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ABSTRACT
The PROMETHEE methods are increasingly applied in environmental and public policy decision-making due to their compre-
hensiveness and explainability. However, the literature contains differing statements regarding their compensatory properties. 
Compensation in multiple criteria decision aggregation procedures is commonly understood as allowing a gain in one criterion to 
offset a loss in another one. In certain domains, such as environmental or public policy decision-making, it may be undesirable, 
as some impacts may result in losses too severe to be counterbalanced by good performance on other criteria. Therefore, it may 
be necessary to limit the extent to which an aggregation procedure permits compensation or to explicitly control it as needed. 
Guidelines and detailed analytical tools, however, that help users and analysts to control compensation in the PROMETHEE 
methods remain scarce and often lack transparency. In this study, we analyse the compensatory behaviour of the PROMETHEE 
I and II methods and identify the key determinants for compensation in these methods. Based on these insights, we develop flow 
insensitivity intervals to assess the sensitivity of a given decision model towards compensatory effects and provide a set of general 
guidelines for controlling compensation in the PROMETHEE I and II methods for any given pair of criteria. The findings are 
illustrated at hand of an environmental management case study. By combining the guidelines with flow insensitivity intervals, 
users and analysts gain access to measures of varying granularity to evaluate and control compensation in a PROMETHEE de-
cision model.

1   |   Introduction

An essential part of multiple criteria decision analysis 
(MCDA) is the formalised procedure to move from a decision 
model to a synthesis of the information that has been ob-
tained about the different options as well as the objectives and 
preferences of everyone involved (Belton and Stewart  2002). 
For this task, a rich set of different multiple criteria aggre-
gation procedures (MCAP) has emerged from the scientific 
discourse. They are often differentiated into two schools of 
thought (Vansnick 1990; Roy and Vanderpooten 1996), anal-
ogous to the fundamental decision mechanisms developed 

by de Borda  (1781) and Condorcet  (1785). Frequently used 
approaches from the so-called American school of thought 
(Von Winterfeldt and Edwards  1986; Keeney  1992) are the 
multiple attribute value and utility theory (MAVT/MAUT) 
(Keeney 1992; Keeney and Raiffa 1993), while the Preference 
Ranking Organization METhod for Enrichment Evaluations 
(PROMETHEE) (Brans et al. 1986) and the Elimination and 
Choice Translating Reality (ELECTRE) approach (Roy 1991) 
are often applied outranking approaches from the French or 
European school of thought (Roy and Bouyssou 1993). These 
two distinct schools are essentially based on different assump-
tions and axioms when establishing the set of synthesised 
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information in the form of preference structures (see e.g., 
Vansnick  1986; Moulin  1988; Munda  2016; Roy  2016). This 
leads to a diverging interpretation of criteria weights and differ-
ent aggregation properties (Munda 2008; Figueira et al. 2016; 
Brans and De Smet 2016; Martel and Matarazzo 2016).

One aggregation property that distinguishes the vari-
ous MCAPs is the possible occurrence of compensation. 
Compensation is commonly understood as allowing a per-
formance gain in one objective or criterion to offset a perfor-
mance loss on another one (Roy and Słowiński  2013). Due 
to their different axiomatic foundations, it is often argued 
that MCAP from the American school of thought are based 
on a compensatory aggregation logic, while outranking ap-
proaches generally consider this property as unwanted in the 
process of establishing preference relations (Vansnick  1990; 
Roy and Słowiński  2013). Depending on the decision prob-
lem, compensatory effects could either be desired (e.g., for 
employee performance evaluations) or should be deliberately 
avoided (e.g., to ensure the concept of strong sustainability) 
(Cinelli et  al.  2014). Especially in contexts where numer-
ous facets of sustainability need consideration and coun-
terbalancing effects between certain dimensions need to be 
avoided, or limited, the issue of compensation is of particular 
interest. A few selected examples comprise energy technol-
ogy assessment (Diakoulaki et al. 2005; Tsoutsos et al. 2009; 
Oberschmidt et al. 2010; Strantzali and Aravossis 2016), pro-
duction management (Hämäläinen  2004; Geldermann and 
Rentz  2001; Tong et  al.  2022), environmental management 
(Kiker et al. 2005; Huang et al. 2011; Lienert et al. 2015), and 
policy making (Ferretti 2016; Salo and Hämäläinen 2010).

While there is scholarly work available that offers guidance 
on the choice of aggregation functions to steer compensa-
tory effects in value theory based approaches (e.g., Langhans 
et al. 2014; Cinelli et al. 2014) provide a comprehensive body of 
research on the compensation degree of common MCDA meth-
ods, research that offers a detailed analysis of the compensa-
tion mechanisms of the PROMETHEE methods seems limited. 
Much more, we find equivocal statements regarding the com-
pensatory behaviour of the PROMETHEE methods in the sci-
entific discourse. In Cinelli et  al.  (2020, 2022), PROMETHEE 
I, II, TRI and V (Brans and De Smet 2016; Figueira et al. 2004; 
Brans and Mareschal 1992) are classified as both not and par-
tially compensatory. Further relevant works characterise the 
PROMETHEE methods as non-compensatory outranking meth-
ods (Pirlot  1997; Greco et  al.  2021; Costa and Alves  2021). In 
other literature it is stated that PROMETHEE methods ‘avoid 
fullcompensation’ (Prado et al. 2012) or are either fully, partial 
or non-compensatory, depending on the selected method and its 
configuration (Bezerra et al. 2021; Benoit and Rousseaux 2003; 
Moghaddam et  al.  2011; Guitouni and Martel  1998; Ishizaka 
and Resce 2021). Only recently, Dejaegere and De Smet (2023) 
proposed the new PROMETHEE � method, which can delib-
erately be used in totally compensatory or non-compensatory 
manner to circumvent unwanted compensatory behaviour of 
PROMETHEE I in certain situations. Additionally, they remark 
that ‘[…] it is not clear whether PROMETHEE is considered as 
non-compensatory or partially compensatory’ (Dejaegere and De 
Smet 2023, 149). However, we are not aware of any work that 
discloses the preconditions for compensatory behaviour within 

the PROMETHEE methods and provides a comprehensive set 
of guidelines that allows applicants to steer it in the desired 
manner.

To complement existing research, this article will provide the 
following main contributions:

•	 The compensatory properties of the PROMETHEE meth-
ods are highlighted. In particular, the determinants for 
compensation in the PROMETHEE I and II methods are 
disclosed.

•	 A measure to investigate the sensitivity of a given decision 
model that is aggregated according to PROMETHEE I or 
II towards compensatory effects is developed. In this way, 
it is possible to identify the criteria for which compensa-
tion can occur and to specify the extent to which compen-
satory effects are responsible for preserving a preference 
structure.

•	 A set of guidelines for the design and parameterisation of 
a PROMETHEE model to control compensation in a fine-
grained resolution, ranging from full compensation to no 
compensation at all, is proposed.

The remainder of the article is structured as follows. We 
first define the fundamentals of a multiple criteria decision 
problem and arrive at definitions for the notion of compen-
sation (Section  2). In Section  3, the PROMETHEE methods 
are introduced, with particular emphasis on PROMETHEE 
I and II. Following this, the compensatory behaviour of the 
PROMETHEE methods is characterised by using a differen-
tial calculus approach and showcased by a series of numerical 
examples (Section  4). The results are discussed in Section  5 
and used to elaborate guidelines for applicants and analysts. 
Conclusions are drawn in Section 6.

2   |   Compensation in Multiple Criteria 
Aggregation Procedures

Generally speaking, MCDA methods apply distinct aggregation 
procedures to synthesise preference information and evaluate 
a set of potential courses of action. In this section, the formal 
notation of these MCAPs is introduced and the notion of com-
pensation is defined.

2.1   |   Multiple Criteria Aggregation Procedures

In a multiple criteria decision problem, a set of potential actions 
A ≔

{
a1, a2, … , ai, … , am

}
 is to be evaluated on a set of attri-

butes or criteria G ≔
{
g1, g2, … , gj, … , gn

}
 according to the 

preferences of one or more decision-maker(s) (DM). A decision 
table then summarises the available alternatives, criteria and 
the performance of each alternative on each criterion, denoted 
as gj

(
ai
)
.

An MCAP applies a specified mathematical procedure on the 
decision table to evaluate the formalised decision problem in 
order to produce a desired result which allows for the eval-
uation of alternatives in a comprehensive way (Roy  2016). 
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Depending on the desired type of result, decision problems are 
typically distinguished into four different types: Choice, sort-
ing, ranking and description problematics (Roy 2016). To reach 
the desired outcome, MCAPs establish preference structures 
which formalise the comparison of any pair of alternatives (
ai, ax

)
∈ A × A in clear or fuzzy language (Krantz et al. 1971; 

Fishburn 1999; Roubens and Vincke 1985; Moretti et al. 2016). 
A preference structure is a set of binary preference relations 
that describe a DM's attitudes towards a subset of ordered 
pairs from A × A, that is, alternatives, such that for each pair 
of alternatives exactly one relation holds (Moretti et al. 2016). 
Accordingly, binary preference relations R are preference 
statements on pairs of A. They allow to express situations of 
preference or indifference, typically denoted ⟨P, I⟩. In some 
cases, weak preference can also be expressed (Vincke 1988). 
For a more extensive overview on the different types of pref-
erence structures that can be established, see for example 
Moretti et al. (2016).

Each MCAP follows a different logic in the creation of prefer-
ence structures. Approaches that maximise a value, utility or 
scoring function are often referred to as aggregating MCAPs 
(Vincke 1992). They exploit an aggregated score to establish bi-
nary preference relations.

In outranking methods, a preference structure is character-
ised by binary outranking relations, denoted S, that can or can 
not be transitive and complete, depending on the prevalence 
of incomparability between alternatives (Bouyssou  1996). 
The notion of incomparability goes back to the concordance-
discordance principle, an essential axiomatic foundation of 
outranking approaches (Bouyssou and Pirlot  2009; Figueira 
et al. 2013). The concordance-discordance principle acknowl-
edges that the existence of preference or indifference on a pair 
of alternatives is not always possible nor desired (Vincke 1992). 
Therefore, an additional binary relation describing incompa-
rability between alternatives (J) is introduced (Tsoukiàs and 
Vincke 1995). In ⟨P, I , J⟩ preference structures, the relation P 
describes situations in which one alternative is clearly pre-
ferred over another, while the relations I and J  both denote 
that neither alternative is preferred (Moretti et al. 2016). For 
the reflexive and symmetric indifference relation I, the lack 
of preference is due to their equivalent valuation. The sym-
metric and irreflexive incomparability relation J , however, 
refers to situations in which a lack of information or conflict-
ing evaluations does not allow for the expression of preference 
and ¬

(
aiPax

)
, ¬

(
axPai

)
, and ¬

(
aiIax

)
 simultaneously holds 

(Moretti et al. 2016).

The resulting preference structure can then be defined as fol-
lows Dejaegere and De Smet (2023):

The outranking relation aiSax denotes the assertion that ‘ai is 
at least as good as ax’ or ‘ai outranks ax’. That means ai can be 
considered at least as good as ax since there is sufficient evidence 

supporting such a statement and no contradicting evidence, 
given the available information (Bouyssou and Vansnick 1986).

2.2   |   Compensatory and Non-Compensatory 
Multiple Criteria Aggregation Procedures

The notion of compensation in MCAPs has been a subject of ex-
tensive study and the academic literature presents a set of defini-
tions. Most commonly, the compensatory character of an MCAP 
is connected to its axiomatic foundations.

Aggregating MCAPs interpret weights as trade-offs between 
attributes and typically aggregate the performance of alterna-
tives on these attributes in an additive manner, for example, via 
simple additive weighting (SAW) in the form 

∑n
j=1 wj ⋅ gj

�
ai
�
. 

Such MCAPs are considered inherently compensatory for two 
analogous reasons. First, the additive aggregation logic implies 
that a low performance on one attribute can be offset by a rel-
atively good performance on another attribute with regards 
to the aggregated performance of an alternative (Langhans 
et al. 2014). Furthermore, the weights that are attached to the 
different objectives are interpreted as trade-offs between objec-
tives (Moulin 1988). Thus, they are equivalent to the objectives' 
substitution rates and a fully compensatory aggregation logic 
is inherently necessary (Munda 2016). An illustrative example 
which derives this equivalence for the case of SAW is provided 
by (Munda 2008, chapter 4). The notion of compensation in this 
case can be defined as the property that the preference relations 
remain unaffected when a loss on one objective is accompanied 
by comparable gain on another one, adjusted for the weights (i.e., 
substitution rate) (Roy and Mousseau 1996; Haag et al. 2019).

In outranking methods, the MCAP is not concerned with max-
imising an underlying value or utility function. Instead, pair-
wise performance assessments of alternatives are conducted on 
the set of criteria to establish preference structures, where the 
weights only represent the relative importance of each criterion 
(Figueira et al. 2016). This leads to two fundamental differences 
compared to aggregating MCAPs:

1.	 The concordance-discordance principle confines compen-
satory effects in the construction of preference structures 
to the intra-criterial comparisons of alternatives and only 
up to a specified threshold. Within the pairwise compar-
isons, small performance disadvantages of an alternative 
that do not surpass this threshold are completely disre-
garded. The threshold value defines the extent of what can 
be considered a ‘small’ difference in performance to dis-
tinguish between ‘sufficient’ and ‘insufficient’ evidence for 
preference (Pirlot 1997).

2.	 The concordance-discordance principle is generally not 
concerned with performance substitution between the dif-
ferent criteria. The performance differences that exceed the 
specified thresholds in intra-criterial comparisons are not 
able to affect the evaluation on another criterion without 
turning relative disadvantages into advantages and vice 
versa. It is thus irrelevant for the construction of preference 
relations by how much the performances of alternatives 

aiPax ⇔ aiSax ∧ ¬
(
axSai

)

aiIax ⇔ aiSax ∧ axSai

aiJax ⇔ ¬
(
aiSax

)
∧ ¬

(
axSai

)
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with regard to a given criterion differ if the threshold is 
exceeded, and any changes in performance across criteria 
will not be able to affect the preference structure (Figueira 
et al. 2010).

Since the preference structures in outranking methods are only 
affected by whether an alternative outranks another one and 
vice versa, they are generally classified as non-compensatory 
MCAPs (Fishburn 1976; Bouyssou and Vansnick 1986). At the 
same time, the concordance-discordance principle does not 
strictly imply that outranking relations are non-compensatory, 
given that small enough disadvantages are not considered 
in the construction of them (Dejaegere and De Smet  2023). 
Furthermore, not all outranking methods fully adopt the 
concordance-discordance principle. The PROMETHEE I and II 
methods are examples of outranking methods that are not based 
on the concordance-discordance principle, which leads to dif-
ferent compensatory properties. We characterise their compen-
satory behaviour after arriving at a set of working definitions.

2.3   |   Definitions

So far, no widely accepted and precise definition of compen-
sation in MCAP could be identified in the literature. For the 
purpose of this work, compensation in MCAP is defined as the 
possibility for inter-criterial performance substitution (Roy and 
Mousseau 1996). Inter-criterial performance substitution refers 
to the balancing or offsetting of a disadvantage on a criterion, 
in terms of the resulting preference structures, by a sufficient 
advantage on another criterion.

Therefore, an MCAP is considered compensatory if a preference 
relation between two alternatives is altered by a change in per-
formance on one criterion and can be reinstated by adjusting 
the alternatives' performance on another criterion (Roy and 
Słowiński 2013).

Definition 1.  (Compensatory MCAP). Consider a decision 
problem with multiple criteria G ≔

{
g1, … , gn

}
 and alternatives 

A ≔
{
a1, … , am

}
, where gj

(
ai
)
 denotes the performance of al-

ternative ai on criterion gj. Let ai and ax then be two distinct al-
ternatives from A with aiRax derived from the MCAP, where R is 
the binary preference relation obtained from the MCAP.

We say that the MCAP is compensatory, if there are two crite-
ria gj and gk, such that for a change of gj

(
ai
)
 which alters the 

preference relation aiRax, we can find a corresponding change in 
gk
(
ai
)
 that reinstates the initial preference relation aiRax.

Definition 2.  (Non-compensatory MCAP). Consider a deci-
sion problem with multiple criteria G ≔

{
g1, … , gn

}
 and alter-

natives A ≔
{
a1, … , am

}
, where gj

(
ai
)
 denotes the performance 

of alternative ai on criterion gj. Let ai and ax then be two distinct 
alternatives from A with aiRax derived from the MCAP, where R 
is the binary preference relation obtained from the MCAP.

We say that the MCAP is non-compensatory, for any two criteria 
gj and gk, and any change of gj

(
ai
)
 which alters the preference 

relation aiRax, if there is no corresponding change in gk
(
ai
)
 that 

reinstates the initial preference relation aiRax.

A change in the performance of an alternative ai on a criterion 
gj is henceforth denoted Δgj

(
ai
)
. It is considered a ‘gain’ if it in-

creases the performance difference to the next best alternative 
on the same criterion or reduces the gap to an alternative that 
performs better on this criterion. In turn, a change in perfor-
mance that decreases the performance difference between 
alternative ai and a lower performing alternative on the same 
criterion is considered a ‘loss’. These definitions also apply to 
other initial preference structures, for example, if ai and ax are 
considered indifferent. Compensation can occur if any such per-
formance changes alters a given preference relation between ai 
and any other alternative for a sufficiently large value of Δgj

(
ai
)
.

In addition, we define a total ‘non-compensatory MCAP’ since 
the given definition of non-compensatory MCAPs does not 
cover cases in which a preference relation can not be destroyed 
by the stated performance substitutions due to the nature of the 
aggregation process (Fishburn 1976; Roy and Mousseau 1996).

Definition 3.  (Totally non-compensatory MCAP). An 
MCAP is considered totally non-compensatory if the preference 
situation between two distinct pairs of alternatives 

(
ai, ax

)
 and (

ai′ , ax′
)
 is considered on an ordinal scale on each criterion gj 

(Roy and Mousseau 1996). That is, the preference relation is in-
dependent from the difference in performance and there is no 
possibility of compensation relative to any criterion, so that

holds for all alternatives a′
𝚤
 and a′x that are deduced from (ai, ax) 

by changing their performance on any criterion without altering 
the ordinal order of alternatives on a criterion. Thus, in a totally 
non-compensatory MCAP there is no possibility for compensa-
tory effects between different criteria as long as the preferential 
profile of alternatives is kept (Bouyssou 1986).

3   |   The PROMETHEE I and II Methods

Given these definitions, outranking approaches following 
the concordance-discordance principle generally can be con-
sidered non-compensatory. However, PROMETHEE I and 
II are outranking methods that do not strictly follow the 
concordance-discordance principle. Instead, they establish 
a ranking of alternatives based on a set of valued outrank-
ing relations (Brans et  al.  1986). This means that a numeric 
value, describing the intensity of a preference relation, is at-
tached to a pair of alternatives (Bouyssou and Pirlot 2009). In 
PROMETHEE, the valued outranking relations are used to 
establish scores or outranking flows, which represent the per-
formance of an alternative compared to the other alternatives 
(Brans and De Smet 2016).

To determine the outranking flows, the differences between 
performances of each pair of alternatives from A are computed 
for all criteria in the first step:

(1)
[
aiRax = a�

𝚤
Ra�x ∧ axRai = a�xRa

�

𝚤

]

(2)
dj
(
ai, ax

)
= gj

(
ai
)
−gj

(
ax
)
, ∀ai, ax ∈A

j=1, … ,n
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By means of a preference function  it is then possible to calcu-
late the individual preferences of the DM:

A preference function is a monotonic function of dj
(
ai, ax

)
 and 

maps the intra-criterial preferences of the DM, normalised to 
the interval [0, 1], while Equation (4) holds, so that the prefer-
ence function for criteria to be minimised is as in Equation (5).

In general, the shape and definition of a preference function can 
be selected by the DM. To reduce the cognitive load of modelling, 
a set of six non-decreasing preference functions has been estab-
lished which are considered suitable for most contexts (Brans and 
De Smet 2016). These functions and their parameters are depicted 
in Table A1 in the Appendix A. Depending on the shape of the 
preference function, additional threshold parameter values may be 
elicited from the DM. The indifference threshold qj delimits situ-
ations in which the difference in performance between two alter-
natives is too small to allow any statement of preference for either. 
Parameter pj models the threshold for a situation of strict prefer-
ence. The inflection point �j of the Gaussian criterion (type VI) 
allows to model the DM's sensitivity towards performance differ-
ences in a non-linear manner, as depicted in Table 1. A lower value 
results in greater sensitivity to small differences in performance 
(single dot-dash line ⋅ −), while a relatively high value means that 
preference sensitivity for large differences in performance be-
tween two alternatives is higher (double dot-dash line ⋅ ⋅ −).

The DMs intra-criterial preferences are then aggregated to 
a global preference index for all pairs of alternatives as in 
Equation (6):

A weighting coefficient wj ≥ 0 denotes the relative importance 
of each criterion gj.

The preference indexes can then be used to compute the out-
ranking flow scores of an alternative:

The positive flow score denoted �+ aggregates the evidence 
from all pairwise comparisons that reinforce a situation of 
preference for an alternative over all the other alternatives 
under consideration; the negative flow score �− in turn sums 
up all evidence speaking against such a statement (Linkov 
et al. 2021, 9).

In PROMETHEE I, ⟨P, I , J⟩ preference structures are established 
based on the positive and negative flow scores.

Thus, the PROMETHEE I ranking of alternatives for a given 
decision problem is the intersection of the rankings obtained 
from the positive and negative flow scores and forms a par-
tially ordered set (Brans and De Smet 2016; Dejaegere and De 
Smet 2023).

The PROMETHEE II method yields a total ranking of al-
ternatives and ⟨P, I⟩ preference structures by means of the 
PROMETHEE net flow:

where

is the single criterion flow of an alternative with respect to cri-
terion gj ∈ G.

(3)
j

(
ai, ax

)
=j

(
dj
(
ai, ax

))
, ∀ai, ax ∈A

j=1, … ,n

(4)j

(
ai, ax

)
> 0⇒ j

(
ax , ai

)
= 0

(5)j

(
ai, ax

)
= Fj − dj

(
ai, ax

)

(6)�
(
ai, ax

)
=

n∑
j= 1

wj ⋅ j

(
ai, ax

)
∀ai, ax ∈ A

(7)

�+
(
ai
)
=

1

m−1

∑
ax∈A

�
(
ai, ax

)
∀ai∈A

�−
(
ai
)
=

1

m−1

∑
ax∈A

�
(
ax , ai

)
∀ai∈A

(8)

aiP
Iax ⇔

⎧
⎪⎨⎪⎩

𝜙+
�
ai
�
≥𝜙+

�
ax
�
∧𝜙−

�
ai
�
<𝜙−

�
ax
�

or

𝜙+
�
ai
�
>𝜙+

�
ax
�
∧𝜙−

�
ai
�
≤𝜙−

�
ax
�

aiI
Iax ⇔𝜙+

�
ai
�
=𝜙+

�
ax
�
∧𝜙−

�
ai
�
=𝜙−

�
ax
�

aiJ
Iax ⇔

⎧
⎪⎨⎪⎩

𝜙+
�
ai
�
<𝜙+

�
ax
�
∧𝜙−

�
ai
�
<𝜙−

�
ax
�

or

𝜙+
�
ai
�
>𝜙+

�
ax
�
∧𝜙−

�
ai
�
>𝜙−

�
ax
�

(9)�net
(
ai
)
= �+

(
ai
)
− �−

(
ai
)
=

n∑
j= 1

�j
(
ai
)
⋅ wj

(10)�j
(
ai
)
=

1

m − 1

∑
ax ∈A

[
j

(
ai, ax

)
− j(ax , ai)

]

TABLE 1    |    Decision table with three alternatives and four criteria used in the stereotypical cases.

Criterion Performance Preference information

Name A1 A2 A3 wj Polarity Function

g1 g1
(
A1

)
g1
(
A2

)
g1
(
A3

)
w1 Max 1

g2 g2
(
A1

)
g2
(
A2

)
g2
(
A3

)
w2 Max 2

g3 g3
(
A1

)
g3
(
A2

)
g3
(
A3

)
w3 Max 3

g4 g4
(
A1

)
g4
(
A2

)
g4
(
A3

)
w4 Max 4
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The total ranking of all alternatives is then given by ordering them 
according to their net flow scores, while indifference may occur:

The PROMETHEE method family also provides methods for 
sorting (Figueira et  al.  2005; De Smet  2019) and choice prob-
lems (Brans and Mareschal 1992). For a complete overview of 
PROMETHEE methods (Brans and De Smet 2016; Belton and 
Stewart 2002), or the encompassing survey paper on their de-
velopment, extensions and future directions (Brans  2015), we 
kindly refer the reader to the respective literature.

4   |   Compensation in the PROMETHEE Methods

Since the PROMETHEE methods do not strictly follow the 
concordance-discordance principle, they exhibit a varying com-
pensation behaviour that can be either non-compensatory or explic-
itly allow for compensatory effects between criteria. Specifically, 
the valued outranking relations that the PROMETHEE methods 
produce allow for compensation based on the elicitation or selec-
tion of preference functions, preference parameters and criteria 
weights. The compensation behaviour of these methods thus de-
pends on the choices made during the elicitation and modelling 
of the decision problem. The information that is required to con-
struct these valued outranking relations, namely the outranking 
flows, also allows one to capture compensatory effects of the 
PROMETHEE methods and characterise determinants for com-
pensation. This will be the focus of this section.

4.1   |   Characterising the Compensation Behaviour 
of the PROMETHEE II Method

The compensatory behaviour of the PROMETHEE methods is 
connected to the valued outranking relations that are produced 
to establish a ranking of alternatives. In order to characterise 
the compensation behaviour of the PROMETHEE methods, 
selected stereotypical cases are analysed. We limit the analysis 
of the compensatory behaviour to PROMETHEE I and II since 
they are the main methods of this family and are intended to be 
used for ranking problematics.

The stereotypical cases comprise a set of three decision alter-
natives that are to be evaluated against a set of four cardinal 
criteria that are to be maximised, so that:

•	 A =
{
A1,A2,A3

}
,

•	 G =
{
g1, g2, g3, g4

}
, and

•	 gj ∈ [0,100].

The alternatives' performances, the chosen preference function 
for each criterion and the corresponding criteria weights are to be 
varied according to the studied case, leading to the generic deci-
sion table presented in Table 1, which summarises the structure 
of the studied decision problems and the nomenclature adopted 
in this study. This forms the starting point for the analysis of the 
PROMETHEE methods' compensatory properties. Subsequently, a 
change in the performance of a selected alternative with regards to 
a specific criterion is introduced (formally denoted Δgj

(
Ai

)
). In the 

cases presented here, this change represents a performance loss (or 
gain) whose effect on the outranking flows is to be compensated 
for by means of a performance increase (decrease) of the same al-
ternative on another criterion (denoted Δgk

(
Ai

)
). It is also analysed 

how the selection of preference functions, threshold parameters 
and criteria weights influence the compensatory behaviour.

4.1.1   |   The Equivalence of PROMETHEE II to 
Additively Aggregating MCAPs

Certain instances of additively aggregating MCAPs (e.g., 
SAW or MAVT/MAUT with linear value functions and an 
additive model) are equivalent to PROMETHEE II with type 
III preference functions and sufficiently large threshold pa-
rameters, as shown by Geldermann and Schöbel  (2011) or 
Mareschal  (2015). For these instances, both methods also 
exhibit comparable compensation behaviour, where a loss in 
performance on one criterion can be fully offset by a corre-
sponding gain on another criterion. It may therefore be argued 
that the PROMETHEE II method is fundamentally compen-
satory according to the definition adopted in this work (see 
Section 2.3).

An exemplary model of PROMETHEE that corresponds to 
an MAVT model with linear value functions and an additive 
aggregation function is stated in Table  2. The criteria in the 
PROMETHEE model are modelled via the widely used linear 
preference function (type III) and the preference threshold is 
set to the performance difference between the best and worst 
performing alternative for each criterion (pj = gmax

j
− gmin

j
). 

Using the piecewise linear preference functions of type V with 
pertinent parameterisation is likewise possible in this example 
(Geldermann and Schöbel 2011).

(11)
aiP

IIax ⇔𝜙net
(
ai
)
>𝜙net

(
ax
)

aiI
IIax ⇔𝜙net

(
ai
)
=𝜙net

(
ax
)

TABLE 2    |    Decision table with three alternatives, four criteria and preference information to be used for the application of the PROMETHEE 
methods.

Criterion Performance Preference information

Name A1 A2 A3 wj Polarity Function pj

g1 100 10 15 0.25 Max Type III 90

g2 0 90 70 0.25 Max Type III 90

g3 13 21 66 0.25 Max Type III 53

g4 78 100 42 0.25 Max Type III 58
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The alternatives' global values and �net scores after aggrega-
tion according to MAVT and PROMETHEE II are shown in 
Figure  1. They are indicated by the square marks connected 
by a solid line. According to both methods, the total ranking 
of alternatives is A2 ≻ A3 ≻ A1, while ≻ denotes a situation of 
preference. Furthermore, Figure  1 displays the equivalent 
compensation behaviour of both methods. One can identify a 
performance gain of A3 on the first criterion that dissolves the 
preference relation between A2 and A3 and yields indifference 
between these alternatives for both methods. In this case, such 
a Δg1

(
A3

)
 takes the value of 28.6. The global values, as well as 

the net flows of A2 and A3, denoted V ′ and �′

net are equal after the 
performance increase of A3 on criterion g1. This is visualised by 
the two horizontally aligned dotted lines. Given equal criteria 
weights, a corresponding performance loss on the second cri-
terion, Δg2

(
A3

)
= − 28.6, reestablishes the original preference 

relations as well as the exact scores for V
(
A3

)
 and �net

(
A3

)
.

This behaviour can be generalised, so that the extent of required 
performance gain on criterion g2 to compensate for a loss on g1 is

It depends on the ratio of the criteria weights, as well as the prefer-
ence thresholds of both of the involved criteria to account for dif-
ferent units of measurement. Furthermore, the condition that the 
linear preference function (type III) is used and parameterised so 
that it is equally shaped to a linear value function must hold:

We do not recommend to design a type III preference func-
tion according to Equation  (13) in practical application and 
further discussing it in Section  5.3. The generalised proof for 
Equation (12) can be found in the Appendix A.

Despite the adjusted performances, the �net scores for all other 
alternatives also remain constant after applying performance 

changes of Δg1
(
A3

)
= 28.6 and Δg2

(
A3

)
= − 28.6, as the orange 

bar in the three panels on the right hand side of Figure 2 shows.

Given the methods pairwise-comparison logic to produce a set of 
valued outranking relations this is not necessarily expected. The 
compensating effect that is responsible for this circumstance 
becomes visible upon investigation of corresponding single cri-
terion flows. The bottom right panel shows the single criterion 
flows for Alternative 3. Compared to the single criterion flows 
before the performance adjustments, which is indicated by the 
shaded area, the relative weakness of A3 regarding criterion 
g1 is reduced while the contrary happens for the performance 
on criterion g2. In a non-compensatory setting, this change in 
single criterion flows would not happen. Logically, the sin-
gle criterion flows of A1 and A2 are also changing on the two 
performance-adjusted criteria due to the PROMETHEE calcu-
lation procedure. This means that across all three alternatives, 
only the single criterion flows regarding the first two criteria are 
changing. All other single criterion flows remain constant. The 
corresponding effect of performance substitution for the MAVT 
model with additive aggregation function and other value aggre-
gation methods is extensively studied by Langhans et al. (2014).

4.1.2   |   Non-Compensatory Modelling in 
PROMETHEE II

However, there are also modelling variants of PROMETHEE II 
where compensatory effects are largely or even completely avoided.

If compensation needs to be avoided, this can be done quite in-
tuitively by changing the preference function of the affected cri-
teria. The results of switching to a type I preference function for 
criterion g1 and g2 for the stated decision problem are given in 
Table 3. Following the definition of this preference function, the 
performance alterations Δg1

(
A3

)
= 28.6 and Δg2

(
A3

)
= − 28.6 

do neither affect the PROMETHEE net flows nor the single cri-
terion flows. Thus, compensatory effects can not occur when 
confining to this preference function type.

Due to the calculation logic of the outranking flows and the 
piecewise definition of the remaining preference function types, 

(12)Δg2
(
Ai

)
=
p2 ⋅ w1

p1 ⋅ w2

⋅ Δg1
(
Ai

)

(13)j

�
dj
�
=

⎧⎪⎨⎪⎩

0 dj≤0

dj

gmax
j

−gmin
j

0≤ gmaxj −gminj

FIGURE 1    |    Global values and PROMETHEE net flows for decision problem in Table 2 and effects of changing the performance of A3 on g1.



8 of 21 Journal of Multi-Criteria Decision Analysis, 2025

FIGURE 2    |    PROMETHEE single criterion flows and net flows for the decision problem in Table 2 (panels on the left half). The three panels on 
the right side highlight the compensatory effects when decreasing the performance of A3 on g1 and compensating for this loss by a gain on criterion 
g2. Although the PROMETHEE net flows of A3 remain similar since the loss is compensated, the compensation becomes observable in the changed 
single criterion flows for the two affected criteria (�1 and �2 in this instance).

TABLE 3    |    PROMETHEE single criterion flows and net flows for the decision problem in Table 2 before and after altering the performance of A3 
on criterion g1 and g2 by −28.6 and 28.6 points.

Criteria performance Alternative

PROMETHEE flows

�1

(

ai
)

�2

(

ai
)

�3

(

ai
)

�4

(

ai
)

�net(ai
)

g1
(
A3

)
= 70; g2

(
A3

)
= 15 A1 0.25 −0.25 −0.144 0.03 −0.114

A2 −0.25 0.25 −0.087 0.172 0.085

A3 0 0 0.231 −0.203 0.029

g1
(
A3

)
= 43.6; g2

(
A3

)
= 41.4 A1 0.25 −0.25 −0.144 0.03 −0.114

A2 −0.25 0.25 −0.087 0.172 0.085

A3 0 0 0.231 −0.203 0.029

Note: Criteria g1 and g2 are modelled via the usual preference function of type I. The linear preference function and parameterisation is kept for g3 and g4. The net 
flows (bold) of an alternative are the sum of the single criterion flows.
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it is more difficult to generalise non-compensatory behaviour 
when they are used. That is because for each criterion an alter-
native's net flow depends on the pairwise performance differ-
ence to all other alternatives on this criterion. This creates a lot 
of possible cases, depending on the selected preference function 
for the criteria and the specification of threshold parameters.

For example, the type II preference function introduces an indif-
ference area to the usual preference function of type I. The possible 
cases resulting from the introduction of this indifference area are 
generically depicted in Figure 3. Initially, the performance differ-
ence between two alternatives dj

(
ai, ax

)
 is large enough, so that ai 

is preferred over ax on this criterion with a preference index j = 1 
(Situation 1 in Figure 3, coloured in dark blue).

If the introduced performance loss Δgj
(
ai
)
 takes a small enough 

negative value so that dj > qj holds as initially, then the net flow 
of ai remains unaffected (Situation 2a, light blue). In this case, the 
preference function behaves analogously to the type I preference 
function and no compensation by a performance increase on an-
other criterion is necessary. In turn, if the performance loss leads 
to a pairwise performance difference of dj ≤ qj (situation 2b, yel-
low colour), the value of j

(
ai
)
 and thus the net flows can change. 

Then there can be situations in which a large enough gain on an-
other criterion Δgk

(
ai
)
 is able to reinstate the initial net flow of an 

alternative ai. Vice versa, criteria that are defined via a preference 
function of the second type are not necessarily able to compensate 
for a loss that is occurring on another criterion.

Understanding the effects of performance changes on the pair-
wise evaluations, as well as the calculation logic of the single 
criterion net flows is crucial to generalise other possible occur-
rences of compensation in the PROMETHEE II method.

4.1.3   |   Capturing Occurrences of Compensation in 
PROMETHEE II

The prerequisite for the occurrence of compensation in 
PROMETHEE II is a change in the single criterion flows of an 

alternative (denoted �j
(
ai
)
) following a change in performance 

scores. If a performance score change does not affect the single 
criterion flows, it can neither compensate for losses on other cri-
teria nor does it require compensation to maintain the outrank-
ing flows at their initial value.

It is possible to determine the bounds of performance changes 
for which the single criterion flows of a given decision prob-
lem remain constant. The intervals that are deduced from these 
bounds reflect the performance deviations for each alternative 
and criterion that do not affect the net flows and therefore the 
PROMETHEE II ranking in any way. Vice versa, they also de-
scribe the range in which a performance change of an alter-
native is not able to compensate for any kind of performance 
loss on another criterion. This kind of information is benefi-
cial to analyse the susceptibility of a given decision problem 
towards compensation or to gain insight into its compensatory 
behaviour.

To calculate these bounds, the derivative of each single criterion 
net flow is to be determined as in Equation (14).

Solving the derivative to zero then yields the interval of per-
formance scores where the single criterion net flows remain 
constant for a given alternative and criterion. The derivatives 
of all six PROMETHEE preference function types are given in 
Equations (15–20) of the following paragraph.

4.1.3.1   |   Derivatives of the Single Criterion Net Flows 
for PROMETHEE Preference Functions.  Type I (usual 
criterion):

Type II (quasi-criterion):

Type III (linear criterion):

(14)

��j
(
gj
(
ai
))

�gj
(
ai
) =

[
1

m − 1

∑
ax ∈A

[
j

(
gj
(
ai
)
− gj

(
ax
))

− j

(
gj
(
ax
)
− gj

(
ai
))]]

(15)

𝜕𝜙j
(
gj
(
ai
))

𝜕gj
(
ai
) =

[
1

m−1

∑
ax∈A

({
0 gj

(
ai
)
−gj

(
ax
)
≤0

1 gj
(
ai
)
−gj

(
ax
)
>0

−

{
0 gj

(
ax
)
−gj

(
ai
)
≤0

1 gj
(
ax
)
−gj

(
ai
)
>0

)]

(16)

𝜕𝜙j
(
gj
(
ai
))

𝜕gj
(
ai
) =

[
1

m−1

∑
ax∈A

({
0 gj

(
ai
)
−gj

(
ax
)
≤qj

1 gj
(
ai
)
−gj

(
ax
)
>qj

−

{
0 gj

(
ax
)
−gj

(
ai
)
≤qj

1 gj
(
ax
)
−gj

(
ai
)
>qj

)]

(17)

𝜕𝜙j
�
gj
�
ai
��

𝜕gj
�
ai
� =

⎡⎢⎢⎢⎢⎢⎣

1

m−1
⋅

�
ax∈A

⎛⎜⎜⎜⎜⎜⎝

⎧⎪⎪⎨⎪⎪⎩

0 gj
�
ai
�
−gj

�
ax
�
≤0

gj
�
ai
�
−gj

�
ax
�

pj
0< gj

�
ai
�
−gj

�
ax
�
≤pj

1 gj
�
ai
�
−gj

�
ax
�
>pj

−

⎧⎪⎪⎨⎪⎪⎩

0 gj
�
ax
�
−gj

�
ai
�
≤0

gj
�
ax
�
−gj

�
ai
�

pj
0< gj

�
ax
�
−gj

�
ai
�
≤pj

1 gj
�
ax
�
−gj

�
ai
�
>pj

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦

FIGURE 3    |    The varying effects after the introduction of a perfor-
mance loss in the type II criterion. The initial pairwise comparison be-
tween two alternatives prior to introducing any performance change (S1) 
is highlighted in blue. Introducing a small enough performance change 
does not lead to a different value on the preference function (situation S2, 
displayed in grey). Only the introduction of a performance change that 
is large enough to shift the performance difference between two alterna-
tives beyond the indifference threshold (situation S′

2
, indicated in yellow 

colour) can lead to changes in single criterion and thus net flows.



10 of 21 Journal of Multi-Criteria Decision Analysis, 2025

Type IV (level criterion):

Type V (linear criterion with indifference area):

Type VI (Gaussian criterion):

4.1.3.2   |   Compensation Sensitivity Analysis.  Table 4 dis-
plays these bounds, or flow insensitivity intervals, at hand of an 

exemplary decision problem. For demonstrative purposes, differ-
ent preference functions, compared to the previously discussed 
cases, are chosen. Two important implications for the occur-
rence of compensation can be extracted from Table 4. In com-
bination, they provide measures to capture the sensitivity of a 
given decision model towards compensatory effects.

First, the performance scores are stated along with their bounds. 
For all performance scores within the bounds, the single criterion 
net flow is constant since the slope of its tangent equals 0, that is, 
the flows are not changing when the performance score is altered. 
This property is independent of the criteria weights. It is to be re-
marked that only the constant regions for performance scores in 
the interval [0, 100] are displayed in the table to match the scale 
of the criterion. Other possible constant regions, for example, for 
negative performance scores are omitted. The constant regions of 
all single criterion net flow functions beyond the interval [0, 100] 
and their calculation are stated in the Supporting Information. 
It is also observable in Table 4, that for some criteria the intra-
criterial dominance relations can be violated without affecting 
the outranking flows at all. For example, for g1

(
A2

)
= 37, the cri-

terion becomes the second best alternative on criterion g2 while 
the (single criterion) net flows and preference relations remain 
unaffected. This implies that the evaluation of Alternative A2 is 
relatively insensitive towards compensatory effects with regards 
to criterion g1. Even relatively large performance changes on this 
criterion are not able to compensate changes on other criteria.

Second, the resulting range of performance changes that do not 
affect the single criterion net flows are derived from the per-
formance score bounds and denoted as Δgj

(
ai
)
. These intervals 

provide an essential point of departure to characterise the com-
pensation behaviour in PROMETHEE II since they quantify the 
(in)sensitivity of a given decision model towards compensatory 
effects The general interpretation of these flow insensitivity in-
tervals is further exemplified at hand of Alternative 3 and crite-
rion g1 in Figure 4.

As depicted, the criterion is defined via the level preference 
function of type IV with an indifference threshold of 22.5 and 

(18)
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TABLE 4    |    Range of performance scores that does not affect the PROMETHEE single criterion flows and resulting range of performance changes 
that can not compensate or require compensation.

Criterion

g1 g2 g3 g4

Function Type IV Type V Type II Type II

pj 90 90 — —

qj 22.5 22.5 13 15

gj
(
A1

)
100 (37.5,100] 0 {} 13 [8, 34] 78 (57, 85)

gj
(
A2

)
10 [10,37.5] 90 [90,92.5] 21 [0, 26] 100 (93,100]

gj
(
A3

)
15 [10,32.5] 70 {} 66 (34,100] 42 [0, 63)

Δgj
(
A1

)
( − 62.5,0] {} [ − 5, 21] (−21, 7)

Δgj
(
A2

)
[0,27.5] [0,2.5] [ − 21, 5] ( − 7, 0]

Δgj
(
A3

)
[ − 5,17.5] {} ( − 32, 34] [ − 42, 21)
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a preference threshold of 90. Furthermore, the differences 
from the pairwise performance comparisons of alternatives 
that are relevant for the calculation of the net flows are in-
dicated in blue colour. The performance difference of A3 to 
A2 is not sufficient to pass the indifference threshold of 22.5 
(d1

(
A3,A2

)
), while the relative weakness of the third alterna-

tive compared to the first one (d1
(
A1,A3

)
) negatively affects 

the single criterion flow of A3 on criterion g1. These properties 
hold as long as g1

(
A3

)
 is not decreased by more than 5 and 

increased by more than 17.5. In this interval, all pairwise com-
parisons remain in the same region of the piecewise defined 
preference function.

Assume the performance score of A3 on criterion g1 increases 
by 20 units, affecting the pairwise comparisons as indicated in 
Figure 4. For most pairwise evaluations this causes no change 
in single criterion flows (indicated in grey colour), whereas the 
pairwise comparison between A3 and A2 reaches the next part of 
the piecewise defined preference function (yellow colour). This 
increases �net

(
A3

)
 from 0.025 to 0.088.

In turn, if this performance score increase of A3 on the first 
criterion is accompanied by a corresponding performance de-
crease on the second criterion, the net flow of A3 can be main-
tained. This is possible because criterion g2 is defined via the 
fifth preference function type and the performance scores are 
shifted in the linear part of the preference function. The effect 
of a performance change Δg2

(
A3

)
= − 18.3 that re-establishes 

the original net flow of 0.025 is visualised in Figure 5. The two 
changes that are marked in yellow colour are jointly responsible 
for the reduction in single criterion net flow of A3. Although it 
may appear counter-intuitive, both of these observed shifts lead 
to a reduction in net flows of the third alternative. As indicated, 
the pairwise comparison 

(
A2,A3

)
 leads to a marked increase in 

arguments against the preference of A3 compared to A2, passing 
the indifference threshold of 22.5. In turn, the pairwise com-
parison 

(
A3,A1

)
 weakens the favourable evaluation of the third 

alternative.

While these changes make it possible to restore the original net 
flow of A3, the net flows of A1 and A2 are different from what 
they were before these interventions. In contrast to the fully 
compensatory case shown in Section 4.1.1, the net flows of all 
alternatives can not be reinstated given the selected preference 
functions in this case. It resembles an instance of partial com-
pensation in PROMETHEE II.

In addition, some performance scores are affecting pairwise 
comparisons which are located at a linear part of a preference 
function, for example, as for g2

(
A2

)
. For them, every change 

would result in a change in outranking flows, leading to an 
empty interval of possible performance changes. The effects of 
all performance changes that are stated in Table 4 on the pair-
wise evaluations are visualised in the Supporting Information.

4.2   |   Compensation in PROMETHEE I

The PROMETHEE I preference relations are established based on 
a comparison of positive and negative flow scores for each pair of 
alternatives (see Equation 8). For calculating the positive flows, the 
preference indices from the pairwise comparisons of a given alter-
native with all other alternatives are summed up (Equation 7). In 
other words, only the flows that favour this alternative are able to 
increase the positive flow. The negative flows are obtained from 
the pairwise comparisons of all other alternatives with a given one, 
that is, only the pairwise comparisons where this alternative per-
forms worse do increase the negative flow. Since the PROMETHEE 
net flow is the difference between the positive and negative flows 
(Equation  9), the compensatory properties determined in the 

FIGURE 4    |    Pairwise evaluation of alternative A3 on criterion g1 and 
effects of introducing performance changes. The dashed blue lines indi-
cate the initial points of pairwise comparisons on the preference func-
tions. An improvement of A3 on g1 by 20 units changes its pairwise eval-
uation with the other alternatives on this criterion (represented by the 
shaded areas). The direction of the shift (represented by arrows) depends 
on whether A3 is being compared with another alternative, or whether 
one of the other alternatives is being compared against A3. Depending 
on the location on , this may affect the single criterion flows (dashed 
yellow line) or not (dashed grey lines).

FIGURE 5    |    Pairwise evaluation of alternative A3 on criterion g2 and 
effects of introducing performance changes. Pairwise evaluations of A3 
against A1 and A2 (and vice versa) before the performance change are 
indicated in blue. Shifts on  as a results of decreasing the performance 
of A3 on criterion g2 (shaded grey areas) that lie on the linear part of the 
preference functions lead to changes in single criterion flows (highlight-
ed in yellow). Since the relative position of A3 against A2 and A1 resp. is 
weakened in both cases, both of these shifts decrease the net flow of A3. 
Shifts represented via dashed grey lines do not alter the flows.
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previous section also hold for the PROMETHEE I ranking. Within 
the bounds that are obtained via Equation (14), compensatory ef-
fects can also not occur in PROMETHEE I.

Beyond these bounds, compensatory effects can also occur in 
PROMETHEE I. That means, the partial preorder that is created 
based on the positive and negative flow scores in PROMETHEE 
I is susceptible to compensatory effects. There can occur perfor-
mance changes on a criterion for a given alternative that are able to 
reinstate a preference structure that has been previously destroyed 
by a change in that alternative's performance on another crite-
rion in PROMETHEE I. However, the extent of the performance 
change that is required to destroy and subsequently reestablish a 
PROMETHEE I preference structure does not necessarily match 
the extent of changes that is required to alter the PROMETHEE 
II ranking. For example, a given Δgj

(
ai
)
 may therefore be high or 

low enough to suggest that two alternatives become incompara-
ble, while the PROMETHEE II preference relations still hold for 
the same two alternatives. The same holds for the corresponding 
performance change Δgk

(
ai
)
 that is able to reestablish the original 

PROMETHEE I preference relation. While it definitely will affect 
the single criterion flows, it may or may not be high enough to af-
fect the PROMETHEE II preference relations.

5   |   Implications and Discussion

The results presented in the previous section demonstrate that 
a decision problem evaluated using the PROMETHEE methods 
can be subject to compensatory effects. In this section, the prac-
tical implications of the analysis are examined at hand of a real-
world environmental management case study. Furthermore, the 
results are discussed in relation to the central assumptions and 
definitions of this work.

5.1   |   Guidelines to Control Compensation in 
the PROMETHEE Methods

Compensation manifests in the single criterion flows and can 
influence the PROMETHEE net flows, potentially affecting the 
preference structures derived from them. Under full compensa-
tion, changes in single criterion flows do not affect the net flows. 
Conversely, in a non-compensatory setting, any loss or gain in 

single criterion flows is fully transferred to an alternative's net 
flow. In a partially compensatory setting, changes in net flow can 
be counterbalanced to some extent by adjustments in other single 
criterion flows. Compensatory effects may either be deliberately 
incorporated or only partly desired for certain criteria, or they may 
be explicitly avoided, depending on the nature of the decision prob-
lem and the preferences of the decision maker (DM).

Table 5 proposes a general set of guidelines for designing and 
parameterising a PROMETHEE model to control compensa-
tion. These guidelines assist analysts and practitioners during 
the modelling stage in addressing compensation issues. Special 
emphasis is placed on selecting the six preference functions pro-
vided by PROMETHEE and on the compensatory interactions 
between pairs of criteria (or preference functions).

For criteria modelled using the type I preference function, no 
change in performance score will lead to changes in the outrank-
ing relations, unless an alternative gets better compared to any 
other one with regard to this criterion. In these cases (marked with 
an asterisk* in Table 5), compensation is possible, and whether par-
tial or full compensation can be achieved depends on the criteria 
weights. This requires careful handling by the analyst to avoid un-
wanted compensatory effects. We will underpin this special case 
and its practical implications at hand of a real-world case study in 
Section 5.2.2. Otherwise, compensation is neither required nor is 
it possible for criteria modelled with a type I preference function to 
compensate for losses in other criteria.

If an indifference area is introduced to the type I preference 
function, as in the type II criterion, compensating effects may 
immediately occur. A performance change that is large enough 
to affect the evaluation of an alternative can then be compen-
sated by a large enough performance change on another cri-
terion. If this other criterion is also modelled as type II, full 
compensation is possible (adjusted for the criteria weights). 
Criteria of type III, IV, V or VI are able to at least partially com-
pensate for the loss in single criterion flows of a type II criterion. 
The precondition for the occurrence of partial compensation is 
that the performance change in the compensating criterion is 
substantial enough to shift a pairwise comparison of alterna-
tives to a different piece of the function. The initial outranking 
flows of all alternatives, however, will most likely not be fully 
reestablished by this change.

TABLE 5    |    Type of preference function and possible extent of compensation in the PROMETHEE methods.

Type of compensating criterion

Type I Type II Type III Type IV Type V Type VI

Type of criterion to be compensated Type I —* —* —* —* —* —*

Type II —* —/● —/ —/

Type III —* —/ ● —/ —/

Type IV —* —/ —/ /● —/

Type V —* —/ —/ —/ /●

Type VI —* —/ —/ —/ /●

Note: ●: Full compensation; : Partial compensation; —: No compensation; *: Compensation possible in special cases. Type I: Usual criterion; Type II: Usual criterion 
with indifference; Type III: Linear criterion; Type IV: Level criterion; Type V: Linear criterion with indifference; Type VI: Gaussian criterion.
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Changes in performance on type III criteria induce outranking 
flow alterations in most situations. A corresponding change on a 
second criterion of type II that is substantial enough may then be 
able to partially compensate for this loss. For a pair of two type 
III criteria, even full compensation is possible, as demonstrated 
in Section 4.1.1. A special case is the interaction between criteria 
of type III and V. Since an indifference area is introduced in the 
latter, compensation does not necessarily occur and it may also 
not be guaranteed to identify a performance change that fully 
reinstates the initial outranking flows, although this is theoret-
ically possible.

Given the distinct shape of the Gaussian criterion, it does mostly 
lead to partially compensatory characteristics. It is not possible 
to reinstate the outranking flows of all alternatives in decision 
problems with at least three alternatives unless the interacting 
criteria pair is modelled by two equally shaped Gaussian crite-
ria. The same reasoning applies to other combinations of equally 
shaped criteria. Although arriving at equal preference function 
configurations is rather unlikely in practical applications, occur-
rences of full compensation cannot be completely disregarded.

5.2   |   Case Study: Capturing Occurrences 
of Compensation in an Environmental Decision 
Problem

These guidelines provide an initial orientation for practical 
purposes to control compensation in the PROMETHEE meth-
ods. However, they also demonstrate that the compensatory 
properties strongly depend on the structure of the decision 
problem and the PROMETHEE model. The outranking logic of 
PROMETHEE I and II and the piecewise definition of the six 
preference functions make it difficult to derive generalisable rec-
ommendations. At hand of a case study, we now demonstrate 

how the insights of the compensation sensitivity analysis and 
these guidelines can be integrated to attain a finer level of con-
trol over the issue of compensation.

5.2.1   |   Flow Insensitivity Intervals

The decision table stated in Table 6 stems from a real-world en-
vironmental management problem (de Bourgoing et  al.  2022). 
Four different infrastructure concepts for drinking water pro-
duction through seawater desalination and subsequent long-
range transfer are assessed according to PROMETHEE. The 
objectives are from the technical, economic, social, environmen-
tal and political domain. The 11 respective criteria are measured 
in different units of measurement and have been assigned dif-
ferent weights wj. A detailed description of the decision problem, 
the alternatives, criteria and the preference elicitation process 
can be found in Schär  (2024). Besides the alternatives' perfor-
mance scores, the polarity of criteria, the selected PROMETHEE 
preference functions, threshold parameters and the flow insen-
sitivity intervals (see Section 4.1.3.2) are displayed in Table 6.

According to PROMETHEE II, Alternative A4 is ranked first, 
followed by A1, A3 and A2 (Table 7). As shown before, the out-
ranking flows, and thus the ranking, will not be affected by 
performance changes Δgj within the flow insensitivity intervals. 
For example, an increase of g1

(
A1

)
 will have not any effect on 

the outranking flows, as long as 1021.58 < g1
(
A1

)
< 1033.99. It 

is also observable that the outranking flows are very sensitive 
towards performance score changes in a lot of criteria, that is, 
where the flow insensitivity interval is empty and any change in 
performance would affect the flows.

In the presented case, the ranking is highly susceptible to changes 
in input data. Although A4 is preferred over A1 according to both 

TABLE 6    |    Decision table for an environmental management decision problem.

Criterion

Technical Economic Social Environmental Political

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

wj 0.08 0.11 0.06 0.12 0.05 0.09 0.09 0.11 0.07 0.05 0.17

Function type V IV IV III III IV IV V V IV IV

Polarity Min Max Max Min Min Max Max Min Min Max Max

pj 74.38 2 2 0.10 528.64 2 2 5.8 0.09 2 2

qj 37.19 1 1 — — 1 1 2.9 0.05 1 1

gj
(
A1

)
937.4 5 5 1.52 3340 5 5 70 3.91 5 5

gj
(
A2

)
947.2 4 5 1.74 4682 7 7 95 3.89 7 7

gj
(
A3

)
996.8 2 4 1.50 3873 6 5 87 3.67 6 6

gj
(
A4

)
1028.2 3 5 1.34 3022 6 6 80 3.47 5 5

Δgj
(
A1

)
{} {} [ − 1, 0] {} {} {} {} [ − 70,4.2) (−0.07,0.03) {} {}

Δgj
(
A2

)
{} {} [ − 1, 0] ( − 0.12, ∞) ( − 280.36, ∞) {} {} (−2.2,5) (−0.03,0.07) {} {}

Δgj
(
A3

)
{} {} [0, 2] {} {} {} {} (−1.2,2.2) (−0.11,0.13) {} {}

Δgj
(
A4

)
(−6.62,5.79) {} [ − 1, 0] [ − 1.34,0.06) {} {} {} (−4.2,1.2) [ − 3.47,0.11) {} {}
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PROMETHEE I and PROMETHEE II, the flows of both alterna-
tives are relatively close to each other. In such a situation, there 
is a risk that undesired compensatory effects between criteria 
from different objective domains have influence on the rank-
ing. Thus, in addition to a cautious interpretation of the ordinal 
PROMETHEE II ranking, particular attention should be paid to 
the issue of compensation.

Assume the performance of the originally preferred alternative 
A4 on the social criterion g6 reduces by 2. This performance 
change also changes the evaluation, so that A1 is now preferred 
over A4. At the same time, there is an improvement with regard 
to a criterion of another dimension, for example, in g1, which can 
compensate for this effect. In this instance, g6 is of type IV and a 
criterion to be compensated, while g1 is a compensating criterion 
of type V. This constellation allows for partial compensation (see 
Table  5). A performance increase of A4 on g1, for example, by 
20 units, could then reinstate the original ranking of alterna-
tives. This situation is summarised in the first part of Table 8.

In general, there are two different modelling approaches to 
avoid compensation between selected criteria:

1.	 Modifying threshold parameters. This allows retaining the 
preference function types of the criteria concerned. The 
preference thresholds are modified only for selected inter-
actions of performance scores to shift from the partially 
compensatory to the non-compensatory area of a single 
criterion flow function.

2.	 Changing the preference function type of criteria that 
should not be able to compensate for other criteria. In the 

most far-reaching case, preference function type I can be 
selected for such criteria. This drastically reduces the pos-
sibility of compensation.

These general approaches, particularly the latter, should not 
be adopted unconditionally, as an incautious application can 
substantially impact the aggregation results. In certain cases, 
it may even totally counteract the initial intention to avoid 
compensation.

Modifying threshold parameters, while keeping the shape of 
the preference function, could be sufficient to reflect a DMs 
preferences on the issue of compensation. For this, the com-
pensation sensitivity analysis provides helpful starting points. 
Modifications of preference functions, however, should always 
be accompanied by consistency checks with the DM. Referring 
to criterion g1 in this case, this would mean to shift the non-
compensatory areas of the type V preference function. To show-
case, the outranking flows for the performance score g1

(
A4

)
 

are insensitive down to a value of 1021.58 (and up to 1033.99). 
Beyond these bounds, the preference threshold of 74.38 is ex-
ceeded in the pairwise comparisons of A4 with A2 on criterion 
g1. This means single criterion flows change and performance 
changes of A4 on g1 can compensate for performance changes 
on other criteria. Let us assume that this is unwanted. Reducing 
the preference threshold p1, for example, by 20 units to 54.38, 
increases the insensitivity interval of A4 on g1. This also reduces 
the occurrence of undesired compensation mechanism when 
the performance of A4 changes on this criterion. Although this 
approach is not entirely free from interactions, for example, in 
the pairwise comparison of g1

(
A1

)
 with g1

(
A3

)
, these interactive 

effects on the overall evaluation of the alternatives are in most 
cases much smaller compared to those resulting from a change 
in preference functions types.

A change in preference function types represents a more dras-
tic measure to prevent compensatory effects in a PROMETHEE 
model. Indeed, defining criterion g1 as a usual criterion of type 
I may totally prevent changes in single criterion flows when the 
performance of an alternative on g1 changes and thus the abil-
ity of this criterion to compensate for performance changes on 
other criteria. Nevertheless, changing preference function types 
also fundamentally alters the original outranking flows before 

TABLE 7    |    Outranking flows of the decision problem in Table 6 and 
ranking according to PROMETHEE II.

Rank Alternative �+ �− �net

1 Alternative A4 0.307 0.145 0.162

2 Alternative A1 0.281 0.156 0.125

3 Alternative A3 0.148 0.265 −0.117

4 Alternative A2 0.157 0.327 −0.169

TABLE 8    |    Compensation in an environmental management decision problem and one approach to control it.

Performance Function Parameters Ranking

g1
(
A4

)
 = 1028.2 Type V p1 = 74.38 q1 = 37.19 A4 > A1 > A3 > A2

g6
(
A4

)
 = 6 Type IV p6 = 2 q6 = 1

g1
(
A4

)
 = 1028.2 Type V p1 = 74.38 q1 = 37.19 A1 > A4 > A3 > A2

g6
(
A4

)
 = 4 Type IV p6 = 2 q6 = 1

g1
(
A4

)
 = 1008.2 Type V p1 = 74.38 q1 = 37.19 A4 > A1 > A3 > A2

g6
(
A4

)
 = 4 Type IV p6 = 2 q6 = 1

g1
(
A4

)
 = 1008.2 Type V p1 = 54.38 q1 = 37.19 A1 > A4 > A3 > A2

g6
(
A4

)
 = 4 Type IV p6 = 2 q6 = 1
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possible compensatory effects and may not adequately map the 
preferences of the DM. In addition, there is even a risk to allow 
for full compensation on criteria where the alternatives perform 
relatively similar. The following example will highlight the ben-
efits and drawbacks of this approach to control compensation.

5.2.2   |   Compensatory Properties of the Type I 
Preference Function

As noted above, changing to a type I preference function 
does not necessarily eliminate the issue of compensation in a 
PROMETHEE model. It does, however, substantially reduce 
the sensitivity of it towards compensatory effects. Consider the 
same decision problem as in Table 8 with the only modifications 
being (i) criteria g1 and g9 are both of type I and (ii) all criteria 
weights are equal. These changes lead to larger flow insensitiv-
ity intervals compared to the initial model, as Table 9 shows. An 
analogous pattern could be observed if other criteria than g1 or 
g9 were changed to type I.

At the same time, changing to a type I preference function can 
also create unwanted instances of full compensation. This hap-
pens when the alternatives' performances markedly change be-
yond the flow insensitivity intervals. Figure 6 displays the single 

criterion and net flows when the performance of A4 on criteria g1 
and g9 changes beyond the flow insensitivity intervals displayed 
in Table 9. In a first step, g9

(
A4

)
 is increased by 0.2 units. G9 is 

an environmental criterion and to be minimised, so that this 
change reflects a performance loss. The striped bars indicate the 
new flows after this change is applied. The performance loss of 
A4 on the environmental criterion g9 leads to a rank change so 
that A1 becomes the preferred alternative. In a second step, the 
performance score of A4 on the technical criterion g1 is reduced 
by 31.4 units. Since g1 is also to be minimised, it reflects a perfor-
mance gain. The effects that this change has are visualised by 
the dotted bars in the figure. The introduced performance gain 
on g1 fully compensates the loss in flows on g9 and reinstates the 
initial net flows and rank order. The single criterion flows on all 
other criteria are not affected by the performance changes and 
thus not displayed.

This example highlights that the previously introduced guide-
lines offer starting points for considering the issue of compen-
sation in the PROMETHEE modelling process. In addition, 
the flow insensitivity intervals offer a more detailed means to 
analyse the occurrence and extent of compensation in a targeted 
manner. They are particularly potent if additional information 
on the uncertainty in the performance scores is known. In this 
case, preference thresholds can be modified considering this 

TABLE 9    |    Flow insensitivity intervals for an environmental management decision problem with adapted preference functions.

Criterion g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

Function type I IV IV III III IV IV V I IV IV

Δgj
(
A1

)
[ − 937.4 ,9.8) {} [ − 1, 0] {} {} {} {} [ − 70,4.2) ( − 0.02, ∞) {} {}

Δgj
(
A2

)
(−9.8 ,49.6) {} [ − 1, 0] ( − 0.12, ∞) ( − 280.36, ∞){} {} (−2.2,5) (−0.22 ,0.02) {} {}

Δgj
(
A3

)
(−49.6 ,31.4) {} [0, 2] {} {} {} {} (−1.2,2.2) (−0.2 ,0.22) {} {}

Δgj
(
A4

)
( − 31.4, ∞) {} [ − 1, 0] [ − 1.34,0.06) {} {} {} (−4.2,1.2) [ − 3.47 ,0.2) {} {}

Note: Bold-faced intervals indicate changes.

FIGURE 6    |    PROMETHEE single criterion flows and net flows for the decision problem in Table 9. Criteria g1 and g9 modelled via type I prefer-
ence function. Initial net flows are indicated by solid bars. Striped bars (performance of A4 on g9 changed beyond insensitivity boundaries) indicate 
the change in net flows and ranking between A1 and A4. Dotted bars (performance of A4 on g1 changed in opposite polarity) showcase full compen-
sation between both criteria.
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uncertainty to circumvent unwanted compensatory effects in a 
targeted and granular manner.

5.3   |   Discussion

The previous analysis is based on a number of deliberate as-
sumptions regarding the definition of compensation and the nu-
ances in which it can occur. We now discuss these assumptions 
and the practical implications that can be drawn from them.

For the purpose of this work, the general notion of compensation 
in an MCAP has been defined as the property that preference 
relations, which are dissolved by changes in an alternative's per-
formance, can be reinstated by a performance change on any 
other criterion for the same alternative (see Section 2.3).

A definition analogous to other ranking approaches, such as 
MAUT/MAVT, could refer to the net flows instead of the rank-
ing of alternatives derived from comparing their net flows. 
Adapted to the PROMETHEE methods, compensation would 
then be defined as the possibility of net flow substitution be-
tween criteria. According to this revised definition, an instance 
of PROMETHEE is fully compensatory if there exists a pair of 
performance score changes for a given alternative that maintains 
its net flow. However, such a definition may not be a reasonable 
choice in light of the method's different axiomatic foundations 
compared to the MAUT/MAVT (see Section 2.1). Additionally, 
the actual net flows are typically not used when interpreting a 
ranking that has been conducted according to PROMETHEE 
II, as often done for value theory-based approaches (Coquelet 
et  al.  2024). We therefore argue that the broad definition of a 
compensating MCAP adopted in this work, based on the fun-
damental ability of altering or preserving preference structures 
(Section 2.3) is more reasonable.1 This fundamental definition of 
compensation can then be operationalised for the PROMETHEE 
methods by means of the single criterion flows. It allows for nu-
ance between partial and full compensation based on the ability 
of single criterion flow substitution and is of higher use for prac-
tical application of PROMETHEE I and II.

In this regard, we presented a fully compensatory case of 
PROMETHEE II in Section 4.1.1. It is based on a set of artificial 
assumptions that appear not very realistic for practical appli-
cation. We especially do not recommend setting the preference 
threshold of a type III preference functions in such a way since 
we believe that it contradicts the conceptual foundations of the 
PROMETHEE methods. We only use it here to showcase that 
there can be instances of compensation in the PROMETHEE 
methods. More precisely, this case shows that PROMETHEE 
II can be fully compensatory, according to how we define the 
notion of compensation in MCAP. It provides contradicting evi-
dence to some statements in the literature on the compensatory 
characteristics of the PROMETHEE methods.

The theoretical insights gained from this analysis lead to several 
practical considerations, especially in managing compensatory 
effects within PROMETHEE models and facilitating communi-
cation with DMs. As highlighted in the case study (Section 5.2), 
the type I function can be an approach to circumvent compen-
sation between criteria. However, it requires careful attention 

since there may be performance changes that introduce full com-
pensation into a relationship of two criteria (see Section 5.2.2). 
Resorting to a type I preference function also comes at the ex-
pense of being unable to model the DMs preferences in finer res-
olution, which is a distinct feature of the PROMETHEE methods 
compared to other outranking methods. The type I criterion is 
often criticised because it does not take into account imperfect 
information, ambiguity or other factors that might cause a DM 
to hesitate in expressing a clear preference for one action over 
another (Brans et al. 1986; Roy et al. 2014). In turn, when the DM 
requests another preference modelling, for example, via the type 
III preference function, but simultaneously desires no compen-
sation for this criterion, careful communication and adjustments 
are required. To reconcile their preference for no compensation, 
it would be necessary to switch to other functions and introduce 
preference or indifference thresholds that model this purpose. 
This requires a dialogue with the DM and a case-specific and de-
liberate trade-off between modelling choices.

6   |   Conclusion

In this work, we conducted an in-depth analysis of the compen-
satory properties of the PROMETHEE outranking methods. Our 
focus has been on characterising the determinants of compensa-
tion within PROMETHEE I and II. Compensatory effects can 
preserve a preference structure when performance on multiple 
objectives changes at the same time. Since this behaviour may 
be undesired for certain objectives, for example, to enforce the 
principle of strong sustainability, a preservation of the ranking 
due to compensatory mechanisms may not reflect the DMs ac-
tual preferences. In particular, we have revealed how the choice 
of preference functions and elicitation of their parameters can 
allow for instances of full or partial compensation regarding 
the derived preference structure. Ultimately, there are instances 
where PROMETHEE II and also PROMETHEE I can be com-
pensatory for any type of preference function. The findings 
contribute to the existing research by disclosing determinants 
for compensation in PROMETHEE I and II and offering mecha-
nisms of different granularity to capture and control compensa-
tory effects in these methods.

We have introduced a compensation sensitivity analysis as a 
novel tool to investigate the sensitivity of a PROMETHEE deci-
sion model towards compensatory effects and highlighted dif-
ferent approaches to control compensation. Flow insensitivity 
intervals help decision-makers (DMs) and analysts to identify 
components of a decision model that may trigger compensatory 
effects and conduct appropriate changes. Specifically, they allow 
determining the changes in performance scores that will affect 
the outranking flows and thus can compensate for changes on 
other criteria. This information can be utilised to control com-
pensatory effects in a fine-grained resolution by means of ad-
justing the preference functions or the threshold parameters.

An environmental management case study demonstrates that 
controlling compensation in a PROMETHEE model can have 
a substantial impact on the final ranking. By deliberately con-
trolling for compensation, it is possible to avoid unintended shifts 
in the ranking of alternatives that might happen due to compen-
satory effects between a particular pair of criteria. Controlling 
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for compensation is enabled by referring to the set of general 
guidelines and by using the results of the compensation sensi-
tivity analysis developed in this study. It allows one to take the 
aspiration of a non-compensatory decision model into account 
in the design and parameterisation of a PROMETHEE model.

The question of how to deal with compensatory properties in 
MCAP and the recognition of incomparability has contributed 
markedly to the emergence of some outranking methods. As 
highlighted by Dejaegere and De Smet  (2023), compensatory 
properties could be linked to the existence of incomparability. In 
further research, a detailed analysis of the links between com-
pensation and (in)comparability in PROMETHEE I, II could 
provide interesting insights. In particular, the investigation of 
whether and when compensation in PROMETHEE II leads to 
incomparability in PROMETHEE I and comparisons with the 
newly proposed PROMETHEE � method. Another central char-
acteristic of outranking procedures is the logic of pairwise com-
parisons and the much-discussed rank reversal phenomenon, 
which is strongly related to it. The relations between rank rever-
sal and compensation, however, are not yet disclosed.

Future research could also explore further applications of the 
compensation sensitivity analysis across different problem con-
texts and settings. An analytical study to explore the characteris-
tics of a decision problem, in terms of the number of alternatives 
and criteria, could be an interesting point of departure. In addi-
tion, an investigation into what extent and how the presented 
findings on the compensation behaviour of the PROMETHEE 
methods can systematically inform the preference elicitation 
process also poses an intriguing avenue of research.
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Endnotes

	1	Even though, putting increased attention on the actual flow scores that 
PROMETHEE yields could also yield important insights in the analy-
sis of results (Dejaegere et al. 2022; Dejaegere and De Smet 2023).

References

Belton, V., and T. Stewart. 2002. Multiple Criteria Decision Analysis: An 
Integrated Approach. Springer Science and Business Media. https://​doi.​
org/​10.​1007/​978-​1-​4615-​1495-​4.

Benoit, V., and P. Rousseaux. 2003. “Aid for Aggregating the Impacts in 
Life Cycle Assessment.” International Journal of Life Cycle Assessment 
8: 74–82. https://​doi.​org/​10.​1007/​BF029​78430​.

Bezerra, P. R. S., F. Schramm, and V. B. Schramm. 2021. “A Multicriteria 
Model, Based on the Promethee Ii, for Assessing Corporate 
Sustainability.” Clean Technologies and Environmental Policy 23: 2927–
2940. https://​doi.​org/​10.​1007/​s1009​8-​021-​02211​-​y.

Bouyssou, D. 1986. “Some Remarks on the Notion of Compensation in 
Mcdm.” European Journal of Operational Research 26, no. 1: 150–160. 
https://​doi.​org/​10.​1016/​0377-​2217(86)​90167​-​0.

Bouyssou, D. 1996. “Outranking Relations: Do They Have Special 
Properties?” Journal of Multi-Criteria Decision Analysis 5, no. 2: 99–111. 
https://​doi.​org/​10.​1002/​(SICI)​1099-​1360(199606)​5:​2<​99::​AID-​MCDA9​
7>​3.0.​CO;​2-​8.

Bouyssou, D., and M. Pirlot. 2009. “An Axiomatic Analysis of 
Concordance–Discordance Relations.” European Journal of Operational 
Research 199, no. 2: 468–477. https://​doi.​org/​10.​1016/j.​ejor.​2008.​11.​011.

Bouyssou, D., and J.-C. Vansnick. 1986. “Noncompensatory and 
Generalized Noncompensatory Preference Structures.” Theory and 
Decision 21, no. 3: 251–266. https://​doi.​org/​10.​1007/​BF001​34097​.

Brans, J.-P. 2015. “The ‘Promethee’ Adventure.” International Journal of 
Multicriteria Decision Making 5, no. 4: 297–308. https://​doi.​org/​10.​1504/​
IJMCDM.​2015.​074090.

Brans, J.-P., and Y. De Smet. 2016. “Promethee Methods.” In Multiple 
Criteria Decision Analysis—State of the Art Surveys, edited by S. Greco, 
J. R. Figueira, and M. Ehrgott, vol. 1 and 2, 187–219. Springer. https://​
doi.​org/​10.​1007/​978-​1-​4939-​3094-​46.

Brans, J.-P., and B. Mareschal. 1992. “Promethee v: Mcdm Problems 
With Segmentation Constraints.” INFOR: Information Systems and 
Operational Research 30, no. 2: 85–96. https://​doi.​org/​10.​1080/​03155​
986.​1992.​11732186.

Brans, J.-P., P. Vincke, and B. Mareschal. 1986. “How to Select and 
How to Rank Projects: The Promethee Method.” European Journal of 
Operational Research 24, no. 2: 228–238. https://​doi.​org/​10.​1016/​0377-​
2217(86)​90044​-​5.

Cinelli, M., S. R. Coles, and K. Kirwan. 2014. “Analysis of the Potentials 
of Multi Criteria Decision Analysis Methods to Conduct Sustainability 
Assessment.” Ecological Indicators 46: 138–148. https://​doi.​org/​10.​
1016/j.​ecoli​nd.​2014.​06.​011.

Cinelli, M., M. Kadziński, M. Gonzalez, and R. Słowiński. 2020. “How 
to Support the Application of Multiple Criteria Decision Analysis? Let 
Us Start With a Comprehensive Taxonomy.” Omega 96: 102261. https://​
doi.​org/​10.​1016/j.​omega.​2020.​102261.

Cinelli, M., M. Kadziński, G. Miebs, M. Gonzalez, and R. Słowiński. 
2022. “Recommending Multiple Criteria Decision Analysis Methods 
With a New Taxonomy-Based Decision Support System.” European 
Journal of Operational Research 302, no. 2: 633–651. https://​doi.​org/​10.​
1016/j.​ejor.​2022.​01.​011.

Condorcet, M. 1785. Essai Sur L'Application de L'Analyse à la Probabilité 
Des Décisions Rendues à la Pluralité Des Voix. Imprimerie Royale.

Coquelet, B., G. Dejaegere, and Y. De Smet. 2024. “Analysis of Third 
Alternatives' Impact on Promethee II Ranking.” Journal of Multi-Criteria 
Decision Analysis 31, no. 1–2: e1823. https://​doi.​org/​10.​1002/​mcda.​1823.

Costa, H. G., and A. C. Alves. 2021. “A Non-Compensatory Multicriteria 
Model for Sorting the Influence of Pbl Over Professional Skills.” In 
Intelligent Systems Design and Applications, edited by A. Abraham, V. 
Piuri, N. Gandhi, P. Siarry, A. Kaklauskas, and A. Madureira, 1165–
1175. Springer International Publishing. https://​doi.​org/​10.​1007/​978-​3-​
030-​71187​-​0108.

de Borda, J.-C. 1781. “Mémoire Sur Les Élections Au Scrutin.” Isis 44: 
42–51. Paris: Comptes Rendus de l'Académie des Sciences. Translated 
by Alfred de Grazia as “Mathematical derivation of an election system”.

https://doi.org/10.1007/978-1-4615-1495-4
https://doi.org/10.1007/978-1-4615-1495-4
https://doi.org/10.1007/BF02978430
https://doi.org/10.1007/s10098-021-02211-y
https://doi.org/10.1016/0377-2217(86)90167-0
https://doi.org/10.1002/(SICI)1099-1360(199606)5:2%3C99::AID-MCDA97%3E3.0.CO;2-8
https://doi.org/10.1002/(SICI)1099-1360(199606)5:2%3C99::AID-MCDA97%3E3.0.CO;2-8
https://doi.org/10.1016/j.ejor.2008.11.011
https://doi.org/10.1007/BF00134097
https://doi.org/10.1504/IJMCDM.2015.074090
https://doi.org/10.1504/IJMCDM.2015.074090
https://doi.org/10.1007/978-1-4939-3094-46
https://doi.org/10.1007/978-1-4939-3094-46
https://doi.org/10.1080/03155986.1992.11732186
https://doi.org/10.1080/03155986.1992.11732186
https://doi.org/10.1016/0377-2217(86)90044-5
https://doi.org/10.1016/0377-2217(86)90044-5
https://doi.org/10.1016/j.ecolind.2014.06.011
https://doi.org/10.1016/j.ecolind.2014.06.011
https://doi.org/10.1016/j.omega.2020.102261
https://doi.org/10.1016/j.omega.2020.102261
https://doi.org/10.1016/j.ejor.2022.01.011
https://doi.org/10.1016/j.ejor.2022.01.011
https://doi.org/10.1002/mcda.1823
https://doi.org/10.1007/978-3-030-71187-0108
https://doi.org/10.1007/978-3-030-71187-0108


18 of 21 Journal of Multi-Criteria Decision Analysis, 2025

de Bourgoing, P., P. Nussbaum, B. Rusteberg, and M. Sauter, eds. 2022. 
“The Salam Initiative: Transboundary Strategies for the Resolution of 
the Water Deficit Problem in the Middle East.”

De Smet, Y. 2019. “Beyond Multicriteria Ranking Problems: The Case of 
Promethee.” In New Perspectives in Multiple Criteria Decision Making, 
edited by M. Doumpos, J. R. Figueira, S. Greco, and C. Zopounidis, 
95–114. Springer International Publishing. https://​doi.​org/​10.​1007/​978-​
3-​030-​11482​-​4_​3.

Dejaegere, G., M. A. Boujelben, and Y. De Smet. 2022. “An Axiomatic 
Characterization of Promethee Ii's Net Flow Scores Based on a 
Combination of Direct Comparisons and Comparisons With Third 
Alternatives.” Journal of Multi-Criteria Decision Analysis 29, no. 5–6: 
364–380. https://​doi.​org/​10.​1002/​mcda.​1781.

Dejaegere, G., and Y. De Smet. 2023. “Prometheeg: A New Promethee 
Based Method for Partial Ranking Based on Valued Coalitions of 
Monocriterion Net Flow Scores.” Journal of Multi-Criteria Decision 
Analysis 30, no. 3–4: 147–160. https://​doi.​org/​10.​1002/​mcda.​1805.

Diakoulaki, D., C. H. Antunes, and A. Gomes Martins. 2005. “Mcda and 
Energy Planning.” In Multiple Criteria Decision Analysis: State of the Art 
Surveys, edited by J. R. Figueira, S. Greco, and M. Ehrgott, 1st ed., 859–
890. Springer. https://​doi.​org/​10.​1007/​0-​387-​23081​-​521.

Ferretti, V. 2016. “From Stakeholders Analysis to Cognitive Mapping 
and Multi-Attribute Value Theory: An Integrated Approach for Policy 
Support.” European Journal of Operational Research 253, no. 2: 524–541. 
https://​doi.​org/​10.​1016/j.​ejor.​2016.​02.​054.

Figueira, J. R., Y. De Smet, and J.-P. Brans. 2004. Mcda Methods for 
Sorting and Clustering Problems: PROMETHEE Tri and PROMETHEE 
Cluster. Technical Report Is-Mg 2004/02. Université Libre de Bruxelles/
SMG. https://​api.​seman​ticsc​holar.​org/​Corpu​sID:​53896172.

Figueira, J. R., Y. De Smet, and J.-P. Brans. 2005. Mcda Methods for 
Sorting and Clustering Problems: PROMETHEE Tri and PROMETHEE 
Cluster. Technical Report TRSMG2004-002. SMG, Université Libre de 
Bruxelles.

Figueira, J. R., S. Greco, B. Roy, and R. Słowiński. 2010. “Electre 
Methods: Main Features and Recent Developments.” In Handbook of 
Multicriteria Analysis, edited by C. Zopounidis, 51–89. Springer. https://​
doi.​org/​10.​1007/​978-​3-​540-​92828​-​7_​3.

Figueira, J. R., S. Greco, B. Roy, and R. Słowiński. 2013. “An Overview 
of Electre Methods and Their Recent Extensions.” Journal of Multi-
Criteria Decision Analysis 20, no. 1–2: 61–85. https://​doi.​org/​10.​1002/​
mcda.​1482.

Figueira, J. R., V. Mousseau, and B. Roy. 2016. “Electre Methods.” In 
Multiple Criteria Decision Analysis: State of the Art Surveys, edited by 
S. Greco, J. R. Figueira, and M. Ehrgott, vol. 1 and 2, 155–185. Springer. 
https://​doi.​org/​10.​1007/​978-​1-​4939-​3094-​45.

Fishburn, P. C. 1976. “Noncompensatory Preferences.” Synthese 33, no. 
1: 393–403. https://​doi.​org/​10.​1007/​BF004​85453​.

Fishburn, P. C. 1999. “Preference Structures and Their Numerical 
Representations.” Theoretical Computer Science 217, no. 2: 359–383. 
https://​doi.​org/​10.​1016/​S0304​-​3975(98)​00277​-​1.

Geldermann, J., and O. Rentz. 2001. “Integrated Technique Assessment 
With Imprecise Information as a Support for the Identification of Best 
Available Techniques (Bat).” OR-Spektrum 23: 137–157. https://​doi.​org/​
10.​1007/​PL000​1334.

Geldermann, J., and A. Schöbel. 2011. “On the Similarities of Some 
Multi-Criteria Decision Analysis Methods.” Journal of Multi-Criteria 
Decision Analysis 18, no. 3–4: 219–230. https://​doi.​org/​10.​1002/​
mcda.​468.

Greco, S., A. Ishizaka, M. Tasiou, and G. Torrisi. 2021. “The Ordinal 
Input for Cardinal Output Approach of Non-Compensatory Composite 
Indicators: The Promethee Scoring Method.” European Journal of 

Operational Research 288, no. 1: 225–246. https://​doi.​org/​10.​1016/j.​ejor.​
2020.​05.​036.

Guitouni, A., and J.-M. Martel. 1998. “Tentative Guidelines to Help 
Choosing an Appropriate Mcda Method.” European Journal of 
Operational Research 109, no. 2: 501–521. https://​doi.​org/​10.​1016/​S0377​
-​2217(98)​00073​-​3.

Haag, F., J. Lienert, N. Schuwirth, and P. Reichert. 2019. “Identifying 
Non-Additive Multi-Attribute Value Functions Based on Uncertain 
Indifference Statements.” Omega 85: 49–67. https://​doi.​org/​10.​1016/j.​
omega.​2018.​05.​011.

Hämäläinen, R. P. 2004. “Reversing the Perspective on the Applications 
of Decision Analysis.” Decision Analysis 1, no. 1: 26–31. https://​doi.​org/​
10.​1287/​deca.​1030.​0012.

Huang, I. B., J. Keisler, and I. Linkov. 2011. “Multi-Criteria Decision 
Analysis in Environmental Sciences: Ten Years of Applications and 
Trends.” Science of the Total Environment 409, no. 19: 3578–3594. 
https://​doi.​org/​10.​1016/j.​scito​tenv.​2011.​06.​022.

Ishizaka, A., and G. Resce. 2021. “Best-Worst Promethee Method for 
Evaluating School Performance in the Oecd's Pisa Project.” Socio-
Economic Planning Sciences 73: 100799. https://​doi.​org/​10.​1016/j.​seps.​
2020.​100799.

Keeney, R., and H. Raiffa. 1993. Decisions With Multiple Objectives: 
Preferences and Value Tradeoffs. 2nd ed. Cambridge University Press.

Keeney, R. L. 1992. Value-Focused Thinking: A Path to Creative 
Decisionmaking. Harvard University Press.

Kiker, G. A., T. S. Bridges, A. Varghese, T. P. Seager, and I. Linkov. 
2005. “Application of Multicriteria Decision Analysis in Environmental 
Decision Making.” Integrated Environmental Assessment and 
Management 1, no. 2: 95–108. https://​doi.​org/​10.​1897/​IEAM2​004a-​
015.​1.

Krantz, D., R. D. Luce, P. Suppes, and A. Tversky. 1971. Foundations 
of Measurement: Additive and Polynomial Representations. Vol. 1. 
Academic.

Langhans, S. D., P. Reichert, and N. Schuwirth. 2014. “The Method 
Matters: A Guide for Indicator Aggregation in Ecological Assessments.” 
Ecological Indicators 45: 494–507. https://​doi.​org/​10.​1016/j.​ecoli​nd.​
2014.​05.​014.

Lienert, J., L. Scholten, C. Egger, and M. Maurer. 2015. “Structured 
Decision-Making for Sustainable Water Infrastructure Planning and 
Four Future Scenarios.” EURO Journal on Decision Processes 3, no. 1–2: 
107–140. https://​doi.​org/​10.​1007/​s4007​0-​014-​0030-​0.

Linkov, I., E. Moberg, B. D. Trump, B. Yatsalo, and J. M. Keisler. 2021. 
Multi-Criteria Decision Analysis: Case Studies in Engineering and 
the Environment. 2nd ed. CRC Press. https://​doi.​org/​10.​1201/​97804​
29326448.

Mareschal, B. 2015. “Some Properties of the Promethee Net Flow.” 
https://​doi.​org/​10.​13140/​​RG.2.​1.​3563.​7607.

Martel, J.-M., and B. Matarazzo. 2016. “Other Outranking Approaches.” 
In Multiple Criteria Decision Analysis—State of the Art Surveys, ed-
ited by S. Greco, J. R. Figueira, and M. Ehrgott, vol. 1 and 2, 221–282. 
Springer. https://​doi.​org/​10.​1007/​978-​1-​4939-​3094-​47.

Moghaddam, N. B., M. Nasiri, and S. Mousavi. 2011. “An Appropriate 
Multiple Criteria Decision Making Method for Solving Electricity 
Planning Problems, Addressing Sustainability Issue.” International 
Journal of Environmental Science and Technology 8: 605–620. https://​
doi.​org/​10.​1007/​BF033​26246​.

Moretti, S., M. Öztürk, and A. Tsoukiàs. 2016. “Preference Modelling.” 
In Multiple Criteria Decision Analysis, edited by S. Greco, M. Ehrgott, 
and J. R. Figueira, 187–219. Springer. https://​doi.​org/​10.​1007/​978-​1-​
4939-​3094-​4_​3.

https://doi.org/10.1007/978-3-030-11482-4_3
https://doi.org/10.1007/978-3-030-11482-4_3
https://doi.org/10.1002/mcda.1781
https://doi.org/10.1002/mcda.1805
https://doi.org/10.1007/0-387-23081-521
https://doi.org/10.1016/j.ejor.2016.02.054
https://api.semanticscholar.org/CorpusID:53896172
https://doi.org/10.1007/978-3-540-92828-7_3
https://doi.org/10.1007/978-3-540-92828-7_3
https://doi.org/10.1002/mcda.1482
https://doi.org/10.1002/mcda.1482
https://doi.org/10.1007/978-1-4939-3094-45
https://doi.org/10.1007/BF00485453
https://doi.org/10.1016/S0304-3975(98)00277-1
https://doi.org/10.1007/PL0001334
https://doi.org/10.1007/PL0001334
https://doi.org/10.1002/mcda.468
https://doi.org/10.1002/mcda.468
https://doi.org/10.1016/j.ejor.2020.05.036
https://doi.org/10.1016/j.ejor.2020.05.036
https://doi.org/10.1016/S0377-2217(98)00073-3
https://doi.org/10.1016/S0377-2217(98)00073-3
https://doi.org/10.1016/j.omega.2018.05.011
https://doi.org/10.1016/j.omega.2018.05.011
https://doi.org/10.1287/deca.1030.0012
https://doi.org/10.1287/deca.1030.0012
https://doi.org/10.1016/j.scitotenv.2011.06.022
https://doi.org/10.1016/j.seps.2020.100799
https://doi.org/10.1016/j.seps.2020.100799
https://doi.org/10.1897/IEAM2004a-015.1
https://doi.org/10.1897/IEAM2004a-015.1
https://doi.org/10.1016/j.ecolind.2014.05.014
https://doi.org/10.1016/j.ecolind.2014.05.014
https://doi.org/10.1007/s40070-014-0030-0
https://doi.org/10.1201/9780429326448
https://doi.org/10.1201/9780429326448
https://doi.org/10.13140/RG.2.1.3563.7607
https://doi.org/10.1007/978-1-4939-3094-47
https://doi.org/10.1007/BF03326246
https://doi.org/10.1007/BF03326246
https://doi.org/10.1007/978-1-4939-3094-4_3
https://doi.org/10.1007/978-1-4939-3094-4_3


19 of 21

Moulin, H. 1988. Axioms of Cooperative Decision Making. Cambridge 
University Press. https://​doi.​org/​10.​1017/​CCOL0​52136​0552.

Munda, G. 2008. Social Multi-Criteria Evaluation for a Sustainable 
Economy. Springer. https://​doi.​org/​10.​1007/​978-​3-​540-​73703​-​2.

Munda, G. 2016. “Multiple Criteria Decision Analysis and Sustainable 
Development.” In Multiple Criteria Decision Analysis—State of 
the Art Surveys, edited by S. Greco, J. R. Figueira, and M. Ehrgott, 
vol. 1 and 2, 2nd ed., 1235–1267. Springer. https://​doi.​org/​10.​1007/​
978-​1-​4939-​3094-​427.

Oberschmidt, J., J. Geldermann, J. Ludwig, and M. Schmehl. 2010. 
“Modified Promethee Approach for Assessing Energy Technologies.” 
International Journal of Energy Sector Management 4, no. 2: 183–212. 
https://​doi.​org/​10.​1108/​17506​22108​0000394.

Pirlot, M. 1997. “A Common Framework for Describing Some 
Outranking Methods.” Journal of Multi-Criteria Decision Analysis 6, 
no. 2: 86–92. https://​doi.​org/​10.​1002/​(SICI)​1099-​1360(199703)​6:​2<​86::​
AID-​MCDA1​45>​3.0.​CO;​2-​D.

Prado, V., K. Rogers, and T. P. Seager. 2012. “Integration of Mcda 
Tools in Valuation of Comparative Life Cycle Assessment.” In Life 
Cycle Assessment Handbook: A Guide for Environmentally Sustainable 
Products, edited by M. A. Curran, 413–432. Scrivener Publishing. 
https://​doi.​org/​10.​1002/​97811​18528​372.​ch19.

Roubens, M., and P. Vincke. 1985. “Preference Modelling.” In Lecture 
Notes in Economics and Mathematical Systems, edited by D. Herbert 
and A. Kleine, vol. 250. Springer. https://​doi.​org/​10.​1007/​978-​3-​642-​
46550​-​5.

Roy, B. 1991. “The Outranking Approach and the Foundations of 
Electre Methods.” Theory and Decision 31: 49–73. https://​doi.​org/​10.​
1007/​BF001​34132​.

Roy, B. 2016. “Paradigms and Challenges.” In Multiple Criteria Decision 
Analysis—State of the Art Surveys, edited by S. Greco, J. R. Figueira, 
and M. Ehrgott, vol. 1 and 2, 2nd ed., 19–39. Springer. https://​doi.​org/​10.​
1007/​978-​1-​4939-​3094-​42.

Roy, B., and D. Bouyssou. 1993. Aide Multicritère à la Décision. 
Economica. https://​doi.​org/​10.​3166/​rfg.​214.​15-​28.

Roy, B., J. R. Figueira, and J. Almeida-Dias. 2014. “Discriminating 
Thresholds as a Tool to Cope With Imperfect Knowledge in Multiple 
Criteria Decision Aiding: Theoretical Results and Practical Issues.” 
Omega 43: 9–20. https://​doi.​org/​10.​1016/j.​omega.​2013.​05.​003.

Roy, B., and V. Mousseau. 1996. “A Theoretical Framework for Analysing 
the Notion of Relative Importance of Criteria.” Journal of Multi-Criteria 
Decision Analysis 5, no. 2: 145–159. https://​doi.​org/​10.​1002/​(SICI)​1099-​
1360(199606)​5:​2<​145::​AID-​MCDA9​9>​3.0.​CO;​2-​5.

Roy, B., and R. Słowiński. 2013. “Questions Guiding the Choice of a 
Multicriteria Decision Aiding Method.” EURO Journal on Decision 
Processes 1, no. 1–2: 69–97. https://​doi.​org/​10.​1007/​s4007​0-​013-​0004-​7.

Roy, B., and D. Vanderpooten. 1996. “The European School of Mcda: 
Emergence, Basic Features and Current Works.” Journal of Multi-
Criteria Decision Analysis 5, no. 1: 22–38. https://​doi.​org/​10.​1002/​(SICI)​
1099-​1360(199603)​5:​1<​22::​AID-​MCDA9​3>​3.0.​CO;​2-​F.

Salo, A., and R. P. Hämäläinen. 2010. “Multicriteria Decision Analysis 
in Group Decision Processes.” In Handbook of Group Decision and 
Negotiation, edited by D. M. Kilgour and C. Eden, 1st ed., 269–283. 
Springer. https://​doi.​org/​10.​1007/​978-​90-​481-​9097-​316.

Schär, S. 2024. “Prospektive Multikriterielle Entscheidungsunterstützung 
Für Die Entwicklung Und Bewertung Von Maßnahmen Im Wasser-
Energie Nexus: Das Wasserdefizitproblem Im Nahen Osten.” Diss., 
Universität Duisburg-Essen. https://​doi.​org/​10.​17185/​​duepu​blico/​​
82000​.

Strantzali, E., and K. Aravossis. 2016. “Decision Making in Renewable 
Energy Investments: A Review.” Renewable and Sustainable Energy 
Reviews 55: 885–898. https://​doi.​org/​10.​1016/j.​rser.​2015.​11.​021.

Tong, L. Z., J. Wang, and Z. Pu. 2022. “Sustainable Supplier Selection for 
Smes Based on an Extended Promethee? Approach.” Journal of Cleaner 
Production 330: 129830. https://​doi.​org/​10.​1016/j.​jclep​ro.​2021.​129830.

Tsoukiàs, A., and P. Vincke. 1995. “A New Axiomatic Foundation of 
Partial Comparability.” Theory and Decision 39, no. 1: 79–114. https://​
doi.​org/​10.​1007/​BF010​78870​.

Tsoutsos, T., M. Drandaki, N. Frantzeskaki, E. Iosifidis, and I. Kiosses. 
2009. “Sustainable Energy Planning by Using Multi-Criteria Analysis 
Application in the Island of Crete.” Energy Policy 37, no. 5: 1587–1600. 
https://​doi.​org/​10.​1016/j.​enpol.​2008.​12.​011.

Vansnick, J.-C. 1986. “On the Problem of Weights in Multiple Criteria 
Decision Making (The Noncompensatory Approach).” European 
Journal of Operational Research 24, no. 2: 288–294. https://​doi.​org/​10.​
1016/​0377-​2217(86)​90051​-​2.

Vansnick, J.-C. 1990. “Measurement Theory and Decision Aid.” In 
Readings in Multiple Criteria Decision Aid, edited by C. A. Bana e Costa, 
81–100. Springer. https://​doi.​org/​10.​1007/​978-​3-​642-​75935​-​25.

Vincke, P. 1988. “Non-Conventional Preference Relations in Decision 
Making.” In P, Q, I-Preference Structures, edited by J. Kacprzyk and M. 
Roubens, 72–81. Springer. https://​doi.​org/​10.​1007/​978-​3-​642-​51711​-​2_​5.

Vincke, P. 1992. Multicriteria Decision-Aid. John Wiley & Sons Inc.

Von Winterfeldt, D., and W. Edwards. 1986. Decision Analysis and 
Behavioral Research. Cambridge University Press.

Supporting Information

Additional supporting information can be found online in the 
Supporting Information section.  

Appendix A

Generalisation of the Compensatory Case for PROMETHEE II

Theorem 1.  If the preference functions of two criteria in PROMETHEE 
are defined as in Equation (13), the required gain in criterion gk to achieve 
compensation w. r. t. to the PROMETHEE II net flow of Alternative ai for 
a loss in criterion gj is given by
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TABLE A1    |    Overview on the six generalised preference functions in the PROMETHEE methods (Brans and De Smet 2016).

Criterion Graph Definition Parameter
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