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ABSTRACT

Electrifying transit bus networks (TBNs) has recently become a challenging problem
that many public transport operators around the world are facing. Due to the lim-
ited driving range of electric buses, electric TBNs are more sensitive to operational
delays and uncertainties. Moreover, the impact on sustainability is most profound
when the buses are powered by renewable energy resources, which are often subject
to intermittency and uncertainty. In this work, we tackle the complicated problem of
planning charging schedules amid these various sources of uncertainty. We develop
a real-time decision support system that uses real-time data, predictions, and math-
ematical optimization to update the charging schedules and mitigate the impact of
operational uncertainties. Our results show that the online strategy can maintain higher
reliability and renewable energy utilization levels compared to other charging strate-
gies. The study has been carried out in cooperation with the public transport operator
in Rotterdam in the Netherlands to assist them in their TBN transition process.

KEYWORDS
electric transit bus networks, real-time decision support system, renewable energy, smart charging,
sustainable public transport

1 | INTRODUCTION

Transportation is a sector critical to achieving environmen-
tal sustainability. The International Energy Agency estimates
that investments in transportation amounting to 15.7 tril-
lion USD are necessary to limit the global temperature
increase to 2°C by 2050 (International Energy Agency, 2012).
Specifically, in urban areas, fossil fuel-based transporta-
tion contributes significantly to emissions and air pollution,
adversely affecting both the environment and public health.
Consequently, the transportation sector is compelled to shift
toward sustainable, emission-free energy sources in the com-
ing years. This transition includes replacing conventional
diesel and gasoline-powered vehicles with electric vehicles.
In addition to transitioning to electric vehicles, reducing
the total number of vehicles on roads by increasing the adop-
tion of shared mobility and mass transit can further enhance
the environmental sustainability of urban mobility (Paundra
et al., 2017). Among the various vehicle-based transporta-

tion modes in urban areas, public transit emerges as the
most carbon-efficient solution for meeting the transporta-
tion needs of urban residents (Kammen & Sunter, 2016).
However, achieving zero-emission public transit systems
requires additional efforts. The International Association
of Public Transport (2014) identifies the electrification of
transit bus networks (TBNs) as a crucial step toward this
goal. In this work, we contribute to addressing these chal-
lenges by investigating the problem of electrifying TBNs in
urban areas.

The transition to electric buses (EBs) introduces several
operational challenges. Notably, the range of EBs on a sin-
gle charge is shorter compared to conventional diesel buses,
and recharging requires substantially more time (Li, 2016).
Integrating short battery recharging sessions into daily bus
schedules makes the impact of delays more significant, ren-
dering bus operations increasingly sensitive to uncertainty.
Moreover, while electrification diminishes local emissions
and air pollution from buses, achieving carbon-neutral tran-
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sit operations is contingent on the use of renewable energy
sources. Given that wind and solar power rely on intermittent
exogenous factors, this reliance introduces an additional layer
of uncertainty to the operational challenges (Seddig et al.,
2017).

In this article, we investigate how online, data-driven oper-
ational strategies can mitigate these challenges. The advent
of the Internet-of-Things and other smart city technologies
is revolutionizing our capacity to tackle transportation issues
by facilitating real-time coordination among system actors
(Mahmassani, 2016). We apply this concept to the operation
of EBs that are partially powered by intermittent renew-
able energy sources. Our approach takes into account the
uncertainties associated with both trip delays and energy
generation under real-world conditions. Through this exam-
ination, we aim to provide valuable insights into a problem
that is pivotal for the successful transition toward smart and
sustainable cities globally.

Our work is set in context of the RUGGEDISED project, a
large-scale smart city transformation project supported by the
European Union’s Horizon 2020 framework program. As part
of this project, the city of Rotterdam moved to replace its bus
fleet with EBs. This resulted in a close collaboration spanning
several years between RET, the city’s public transit opera-
tor (PTO), and Rotterdam School of Management, Erasmus
University as the academic partner specialized in data-driven
operations and transport optimization.

This article builds upon our previous work in Abdelwahed
et al. (2020), where we compared various optimization tech-
niques to optimize the charging schedules of electric TBNS.
Based on this foundation, we now explore the impact of
charging from renewable energy resources and the negative
effects of operational uncertainty on the performance of the
electric TBN, two factors that have been identified as signifi-
cant in the practical implementation of EBs. Specifically, we
contribute to the existing body of literature by investigating
the following research questions:

1. What is the impact of operational uncertainty on the
performance of the electric TBN?

2. How can online optimization alleviate the adverse effects
of operational uncertainty and improve coordination
with the variable output of renewable energy generators
(REGs)?

To address these questions, we develop a discrete-event simu-
lation, enabling us to evaluate and compare various charging
strategies under conditions of uncertainty. In addition, we
enhance our optimization model from Abdelwahed et al.
(2020) and integrate it with the discrete-event simulation
to assess the efficacy of our proposed online optimized
approach. Applying our simulation framework to the case
of RET, our study offers insights and results that have sig-
nificantly aided their transition process, particularly in the
first phase of the city’s TBN electrification project. This col-
laboration has also led to the development of a real-time
monitoring and control system, a direct outcome of our
research. We continue in the next section with an overview
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of related previous work. Section 3 details our problem and
outlines the main assumptions. Our methodology and mathe-
matical formulations are presented in Section 4, followed by
the results from the case study in Section 5. The final sec-
tion concludes the article, summarizing our key findings and
suggesting avenues for future research.

2 | BACKGROUND AND RELATED
WORK

The electrification of TBNs introduces a range of strategic
and operational challenges for PTOs (Perumal et al., 2022).
Transitioning from conventional fuel buses to electric ones
necessitates significant network redesign and re-planning.
This process begins with strategic decisions involving the
selection of suitable charging techniques, optimization of
infrastructure and bus types, and the placement of charg-
ing stations (He et al., 2019; Kunith et al., 2017; Liu et al.,
2021; Uslu & Kaya, 2021; Xylia et al., 2017). The challenge
then extends to trip scheduling, which may require substantial
modifications to accommodate the locations and capacities
of charging stations (Wang et al., 2022). A recent study by
Dirks et al. (2022) presents an integrated optimization model
that concurrently addresses both strategic and operational
decisions. Their model encompasses strategic choices con-
cerning the characteristics of EBs and charging infrastructure,
while also optimizing vehicle scheduling at an operational
level.

Furthermore, optimizing the charging schedules repre-
sents a significant emerging challenge for PTOs with the
advent of electric TBNs. The critical nature of this opti-
mization is underscored by the substantial time required
for EBs to recharge their batteries and the influence of
various internal and external factors on their energy con-
sumption, including weather conditions, route topologies,
driving styles, and passenger load (Kontou & Miles, 2015;
Zhou et al., 2016). Additionally, the electrification of TBNs
imposes a considerable additional load on the electricity
grid, presenting a further challenge in planning. Mohamed
et al. (2017) demonstrate through simulation that the exist-
ing power infrastructure could potentially limit the adoption
of EBs, especially in the context of fast-charging technolo-
gies that demand high power outputs. Consequently, several
studies have focused on optimizing the charging schedule and
its integration with grid operations to minimize the impact
of TBN electrification (Abdelwahed et al., 2020; He et al.,
2020). Another research direction explores the introduction
of local REGs, which can directly charge EBs, potentially
alleviating the stress on the power grid (Manzolli et al., 2022).
For example, Arif et al. (2020) investigate the integration of
energy storage systems (ESSs) and renewable energy with
EB charging schedules, finding that this approach can help
reduce peak load on the grid and lower charging costs for
PTOs. Heinisch et al. (2021) highlight the potential bene-
fits and opportunities of using locally generated renewable
energy to supply a substantial portion of the energy required
for EBs.
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However, TBNs are highly vulnerable to delays and uncer-
tainties, which can significantly affect the charging schedules
and thus become critical to the operations of electrified net-
works. Missing scheduled charging events or underestimating
energy consumption could jeopardize operational feasibility.
Consequently, several recent studies have concentrated on
examining electric TBN planning and operations in the con-
text of uncertainty. Several studies have focused on predicting
the energy consumption of EBs under various operational
conditions (Chen et al., 2021; Hjelkrem et al., 2021). In the
strategic planning phase, An (2020) developed a stochastic
integer programming model to optimize the infrastructure
of TBNs, accounting for uncertainty. Specifically, the model
optimizes the allocation of charging stations and fleet size
while considering random variations in charging demand. In
addition, Liu et al. (2018) address the allocation problem
for fast-charging stations, factoring in stochastic energy con-
sumption rates of buses. At a more advanced planning stage,
other studies investigate the trip scheduling issues of elec-
tric TBNs under stochastic traffic conditions and/or variable
energy consumption (Bie et al., 2021; Tang et al., 2019).

In summary, existing research on TBN electrification
encompasses various challenges, ranging from optimizing
infrastructure and charging station placement, to planning
trip and charging schedules, and exploring the integration
of energy storage and REGs to alleviate the power grid’s
load. However, no prior studies have delved into optimizing
electric TBN charging schedules under the dual uncertain-
ties of traffic conditions and renewable energy generation.
Our study considers three main sources of uncertainty: traf-
fic delays, bus energy consumption, and renewable energy
generation. The first two factors can jeopardize the opera-
tional feasibility of buses if not properly accounted for in
charging schedules, while the third could lead to suboptimal
charging if not synchronized with the renewable generation
profile. Addressing this research gap, our work develops
a data-driven decision support system that employs online
optimization. This system dynamically adjusts EB charging
schedules in response to real-time data on energy genera-
tion, weather forecasts, and bus delays and consumption. Our
approach significantly contributes to the expansive body of
literature on decision support systems for bus operations (e.g.,
Arampatzis et al., 2004; Chu et al., 2020; Smith et al., 1990),
particularly by incorporating the complexities introduced by
electric powertrains and renewable energy sources. In the
following section, we detail our system and the operational
challenges it addresses.

3 | PROBLEM DESCRIPTION

In TBNs, opportunity charging encompasses two techniques:
en route charging and terminal-station charging. En route
charging involves recharging buses at intermediate stops with
passengers onboard, while terminal-station charging occurs
during layovers at the end of a trip, typically allowing for
longer charging periods. PTOs may utilize either method or
a combination of both. In our study, we focus on terminal-
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station charging only. As such, line or route structures are not
a primary consideration in our charging schedule optimiza-
tion. Instead, critical factors include the estimated energy
consumption for each trip, the timing, duration, and locations
of bus layovers at terminal stations with charging facili-
ties, and the specifics of the charging infrastructure—namely,
the number of chargers at each station and their power
ratings.

The infrastructure for charging is a strategic decision made
in the TBN planning phase, while the details of bus layovers,
including their locations and durations, are determined during
trip assignment scheduling. The optimization of the charging
schedule thus involves deciding which layovers, character-
ized by their location and timing, are best suited for charging
each bus throughout the day. Our study assumes infrastruc-
ture and bus location data as given inputs, with further details
provided in the case study section.

From the perspective of the grid operator, integrating a
fully electrified fleet into a TBN represents a significant addi-
tional electrical load, necessitating careful planning. Conflicts
between the objectives of the grid operator and the PTO can
arise in this scenario. While the grid operator typically aims
to minimize EB charging during peak electrical loads to alle-
viate strain on the system, the PTO may find it necessary to
charge during these periods to ensure the TBN operates reli-
ably. Our study seeks to mediate between these conflicting
goals, proposing charging schedules that ensure the TBN’s
operational reliability for the PTO while simultaneously
minimizing the impact on the electrical grid. Furthermore,
integrating renewable energy sources presents an opportunity
to further alleviate grid strain. By synchronizing EB charging
schedules with the availability of locally generated renewable
energy, the TBN can enhance its utilization of green power
sources, contributing to a more sustainable and efficient urban
transit system.

A key challenge in managing a TBN, particularly when
integrating REG operations, is the high degree of uncertainty
inherent in these systems. Our focus is primarily on the deci-
sions made by the PTO at the operational level, particularly
regarding the optimization and real-time adjustment of EB
charging schedules amidst this uncertainty. To aid the PTO,
we develop a real-time decision support system (RDSS) that
guides decisions on when, where, and for how long each EB
should be charged, considering the assigned trip schedules
and available charging locations within the network. Figure 1
illustrates the primary components of our proposed system,
highlighting the flow of real-time information and energy.
At the heart of this system is the RDSS, tasked with aggre-
gating real-time data from various system components and
dynamically adapting the charging strategy. This approach is
aimed at minimizing the grid impact of EB load while ensur-
ing feasible TBN operations. Moreover, we consider local
REGs in our case study which means that they belong to the
PTO. Thus, it is particularly important to incorporate the goal
of maximizing the usage of the locally generated renewable
energy. Hence, we also evaluate the potential benefits of inte-
grating an ESS into this framework, specifically focusing on
how it could enhance renewable energy utilization.
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4 | METHODOLOGY

In this study, we introduce a framework composed of two
principal elements: a discrete-event simulation (DES) and an
optimization model, as depicted in Figure 2. The DES primar-
ily serves to assess the impact of various charging strategies
on our objectives amid operational uncertainties. We consider
three forms of uncertainty: trip delays, EB energy consump-
tion, and renewable energy generation. The DES, constructed

-REG generation

Discrete Event Simulator

Performance
Measures
- Impact on the grid
- REG utilization
- EB network
feasibility measures

OFO:  Offline optimization
ONO:  Online optimization

Integrated optimization and simulation framework. EB, electric bus; REG, renewable energy generator.

using the Python programming language and the SimPy
library, processes inputs like the trip assignment schedule, the
network’s structure (including charger locations and quanti-
ties), and the power output profile of the REGs. It simulates
network activities such as EB operations, charging sessions,
and ESS dynamics, under uncertain conditions to evaluate
different charging strategies.

For our analysis, we examine two optimized strategies:
offline optimized (OFO) and online optimized (ONO), and
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benchmark them against two intuitive, greedy approaches:
first-in-first-served (FIFS) and lowest-charge-highest-priority
(LCHP). This leads to a comparative analysis of four dis-
tinct charging strategies. The optimization model, responsible
for crafting the charging schedules, tackles a mixed-integer
linear programming (MILP) problem. This optimization
process, crucial for both offline and online strategies, is
detailed in Section 4.1. For the online approach, a feed-
back loop integrates the optimization and simulation models,
allowing real-time adjustment of the charging strategy
based on actual TBN operational uncertainties. This is
achieved through a rolling horizon optimization framework,
with modifications to the optimization model explained in
Section 4.2.

In the OFO strategy, the EB charging schedule is deter-
mined before the day’s operations begin, using day-ahead
forecasts of renewable energy generation. Once set, this
schedule remains fixed throughout the day, without any mod-
ifications regardless of unexpected uncertainties or deviations
in the system.

In contrast, the ONO strategy is more adaptable, incorpo-
rating real-time data related to renewable energy generation
and operational delays to make periodic adjustments to the
charging schedule during the day. This strategy makes the
most of updated real-time predictions of renewable energy,
aiming to enhance the utilization of renewables and minimize
grid strain. It also uses real-time data, like TBN delays or
other unplanned events, to ensure network reliability. Accord-
ingly, the ONO strategy modifies the charging plan to better
meet performance objectives.

Should an EB miss its scheduled charging window, the
ONO strategy has the flexibility to either schedule additional
charging during subsequent layovers at terminal stations with
chargers or initiate an earlier charging session than ini-
tially planned. Furthermore, it can reallocate charging slots
between buses if required, especially during periods when
there are more buses than available chargers. However, one
strict rule is that the ONO strategy will not delay the start of
any trip merely to extend a charging session.

For the greedy strategies, FIFS arranges EBs in the charg-
ing queue based on their arrival times, while LCHP prioritizes
them according to their state of charge (SoC), with the EBs
having the lowest SoC receiving the highest priority. Replac-
ing an EB that’s currently charging with an arriving one that
has a lower SoC is allowed, given that the charging EB has
reached a predetermined SoC threshold and has been charg-
ing for a minimum duration. It is crucial to note that in all
strategies, including the ONO, starting trips on time is pri-
oritized over charging. Therefore, delays in EB departures
to facilitate additional charging are not permitted, prevent-
ing unplanned queues at charging stations. In summary, each
charging strategy is briefly described as follows:

* OFO: Utilizes day-ahead estimates of trip durations, EB
energy consumption, and predictions of renewable energy
generation to create optimized charging schedules. The
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PTO adheres to this day-ahead schedule without mak-
ing any adjustments, regardless of discrepancies between
estimated and actual conditions.

* ONO: Starts the day with the same day-ahead optimized
schedule as the OFO. However, this strategy updates the
charging schedules every hour, incorporating real-time
data and updated predictions for renewable energy gen-
eration, as well as actual energy consumption and trip
durations for completed trips.

e Greedy strategies (FIFS and LCHP): These are reactive
strategies that do not require predictions or estimations
for energy consumption, delay, and renewable energy gen-
eration. Charging decisions are made on the spot at the
charging station based on each strategy’s specific rules as
mentioned above.

Finally, it is essential to emphasize that all strategies are
assessed via simulation, which reflects the actual uncertain-
ties experienced. Therefore, even the predictions in the ONO
strategy about renewable energy will contain some level
of error.

Our primary performance indicators are the reliability of
TBN operations, the impact on the grid, and REG utiliza-
tion. These factors are either optimized or maintained within
specified limits in our optimized strategies, namely, the OFO
and ONO. To assess the reliability of TBN operations, we
monitor the minimum SoC of each bus throughout the day.
The impact on the grid is evaluated by minimizing a cost
function that reflects grid status at various times. Charging
during peak hours, when balancing supply and demand is
more challenging for the grid, incurs a higher cost compared
to off-peak hours. Ideally, this function would use detailed
data on anticipated and actual demand-supply balance, but
due to practical constraints in our case study, we use day-
ahead energy prices as a proxy. REG utilization is measured
by the ratio of the utilized renewable energy to the total gen-
erated during the day. Prioritizing these performance metrics
is crucial; we place the highest priority on the reliability of
the bus network’s operations. Consequently, we model reli-
ability as a constraint (ensuring that the SoC of each bus
remains above a specific threshold), while the grid impact
and renewable energy utilization are included in the objective
function.

In the next section, we present the mathematical model
used for optimizing the charging schedule and reflecting
these considerations. This model is applied in day-ahead
settings to generate the OFO strategy’s charging plan. The
ONO strategy recalculates this schedule at regular intervals
throughout the day, using a rolling horizon approach. Nec-
essary model adjustments for this process are discussed in
Section 4.2. Given the impracticality of continuous reopti-
mization or adjustments at every unforeseen event, the ONO
strategy reoptimizes the schedule periodically, such as every
hour, during the day. Section 4.3 will detail how the ESS
manages uncertainties that arise between these optimization
intervals.
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Time-based
discretization
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[:| Time slot
————— Arrival/Departure event
FIGURE 3 Tllustration of the difference between time-based and event-based discretization.

4.1 | Mathematical optimization model

To manage our time-dependent problem, we utilize dis-
cretization, focusing on computational efficiency for our
online optimization. We adopt an event-based discretization
approach, as detailed in Abdelwahed et al. (2020), offering
a more compact and computationally manageable problem
compared to traditional discretization approaches using fixed
increments. This method considers the commencement of
EB charging only at moments of arrival or departure, lead-
ing to nonuniform time slots that align with these events, as
depicted in Figure 3. Through this approach, we effectively
reduce the optimization problem’s size, demonstrated by the
decrease from 13 to 5 time slots in the example in Figure 3.
Our previous study (Abdelwahed et al., 2020) confirms that
this method substantially cuts down computational time with
minimal effect on solution quality. However, the extent of size
reduction inversely correlates with the network size and the
frequency of events, as constant arrivals or departures at every
minute would negate this benefit. Moreover, this approach
yields a more pragmatic and feasible charging schedule for
the PTO, as it implies the presence of a driver to connect the
bus to the charger at these event-based intervals.

For the mathematical formulation, we build upon the MILP
formulation for optimizing EB charging schedules developed
in Abdelwahed et al. (2020), which primarily focused on grid-
based charging. We expand the model to accommodate EB
charging from three sources: the grid, REGs, and the ESS,
as shown in Figure 4. Time slots, denoted by E, start and
end with arrival or departure events, covering a full day of
operations. The set of EBs is represented by B, and termi-
nal stations are denoted by S. Table 1 lists the mathematical
notations used and their definitions.

Our objective is to minimize the total charging costs Q
across the network as formulated in Equation (1). Here, the
decision variables I1%, TTI® | and IT%" represent the charging
power in kW' from the grid, the REG and the ESS, respec-
tively, for EBs during time slot e at station s. Correspondingly,

! Electrical power is the amount of electrical energy that can be transferred per unit
time from the charger to the bus battery. It is measured in watt (W) in the SI stan-

P%, PR and P% are the charging costs per kilowatt-hour
(€/kWh). The term T,/60 converts the duration of time slot
e, originally in minutes, to hours, facilitating the calcula-
tion of energy consumption in kilowatt-hours (kWh) when
multiplied by the charging power.

_ (T
Q=m1nZZ(PgHg+P§eH§e+P§eH§e)(é). (1)

ecE se§

As marginal costs of REG generation are assumed to be
zero, our objective inherently promotes the use of available
renewable energy. Constraint 2 represents the power balance
equation at each station for every time slot. In this con-
straint, N4, indicates the number of active chargers (engaged
in charging EBs) at station s during time slot e. TI, denotes
the rated power of the EB chargers,” while ITZ" refers to the
rated charging power of the ESS.

09 +0f + 04 = NATL + 12" VseS,e€E. (2

Constraints (3)—(5) set the power limits for the REGs and the
ESS.

0< IR <1k Vs € S,e €E, 3)
0<% <II4 Vs € S,e €E, “)
0 < I4H < TI%H VseS,ecE. 5)

Here, TIR represents the forecasted renewable energy genera-

tion at station s during time slot e, while ITZ~ and ITZ" signify
the rated ESS discharging and charging powers, respectively.

Let L;,, be a binary parameter which specifies the location
of each EB during each time slot, with L,,, = 1 if bus b is at
station s during time slot e. Constraint (6) limits the charging
time Y, of bus b to the length of time slot e, and ensures that

dard measurement system. We use kilowatt (kW) in our study as we deal with high
power applications.
2 Rated electrical power is the maximum electrical power that a charger can deliver or a
battery can receive.
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TABLE 1 List of mathematical notations and definitions.

Sets

E Set of time slots with index e
B Set of EBs with index b

S Set of stations with index s
Target variables

0 Total charging costs in €

Decision variables

né Average power drawn from grid at station s during time slot e in kW
R Average power drawn from REGs at station s during time slot e in kW
s Discharging power of ESS at station s during time slot e in kW

nzt Charging power of ESS at station s during time slot e in kW

Yo Charging time of bus b during time slot e in minutes

State variables

Che Effective energy stored in bus b at time slot e in kWh
Xpe Indicator, 1 if bus b is charging during time slot e
Iy Indicator, 1 if bus b starts charging at time slot e
N4 Number of active chargers at station s during time slot e
cZ, Energy stored in ESS at station s after time slot e in kWh
Upe Binary product between X, , and X, ,_;
Parameters
Lise Locations of buses, 1 if bus b is at station s during time slot e
T, Length of time slot e in minutes
H,, Event at station, 1 if a bus arrives or departs at station s at time slot e
Whe Energy consumed by bus b to perform a trip starting at time slot i in kWh
_1, Battery capacity of bus b in kWh
a Capacity of the ESS at station s in kWh

g Number of chargers at station s
ﬁ: Rated power of chargers at station s in kW
s Rated discharging power of ESS at station s in kW
Hf+ Rated charging power of ESS at station s in kW
s Efficiency of chargers at station s, 0 <7, < 1
H_JR; Average generated electrical power from REGs at station s during time slot e
PS Cost of electrical energy drawn from grid at station s and time slot e in €/kWh
PR Cost of electrical energy drawn from REGs at station s and time slot e in €/kWh
PZ, Cost of electrical energy drawn from ESS at station s and time slot e in €/kWh
¢ Setup time to connect buses to chargers in minutes
" Minimum allowed charging time in minutes
Ve Number of time slots starting with (and including) time slot e

required to cover minimum charging time + the setup time

¢ Index of last time slot of the day before start of next day’s operation
ei Index of time slot at which bus b arrives after finishing all trips
€, Index of time slot at which SoC of bus b drops below 90% for first time
ocZe Upper limit relative SoC for bus b at time slot e, is set to 0.9 for ez <e< ei and to 1 otherwise
al Lower limit relative SoC for bus b throughout the day
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it only charges when it is at a station.

Yoo S (T Lpge)

seS

Vb e B,e € E. (6)

The binary variable X, is equal to one if bus b is charging
during time slot e and zero otherwise. It is evaluated through
the next two big-M constraints, where the M value is set to be
T,+ 1.

Yhe > 1- (Te + 1)(1 _Xhe)
Ybe < (Te + 1)(Xbe)

VbeB,eeE, (7)
Vb € B,e € E. ®)

Given the value of X}, the number of active chargers at
station s during time slot e can be evaluated as follows:

Nit = 3" (Xpe X Lyse) VseS,ecE. (9

beB

Constraint (10) enforces the capacity constraint, which
ensures that the number of charging EBs at station s during
time slot e does not exceed the available number of chargers
N;.

NA <N, Vs €S,e €E. (10)

The binary variable [,, indicates whether bus b starts
charging during time slot e. It is evaluated through the binary
variable Uj,, which is the binary product of X, and X}, ,_; as
shown in constraints (11)—(14).

L, = Xy, — Uy, Vb EB,e €E, (11)

Upe < Xpo_1 Vb€ B,e €E, (12)
Upe < Xpe Vb e B,e €E, (13)
Upe = Xpo + Xp oy — 1 Vb€ B,e € E. (14)

For practicality and streamlined operational implementa-
tion, charging is permitted to commence at a station only if an
EB arrives or departs there, as this suggests that an employee

Illustration of charging sources. EB, electric bus; ESS, energy storage system; REGs, renewable energy generators.

is present who can start or stop the charging process. Con-
straint (15) enforces this rule: H,, is a binary parameter set
to one when an arrival or departure event occurs at station s
during time slot e.

Iy <Ly, XH,, VYbEB,e€E,s€{S: Ly, =1}. (15)

The energy’ stored in the ESS at station s after time slot e,
denoted by C%, is evaluated as shown by Constraint (16). We
assume that the ESS is fully charged at the beginning of the
day, where C; is the capacity of the ESS at station s.

4
se

C, - HSZ;(Z—S), ifVs e S,e =0,

(16)
Cyooy + (IEH — er_)(%), otherwise.

Constraint (17) ensures that the energy stored in the ESS
remains within the permissible range. Constraint (18) sets the
final SoC after the last time slot, denoted as ¢/. Given that the
charging duration is formulated as an integer variable, attain-
ing an exact final SoC of 100% may not always be feasible.
Therefore, we permit the final SoC to be slightly less than
100%, accommodating a deviation equivalent to the energy
that would be gained from 1 min of charging.

0<C, <C, Vs € S,e €E, (17)
Coe 2 Co— =5 VseS,e=¢.  (I8)

The effective energy stored in each EB b after each time
slot e is denoted by Cj,, as determined by Constraint (19).
For EB b at time slot e, the effective energy is calculated by

3 Electrical energy refers to the power consumed or stored over a period of time in the
bus battery. It is measured in kWh. A kWh quantifies the energy equivalent to a power
consumption of 1 kW sustained for 1 h. For example, a battery storing 100 kWh can
provide 1 kW of power for 100 h, or it can deliver 100 kW of power for 1 h, subject to
the constraints of the battery’s rated capacity and discharge rate.



ABDELWAHED ET AL.

adding the energy acquired from charging and subtracting the
total energy required to perform a trip starting at that time
slot, indicated by Wj,. C_b denotes the energy capacity of a
fully charged battery in EB b, 7° represents the setup time
required for connecting an EB to a charger, and 7, signifies
the charging efficiency.

Ch - sz)! ife = 0,

Cpe = i .
Chomt = Wie + (Ve = Iye X TNX s Lise X o 7,), otherwise.
(19)
Constraints (20) and (21) are implemented to maintain the
EBs’ SoC within specified upper and lower limits through-
out the day. Constraint (22) ensures that all EBs achieve
100% SoC prior to the commencement of the next day’s
operations. «,  represents the upper limit of the relative SoC
for bus b during time slot e. This is set to 0.9 once an
EB’s SoC falls below 90% for the first time during the day,
remaining at this value until the bus returns to the garage
for overnight charging. Otherwise, it is set to one. In addi-
tion, océ denotes the constant lower limit of the relative
SoC for each bus throughout the day. The second term on
the right-hand side of Constraint (22) addresses the poten-
tial impracticality of achieving a final SoC that is precisely
100%, due to the integer nature of the charging duration
variable.
Che < atj, X Cp

Cpe > o) X C

Vb e B,e €E, (20)
Vb € B,e € E, 21

— II,
Che 2 Cp = (D Lpse X 2 X0 VbeBe=¢. (22

sES

Constraints (23) and (24) ensure that charging events
with durations less than the prespecified minimum charging
time, denoted by 7™, are not permitted. The parameter V,
represents the number of time slots, starting from and includ-
ing time slot e, required to encompass both the minimum
charging time and the setup time, 7°.

e*<e+V,—1
2 Yhe* = (Ts + Tm) X Ibe

e*>e

Vbe B,ecE, (23)

e*<e+V,—1

Z Xbe* > Ve X Ibe

e*>e

VbEBecE. (24

Constraint (25) is introduced to preclude EBs from charg-
ing for three or more time slots without fully utilizing
all intermediate time slots, thereby prohibiting interrupted
charging.

Yie 2 Upoy1 XT, Vb € B,e € E. 25)

To align with practical considerations and the PTO’s oper-
ational requirements (manual action may be necessary), EBs
are permitted to initiate charging solely once during overnight
sessions, as reflected by Constraint (26). In this context, e'Z’
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denotes the time slot when bus b reaches the garage and has
no further scheduled trips.

e ¢

Zlbe<1

> ei

Vb € B. (26)

As outlined earlier, the OFO strategy formulates the
charging schedule optimization once prior to the commence-
ment of daily operations. Utilizing the mathematical model
described above, we devise the charging strategies for both

EBs and ESSs. Inputs for the parameter IT%, include day-
ahead forecasts of renewable energy generation. In addition,
the PTO’s anticipated delay projections are incorporated into
the calculated durations of trips.

4.2 | The online optimization

The ONO strategy employs the same mathematical model as
the OFO, including the identical objective function. The cen-
tral RDSS executes the optimization model periodically (e.g.,
hourly) throughout the day, adjusting the charging schedule in
response to the real-time network status. Crucially, the ONO
strategy leverages improved real-time predictions of renew-
able energy, as opposed to day-ahead forecasts, potentially
enhancing REG utilization. However, adopting the ONO
strategy necessitates certain modifications to the mathemat-
ical model, primarily due to uncertainties that may lead to
constraint violations.

Unexpected trip delays can result in EBs missing planned
charging sessions, either partially or entirely. Furthermore,
unforeseen factors like delays and adverse weather condi-
tions may increase energy consumption (notably through
heightened HVAC [heating, ventilation, and air condition-
ing] system usage), often leading to a lower than anticipated
SoC for EBs. Prioritizing network reliability over minimiz-
ing grid impact, our online algorithm focuses on offsetting
this unexpected excess energy consumption by EBs by using
the real-time information of the system. Subsequently, it
addresses the primary optimization problem of minimizing
charging costs, effectively also reducing grid impact through
the use of the locally generated renewable energy by using
the updated and improved predictions.

Figure 5 shows an example of the implementation of
the rolling horizon online optimization we propose. The
day-ahead planning uses the day-ahead renewable energy
generation predictions and the anticipated delays to optimize
the charging schedules. Afterward, the online optimization
runs hourly using the current system information and updated
predictions and reoptimizes the charging schedules. The
updated plan will be followed until the next scheduled update
after a period of time which can be set by the operators based
on the nature of their network and the amount of divergence
between the data estimates used in planning and the actual
events. While the day-ahead optimization has ample time
available for execution, the online optimization is limited to
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a very short time frame of just a few minutes. The event-
based discretization explained in the previous section allows
the operators to solve the optimization problem within this
short period of time and reach a close-to-optimal solution.
Figure 6 illustrates the logic of our online algorithm. In the
online scenario under uncertainty, there is a possibility of vio-
lating Constraint (21) during the day’s reoptimization of the
charging schedule. This violation may occur if an EB’s SoC
cannot be maintained above the prespecified day-ahead limit
océ due to real-world operational conditions. To address this,
we omit this constraint from the initial mathematical model
and substitute it with a customized constraint tailored to each
bus. During each reoptimization instance, we gather the latest
data on delays and excess energy consumption from the EBs.
Our primary goal is to swiftly compensate for any missed
charging opportunities, aiming to avert more severe impacts
later. Consequently, we first replan the imminent charg-

EBs in Group n?

Flowchart for the logic of the online optimized (ONO) strategy. EBs, electric buses; SoC, state of charge.

ing events within the next optimization window (spanning
from the current to the subsequent optimization instance).
This replanning involves reallocating available charging slots
among the EBs, prioritizing them based on their current needs
and conditions.

We achieve this by calculating the minimum SoC for each
EB during its remaining operations of the day, consider-
ing only the planned charging events scheduled after the
next optimization window from the previous charging plan
(i.e., excluding the earlier planned charging events within the
upcoming optimization window). If the anticipated minimum
SoC exceeds cxé, then Constraint (21) is reapplied for that par-
ticular EB. In all other scenarios, EBs are categorized into
N groups based on their estimated minimum SoC. Group 1
encapsulates the most critical EBs, those with the lowest pre-
dicted minimum SoC, whereas Group N consists of EBs with
minimum SoC levels approaching océ. For instance, assuming
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N is set to 4 and océ is 40%, Group 4 would include EBs with
an estimated minimum SoC ranging from 30% to 40%, and
Group 1 would encompass those with a minimum SoC lower
than 10%. Correspondingly, EBs with an estimated minimum
SoC between 10% and 20% would fall into Group 2, while
those with SoC ranging from 20% to 30% would be classified
under Group 3.

Subsequently, for each EB, we implement a constraint to
maintain its SoC above the lower limit of the succeeding
group (for Group 1, this is 10%; for Group 2, 20%; and for
Group 3, 30%). We then conduct N optimization iterations,
commencing with Group 1. In each iteration, we focus on
maximizing the charge added to the EBs of the respective
group during the forthcoming optimization window, while
imposing a penalty on EBs that are unlikely to reach the
subsequent group. Based on this maximization process and
the projected charging schedule for the day’s remainder, we
recalibrate the minimum SoC for each EB within the group.
If this newly calculated minimum SoC surpasses the thresh-
old of a higher group, we introduce a constraint to uphold the
SoC above that group’s lower limit and reassign the EB to
this higher group. If not, we enforce a constraint to main-
tain its SoC at the highest attainable minimum level. This
methodology is replicated across each group, ensuring that
we redistribute the available charging slots within the next
optimization window to the EBs according to their excess
unplanned lost charge. Upon completing these iterations, our
focus shifts to resolving the principal minimization prob-
lem throughout the remaining operational duration of the
day.

Besides uncertainties in traffic conditions and energy con-
sumption rates that may impact the reliability of the network,
deviations between predicted and actual renewable energy
generation can also occur. Although EB charging schedules
are influenced by forecasted renewable energy availability,
our highest priority is maintaining the bus network’s relia-
bility. Consequently, we do not permit real-time adjustments
to the charging schedules based on actual renewable energy
generation. Therefore, if the actual renewable energy falls
short of predictions, EBs compensate by drawing additional
power from the grid. For instance, suppose a charging plan
is optimized at 7:00, anticipating that an EB will charge 50
kWh at 7:30, using 20 kWh from renewable sources and 30
kWh from the grid. If, at 7:30, only 10 kWh of renewable
energy is available, the bus should then draw the shortfall
of 40 kWh from the grid. Conversely, if renewable energy
generation exceeds expectations, EBs should prioritize using
all available renewable power before resorting to grid
resources.

4.3 | ESS charging strategy

In contrast, we permit modifications to the ESS’s optimized
charging schedule, introducing an additional layer of com-
plexity due to the need for a real-time decision model to
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dynamically adjust the ESS’s (dis)charging plans. This model
fundamentally relies on comparing the expected (planned)
and the actual excess renewable energy. We define “excess”
renewable energy as the available power from the REGs
for ESS charging, after accounting for the EBs’ charging
demand. Therefore, the actual excess renewable energy is
calculated by subtracting the actual EB charging load from
the actual renewable energy generated. Correspondingly, the
planned excess renewable energy is the difference between
the forecasted renewable energy generation and the planned
EB charging load.

A decision on the ESS’s charging or discharging power
is necessary each time an EB begins or concludes charging,
resulting in a change in the EB charging load, and in case
of fluctuations of the actual power output of the REG. Three
potential scenarios can arise from the mismatch between the
planned and actual excess power of the REG, each addressed
as outlined in Figure 7. If the ESS’s charging is scheduled
but without any planned excess REG power, this implies that
the charging was intended to be sourced entirely from the
grid. Consequently, the ESS’s charging power remains as ini-
tially planned. On the other hand, if the ESS’s charging was
planned with an expected (partial) reliance on excess REG
power, two scenarios are considered. First, if the anticipated
excess REG power surpasses the actual output, the ESS can-
not offset this deficit by drawing additional power from the
grid. Therefore, the actual charging power is limited to the
sum of the planned grid power and the actual excess REG
power. Second, if the actual excess REG power exceeds the
forecast, indicating a surplus of REG power, the ESS charg-
ing power is adjusted upward to maximize the use of the
available renewable energy.

If ESS discharging is planned, there are two possible out-
comes. First, if the actual excess REG power is less than
anticipated, we refrain from increasing the ESS discharg-
ing power. Consequently, any shortfall in EB charging power
is compensated by drawing from the grid. On the other
hand, if the actual excess REG power exceeds the planned
excess, implying a surplus of renewable energy, this power
can be directed toward charging the EBs, rather than the ESS.
Therefore, we decrease the ESS discharging power by the
difference between the actual and the planned excess REG
power. Finally, in situations where neither charging nor dis-
charging of the ESS is scheduled at a given time, but there
is surplus renewable energy and the ESS is not fully charged,
we utilize this excess power from the REG to charge the ESS.

For the greedy strategies, we employ a simple decision pro-
cedure for charging and discharging the ESS, which involves
charging the ESS only with any excess renewable energy gen-
erated after accounting for the EB load. We discharge the ESS
if the total power required for EB charging exceeds the total
power available from the REG. We also make sure to fully
recharge the ESS during the night when the cost of energy
from the grid is lower than during the day. This ensures that
the ESS is always fully charged at the beginning of the EBs’
operation each day.
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5 | CASE STUDY

This study is carried out in collaboration with RET, the PTO
in the city of Rotterdam in the Netherlands. The city has
a very extensive TBN which also extends into some neigh-
boring cities and suburbs. The whole network is on route to
be fully electrified within the next few years. At the time of
this study, managers and decision makers from the PTO, the
municipality, and the grid operators have been studying the
implications of electrifying a part of the network in the south-
ern part of the city by using renewable energy from a solar
park. This exemplifies the practical contribution of our opti-
mization model and RDSS as they supported these decision
makers in this process.

The network includes eight lines which are planned to be
served by 50 EBs with 240 KWh batteries. Six fast charg-
ers of 300 kW charging power are due to be installed in
the central station of the southern network, where the solar
panels will be installed as well. Thus, in our case study
there is only a single central terminal station that will be
used for opportunity charging. Furthermore, four fast charg-
ers will be installed at the garage where some EBs have
layovers between their assigned trips during the day. Finally,
slow chargers of 50 kW will be installed in the garage for
overnight charging. To assess the impact of these infrastruc-
ture decisions, we compare the different charging strategies
for varying numbers of fast chargers. We set the highest num-
ber of fast chargers that we consider for the central station to
be equal to the maximum number of EBs that are simultane-
ously located at that station during the day according to the
trip schedule. This results in having six fast chargers at the
central station in this scenario. At the garage, there would be
four fast chargers and as many slow chargers as there are EBs.

Logic of adjusting the energy storage system (ESS) (dis)charging schedule with optimized strategies. REG, renewable energy generator.

Thus, each EB can find a slow charger for overnight charging
once it arrives at the garage.

For the renewable energy generation, we use open data of
solar energy generation provided by Elia Group in Antwerp,
Belgium, a city very close to Rotterdam, from 2018 (Elia
Group, 2019). The data include actual renewable energy
profiles, day-ahead predictions, and real-time predictions,
which are updated four times during the day. We adapt
these data for our models, scaling it to match the planned
installed capacity in our case study. Then, based on the data’s
15-min resolution, we calculate the average solar power gen-
erated in each time slot in our event-based discretization
model.

In our case study, the available area for installing the solar
park at the central station is approximately 15,000 m?. The
grid operator and the municipality suggest a peak power
density for the solar panels of 175 W/m?. Therefore, the
maximum solar power capacity—assuming full use of the
available area—is about 2.625 MW. This exceeds the power
requirements of eight fast chargers. However, according to
the renewable generation data, the annual average solar power
at noon is only 38.1% of the installed capacity. Seasonally,
the average is 53.2% during summer and 26% in winter.
The highest recorded power generation throughout the year
reaches just 76.5% of the rated peak power. Consequently,
fully utilizing the 15,000 m?> would provide sufficient power
for an average of 4.6 chargers at noon during summer and 2.3
chargers in winter.

Furthermore, the ESS under consideration at the cen-
tral station has a capacity of 600 kWh with a rated power
of 300 kW, as suggested by the PTO. In addition, we
assume that the energy cost from the renewable source is
zero. While installing REGs involves significant infrastruc-
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ture costs, the primary goal of the stakeholders in Rotterdam
is to achieve sustainable and clean operations. Hence, the
decision to install solar panels is beyond the scope of our
work; our focus is on analyzing the operational impact of
having renewable generators.

For energy consumption, we use two different values pro-
vided by the PTO. In summer, the average consumption is
assumed to be 1.55 kWh/km, while in winter, it increases
to 1.93 kWh/km due to heating systems. The PTO also
specifies passive power consumption—power consumed by
EBs during layovers due to the HVAC system—as 6 kW
in summer and 18 kW in winter. To account for uncer-
tainty, we equate additional power consumption due to delays
with the passive power consumption rate. Consequently, a
delayed EB consumes twice the energy per minute compared
to its on-time consumption, as it operates longer with pas-
sengers onboard. Conversely, arriving early reduces energy
consumption for a trip by 1.25 times the passive power con-
sumption rate multiplied by the time difference, as the EB
operates with passengers for a shorter duration when arriving
early.

To model delays, we employ truncated normal distri-
butions, created using parameters that closely approximate
actual delay occurrences. These distributions and their
parameters are based on expert insights from the PTO, draw-
ing on their knowledge of the road network, and historical
delay data (refer to Figure 8 for an illustration). The mean and
standard deviation of the delay distribution for each trip are
determined by three factors: the minimum driving time, the
time-dependent extra driving, and the anticipated extra delay,
as provided by the PTO.

The minimum driving time represents the quickest pos-
sible journey between two terminal stations on a route,
assuming optimal traffic conditions throughout the day.
Time-dependent extra driving refers to the additional time
built into the trip schedule to accommodate expected traffic
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variations at different times of the day. Finally, the antici-
pated extra delay is an additional buffer incorporated into
trip durations during planning by the PTO, based on their
historical experience.

Figure 8 presents an example delay distribution for a trip
with a minimum driving time of 30 min, a time-dependent
extra driving time of 5 min, and an anticipated extra delay of
2 min. In the context of optimized strategies, the anticipated
extra delay, highlighted by a red line in the figure, represents
the value factored into planning.

We assume that the setup time, which is the time required
for connecting EBs to chargers, is 1 min. The minimum net
charging time, defined as the charging time minus the setup
time, is set to 2 min. Therefore, if an EB arrives at a charging
station with less than 3 min remaining before its next trip, it
will not initiate charging, regardless of its SoC. As previously
noted, the upper SoC limit during the day is set to 90%. Con-
sequently, EBs are not permitted to charge beyond this 90%
threshold during daylight hours. For the optimized strategies,
we establish a lower SoC limit, denoted as a}l], at 30%. This
means that the planned SoC for all EBs should remain above
30% throughout the day. In the case of the LCHP strategy, the
minimum parameters for charging are set to a charging time
of at least 3 min and a minimum SoC of 50%, below which
an EB engaged in charging cannot be replaced by another
EB.

The TBN’s operations in the city commence at 5 a.m. and
conclude around 1 a.m. the following day. In the ONO strat-
egy, we reoptimize the charging schedule hourly, beginning
at 7 a.m. and concluding at 11 p.m., considering that only
a limited number of trips occur outside this time frame. A
10 min interval is allowed between the commencement of
reoptimization and the implementation of the revised sched-
ule. Therefore, if reoptimization is triggered by the RDSS
at 7:00 a.m., the updated schedule is applied at 7:10 a.m.
The optimization process terminates upon either reaching the
10-min mark or achieving a solution with an optimality gap
of 1%. In our case study, at the early instances of the day,
we always reach the 10 min time limit with an optimality
gap ranging from 2% to 4%. As the day proceeds, the opti-
mization problem gets smaller, as fewer buses are included,
and the 1% optimality gap target is achieved in less than 10
min. It is also important to notice that the average duration
required by the algorithm to reach the 1% optimality gap is
always 50% less in winter compared to summer instances.
This could be due to the excess renewable energy available
in summer which increases the size of the solution space.
Finally, these computational results were achieved by CPLEX
solver on a Windows machine with 16 GB of RAMs and eight
CPUs.

Regarding the minimum SoC constraint levels (as dis-
cussed in Section 4.2), we employ thresholds of 10%, 20%,
and 30%. For enhanced practicality, if an EB’s charging
event, planned in the preceding schedule, is ongoing at the
time of the schedule update, we require that this charg-
ing event is neither canceled nor shortened in duration.
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This ensures that changes do not need to be immediately
communicated in case manual action is required.

In the following subsections, we conduct a series of com-
parative studies. First, we contrast the OFO charging strategy
with various greedy charging strategies, featuring differ-
ent numbers of chargers within the network, to highlight
the advantages of optimizing the charging schedule. Sub-
sequently, we examine the effect of the quality of REG
predictions on the optimized charging schedule. Thereafter,
we compare both offline and greedy charging strategies
against the online strategy in scenarios with uncertain trip
delays, to assess the effectiveness of the RDSS. Lastly, we
explore the benefits of incorporating an ESS in enhancing our
performance metrics.

5.1 | Optimizing the charging schedule
5.1.1 | The value of optimizing the charging
schedule

In our initial study, we focus on the strategic decision of
optimizing the charging schedule, setting aside online opti-
mization for now. We compare optimized strategies with
greedy ones in a deterministic setting, where trip delays are
assumed to be consistent with the expected delay values pro-
vided by the PTO, foregoing the use of the delay distribution
mentioned earlier. However, uncertainty remains in the form
of renewable energy generation. In the optimized strategy,
we use day-ahead predictions of renewable energy, evaluat-
ing performance measures against actual renewable energy
generation values. It is important to highlight that this uncer-
tainty in renewable energy generation does not compromise
the reliability or feasibility of the TBN’s operations.

As previously indicated, the largest reasonable number of
fast chargers is six at the central station, ensuring a charg-
ing slot for each bus on arrival, and four at the garage. Under
these conditions, both the FIFS and the LCHP strategies rep-
resent the upper limit of system reliability in this base case,
with no need to prioritize buses, leading to indistinguishable
performance between the two strategies. We then experiment
with reduced numbers of fast chargers, creating constraints
on charging slot availability. Initially, we remove two fast
chargers from both the central station and the garage, leaving
four and two, respectively. In the FIFS strategy, this reduc-
tion equates to about 197 min of charging time in the base
scenario. In the next phase, we further decrease the count
by one more charger at each location, leaving three at the
central station and one at the garage, resulting in an addi-
tional reduction of 408 min of charging time from the base
scenario.

To assess the seasonal impact, we conducted simulations
for two complete months, January and July 2018, applying
each charging strategy. We utilized the previously outlined
winter and summer energy consumption rates for January
and July, respectively. In addition, we based our calcula-
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tions on the day-ahead predicted renewable energy generation
values within the optimized strategy. The results, depicted
in Table 2, demonstrate the advantages of an optimized
charging schedule over the greedy strategies. Utilizing the
maximum number of fast chargers, the optimized strategy
ensures a reliable charging schedule for the TBN, simul-
taneously reducing the charging costs (our proxy for grid
impact) by 25.8% in summer and 15.1% in winter. The more
significant summer reduction is attributable to higher renew-
able energy generation. Both figures underscore the strategy’s
enhanced alignment with the power grid, leading to reduced
energy costs. Owing to the high renewable energy genera-
tion, the optimized strategy raises the average minimum SoC
of the EBs above the 30% threshold set within the strategy
during summer. Consequently, the strategy effectively maxi-
mizes daytime energy absorption from the REGs—incurring
no charging costs—thereby minimizing the need for costlier
overnight charging at the garage.

Moreover, the optimized strategy can slightly better utilize
renewable energy during the day compared to greedy strate-
gies. This is because there may be situations where an EB
is at a station generating renewable energy but cannot use
it, as its SoC has already reached the 90% upper limit. The
optimized strategy can better plan the charging schedule to
avoid this issue. However, this advantage is less significant
in winter due to the limited generation of renewable energy.
Therefore, any disparity between predicted and actual renew-
able energy generation directly impacts the performance of
the optimized strategy.

When we move to the scenarios with reduced numbers of
chargers, Table 2 shows that the optimized strategy is able to
maintain higher levels of reliability compared to the greedy
strategies, especially during winter when energy consump-
tion increases. In the scenario with four chargers in total,
FIFS has one infeasibility during summer and six during win-
ter. While the LCHP strategy performs better in that regard
and achieves feasible operations in both seasons, the mini-
mum SoC still drops below the critical levels of 10% for 12
EBs. In contrast, the optimized strategy is feasible in both
seasons while maintaining a minimum SoC level above 30%
and 15% during summer and winter, respectively. The opti-
mized strategy also reduces the charging costs by around
26% and 11% compared to LCHP during summer and winter,
respectively.

The results suggest that using the maximum number of
chargers may be a conservative approach, yet the PTO opted
for this setup due to their initial unfamiliarity with EB opera-
tions. Preferring to err on the side of caution, they chose this
strategy for the initial phase. In addition, it is important to
note that the network is expected to incorporate more EBs
in the coming years, which will utilize the same charging
infrastructure. However, the present trip schedule is designed
based on the existing fleet size and the maximum charger
capacity. Therefore, our subsequent analyses will be based on
these current operational settings, utilizing the full capacity of
fast chargers.
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TABLE 2

Comparative study between the charging strategies with different number of chargers under deterministic delay settings.

Number of fast

chargers Performance measures
Average daily Average daily Number of Number of EBs
Total\Central grid charging renewable energy  infeasible EBs with 0 < Average lowest
station\Garage Charging strategy costs(€) utilization (%) with SoC% =0 SoC%< 10 SoC %
(a) Summer (July 2018): Average daily renewable energy generation: 14,079.17 kWh
10\6\4 Optimized 410.68 46.11 0 0 43.09
FIFS 553.43 4491 0 0 62.20
LCHP 553.43 4491 0 0 62.20
6\4\2 Optimized 412.07 45.95 0 0 42.99
FIFS 554.09 44.66 0 0 61.41
LCHP 543.46 44.50 0 0 55.62
4\3\1 Optimized 421.10 44.59 0 0 41.76
FIFS 531.12 43.87 1 1 54.86
LCHP 570.13 40.57 0 0 48.40
(b) Winter (January 2018): Average daily renewable energy generation: 1488.79 kWh
10\6\4 Optimized 1021.48 91.00 0 0 31.06
FIFS 1203.22 91.97 0 0 49.36
LCHP 1203.22 91.97 0 0 49.36
6\4\2 Optimized 1032.67 91.59 0 0 31.12
FIFS 1193.50 92.17 0 0 46.54
LCHP 1166.54 90.02 0 1 32.40
4\3\1 Optimized 1005.17 92.65 0 0 15.02
FIFS 1044.00 92.28 6 4 29.84
LCHP 1128.89 85.80 0 12 19.04

Abbreviations: EBs, electric buses; FIFS, first-in-first-served; LCHP, lowest-charge-highest-priority; SoC, state of charge.

5.1.2 | The impact of renewable energy
prediction quality

The decision to invest in enhancing renewable energy pre-
dictions poses a critical question for PTOs. In this analysis,
we explore the impact of errors in renewable energy pre-
dictions on the primary performance metrics of the TBN.
We reduce our original prediction errors by 50% and 100%
(i.e., no error), and evaluate the average values of our per-
formance metrics in winter and summer. The results show
that neither the charging costs nor the renewable energy uti-
lization improves when the renewable generation predictions
improve. There is only a slight and negligible improvement of
around 0.5% and 0.05% in the renewable energy utilization in
winter and summer, respectively.

Improving predictions does not significantly enhance per-
formance, as the optimized charging schedule remains largely
unchanged with increased prediction accuracy. Essentially,
the optimal charging slots continue to be the same. This is
because buses can only charge at the full rated charging power
of 240 kW. Therefore, the absolute error in predictions must
be substantially large relative to the charger’s rated power
to impact the optimized schedule. For instance, in the case
of underprediction, if the actual renewable power during a

specific hour is 480 kW (equivalent to two chargers) and the
predicted power is 440 kW (resulting in a —40 kW error), it
would still be optimal to charge two buses. In this scenario,
the PTO would only have to compensate for the 40 kW short-
fall from the grid, which is of limited impact particularly if
grid charging costs at that hour are relatively low. Similarly,
in cases of overprediction, with a predicted 520 kW (+40 kW
error), the optimal decision hinges on the grid charging costs
at that time. If grid costs are high, the best choice would be
to charge only two buses, as charging a third would require
drawing an additional 200 kW from the grid. Conversely, if
grid costs are low, charging three buses becomes the opti-
mal decision, as it is cost-effective regardless of available
renewable energy.

Thus, enhancing prediction accuracy would only improve
the network’s performance when the prediction errors are
close to the chargers’ rated charging power of 240 kW, and
the grid charging costs during that specific hour are com-
paratively high. Figure 9a,b illustrates the distribution of the
absolute error in renewable energy generation predictions for
winter and summer, respectively. In winter, the 50th and 75th
percentiles of this distribution are 38 and 83 kW, correspond-
ing to about 16% and 35% of a single charger’s 240 kW
power. In summer, the absolute error values are naturally
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higher due to increased renewable energy generation. How-
ever, this does not affect the EBs’ charging schedule since
there is generally an excess of renewable energy available in
summer, sufficient to power all chargers.

5.2 | The value of online optimization

The previous section’s results highlight the effectiveness
of optimizing the charging schedule compared to greedy
strategies. However, to determine if the optimized strategy
maintains its superiority under uncertainty, we conducted a
comparative study. This study compares the OFO and ONO
strategies, the greedy strategies, and a perfect information
(PI) scenario under stochastic operating conditions. We base
the study on the actual network configuration with the max-
imum number of chargers, ensuring that each EB arriving
at a terminal station with charging facilities can access a
free charger. Consequently, there is no functional difference
between the FIFS and LCHP strategies in this setup, as both
maximize network charging. We therefore collectively refer
to them as “greedy” in the results.

Similar to the previous study, we simulate two distinct
months, January and July of 2018, incorporating the respec-
tive energy consumption rates. In this analysis, we introduce
stochastic delays into trip durations based on the distributions
previously established. To allow for comparison between
the operating conditions in the two seasons, identical delays
are added to corresponding days of both months (e.g., trip
delays on the first day of January mirror those on the first
day of July). In the PI scenario, we generate the charging
schedule using actual renewable energy generation and trip
delay data, providing upper bound benchmarks for all system
performance metrics.

The results for July and January are shown in Figures 10
and 11, respectively. The PI scenario sets the benchmark,
and exhibits the highest reliability (Figures 10c and 11c)
and renewable energy usage (Figures 10b and 11b) in the
2 months. In the summer, the ONO provides the best per-

120
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Hourly average actual and predicted generated renewable power in (a) winter and (b) summer.

formance compared to the greedy and OFO strategies. It
maintains the system reliability and guarantees that no buses
would run out of energy, which cannot be achieved with the
OFO strategy (Figure 10c). It also uses 1.5% more renew-
able energy compared to the OFO strategy (Figure 10b). The
greedy strategy can also guarantee the same levels of sys-
tem reliability as it uses every potential charging slot for each
bus while there are enough chargers for all the buses. How-
ever, this results in excessive daytime charging and higher
impact on the grid (Figure 10a), as well as significantly higher
unneeded average lowest SoC levels (Figure 10d).

In the winter, only the greedy strategy can consistently
achieve the reliability levels of the PI due to increased energy
consumption (Figure 11c). While the ONO strategy still out-
performs the OFO strategy, it results in an average of two
buses running out of energy per day. Hence, the PTO should
decide for one of the following options:

* Option I: Replan the bus trip schedules to allow for more
potential charging slots for the buses such that the ONO
strategy becomes able to achieve the same reliability level
as the greedy strategy. It is also highly likely that it will
reduce the impact on the grid, similar to the summer
results, compared to the greedy strategy which has the
maximum impact on the grid.

* Option 2: Implement the greedy strategy, which is the most
conservative scenario, and accept the significantly higher
grid impact (Figure 11a) and unnecessary day charging
(Figure 11d).

* Option 3: If there are available backup buses, the PTO
may decide to adopt the ONO strategy and dispatch the
backup buses to replace buses which are about to run out of
energy. This would require the PTO to have at least three
backup buses, which is the maximum number of infeasi-
bilites occurring in a single day based on the simulation
results.

In general, it is advisable to follow Option 1 as it is highly
likely to reduce the impact on the grid and eliminate any
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unnecessary day charging during peak hours. However, if
practical or operational constraints prevent the replanning
of the bus trip and assignment schedules, then the PTO
should decide between Options 2 and 3 based on the available
resources, ease of implementation, and cost analysis.

5.3 | The value of the ESS

In the final analysis, we examine the potential advantages of
deploying an ESS at the central station to enhance the utiliza-
tion of renewable energy when the ONO strategy is applied.
This study follows the same setup as the one described in
Section 5.2, including the network operation with random
trip delays. As indicated before, the ESS considered has a
capacity of 600 kWh and a charging/discharging rate of 300
kW, in line with the PTO’s recommendations. Moreover, in
the optimized strategy, the ESS is permitted to draw power
from the grid, potentially charging during off-peak periods
and discharging during peak demand times.

As summarized in Table 3, the incorporation of an ESS
leads to a mean increase in renewable energy utilization by
approximately 1.4% in summer and 7.9% in winter. This cor-
responds to an average daily rise in renewable energy usage
of around 191 kWh for summer and 118 kWh for winter. In
addition to augmenting renewable energy consumption, the
ESS can facilitate a shift in charging demand away from peak
periods by storing energy from the grid during low-demand
periods and subsequently supplying it to the EBs at times of
high demand. Consequently, the introduction of an ESS can
lead to an average reduction in grid impact of about 1.7% in
winter and 3.2% in summer.

It is crucial to acknowledge that the effectiveness of the
ESS may differ if it were positioned at a different station.
If an ESS is installed at a site where the generated renew-
able energy is consistently consumed for EB charging due to
the trip schedule, the benefits of an ESS may be negligible.
Hence, the strategic placement of an ESS at a station with a
less consistent EB charging demand throughout the day could
potentially amplify its value.
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TABLE 3
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The value of adding an energy storage system (ESS) to the system while following the online optimized (ONO) strategy.

Performance measure Winter (January 2018) Summer (July 2018)

ONO without ESS ONO with ESS ONO without ESS ONO with ESS
Impact on the grid (proxied by charging costs in €) 985.04 968.06 454.29 439.87
Renewable energy generation (kWh) 1488.79 14,079.17
Renewable energy utilization (%) 88.62 96.51 40.56 41.92

6 | CONCLUSION AND PRACTICAL
IMPLICATIONS

In this work, we addressed two essential research gaps related
to the problem of electrifying TBNs: studying the impact
of operational uncertainty and coordinating the charging
schedules of electric TBNs with renewable energy gener-
ation profiles. We studied how real-time decision support
systems, through online optimization, can mitigate the impact
of uncertainty on the operational reliability and improve the
renewable energy utilization. Our study has several important
academic and managerial implications and findings, which
are summarized below.

* Importance of optimizing charging schedules. Opti-
mizing the charging schedule can result in an enhanced
coordination with the renewable energy generation profiles
and minimize the impact on the grid by reducing charging
during peak times. Furthermore, optimization improves the
reliability of the network compared to greedy strategies,
particularly when there is a limited number of chargers.

* Renewable energy integration. More sustainable opera-
tions for electric TBNs can be achieved through powering
bus charging from renewable energy resources. Using
locally generated renewable energy can also reduce the
impact on the grid and cut down the infrastructure costs
required to power the EBs.

* Opportunity fast-charging electric bus networks can
be critically impacted by operational uncertainty. If an
EB misses a few minutes of a charging event due to an
unexpected delay, its operational feasibility may be threat-
ened since a considerable amount of energy was planned
to be added during that short time frame. Moreover, the
impact of traffic delays is amplified by severe weather con-
ditions as more energy is consumed by the EBs for longer
unplanned periods to operate the HVAC systems.

* Online decision support can mitigate the impact of
operational uncertainty in opportunity fast-charging
bus networks. Online optimization that leverages real-
time data to take corrective actions in the charging
schedules based on the actual unexpected events can
improve the operational reliability of the network. In addi-
tion, it can also increase the degree to which renewable
energy is used to charge the buses by using updated and
improved renewable energy predictions.

* Extreme weather could be a challenge. EBs’ HVAC sys-
tems may need to operate for longer periods under extreme

weather conditions. This results in significantly higher
energy consumption for the buses. This impact is amplified
by an increase in travel delays in the network as this results
in partially or fully missing the preplanned recharging ses-
sions for the buses. Accordingly, buses may require more
recharging slots and longer charging durations during the
day to avoid running out of energy, which cannot always be
guaranteed because of the trip schedules. Thus, it might be
necessary in these cases to adapt the EBs’ trip assignment
and charging schedules to such severe weather conditions.
If such modifications to the trip assignment schedule are
not possible, these effects can be mitigated by charging the
buses at every given opportunity, which is in line with the
greedy charging strategy.

* The value of ESSs. Installing an ESS to store locally gen-
erated renewable energy can help in improving renewable
energy utilization as well as shifting the TBN’s load on the
grid to the less straining off-peak times.

Our work contributed to the successful implementation of
the first phase of the TBN electrification in the city of Rotter-
dam. Based on our analyses and results, the PTO has taken
actions to build a real-time monitoring tool and in imple-
menting charging scheduling optimization in their planning
system.

“During the planning of the first batch of
electric buses, the simulation also showed the
impact of uncertainty in the trip duration on the
feasibility of the schedule. It showed that even a
conservative charging schedule would result in
a few buses that will run into problems during
the day. These results confirmed that real-time
monitoring is an absolute must. We used the
ideas of the RSM team in the development of a
real-time monitoring tool for the electric buses.
This tool is now in operation.” Wibout van Ede,
Head of Business Operations at RET

Nevertheless, the electrification of TBNs and the integra-
tion with renewable energy generation to create smart and
sustainable cities still requires further research and our work
should be perceived as a starting point in that context. While
we focused only on optimizing the charging schedule, our
results have shown that the input trip schedule fundamen-
tally affects the feasibility of the network if it does not grant
enough charging time for the EBs under uncertainty. Thus, it
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is important to acknowledge the implications of operational
uncertainty on strategic decisions and to further study the
interdependencies between trip schedule and charging sched-
ule. An important direction of future research would be to
study how to integrate optimizing the trip assignment and
charging scheduling. Although this would increase the com-
putational complexity of the problem, it can lead to a more
efficient and robust network. Further avenues for future work
also include the explicit modeling of EBs that run out of
energy during operations to assess the precise operational
impact, the role of battery degradation for ESS costs, and a
more extensive integration of the bus batteries and the ESS
into energy markets as a virtual power plant (Kahlen et al.,
2018).
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Acronym Definition

EB Battery electric bus

ESS Energy storage system

FIFS First-in-first-served

HVAC Heating, ventilation and air conditioning
LCHP Lowest-charge-highest-priority
MILP Mixed-integer linear programming
OFO Offline optimized

ONO Online optimized

PI Perfect information

PTO Public transport operator

RDSS Real-time decision support system
REG Renewable energy generator

SoC State of charge

TBN Transit bus network
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