cesses have multivariate normal distributions with identical vari-
ances. We choose the variances of these processes so that each

column of Z, = (T~Y/2X!, T~'t,w!)’ has variances less than or
equal to the error term variances. To achieve this, we set the vari-
ances to ag =02 = 02 = 1. yisanon-zero intercept vector, 4, and
B, are time-varying coefficient matrices with at least one non-zero
entry in the baseline specification and a finite number of breaks.
6, is a time-varying g-dimensional vector and @ is a coefficient
matrix for the VAR(1) process that fulfills the required stationar-
ity conditions. For simplicity, we choose a diagonal matrix with
each diagonal entry equal to 0.5. For the main results, we set ¢ = 2
and use the following coefficient matrices:

20
B, =B, +c , Ji=1..m (11)
’ 02

with ¢ =1 and the subscript 7, denoting the initial coefficient
matrix before the first breakpoint. Moreover, we set u = (2,2),
5, = (2, 2) and 6,/ = 5,/_1 +¢(2,2) forj =1, ...,m,. In our base-
line specification, the coefficient changes amount to two stan-
dard deviations of the error terms. Similar to [3], we also spec-
ify ¢ € {0.25,0.5,1.5} to investigate the performance for smaller
and larger break magnitudes. Moreover, we investigate the effect
of cross-correlated errors, serially correlated errors, and endoge-
nous regressors. The results of those robustness checks are
included in Supporting Information A to conserve space.

Naturally, the ability of all structural break estimators to detect
breaks depends on the overall signal strength [44] define sig-
nal strength in change-point models by Sy, = m I,;,, Where
Iy = miny ., 1 |t; = 1;_4] is the minimum distance between
breaks and m, is the minimum jump size as defined in
Assumption 3. For our main simulations concerned with show-
ing the consistency of the two-step estimator, we follow [8] and
use equal jump sizes for multiple breaks as well as locating the
breaks with equidistant spacing between them. Hence, overall
signal strength is a linear function of the sample size in our simu-
lations. We choose a minimum of 50 observations per regime and
double the sample sizes in line with the conventional asymptotics
specified in Section 2.1.

In Table 1, we report our results for » = 2 integrated regressors,
s = 2 stationary regressors, a time trend, and g = 2 equations. We
specify our model for one break located at = = 0.5, two breaks at
7 = (0.33,0.67) and four breaks at = = (0.2,0.4,0.6,0.8) to have
an equidistant spacing on the unit interval. Since the choice of a
change-point detection algorithm is often reflective of a trade-off
between speed and accuracy, we first compute the average com-
puting time in seconds (Time (s)) for each sample size.!? Next, we
compute the percentages of correct estimation (pce) of the true
number of breaks m, and measure the accuracy of the break date
estimation conditional on the correct estimation of m,. For this
matter, we compute the standard deviations of the estimated rel-
ative timing. The estimated coefficients are not reported to con-
serve space but can be obtained from the author upon request.

Our simulation results reveal that the two-step estimator (panel
A) is less precise compared with the likelihood-based approach
(panel B) when it comes to the estimation of the individual
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TABLE1 | Estimation of (multiple) structural breaks in the full model.

Panel A: Group LASSO with BEA

SB1: (r = 0.5)
T Time (s) pce T
100 0.04 98.9 0.501 (0.014)
200 0.08 100 0.500 (0.007)
400 0.26 100 0.500 (0.003)
800 1.64 100 0.500 (0.001)
SB2: (z; = 0.33, 7, = 0.67)
T Time (s) pce T, T,
150 0.08 97.6 0.335 (0.030) 0.659 (0.026)
300 0.25 100 0.333(0.018) 0.666 (0.014)
600 1.53 100 0.331 (0.009) 0.668 (0.007)
1200 10.65 100 0.331 (0.004) 0.669 (0.003)
SB4: (tr; = 0.2, 7, = 04, 73 = 0.6, 7, = 0.8)
T Time (s) pce T4 T, T3 T4
250 0.17 89.0 0.217 (0.030) 0.404 (0.022) 0.596 (0.019) 0.788 (0.028)
500 0.74 98.2 0.203 (0.017) 0.402 (0.012) 0.598 (0.009) 0.803 (0.012)
1000 4.68 99.9 0.199 (0.008) 0.401 (0.006) 0.599 (0.005) 0.800 (0.008)
2000 36.25 100 0.200 (0.003) 0.401 (0.003) 0.599 (0.002) 0.800 (0.003)
Panel B: Likelihood-based approach
SB1: (r = 0.5)
T Time (s) pce T
100 1.22 91.3 0.499 (0.041)
200 4.99 93.0 0.500 (0.010)
400 18.71 94.5 0.500 (0.005)
800 89.07 94.7 0.500 (0.003)
SB2: (z; = 0.33, 7, = 0.67)
T Time (s) pce Ty T,
150 4.61 94.0 0.327 (0.005) 0.667 (0.004)
300 15.28 95.0 0.330 (0.002) 0.670 (0.002)
600 60.16 96.1 0.330 (0.001) 0.670 (0.001)
1200 317.78 95.5 0.330 (0.001) 0.670 (0.001)
SB4: (tr; = 0.2, 7, = 04, 73 = 0.6, 7, = 0.8)
T Time (s) pce Ty T, T3 T4
250 16.59 99.8 0.200 (0.004) 0.400 (0.004) 0.600 (0.004) 0.800 (0.004)
500 64.93 96.7 0.200 (0.002) 0.400 (0.001) 0.600 (0.001) 0.800 (0.001)
1000 322.58 95.6 0.200 (0.001) 0.400 (0.001) 0.600 (0.001) 0.800 (0.001)
2000 2013.69 95.1 0.200 (0.001) 0.400 (0.000) 0.600 (0.000) 0.800 (0.000)

Note: We use 1,000 replications of the data-generating process given in Equation (10). The variance of the error terms is

O'2=O'

£

2 —

.=

0'3 = 1. The first subpanel reports the

results for one active breakpoint at 7 = 0.5, the second subpanel considers two active breakpoints at 7; = 0.33 and 7, = 0.67 and the third subpanel has four active
breakpoints at 7, = 0.2, 7, = 0.4, 7; = 0.6, and 7, = 0.8. Time (s) denotes the average computing time for one replication in seconds. Standard deviations are given in
parentheses. We conduct the sup(/ + 1|/) test at the 5% level to determine the number of breaks. Critical values are provided in [11].
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break locations. This is not surprising considering that the
likelihood-based approach, according to [11] rests on a dynamic
programming algorithm and uses repeated OLS regressions to
determine the location of the breaks in an almost exact fash-
ion. The trade-off here is then computing time vs. precision. As
outlined above, the computational efficiency of the two-step esti-
mator is much higher (O(M? + MT) vs. O(T?)), which man-
ifests in reduced computing times at moderate to large sam-
ples. For example, while it takes the likelihood-approach sev-
eral minutes (on average 2,013 s) on a modern computer to
solve the change-point problem for T = 2,000, the two-step esti-
mator solves the same problem in seconds (on average 36 s).
It is also important to note that, in contrast to the two-step
estimator, the likelihood-based approach is conceptually not
able to consistently estimate the exact number of breaks. As
expected, the sequential test procedure reaches its specified nom-
inal confidence level at large sample sizes and, in our setting
(a = 0.05), detects the number of breaks in roughly 95% of all
cases.!? Instead, the two-step estimator already attains close to a
100% detection rate at moderate sample sizes. This also means
that the most difficult cases (leading to a non-rejection of the
sequential test’s hypothesis) are not considered for the evalua-
tion of the precision of the likelihood-based approach because
in columns two to six of Table 1 only those cases with the cor-
rectly estimated number of breaks can be properly evaluated
[5] suggest to let the size of those sequential tests go to zero
asymptotically to avoid misspecification. However, implement-
ing this in practice is difficult without any guidance on the exact
rate for an adjusted a. Alternatively, an information criterion
might be used to compare specifications with a different number
of breaks.

We further study the performance of the two-step estimator in set-
tings with structural breaks of smaller or larger magnitude.'* For
instance, we apply the factor ¢ = 1.5 to increase the break mag-
nitude in Equation (11) to three standard deviations of the error
term. Although we find a slightly better detection of the num-
ber of breaks, we observe no substantial effect on the precision
in terms of finding the true location of the breaks. It appears that
increasing the magnitude does not further improve the perfor-
mance in small samples. A reason for this upper bound in preci-
sion is the pre-selection of breakpoint candidates in the first step,
which is only accurate up to a Ty, neighbourhood of the true
breakpoints. In contrast, reducing the magnitude when apply-
ing the factor ¢ = 0.5, i.e., to one standard deviation, leads to
worse results for small sample sizes. For example, in the case
of four active breaks and T' = 250 observations, we find that the
rate of correctly detecting the number of breaks drops from 89.0%
in the baseline specification to 68.3%. However, when the sam-
ple size increases to T = 500, we almost reach the same rate of
detection and a similar precision for the break’s location. The
likelihood-based approach is still very precise when the break
magnitudes are reduced by the factor ¢ = 0.5. However, when
we reduce them further by setting ¢ = 0.25, the detection rate
breaks down to, e.g., 6.7% for four breaks and T' = 250 observa-
tions while the two-step approach still reaches a 40.1% detection
rate. We conclude that the performance of the two-step approach
naturally depends on the size of the break magnitude, but it is
fairly robust in medium to large sample sizes, which should be
its primary field of application considering its improvements in
terms of computational costs.

To investigate whether the results are driven by the integrated
regressors or the linear trend in the model, we run the simula-
tion experiments for a reduced SUR model specification. Here,
we generate data under the restriction that A; = diag(0) and
6, =0fori =0, ...,m, The results are reported in Table 2. We
consider two variants of the simulation experiment: First with-
out cross-correlation between the error terms for both equations
as in Equation (10) and second with cross-correlation coeftfi-
cient p = 0.5. We find almost identical precision for the SUR
model and no substantial difference in the presence of moderate
cross-correlation. This shows that the precision of the two-step
approach is predominately driven by the magnitude of breaks in
terms of their Euclidean distance for the vector of coefficients
and the magnitude is the same for the SUR specification. The
reduced number of coefficients in the SUR model does not seem
to improve the performance substantially, because the sample
size in each regime is already large enough to estimate the full
model. Additional simulation experiments (not reported) show
that this aspect certainly gains importance for smaller regimes
with less observations.

We extend the model with a third equation to investigate if the
results either improve because a common break is indicated in
another regression equation similar to results obtained in [3, 11]
or deteriorate because the detection relies on additional coeffi-
cient changes that need to be estimated. We consider a special
case in which the break magnitudes stay constant after adding the
third equation. In practice, we hope that estimating the structural
breaks jointly in all equations includes some larger coefficient
changes that help to find the common break dates. The results
for the g = 3 case, reported in Table 3, show that we reach simi-
lar detection rates and approximately the same precision for the
timing of the breaks. As the break magnitudes are identical for
each coefficient, the ¢ = 3 setting is a straightforward extension of
the ¢ = 2 setting. To investigate further whether breaks in a sub-
set of the coefficients can be reliably detected in a larger system,
we consider a partial break specification in the ¢ = 2 case. Here,
only the coefficients of the first equation change. The results
are reported in Table S5 in Supporting Information A and again
show that the two-step estimator’s performance is mostly deter-
mined by the total break magnitude which is slightly reduced in
this case.

Finally, we turn to the one-break case of our main specification
again and move the break to the right boundary of the unit inter-
val. We fix the number of observations in the second regime to
25 and increase the overall sample size. Consequently the break-
point moves further to the boundary each time we double the
sample size. The true break fractions for the sample size T €
{100, 200,400,800} are 0.75, 0.875, 0.9375, and 0.96875, respec-
tively. We also consider a two-break setting where the middle
regime shrinks relative to the total sample size. We set the first
breakpoint at 7; = 0.5 and the second one at 7, = 0.5+ 25/T.
The results for both experiments are reported in Table 4. These
exercises show that the two-step estimator is robust to setting
a small minimum break distance while the sequential tests to
detect breaks in the likelihood-based approach require a rather
large trimming parameter to ensure the right size and sufficient
power. Of course, if the trimming parameter is set to 0.15 as
it is suggested for empirical data [11], it is infeasible to detect
breaks that are too close to each other or near the boundary

90f16



TABLE 2 | Estimation of (multiple) structural breaks in the SUR model specification using the group LASSO with BEA.

Panel A: No cross-correlation

SB1: (7 = 0.5)

T Time (s) pce T
100 0.03 100 0.500 (0.010)
200 0.06 100 0.500 (0.005)
400 0.20 100 0.500 (0.002)
800 1.27 100 0.500 (0.001)

SB2: (r; = 0.33, 7, = 0.67)
T Time (s) pce Ty T,
150 0.04 98.9 0.337 (0.034) 0.656 (0.033)
300 0.23 100 0.333(0.019) 0.667 (0.019)
600 1.39 100 0.333 (0.009) 0.668 (0.009)
1200 9.70 100 0.331 (0.005) 0.669 (0.005)

SB4: (r; =0.2,7, = 04,73 = 0.6, 74, = 0.8)

T Time (s) pce Ty T, T3 Ty

250 0.15 87.2 0.215 (0.031) 0.406 (0.021) 0.594 (0.020) 0.786 (0.031)
500 0.63 99.9 0.201 (0.013) 0.402 (0.012) 0.597 (0.011) 0.800 (0.013)
1000 10.01 100 0.199 (0.008) 0.401 (0.006) 0.599 (0.005) 0.801 (0.008)
2000 72.30 100 0.200 (0.003) 0.400 (0.003) 0.599 (0.003) 0.800 (0.003)

Panel B: Cross-correlated errors (p = 0.5)

SB1: (r = 0.5)

T Time (s) pce T
100 0.03 100 0.500 (0.010)
200 0.06 100 0.500 (0.005)
400 0.22 100 0.500 (0.002)
800 1.36 100 0.500 (0.001)

SB2: (1 = 0.33, 7, = 0.67)
T Time (s) pce (3 T,
150 0.05 97.8 0.337 (0.034) 0.656 (0.033)
300 0.22 99.8 0.334(0.019) 0.667 (0.018)
600 1.68 100 0.332 (0.009) 0.668 (0.009)
1200 9.99 100 0.332 (0.005) 0.669 (0.005)

SB4: (r; =0.2,7, =04, 73 = 0.6, 7, = 0.8)

T Time (s) pce T, T, T3 Ty

250 0.17 93.1 0.216 (0.031) 0.406 (0.020) 0.594 (0.020) 0.785 (0.031)
500 0.58 99.8 0.200 (0.013) 0.402 (0.011) 0.597 (0.011) 0.800 (0.013)
1000 12.26 100 0.199 (0.008) 0.401 (0.006) 0.599 (0.005) 0.801 (0.008)
2000 78.36 100 0.200 (0.003) 0.400 (0.003) 0.599 (0.003) 0.800 (0.003)

Note: We use 1,000 replications of the data-generating process given in Equation (10). The variance of the error terms is 052 = af = 0'3 = 1. The first subpanel reports the
results for one active breakpoint at = = 0.5, the second subpanel considers two active breakpoints at 7; = 0.33 and 7, = 0.67 and the third subpanel has four active
breakpoints at 7; = 0.2, 7, = 0.4, 7; = 0.6, and 7, = 0.8. Time (s) denotes the average computing time for one replication in seconds. Standard deviations are given in
parentheses.
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TABLE 3 | Estimation of (multiple) structural breaks in the full model (¢ = 3) using the group LASSO with BEA.
SB1: (r = 0.5)
T Time (s) pce T
100 0.04 99.8 0.500 (0.014)
200 0.08 100 0.500 (0.005)
400 0.35 100 0.500 (0.002)
800 2.15 100 0.500 (0.001)
SB2: (r; = 0.33, 7, = 0.67)
T Time (s) pce Ty T,
150 0.08 98.1 0.333(0.032) 0.663 (0.025)
300 0.28 100 0.333(0.017) 0.667 (0.014)
600 1.72 100 0.333 (0.008) 0.668 (0.007)
1200 14.49 100 0.331 (0.004) 0.669 (0.004)
SB4: (t; = 0.2, 7, = 04, 73 = 0.6, 7, = 0.8)
T Time (s) pce Ty T, T3 T4
250 0.18 89.3 0.217 (0.031) 0.405 (0.021) 0.597 (0.019) 0.789 (0.029)
500 0.85 97.7 0.202 (0.016) 0.402 (0.011) 0.597 (0.009) 0.802 (0.013)
1000 12.25 99.2 0.199 (0.008) 0.401 (0.006) 0.599 (0.005) 0.800 (0.008)
2000 103.64 99.8 0.200 (0.003) 0.401 (0.003) 0.599 (0.002) 0.800 (0.003)

Note: We use 1,000 replications of a variant of the data-generating process given in Equation (10) with an additional equation but the same break magnitudes. The variance
of the error terms is 62 = 62 = 62 = 1. The first subpanel reports the results for one active breakpoint at z = 0.5, the second subpanel considers two active breakpoints at

e

7, = 0.33 and 7, = 0.67 and the third subpanel has four active breakpoints at 7, = 0.2, 7, = 0.4, 7; = 0.6, and 7, = 0.8. Time (s) denotes the average computing time for one

replication in seconds. Standard deviations are given in parentheses.

of the unit interval. In case of one break at the boundary, the
likelihood-based estimator in our simulations (almost) always
falsely indicates a break at 0.85.

4 | Empirical Application

In our empirical application, we apply the two-step estimator to
US term structure data. Thereby, we revisit the study by [38] who
proposes a framework to test for structural change in cointegrated
vector autoregressions. The author tests two potential structural
breaks in September 1979 and October 1982 that coincide with
large changes in the Fed’s policy. Only after accounting for these
structural changes, the long-run implication of the expectations
hypothesis (EHT) cannot be rejected. In the subsequent analysis,
we study more recent data on the US term structure and detect
structural breaks without assuming any prior knowledge about
their location.

Following [45], we expect that the term structure of interest
rates is determined by the expected future spot rates being equal
to the future rate plus a time-invariant term premium in the
long-run. This implies that independent of the maturity, the
yields should be cointegrated with pairwise cointegrating vector
(1, —1). However, several early studies report that the EHT fails in
empirical practice see, for example, [46, 47]. Besides other empir-
ical difficulties, structural breaks are named as one of the impor-
tant reasons for this failure [48-50]. Several studies investigate
whether regime shifts in the term structure of interest rates are

related to changes in monetary policy [51, 52]. The important
question for applied researchers and policy-makers is whether
these equilibrium relationships are robust over different regimes.

Using daily data from January 1990 to July 2021 on the term struc-
ture of US interest rates, we end up with more than 8,000 obser-
vations to estimate the term structure model. We again empha-
sise that almost exact segmentation algorithms like the one used
for the likelihood-based approach are substantially slower than
the two-step procedure based on the group LASSO estimator
(26,380 s vs. 25 s for solving the change point problem). Taking
into account that several re-estimations of the model must be
conducted to find the right specification and perform robustness
checks, a reduced computational burden is important to encour-
age routine checks for structural breaks in multivariate systems.
We use fitted yields on zero coupon US bonds with 10-year (ry,,,),
5-year (rs,), and l-year (r;,,) maturity in the term structure
model,

Fiops = M1+ Prriy, + Uy,

Fspe = My + Boryy, + Uy, (12)

We choose a model specification matching the long-run compo-
nent in the cointegrated VAR used in [38]. Each equation mod-
els the pairwise relationship between the longer-term maturity
and the short-term maturity (a one-to-one relationship under
the EHT), while the constant accounts for a term premium.
Additional maturities could be analysed, leading to additional
equations in the model, but we try to maintain a simple model
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TABLE 4 | Estimation of (multiple) structural breaks in the full model with shrinking regimes.
Panel A: Group LASSO with BEA
SBl: (r =1-25/T)
T Time (s) pce T
100 0.03 100 0.747 (0.019)
200 0.07 99.5 0.873(0.010)
400 0.29 99.7 0.936 (0.006)
800 1.69 99.8 0.967 (0.004)
SB2: (r; = 0.5, 7, = 0.5+ 25/T)
T Time (s) pce Ty T,
150 0.09 84.2 0.505 (0.019) 0.661 (0.022)
300 0.26 91.9 0.500 (0.017) 0.584 (0.016)
600 1.59 94.1 0.499 (0.009) 0.542 (0.008)
Panel B: Likelihood-based approach
SB1: (z =1-25/T)
T Time (s) pce T
100 1.40 96.7 0.750 (0.006)
200 3.65 97.3 0.854 (0.004)
400 19.72 98.5 0.851 (0.005)
800 103.17 98.7 0.850 (0.003)
SB2: (r, = 0.5, 7, = 0.5+ 25/T)

T Time (s) pce Ty T,
150 3.75 94.3 0.505 (0.019) 0.661 (0.022)
300 14.88 95.5 0.463 (0.034) 0.615 (0.034)
600 72.04 96.3 0.443 (0.056) 0.596 (0.057)

Note: We use 1,000 replications of the data-generating process given in Equation (10). The variance of the error terms is 62 = 62 = 0'3 = 1. The first subpanel reports the

£=0% =

results for the two-step estimator with one active breakpoint at r = 1 — 25/T'; the second subpanel reports the results for two active breakpoints at 7, = 0.5, 7, = 0.5+ 25/T.
The likelihood-based approach is applied with a trimming parameter of 0.15. Time (s) denotes the average computing time for one replication in seconds. Standard
deviations are given in parentheses. We conduct the sup(/ + 1|/) test at the 5% level to determine the number of breaks. Critical values are provided in [11].

structure. The data are produced according to the approach of
[53] fitting a simple three-factor arbitrage-free term structure
model to U.S. Treasury yields since 1990, in order to evaluate
the behaviour of long-term yields, distant-horizon forward rates,
and term premiums.'> Figure 1 provides a time series plot of the
data. We assume that the individual variables follow unit root
processes.'® The results of a Johansen trace test for the full sam-
ple suggest that the trivariate system is cointegrated with coin-
tegration rank one or two depending on the specification of the
deterministic terms. According to the long-run implications of
the EHT, we would expect a cointegration rank of two but it
is well-known that the Johansen trace tests are not robust to
structural breaks in the cointegrating vectors or the deterministic
terms see, for example, [54, 55].

We estimate the cointegrated term structure regression in
Equation (12) with a dynamic OLS specification adding two leads
and lags of Ar,,,. First, we estimate the model for the full sample
without accounting for any structural breaks. The coefficient esti-
mates are f; = 0.764(0.116) and £, = 0.894(0.078) which lead to

a rejection of the EHT at the 5% significance level for the 10-year
maturity but not for the 5-year maturity.!’” In the second step, we
try to capture all relevant structural breaks. Due to the large num-
ber of observations, we pre-specify a large maximum number
of breaks, M = 40, and maintain a minimum break distance of
two months (50 daily observations) to obtain accurate coefficient
estimates in each regime.!® We consider a specification with
a constant and apply the required scaling factors so that each
regressor has the same order.' Using the two-step group LASSO
estimator, we obtain four structural breaks. All breakpoint esti-
mates can be related to important monetary policy events. To
show that, we depict the trajectory of the effective federal funds
rate (EFFR) in Figure 2 and indicate the regimes. The first break
is located in November 1994 after the EFFR sharply increases
and the yield spread narrows, the second break is located in April
2003 during the recession. Here, the EFFR falls dramatically and
we observe wider spreads. The third break is located in August
2010 after the Global Financial Crisis, and the fourth break is
located in March 2015 at the end of the zero target rate regime.
After the structural breaks are obtained, we re-estimate the model
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FIGURE1 | Fitted yields (in %) on 10-year (solid), 5-year (dotted, and 1-year (dashed) zero coupon US bonds.
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FIGURE 2 | Effective federal funds rate at a quarterly frequency. White and grey-shaded spaces mark the identified term structure regimes.

TABLE 5 | Regime-specific coefficients of the term structure model.
T10y,t sy
Regimes iy ﬁl f, ﬁz
1990 m01-1994 m11 5.013(0.261) 0.464 (0.082) 3.141 (0.154) 0.678 (0.055)
1994 m11-2003 m04 4.000 (0.211) 0.392(0.125) 2.297 (0.163) 0.653 (0.093)
2003 m04-2010 m08 3.569 (0.329) 0.267 (0.109) 2.020 (0.220) 0.556 (0.077)
2010 m08-2015 m03 2.311 (0.259) —0.158 (0.812) 1.103 (0.162) 0.736 (0.532)
2015 m03-2021 m07 1.220 (0.235) 0.669 (0.168) 0.525(0.191) 0.842 (0.131)

Note: The coefficient estimates are obtained from a post-LASSO dynamic OLS estimation. We compute bootstrap standard errors based on 600 replications of the sieve
bootstrap method for cointegrating regressions proposed in [56]. Standard errors are computed for each identified regime separately and therefore do not take the
estimation uncertainty regarding the structural break detection into account. Standard errors are given in parentheses.

in each regime without scaling factors for higher precision and  The algorithm also detects four breakpoints with the sequential
report the resulting coefficients in Table 5. For comparison, the test, clearly rejecting the hypothesis of three breaks in favour of
estimated breakpoints from the likelihood-based approach are a four-break model. More than four breaks cannot be allocated
located in January 1995, December 2003, July 2008 and July if the default minimum regime length should be maintained
2013, corresponding to roughly the same monetary policy events. (setting the trimming parameter to 0.15).
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It can be observed that the pairwise cointegrating vectors for most
regimes substantially differ from (1,—-1). A simple ¢-test of the
hypothesis does not lead to a rejection of the EHT for the last two
regimes.?’ While the estimates of the proportionality coefficient
for the first three regimes in case of the 10-year maturity are rea-
sonable (albeit still being able to reject the EHT), the estimated
coefficient for the fourth regime from August 2010 to March 2015
is negative with a much larger standard error. The non-rejection
of the EHT in this regime can therefore be attributed to the
higher error term variance in this period. This regime can also
be associated with a zero target rate and an unusually steep
yield curve which might explain the unusually small propor-
tionality coefficient for the 10-year maturity. The final regime is
marked by relatively narrow yield spreads that begin to widen
during the COVID-19 pandemic. Still, our results suggest that
this most recent regime comes closest to satisfying the EHT. In
summary, accounting for multiple structural breaks in the term
structure model reveals some important differences for subsam-
ples of the data but does not solve the term structure puzzle.
Instead, it seems that the EHT does not hold for most of the
sampling period.

5 | Conclusion

We have proposed a computationally efficient alternative to the
existing likelihood-based approach to solving the change-point
problem in multivariate systems with a mix of integrated and sta-
tionary regressors. Our two-step estimator is able to consistently
determine the number of breaks and their timing and to jointly
estimate the coefficients for each regime. This can be achieved
without the need to conduct sequential tests. The algorithm is
much faster than the dynamic programming algorithm used in
the likelihood-approach and can solve change-point problems
for large multivariate systems and several thousand observa-
tions in seconds. In turn, the likelihood-based approach allows
for a straightforward construction of valid confidence bands
by inverting the likelihood ratio test for a given break date
[29]. It remains to be investigated if such confidence bands can
be constructed within the model selection approach taken in
this paper.

The crucial first step estimation is based on the group LASSO
estimator and we utilise a group LARS algorithm to solve
the change-point problem. Alternative choices of other penal-
ties in the objective function could be used to potentially
improve the estimator in some directions. For example, [10]
use a fused LASSO penalty to allow the number of equations
to grow with the sample size. Such high-dimensional exten-
sions might be useful in panel settings where both the time
and the cross-sectional dimension increase asymptotically. In
principle, the proposed two-step estimator can also be applied
to change-point problems in other important model classes.
If we relaxed the strict exogeneity assumptions and instead
used more restrictive assumptions about the error terms, for
example, assuming Gaussian white noise errors, we could also
deal with structural breaks in VECMs, which involve a mix of
integrated and stationary variables. Since this application poses
additional technical difficulties, we leave this topic for future
research.
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Endnotes

!'While the model structure, in principle, includes the possibility to con-
sider piece-wise stationary VAR models, our technical analysis relies
on Assumption 2 stated below which is not compatible with VAR mod-
els. We refer to [10] who use a slightly different penalty to cover a
high-dimensional version of this case.

2[29] propose confidence sets for the timing of structural break estima-
tion in multiple equation regression models [1] introduce the concept
of locally ordered breaks. They model structural breaks in systems of
equations with a combination of integrated and stationary regressors,
dealing with situations where the breaks cannot be separated by a posi-
tive fraction of the sample size [2] highlight that the estimation of com-
mon breaks allows for more precise detection of break dates in multi-
variate systems. They develop common break tests for this assumption.
A common break is defined as a point in time at which at least one coef-
ficient from each equation is not restricted to be the same across two
adjacent segments.

3 First, a double maximum test is conducted to test whether at least
one break is present, then the exact number of breaks is determined
testing the hypothesis of / breaks vs. the alternative of / + 1 breaks.
Naturally, the sequential test procedure requires the specification of
a nominal significance level a, which implies that also for large sam-
ples, the number of breaks is overestimated in roughly « - 100% of all
cases.

4We note that Assumption 2 is stronger than the moment conditions
given in Assumption 1 (ii) and replaces them in the corresponding
results (Theorems 2-4). However, Assumption 2 is not necessary to
prove Theorem 1.

> The simulation results presented in Table S6 in Supporting Informa-
tion A show that the structural break detection remains consistent for
endogenous regressors and white noise errors.

% Higher order deterministic trends can be included in the model in the
same way as long as the corresponding scaling factors are applied.

7 Note that S".S is idempotent with non-zero elements only on the diag-
onal. The rank of S is equal to the number of coefficients that are
allowed to change.

8 Practical guidance for the choice of 4; is given in Section 3.

9 Our definitions in Assumption 3 (i) include the baseline coefficients
which can, in principle, be relaxed but simplify the technical analysis.

1Supporting Information B can be found here: https://
karstenschweikert.github.io/mequ_ci/mequ_ci_suppB.pdf.
Supporting Information A can be found here: https://

karstenschweikert.github.io/mequ_ci/mequ_ci_suppA.pdf.
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12 All simulations experiments are conducted on a computer with an Intel
i5-6500 CPU at 3.20 GHz and 16 GB RAM.

131t seems to be undersized for small sample sizes and a larger number of
breaks, reaching a 100% detection rate for m = 4 and T' = 250 but then
declining to 95% for larger samples.

4The results can be found in Tables S1-S3
Information A.

15 The data can be downloaded from the St Louis Fed’s database FRED.

in Supporting

16 See the discussion in [38] and the references given therein why this
assumption is useful for the empirical modelling of the term struc-
ture although some features like the non-negativity of interest rates
are arguments against it. We also conduct unit root tests which do
not provide evidence against this hypothesis in this specific sample
period.

17Bootstrap standard errors are computed based on 600 replications
of the sieve bootstrap method for cointegrating regressions proposed
in [56].

18 The results are robust for different choices of M aslongas M > 4. Since
a larger value of M allows the modified group LARS algorithm to take
more steps, a larger value of M can, in principle, positively affect the
precision of the estimated break locations. However, the estimates do
not change for M > 40.

19 The results with and without linear trend do not differ substantially.

20 Note that the reported standard errors do not take the break estimation
uncertainty into account.
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