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Abstract
We study, analytically and empirically, how technological changes affect the nexus be-
tween resource abundance and economic growth. Our two-sector model indicates that 
capital-augmenting technological improvements can be contemporaneously contractionary 
in resource-rich economies, and expansionary elsewhere, due to differences in the size of 
the elasticity of substitution between labor and capital. In addition, such improvements 
yield relatively steeper expansionary patterns in resource-rich economies in the longer run. 
We test these predictions using a panel of U.S. states and counties. Our identification strat-
egy rests on geographically-entrenched differences in resource endowments, and the adop-
tion of plausibly exogenous technology shocks at the national level. Our core estimates 
corroborate our predictions. First, we document persistent differences in the elasticity of 
substitution between capital and labor across the natural-resource dimension. Second, we 
find that an increase in TFP is on impact contractionary in resource-rich states, but is 
non-contractionary (at worst) in resource-poor ones. Third, we illustrate that in the longer 
term a positive technology shock expands output and inputs in resource-rich economies 
relatively more strongly. Our results shed light on hitherto overlooked potential adverse 
effects of natural resource abundance.

Keywords  Natural resource abundance · Technology shocks · Input elasticities

JEL classifications  Q32 · E32 · O33
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1  Introduction

Understanding the nexus between natural resources and economic growth has been of 
perennial interest to economists and policy makers, especially in discussions of the resource 
curse. The literature so far has highlighted a host of potential transmission channels.1 Little 
attention, however, has been given to the potential role of technological changes.2 The latter 
represents a pivotal phenomenon with long-lasting implications for the economy. Nonethe-
less, the empirical literature still debates the size of the contemporaneous impacts.3 This 
study examines how resource abundance interacts with technological changes to affect 
growth. We hypothesize, and demonstrate using U.S. data, that technology improvements 
induce a contemporaneously divergent outcome on growth in output and labor, across the 
natural resources dimension. Our results shed light on previously overlooked potential 
adverse effects of natural resource abundance, and offer one possible reconciliation for the 
ongoing debate over the opposing contemporaneous effects of TFP shocks on the economy.

The notion that the oil and gas sectors tend to be relatively intensive in capital and low-
skilled labor has been documented in previous studies (e.g., Michaels et al. 2014). The 
well-documented capital-skill complementarity hypothesis (e.g., Krusell et al. 2000) then 
suggests that the elasticity of substitution between capital and labor (hereafter, the ESKL) 
should be relatively higher in resource-rich sectors. This prediction has been substantiated 
in a number of cross-sectional studies. 4 Moreover, Raveh (2020) illustrates that these fea-
tures may translate to the macroeconomic level in economies with a dominant oil and gas 
sector, noting that resource-abundant economies are consistently more capital-intensive 
over a period of three decades. We hypothesize that this may similarly extend to the size of 
the ESKL, positing that it is persistently relatively higher in extractive industries.

Importantly, the relative size of the ESKL can be central to understanding the contem-
poraneous impact of technological changes on economic activity.5 The intuition is simple: 
a positive technology shock increases the productivity of capital, but it also reduces the 
need for labor through factor substitution. To examine this analytically, we construct a two-
sector (extractive and non-extractive) model of economic growth with capital adjustment 
costs, and economy-wide labor- and capital-augmenting technological change. The analyti-
cal results indicate that while labor-augmenting technological improvements are similarly 
expansionary in both sectors, the short- and long-term patterns may differ for capital-aug-
menting improvements. Specifically, a capital-augmenting technology shock increases the 
productivity of capital while substituting labor, thus giving rise to involuntary unemploy-
ment in the short-run due to capital adjustment costs. These costs result in a gradual conver-

1 See, e.g., Allcott and Keniston (2018), Arezki et al. (2017), Armand et al. (2020), Brollo et al. (2013), Gyl-
fason et al. (1999), James and Rivera (2022), Tornell and Lane (1999), Torvik (2002), and the references 
therein. Van der Ploeg (2011) and Venables (2016) provide syntheses of the literature.

2 The literature unveils the potential endogeneity of TFP shocks and innovation to resource abundance (e.g., 
Kuralbayeva and Stefanski 2013). However, it overlooks the potential role of resource abundance in trans-
mitting the effects of technological changes on the economy.

3 While standard frictionless real business cycle models predict short-term expansionary effects, other canon-
ical macro workhorse models predict the opposite (e.g., Chang and Hong 2006). This inconclusive evi-
dence, along with the other related literature, is reviewed in more detail in the following section.

4 See, e.g., Caballero et al. (1995), Young (2013).
5 The notion that the ESKL parameter is central for understanding the impacts of technological changes dates 
back to Hicks (1932) and Satō (1975). For a more recent analysis, see Cantore et al. (2014).
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gence back to full employment. Hence, in the short-term the impact is contractionary if the 
ESKL is sufficiently high; yet, in the long-term the magnitude of the expansion depends on 
the initial capital-intensity, thus pointing at the potential divergent outcome across resource-
rich and -poor economies.

The model also serves to derive sector elasticities and capital- and labor-augmenting tech-
nology shocks over time using U.S. industry-level data. Our estimates reveal that extractive 
industries indeed exhibit consistently higher ESKL than non-extractive sectors, averaging 
around 0.79 compared to 0.55 for other sectors. The latter underpins our subsequent analy-
sis, in which we empirically examine our main analytical predictions, using an extensive 
panel of U.S. states and counties, covering the period 1963–2015. Employing plausibly 
exogenous measures of national technology shocks—the purified U.S. TFP series of Basu et 
al. (2006) (henceforth, BFK)—and geologically determined cross-sectional state resource 
abundance from James (2015), we exploit geographic and temporal variation to identify the 
differential effects of technology improvements across resource intensities. Our empirical 
strategy hinges on interacting state-level resource endowments with national technology 
shocks, facilitating causal identification through geographic and temporal exogeneity.6

Our empirical analysis provides robust support for our analytical predictions. We find 
that positive national TFP shocks, most notably capital-augmenting ones, have a contem-
poraneously contractionary effect on output and employment in resource-rich states, driven 
by labor market impacts, whereas it is expansionary or at worst neutral in resource-poor 
states. Quantitatively, our baseline estimates suggest that a standard deviation increase in 
TFP decreases the average output of resource-rich states by approximately 0.1% relative to 
resource-poor states in the short term. Nonetheless, our estimates also show that two to five 
years ahead, positive TFP shocks lead to relatively stronger expansions of output and inputs 
in resource-rich states, aligning with our model’s predictions. Finally, we show that these 
patterns are robust to a battery of robustness tests that consider different treatments, sample 
restrictions, specifications, and controls.

Section 2 reviews related literature and places our contributions within it. Section 3 
explains analytically how resource abundance interact with technology shocks to affect 
growth. Section 4 presents the data, empirical findings, and robustness tests. Section 5 
concludes.

2  Related Literature

Our contributions relate to three strands of literature. First, natural resource abundance can 
be a blessing as well as a curse.7 A central aspect is the potential negative impact of resource 
abundance on productivity and innovation. Among the various channels proposed, natu-
ral resource wealth may depress factor productivity (e.g., Gylfason et al. 1999; Krugman 
1987; Sachs and Warner 2001; Torvik 2001; Van Wijnbergen 1984), lower human capital 
(e.g., Bhattacharyya and Hodler 2010; Gylfason 2001; Stijns 2006), and induce special-

6 This methodology is reminiscent of that adopted in other studies that have also examined the heterogeneous 
local effects of aggregate shocks, by testing the impact of their interaction, including Liu and Williams 
(2019), Perez-Sebastian et al. (2019), and Raveh (2020), among others.

7 See the surveys in Van der Ploeg (2011) and Venables (2016) for effects at the national level, and Van der 
Ploeg and Poelhekke (2016) for effects at the local level.
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ization that crowds out innovation and entrepreneurship (e.g., Kuralbayeva and Stefanski 
2013; Michaels 2011; Torvik 2002). In contrast, our analytical and empirical setups consider 
(national) technology shocks that are exogenous to resource abundance at the level of indi-
vidual states, and advance a novel hypothesis concerning the interaction of resource abun-
dance and technological shocks and its potential impact on short- and long-term growth. We 
find that improvements in technology are contractionary on impact primarily in resource-
rich areas, and are more expansionary, relative to the remaining areas, in the longer term. Our 
results shed light on hitherto overlooked negative impacts of natural resource abundance.

Second, dating back to the seminal contributions of Kydland and Prescott (1982) and 
Gali (1999), the question of whether technology improvements are contractionary or expan-
sionary has taken a central role in the macroeconomic literature. While standard frictionless 
real business cycle (RBC) models predict that technology improvements are expansionary 
in the short-term, sticky-price models predict the opposite.8 The related empirical litera-
ture is also inconclusive. For instance, in their seminal work BFK show that technology 
improvements are contractionary on impact due to decreases in input use, most notably 
labor. However, Christiano et al. (2004) demonstrate that their correction of the BFK tech-
nology measure yields contemporaneously expansionary effects, focusing on labor. More 
recently, Cantore et al. (2014) highlight that the factor-augmenting nature of shocks and the 
ESKL are critical in determining the impact of technology shocks on the labor input in both 
RBC and sticky-price frameworks.

We contribute to this literature by analyzing the role of natural resources in the trans-
mission of these shocks. Specifically, our analysis offers one potential reconciliation for 
the opposing views based on the underlying persistent differences in the ESKL between 
extractive and non-extractive industries. We observe that the short-term impacts of tech-
nology improvements are contractionary primarily in resource-rich areas, where extractive 
industries hold a significant share of the economy, but are mostly expansionary elsewhere. 
We show that these patterns arise using BFK’s measure, time frame, and methodology, and 
that they are applicable also when implementing corrections like those undertaken in Chris-
tiano et al. (2004). Further, consistent with previous studies, we show that in the long-term 
positive technology shocks are expansionary across all areas, albeit more so in resource-rich 
regions.

Third, there is no shortage of studies that provide estimates for the aggregate ESKL (e.g., 
Doraszelski and Jaumandreu 2013; Klump et al. 2007; Raval 2019). The evidence summa-
rized in Chirinko (2008) point at estimates well below one. Industry-level estimates point 
at similar magnitudes, albeit with some heterogeneity across sectors (Balistreri et al. 2003; 
Caballero et al. 1995; Young 2013). Notably, these studies estimate the substitution elastic-
ity in the extractive industry to be amongst the highest, and even the highest under various 
specifications, relative to the other industries.9

Since estimates pertain to specific samples, we estimate the time series for the ESKL in 
the oil sector within our sample’s time frame and compare it to the time series for the aver-

8 However, non-standard RBC models can also generate a negative correlation between hours worked and 
technology shocks. See, for example, Francis and Ramey (2005).

9 For example, Young (2013) employs the equation system approach proposed by León-Ledesma et al. 
(2010) and finds a larger average value of this elasticity across the mining and quarrying activities (0.72) 
than across the rest of sectors (0.63). Furthermore, he estimates that the largest elasticity among the former 
activities is for the oil and gas extraction industry (0.87).
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age elasticities of the rest of the economy. We achieve this by employing U.S. industry data 
to compute the elasticity parameter directly from our analytical framework, which incorpo-
rates CES production functions and non-neutral productivity shocks—both essential for the 
estimation of elasticities (Antras 2004). We obtain estimates consistent with those reported 
in previous literature: the estimates are below one, and the ESKL in the extractive industry 
is significantly and consistently higher than the corresponding elasticity for the average of 
the remaining economy.

3  Technology Shocks in a Two-Sector Economy

Here, we analyze the implications of cross-sector differences in resource intensities (tied to 
differences in the ESKL) for the short- and long-term impacts of productivity shocks. We 
begin by presenting the basic elements of the model. Next, the predictions are organized into 
propositions, with the proofs relegated to Appendix A. The section also derives the testable 
predictions that the subsequent empirical section will focus on. Finally, we conclude by 
performing a structural estimation of the sectoral ESKL and the bias of technology shocks, 
and by discussing the implications for resource-rich and resource-poor economies.

3.1  The Environment

Consider an economy with two production sectors: extractive (e) and non-extractive (m). 
The non-extractive product is the numeraire. The economy is inhabited by a constant popu-
lation of N  individuals that are endowed with one unit of labor. Each period t, individuals 
supply their labor unit inelastically in exchange for a salary (wt). We suppose that capital 
and output markets are open to the rest of the world. The labor market is closed and labour 
is internationally immobile. We have a small open economy. Therefore, if pi represents the 
price of output in sector i, and R is the gross return to capital (i.e., the interest rate plus the 
depreciation rate), then pm = 1, while the resource price pe and R are constant and given 
on world markets.

Markets are perfectly competitive and firms maximize profits. In the short-run, firms in 
sector i, with i ∈ {e, m}, employ productive capital (kit) and labor (nit) at time t according 
to the following Leontief production function 

	 yit = Ωit min {zktkit, ωitzntnit} ,� (1)

where yit represents output in sector i at period t, zkt and znt provide productivity levels 
specific to capital and labor, respectively, Ωit is a productivity parameter specific to sector i, 
and ωit represents the level of effective capital per unit of effective labor.10

New technologies bring labor-augmenting gains when znt rises, and capital-augmenting 
technical progress when zkt rises. The new vintages also come with particular values of ωit 
and Ωit. These values result from the long-run, sector-specific ESKL (εi) not being equal to 
zero. Specifically, in the long-run, the production function takes the CES form 

10 We could include the stock of natural resources as an additional input in the production functions associated 
with the extractive activity. Our qualitative predictions would not be affected by this modification if natural 
resources enter the production function through a Cobb-Douglas form (see Appendix B).
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yit =

[
(zktkit)1−1/εi + (zntnit)1−1/εi

] εi
εi−1

.� (2)

We assume that the values of ωit and Ωit result from imposing the fixed input proportions 
dictated by the solution to the maximization problem faced by firms under the long-run 
production function given by Eq. (2).11

Finally, following Caballero (1994) and BFK, our framework features investment adjust-
ment costs. In particular, the capital motion equation is given by 

	 kit = (1 − δ)kit−1 + xϕ
it,� (3)

where xit denotes investment, δ denotes the depreciation rate, kit−1 is the productive capital 
inherited from the previous period, and ϕ ∈ (0, 1).12

3.2  Predictions

Our first proposition presents the values of ωit and Ωit that drive short-run output and shows 
how they depend on capital-augmenting productivity zkt, but are determined by the long-
run problem.

Proposition 1  The optimal level of effective capital per unit of effective labor is

	
ωit =

[(zkt

R

)1−εm

− 1
]εi/(1−εm)

and increases in zkt and decreases in the user cost of capital. The vintage-specific param-
eter is 

	
Ωit =

[
1 + ω

(1−εi)/εi

it

]εi/(εi−1)

and decreases in zkt. Both ωit and Ωit are independent of znt

Proof.  See Appendix A. □

11 Appendix C analyzes a version of the model that includes skilled labor and accounts for sector-specific 
productivity shocks. The production function displays capital-, skilled-, and unskilled-biased productivity 
shocks, along with capital-skill complementarity within a CES-nested-in-CES specification. The main con-
clusion is that results similar to our main findings hold. More specifically, capital-biased and skilled-biased 
productivity shocks have positive effects on long-run ouptut, and these effects can be amplified by εe. How-
ever, this amplification is less likely when shocks originate from unskilled-biased productivity. Negative 
short-run effects on output are more likely to result from capital-biased than from skilled-biased productivity 
and, once again, can be amplified by εi. Importantly, unskilled-biased productivity shocks can never cause 
short-run output losses.
12 For simplicity, the presence of investment adjustment costs in our model are captured through the param-
eter ϕ. Therefore, we follow a reduced-form approach. For more general forms of introducing investment 
adjustment costs in macroeconomic models, see Francis and Ramey (2005) for example.
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Due to the constant input proportions dictated by ωit, the difference between the short and 
long run lies in the total amount of labor used in production. In the short run, if the capital-
labor ratio increases while capital grows slowly due to adjustment costs, the constant input 
proportions may imply that total labor demand falls short of total labor supply, thus leading 
to involuntary unemployment.13 However, in the long run, capital accumulates until the 
economy reaches full employment. Therefore, given that labor moves towards the most 
productive sector and labor productivity increases in both production activities, technology 
shocks are always expansionary in the long run. Furthermore, while the impact of labor 
augmenting technology is independent of the ESKL, capital-augmenting technology shocks 
tend to generate stronger labor-productivity growth as the ESKL increases.

The following proposition summarizes the effects of technology shocks in the long run.

Proposition 2  An increase in capital-augmenting productivity zkt or in labor-augmenting 
productivity znt leads to an increase in labor productivity in both sectors. Furthermore, in 
the long run, which is characterized by full employment, an increase in zkt or znt yields 
larger levels of output. Additionally, the change produced by labor-augmenting productivity 
znt is independent of the ESKL. If capital-augmenting productivity zkt rises, the induced 
growth of labor productivity in the extractive activity increases with εe if (zkt/R)1−εm > 2 
and εm < 1, or if zkt/R is sufficiently close to 1 and either εm > 1 or both εe and εm are 
smaller than 1.

Proof  See Appendix A. □

A corollary to Proposition 2 is that, under the stated parameter restrictions, if εe > εm, the 
growth of labor productivity caused by an increase in zkt will be larger in the extractive 
sector than in the non-extractive sector. This result suggests that economies in which the 
extractive activity contributes sufficiently more to total output will tend to grow more in the 
long run in response to an increase in zkt if εe > εm. As mentioned previously, in the short 
run, since capital and labor enter the production function in fixed proportions and capital 
does not move to the new long-run equilibrium immediately, employment can be below 
N . Importantly, if the economy does not have full employment, the impact of a capital-
augmenting technology shock can be contemporaneously contractionary.

The following proposition summarizes these short-run effects.

Proposition 3  A positive labor-augmenting technology shock znt can never cause a fall in 
output. However, because optimal investment in capital decreases with ϕ, if ϕ is sufficiently 
low, a positive capital-augmenting technology shock zkt can contemporaneously reduce 
output. In the non-extractive activity, this occurs if εm > 1, but if εm < 1, ymt always 
increases with zkt. In the extractive sector, sufficient conditions for yet to fall with zkt are 
εe = εm > 1, or εm < εe < 1 and zkt/R is sufficiently close to 1.

13 In principle, individuals are willing to work at any wage because the labor supply is inelastic. However, 
ωit ≡ zktkit

zntnit
 is fixed at its long-run value, as established by Proposition 1, which implies that labor demand 

equals nit = zktkit
zntωit

. Therefore, if ωet or ωmt have increased sufficiently, whereas ket or kmt grow rela-
tively slowly, the sum net + nmt can be lower than N  in the short run, where N  denotes the full-employ-
ment level.
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Proof.  See Appendix A. □

To better understand Proposition 3, note that adjustment costs introduce diminishing returns 
to investment. Furthermore, for very low values of ϕ, these diminishing returns can be so 
strong that capital may experience only negligible increases. Thus, in the short run, if the 
increase in zk causes a sufficiently large reduction of labor per unit of capital, and ϕ is suf-
ficiently low, the fall in the labor demand due to the larger ωi can dominate the positive 
effect of a higher zk, resulting in a decrease in output.14 Regarding the short-run effect of a 
change in zn, recall that it neither affects ωi nor Ωi. So, a higher zn only serves to increase 
the optimal stock of capital, and as a result, output cannot fall in the short run.

3.3  Testable Hypotheses

The analysis indicates that a capital-augmenting increase in productivity boosts output in 
the long-run but may reduce output in the short-run if the ESKL is larger in the extractive 
sector than in the non-extractive sector. This finding leads to two testable hypotheses. The 
first one is that a technology improvement in capital in a sector where it is easier to substi-
tute labor for capital will lead to (1) higher output growth in the long-run, and (2) a smaller 
increase or even reduction of output in the short-run. The second testable prediction is that 
(3) a labor-augmenting improvement in productivity boosts output both in the short and in 
the long run.

Our strategy to test these hypotheses consists of two steps. We first estimate the ESKL 
and find that the ESKL is higher for the extractive than for the non-extractive sectors. Armed 
with this insight, we then proceed to test these hypotheses employing a sample of economies 
that differ in their degree of natural resource abundance.

3.4  Sectoral Elasticities of Substitution Between Labor and Capital

Our analysis thus points at a primary triggering primitive of the sign of technology-shock 
effects on the economy, namely cross-sectional differences in the ESKL. As noted earlier, 
there is already some cross-sectional evidence that supports this hypothesis (e.g., Young 
2013).15 We now explore the hypothesis that the ESKL is persistently higher in extractive 
industries.

For this, similar to Caselli and Coleman (Caselli et al. 2006), we first derive expressions 
from the model that allow recovering the productivity and elasticity parameters zkt, znt, 
εe, and εm, and then estimate them using cross-industry U.S. data. We start from equation 
(2) and, for the estimation, allow R, wt and εi to vary across time and sectors, while zkt 

14 For example, the conditions stated in Proposition 3 for an increase in ymt and a decrease in yet as a con-
sequence of an increase in zkt are fulfilled for εm = 0.6, εe = 0.8, zkt = 0.5, and R = 0.2. The values 
of εm and εe are the average estimates obtained in Sect. 3.4. The value of zkt is the maximum estimate 
obtained in Sect. 3.5. Finally, R = 0.2 corresponds to the historical S&P 500 average return of 0.10( see, 
e.g., ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​s​t​e​r​​n​.​n​​​y​u​.​e​​d​​u​/​a​d​a​​m​o​​d​a​r​​​/​p​c​/​​d​a​t​a​​s​e​t​s​/​h​i​s​t​r​​e​t​S​P​.​x​l​s.) minus a 0.02 average annual inflation 
rate calculated using data from Bureau of Labor Statistics for the U.S. consumer price index from 1998 to 
2015, and an average depreciation rate of 0.12 calculated for the same period from Table 1 in Escribá-Pérez 
et al. (2023).
15 Although we do not consider cross-sectoral differences in adjustment costs, empirical evidence indicates 
that adjustment costs in extractive industries are significantly higher than in other industries (e.g., Groth and 
Khan 2010), thus strengthening the suggested mechanism.
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and znt vary across time but not across sectors. We employ U.S. industry-level data from 
the EUKLEMS dataset (O’Mahony and Timmer 2009), which covers the major 2-digit SIC 
industries for the period 1998–2015.16 Sector e corresponds to the SIC classification of Min-
ing and Quarrying, whereas sector m corresponds to a weighted, size-adjusted, average of 
the remaining industries. See Appendix D for the details of the estimation exercise.

For the estimation of the sectoral ESKL, we have assumed that input prices differ between 
sectors. However, this is inconsistent with the proposed model. As a result, any wage dif-
ferentials between sectors not explained by the model could affect the estimated technology 
and, more notably, the elasticity parameters that potentially differ between sectors. Still, 
the estimated elasticities, shown in Fig. 1, fall within the range found in the literature (e.g., 
Chirinko 2008), which lends some support to our estimation results. Importantly, εm is con-
sistently below εe in Figure 1 throughout the examined period, with average values of 0.55 
and 0.79, respectively. This reinforces our hypothesis that the ESKL is persistently higher 
in extractive activities.

3.5  Estimates of Labor- and Capital-Augmenting Productivity Shocks

Figure 2 plots the estimated labor-augmenting and capital-augmenting shocks to productiv-
ity, znt and zkt. There is some co-movement in the initial and later years, and divergence 
in other years. We will employ these common productivity shocks in our core analysis in 
an attempt to examine their separate impact on growth in output and inputs, along the lines 
suggested by our analytical predictions.

16 This sample period is limited by data availability, but contained within the time interval examined in the 

posterior econometric analysis.

Fig. 1  Estimated elasticities of substitution between labor and capital are higher in mining and quarry-
ing than in remaining sectors. The estimates were computed from U.S. industry data retrieved from the 
EUKLEMS dataset (O’Mahony and Timmer 2009) for the period 1998–2015. The resource industry 
e represents industry B in SIC classification (mining and quarrying), whereas industry m represents a 
weighted, size-adjusted, average of the remaining industries. The average ϵe( ϵm) over the whole period 
is 0.79 (0.55)

 

1 3

2165



F. Perez-Sebastian et al.

3.6  Implications for Resource-Rich and Resource-Poor Economies

To help understand the main implications of our analysis for the resource-rich and resource-
poor economies that will be used in the subsequent empirical exercise, we recall that the 
empirical evidence presented in Figure 1 suggests that εe > εm. Additionally, resource-rich 
economies typically exhibit a relatively large weight of the extractive sector e in gross 
domestic product, as empirically illustrated in the literature.17 In resource-poor economies 
the dominant industries are the remaining sectors, which are represented by sector m in our 
model.

Our previous results suggest that in the case of resource-rich economies, total aggregate 
output can decline in the short-run and increase in the long-run as a response to capital-
augmenting technical progress. However, in resource-poor economies, the same type of 
technology shock will increase total output, both in the short- and in the long-run. Labor-
augmenting technology shocks, on the other hand, will have a positive effect on aggregate 
output regardless of the time horizon and the level of resource abundance. Furthermore, the 
long-run income-growth effect will be larger in resource-rich economies because they enjoy 
a larger aggregate ESKL.18

4  Empirical Analysis

Our analysis of Section 3 explains how the sign and extent of the contemporaneous and lon-
ger term impacts of technology shocks may depend on the degree of natural resource abun-
dance. Here we test empirically the implied testable hypotheses. We do so by examining the 
heterogeneous effects of U.S. national TFP shocks on the output and inputs of individual 
U.S. states and examine how these depend on the degree of natural resource abundance.

17 See, e.g., Van der Ploeg and Poelhekke (2016) for local and national case studies.
18 Elasticity differences result in different capital intensities across sectors, due to the ESKL impact on the 
effective-input ratio ( zkki

znni
). Empirical evidence for capital intensity differences across the natural-resource 

dimension are discussed in Sects. 1 and 2.

Fig. 2  Estimated common 
capital- and labor-augmenting 
productivity shocks. Computed 
from U.S. industry data retrieved 
from the EUKLEMS dataset 
(O’Mahony and Timmer 2009) 
for the period 1998–2015
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We initially focus on the contemporaneous effects, because they represent the main 
features of the divergent paths we aim to observe empirically. Later we also analyze the 
dynamic patterns. We first outline the data, and methodology. Then, we report the estima-
tion results. Within the latter part, we begin by examining the role of the natural resources 
dimension within the BFK framework. Thereafter, we present the main results followed by 
robustness tests.

4.1  Data

We examine an annual-based panel of the 48 continental U.S. states over the period 1963–
2015, limited by data coverage. We undertake an intra-U.S., cross-state perspective for 
several reasons.19 First, while constituting a relatively homogeneous environment, U.S. 
states provide significant cross-state variation in the degree of resource abundance and in 
macroeconomic outcomes. Second, the fiscally autonomous environment implies that state 
governments benefit from their natural resource endowments to a considerable, and eco-
nomically meaningful extent, so that they have impact at the local level.20 Third, data avail-
ability enables us to test the hypothesis over a large period of time of over five decades. 
Last, such a setting enables us to examine the impact of national TFP shocks, across cross-
sectional differences in endowments of natural resources that, on their own, are plausibly 
too small to impact national aggregate shocks. These features allow us to identify the causal 
link running from TFP shocks to output and inputs via the intensity of natural resources.

An examination of the heterogeneous contemporaneous effects of technology changes 
for different levels of resource abundance across states is based on two key measures: TFP 
shocks at the macroeconomic level and resource abundance at the state level. For the TFP 
shocks we follow BFK, and employ the purified utility-adjusted technology shocks of Fer-
nald (2014), annualized via aggregations of the corresponding quarterly observations.21 As 
outlined above, we assume that each state on its own is not sufficiently large to alter national 
technology patterns, including importantly via its natural resource wealth, so that we can 
consider TFP shocks to be exogenous for each state.22 Table A1 of Appendix A notes that 
the mean TFP shock is close to 1, but the standard deviation is around 1.3. Hence, the data 
series contains periods of technology advancement as well as regress. Figure 3 plots this 
measure over our sample period.

As for resource abundance, we use the measure of state resource endowments constructed 
by James (2015). This measure is based on the cross-sectional difference in geologically-
based recoverable stocks of crude oil and natural gas. Originally, it was interacted with the 
international oil price. However, we consider the cross-sectional dimension only in order 
to minimize endogeneity concerns, and in an attempt to focus on the temporal dimension 

19 However, we also undertake a county-level analysis, presented as robustness due to limitations of some 
of the main measures employed. We describe the related data separately in the corresponding sub-section.
20 These benefits accrue regardless of whether the natural resources are located on state-owned or federal-
owned lands. In the former case, state governments collect severance taxes and royalties. In the latter case, 
they benefit from shared federal revenues that amount to approximately 50% (but 90% in the case of Alaska) 
of the royalties paid to the federal government for oil production undertaken on these lands.
21 We employ this measure within our baseline analysis, but also examine a number of additional TFP mea-
sures to check for robustness in a later sub-section.
22 We do, however, examine later in the analysis sub-samples in which the largest states are excluded.
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on the national TFP shocks, and their manifestation via resource intensity.23 This data is 
derived from the U.S. Geological Survey at the province level, which James (2015) aggre-
gates to the state level.24 This provides the average endowment of natural resources per 
state, which we then normalize by state personal income, averaged over 1958–2008.

This measure is appealing for several reasons. First, due to its geologically-based per-
spective, it provides plausibly exogenous variation in resource abundance levels across 
states. Second, it provides ample variation across states. Specifically, given the usage of 
recoverable stocks of reserves, only seven states have near-zero natural resource endow-
ments.25 The average natural resource endowment ranges from none (e.g., Delaware) to 
slightly above 3% of state income (Wyoming), with a mean of 0.2% and a standard devia-
tion of 0.6%.26 Figure 4 plots the average level of this measure across the 48 continental 
U.S. states. Importantly, despite being geologically-based, this measure is highly correlated 
with changes in oil production and revenues, as illustrated by James (2015). Last, it bears 
little correlation (approximately −0.01) with average state income, i.e., at the cross-section 
level resource richness is not systematically associated with output. Indeed, some of the 
resource-rich states have on average higher output per capita (e.g., North Dakota), while 
others less so (e.g., Louisiana).

4.2  Identification and Estimation Methodology

Our identification strategy rests on two identifying assumptions. First, national TFP shocks 
are exogenous to any specific state, so no state on its own is sufficiently large to affect such 
shocks significantly. Second, the cross-sectional geologically-based recoverable stocks of 
oil and gas represent pre-determined, geographically entrenched endowments. Under these 

23 We do show in a later sub-section that the main patterns observed are robust to further interactions with 
the international oil price.
24 This measure excludes Alaska (AK) and Hawaii (HI), thus restricting our sample to the 48 continental 
states.
25 These states are Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, and Rhode 
Island. Several more states have positive, but scarce levels of natural resource endowments (see Figure 4).
26 Notably, the vast cross-state variation enables testing the impact of natural resource abundance, regardless 
of their absolute levels. This approach follows the strand of literature that examines the effects of resource 
intensity via the case of U.S. states (e.g., Raveh 2013; James 2015).

Fig. 3  Annualized technological 
changes in the U.S., 1963–2015. 
Source: Fernald (2014)
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circumstances, both measures are not only plausibly exogenous to each other, but also when 
they are interacted they produce variations across space and time that are plausibly exog-
enous to state indicators. Hence, we employ a standard panel fixed-effects framework to 
estimate 

	

∆(outcome)i,t = α + β(outcome)i,t−1 + γ(resource)i

+ δ(tfp)t + θ(resource ∗ tfp)i,t + ηi + νt + ϵi,t,
� (4)

where i indicates the state and t the year. Here outcome denotes one of the following vari-
ables: real per capita output, real per capita capital stock, or the unemployment rate, each in 
natural logarithm form.27 These outcome variables represent the key macroeconomic indi-
cators examined by BFK, namely income and inputs.28 In addition, ηi and νt denote the state 
and year fixed effects, respectively. These control for state and time-invariant unobservable 
effects. Last, tfp and resource are the TFP shocks and resource abundance measures dis-
cussed in Sect. 3. Both are outlined in the model for completeness, yet they are absorbed 
by νt and ηi, given that they change only across time or states, respectively. The dependent 
variable is in changes, where ∆ denotes the change between periods t − 1 and t, with the 
level in t − 1 added as a regressor to control for potential convergence. This is consistent 
with the dynamic perspective of the proposed mechanism.29

All variables are derived from the U.S. Census Bureau and the Bureau of Economic 
Analysis with the exception of state capital stocks. These stocks are derived from Garofalo 
and Yamarik (2002), and the data series for tfp and resource( outlined above). Standard 
errors are clustered by state in all cases. Appendix A outlines the variables and their source, 
where Table A1 presents descriptive statistics. Our focus throughout the analysis is on the 
sign, magnitude, and preciseness of the parameter θ, which provides an estimate for the 
impact of technology shocks across different levels of resource abundance levels. In addi-

27 This form enables us to minimize the potential biasing impact of outliers. Examining the non-transformed 
form yields qualitatively similar results.
28 BFK considered hours worked; we, however, examine in lieu the unemployment rate as it enables extend-
ing the sample period covered significantly, by more than three decades.
29 Examining the dependent variable in changes, we in effect consider investment rates in the case of the 
capital stock as outcome.

Fig. 4  Average resource endow-
ment across the 48 continental 
U.S. states. Source: James 
(2015)
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tion, we also examine the characteristics of the effect of TFP shocks on outcomes, measured 
by the parameter δ, in various versions of our model that exclude νt and examine the impact 
of (tfp)t directly within restricted, separate, samples of resource-rich and resource-poor 
states.

4.3  Preliminary: Revisiting BFK with Natural Resources

The contemporaneously contractionary nature of technology improvements has been illus-
trated previously in the seminal work of BFK. Examining the impact of national TFP shocks 
on various U.S. macroeconomic indicators, BFK found that on impact technology improve-
ments contract input use, most notably labor. Re-examining the contemporaneous effects of 
TFP shocks we, as a first step, incorporate our proposed dimension into BFK’s framework, 
focusing on the impact on labor. We thus estimate a model reminiscent of the one estimated 
by BFK, 

	
∆(unemp)i,t = α +

j=4∑
j=0

β(tfp)t−j + γ(Y ear)t + ηi + ϵi,t,� (5)

where tfp, and η are described above, unemp denotes the unemployment rate, and Y ear is 
a time trend, in lieu of the time fixed effects, which are excluded in this framework due to 
their absorption of the state-invariant TFP shocks. Similar to BFK, contemporaneous TFP 
shocks are added together with four lags of TFP shocks.30 Our focus in this specification is 
on β0, which gives the contemporaneous effect of the TFP shock, (tfp)t.

Our analysis differs from BFK in three respects. First, BFK considered the sample period 
of 1949–1996, which is not feasible for us due to lack of data at the state level. But, BFK 
also showed that their main results hold under the shorter sample period of 1980–1996. 
To undertake an effective comparison, we focus on this shorter sample period. Second, 
BFK examined national outcomes, constructing them via industry-level data. We, how-
ever, undertake an analysis across states, each with its own industrial composition.31 Third, 
BFK examined the impact of TFP shocks vis-à-vis the aggregate sample. Our hypothesis, 
however, focuses on the abundance of natural resources, hence we split the sample into 
resource-rich and resource-poor states so that we can examine the impact of TFP shocks on 
each, separately. The threshold we adopt for this split is the 25th percentile of the baseline 
cross-sectional resource endowment measure outlined previously, in which states below it 
are categorized as resource poor. Such a division enables us to focus on the behavior of the 
cases of interest, namely those that represent little to no natural resource endowments.32

The results are outlined in Table 1. Column (1) examines the complete sample, where the 
resource-rich and -poor states are not split up. The results follow the patterns observed in 
BFK. Specifically, contemporaneous technology improvements boost changes in the unem-

30 We follow BFK’s specification to enable close comparison. We note that the estimation results are robust 
to using any number of lags up to the four used.
31 Later, we also account for industrial composition, showing that the key dimension in this composition is 
the extractive industry.
32 These represent the cases of interest, as according to our analysis, they raise the potential for contempora-
neously non-contractionary patterns.
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ployment rate and thus decreases the change in labor, yet in the periods thereafter they 
expand it. Columns (2) and (3) report results when the sample is split into resource-rich 
and -poor states, respectively. The outcome for the contemporaneous impact shows that for 
the resource-rich sub-sample, technological improvements are contractionary, but for the 
resource-poor sample such improvements are expansionary. Hence, the natural resources 
dimension is potentially an important aspect in the interpretation of the key results of BFK.33 
In addition, the results in columns (2) and (3) further indicate that in the longer term, labor 
expands more strongly in the resource-rich sample, despite the initial drop.

However, Christiano et al. (2004) addressed concerns related to potential endogeneity 
of the BFK measure. In addition, they considered the level of (rather than changes in) the 
labor input measure, and found a contemporaneous positive impact of TFP improvements 
on labor input. Christiano et al. (2004) thus found that TFP shocks are contemporaneously 
expansionary.

In our state-level setting concerns related to the endogeneity of TFP shocks are mitigated 
given their national perspective. Hence, to illustrate that correcting for the effect of the natu-
ral resources dimension may represent a reconciliation between the findings of BFK and 
Christiano et al. (2004), we re-estimate our results for columns (2) and (3) when the depen-
dent variable (i.e., the unemployment rate) is in levels rather than in changes. The results 
appear in columns (4)-(5). They are similar to those reported in columns (2)-(3): technology 
improvements are contractionary in resource-rich and expansionary in resource-poor states.

33 The potential relevance of the natural resources dimension to the interpretation of BFK’s findings has been 
implied by Bils (1998), who pointed at the potential over-estimating effect of the oil price instrument used in 
BFK’s analysis. Nonetheless, as will be noted in our main analysis, we illustrate that the observed patterns 
extend to various measures, and are not specific to those used in BFK.

Table 1  TFP shocks and the unemployment rate for resource-rich and resource-poor states, 1980–1996 
(revisiting BFK)
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4.4  Core Results on Impact of TFP Shocks

We now turn to our core results on the heterogeneous impacts of TFP shocks and how these 
depend on resource wealth in a more complete and rigorous setting, and with an expanded 
sample. We estimate various versions of Eq. (4), for each of the three outcome variables. 
These core results are presented in Table 2.

4.4.1  Effects on Output

Starting with output, measured by the Gross State Product (GSP), Column (1) represents 
our core specification and provides support for our main hypotheses. The estimated value 
of θ is negative and statistically significant, which indicates that contemporaneous technol-
ogy improvements indeed induce a stronger negative impact in resource-rich states than in 
resource-poor states, substantiating the main analytical prediction. In terms of magnitude, 
under the mean endowment of natural resources, a one standard deviation increase in TFP 
contracts average output of resource-rich states by 0.1% relative to output of resource-poor 
states.34 Under an alternative interpretation, given an average resources level, a techno-
logical improvement that amounts to the annual mean level (i.e., the average improvement 
undertaken each year over time) contracts the output level of resource rich states relative 
to their resource poor counterparts by 0.007%, being the equivalent of about $800 million 
difference between the two state groups.35

Notably, the magnitude of this estimate of θ suggests that the outcome is not only in rela-
tive terms (noting that some states have no resource endowments). Furthermore, it points at 
a divergent outcome (cf. Table 1). This is also illustrated by columns (2) and (3) of Table 2. 
In the latter, we estimate a version of Eq. (4) which excludes ν and θ and examines the direct 
impact of TFP shocks via δ under the two separate sub-samples. This attempts to examine 
whether the main outcome is the result of a relative effect (resource-rich relative to resource-
poor states), or a direct one driven by resource intensity. We focus on examining the sign, 
interpreting the magnitude with caution due to the exclusion of the time fixed effects. Fol-

34 This is computed by multiplying the estimated value of θ by the mean resource endowment and the stan-
dard deviation of TFP, and examining the change that this induces in the mean output measure. 
35 Similar to the previous case, this is computed by multiplying the estimated value of θ by the mean resource 
endowment and the annual mean TFP level, and dividing by the mean output level. The monetary value is 
computed by considering the 0.007% amount of the average annual state output level. 

Table 2  Resource endowments and effect of technology improvements, 1963–2015
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lowing the previously outlined division, the sub-sample in column (2) includes states with 
a per-capita resource endowment above the 25th percentile while the sub-sample in column 
(3) includes the remaining states with little or no resource endowments.

We observe that contemporaneous TFP shocks have a negative and statistically significant 
impact on output if there are some natural resource endowments. Conversely, if resource 
endowments are scarce, the impact becomes statistically imprecise with a magnitude close 
to zero. These outcomes clarify the source of the observed relative difference. They point at 
a distinct diverging outcome, similar to the patterns noted previously in our BFK exercise 
reported in Table 1, and consistent with our analytical predictions.

4.4.2  Effects on Unemployment and Capital

Columns (4)-(6) and (7)-(9), present an analysis similar to that presented in columns (1)-(3) 
yet with the labor or capital input proxies (namely, the unemployment rate or investment, 
respectively) as outcome. Columns (4) and (7) examine the complete sample whereas col-
umns (5)-(6) and (8)-(9) consider the split samples based on the same division used before.

For the case of labor, the estimated value of θ in column (4) points at a similar outcome 
as observed under output. Specifically, technology improvements contract the labor market 
more strongly if natural resource endowments are high. Similar patterns are also observed in 
columns (5)-(6), since the estimated values of δ indicate that the contractionary effect occurs 
only in the group of states that are endowed with significant natural resources.

The outcomes in columns (8)-(9) show that investment contracts similarly in both types 
of environments following a positive TFP shock. This is further confirmed by the outcome in 
column (7), which points at no statistically distinguishable impact of TFP shocks on invest-
ment across resource intensity levels. These patterns, in conjunction with those observed 
for the effects on labor, are consistent with our analytical predictions given the previously 
established systematic differences in elasticities of substitution between labor and capital 
for resource-rich and -poor states, to the extent that the TFP shocks are capital-augmenting. 
Next, we examine this analytical prediction.

4.5  Effects of Capital- and Labor-Augmenting TFP Shocks

Our analytical predictions indicate that capital-augmenting shocks trigger contemporane-
ous substitution between capital and labor with a magnitude that depends on the size of 
the elasticities of substitution between labor and capital, hence contracting the labor input 
in resource-rich states. Here we examine the differential impact of capital- and labor-aug-
menting TFP shocks. We do so by employing the znt and zkt parameters computed and 
outlined previously in Sect. 3.5, corresponding to labor- and capital-augmenting shocks, 
respectively. Given the scope of the underlying U.S. industry data, the computed parameters 
are available annually for the period 1998–2015.

We estimate our baseline specification, as per column (1) of Table 2, where now the znt 
and zkt measures enter in lieu of tfp, separately. The results are presented in in Table 3. 
Columns (1)-(3) and (4)-(6) examine the case of zkt and znt, respectively. In each case, the 
first, second, and third column examine the outcome related to the output, labor, and capital 
measure, respectively.

1 3

2173



F. Perez-Sebastian et al.

These results are consistent with our analytical predictions. The estimated values of θ 
indicate that the differential impact across resource intensity levels is observed only under 
capital-augmenting shocks, and most notably with respect to output and labor input. This is 
consistent with the view that capital-augmenting shocks induce substitution between capital 
and labor more strongly in states where this substitution is stronger, i.e., resource-rich states, 
as suggested by our model.

4.6  Robustness Tests

We now conduct various robustness tests to see whether our core findings survive if we 
allow for other sectors than natural resources, different aggregate shocks, or different TFP 
measures, and when the resource measure is interacted with the world oil price. We also 
examine the level of U.S. counties, and test for robustness using different sample restric-
tions, controls, and specifications.

Tables 4 and 5 present the robustness results when we allow for other sectors than natural 
resources, or different aggregate shocks, respectively. The other robustness results are pre-
sented in Table 6. All specifications follow the core specification, unless otherwise specified, 
and they cover different time periods (depending on data availability), as stated in the table.

4.6.1  Results with Other Sectors than Natural Resources

Our core analysis has focused on one dimension of the industrial composition of states, i.e., 
resource abundance. To further motivate this focus, we also examine the role of other major 
sectors. We thus consider the GSP share of four major aggregate sectors: manufacturing, 
services, agriculture, and wholesale trade.36 To examine how they might affect the impact of 

36 Each, as estimated by Young (2013), with a significantly lower ESKL, compared to that estimated for the 
oil and gas sector (taking manufacturing as an average of its sub-sectors).

Table 3  Effects of capital- and labor-augmenting TFP shocks, 1998–2015
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TFP shocks, we interact them each with tfp and add them separately, and then concurrently, 
to the core specification. We will focus on output.

The results are presented in Table 4. In columns (1)-(4) we add each of the additional inter-
action terms separately, in conjunction with our interaction term of interest, resource ∗ tfp. 
The outcome in each case indicates that our core results are robust to these inclusions, i.e., 
the estimated value of θ maintains its sign and precision. The robustness of θ is further 
observed in the demanding specification undertaken in column (5), in which all interaction 
terms are added concurrently. Interestingly, while natural resource intensity retains its role 
in the effects of technology shocks, none of the other major sectors exhibit similar char-
acteristics. In all cases the estimated coefficients on the additional interaction terms have 
close to zero magnitudes and no statistical significance,37 thus reaffirming the role of natural 
resources in understanding the effects of TFP shocks on state-level outcomes.

37 Services and agriculture yield marginally precise patterns, but appear in only one of the specifications. 
Hence, these effects are not robust.

Table 4  Results with other sectors than natural resources, 1963–2015

Table 5  Results with different aggregate shocks
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4.6.2  Results with Different Aggregate Shocks

Our main hypothesis pertains to the impact of TFP shocks. For identification purposes, we 
consider aggregate, national TFP shocks, as they are exogenous to each individual state. 
Nonetheless, their temporal variation may correlate with other concurrent national shocks 
with heterogeneous impacts across the natural resource dimension, especially as TFP shocks 
capture noise in aggregate production by construction. To address this, we consider addi-
tional national shocks, focusing on the impact of their interaction with the resource mea-
sure, in conjunction with the effect of our main interaction term of interest.

We consider four additional shocks at the aggregate, national U.S. level: monetary policy 
shocks, federal tax shocks, news shocks, and business cycles. For monetary shocks, we 
consider the data series constructed by Tenreyro and Thwaites (2016); considering federal 
tax shocks, we employ the narrative-based federal tax changes from Romer and Romer 
(2010); news shocks are represented by the Investment Specific Technology (IST) news 
shocks of Ben-Zeev (2018); last, business cycles are examined via an indicator that captures 
whether the U.S. is in a recession, as defined by the U.S. Federal Reserve.38 We interact each 
measure with resource, and add each separately to the baseline specification, as per as per 
Column (1) of Table 2.39

The results are presented in Table 5. Columns 1–4 report the outcomes under each aggre-
gate shock, in the order that appears above, respectively. Thereafter, column 5 presents 
the results of a specification in which all shocks are concurrently included. The estimated 
coefficients indicate that, consistent with Perez-Sebastian et al. (2019) and Perez-Sebas-
tian and Raveh (2019), resource-rich states have better absorption of contractionary fed-
eral tax changes, and interestingly also of national recessions. In addition, consistent with 
Raveh (2020), resource-rich stats are impacted more strongly by contractionary monetary 

38 Each is available for a different sample period, as outlined in the Data Appendix; hence, sample size differs 
across cases.
39 Similar to T F P , each (non-interacted) aggregate shock is captured by the year fixed effects, and hence 
excluded.

Table 6  Further robustness tests
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shocks.40 Importantly, however, θ maintains its sign, significance, and magnitude, in all 
cases, including in the one in which all interaction terms are considered concurrently, thus 
further motivating the focus on national technology changes in the analysis.

4.6.3  Results at the U.S. County Level

While the availability of some of our data is limited at the more granular county level, 
examining our hypotheses under the measures that are available at the county level enables 
us to exploit a significantly larger sample of more than 3,000 counties. To measure cross-
sectional resource endowments at the county level, we employ the plausibly exogenous 
resource measure constructed by James and Smith (2017). This provides a geologically-
based indicator for counties with reserves of shale gas. We examine the impact of tfp, zk, 
and zn on county per-capita output, by interacting each of these with the county resource 
measure. Results are presented in columns (1)-(3) of Table 6, respectively. They indicate 
that our core result is robust at the county level, as we observe differential effects on output 
in the case of tfp and zk, but none for zn.

4.6.4  Results for Three Different Alternative TFP Measures

Columns (4)-(6) of Table 6 present estimation results for three different types of TFP mea-
sures. Our core estimates were done with the BFK measure, primarily in an attempt to 
create a more direct comparison to the BFK results. The literature, however, offers various 
measures of technology shocks, each with their own merits and limitations. To examine 
the validity of our results, we consider three additional data sources of TFP shocks: the 
FORD series (Francis et al. 2014), the BS series (Barsky and Sims 2011), and the JPT series 
(Justiniano et al. 2011). Each of the TFP types is interacted with our resource measure and 
we use these instead of our baseline measure tfp. For each of these three alternative TFP 
measures, the estimated value of θ maintains its sign and precision. Our core results are thus 
robust to using these different types of TFP shocks.

4.6.5  Results with Different Sample Restrictions, Controls, and Specifications

Columns (7)-(14) of Table 6 present the results of some additional robustness tests that 
include different sample restrictions, controls, and specifications. First, motivated by the 
BFK exercise, we re-estimate our core specification prior to 1997 and after 1996, sepa-
rately. This serves to test the applicability of the BFK case under the complete specification 
(not directly examined in the previous related sub-section), and examine whether our core 
results depend on that period. The estimated values of θ in columns (7)-(8) indicate that our 
core results are apparent in both periods, and that it intensifies in magnitude in the post-
1996 period. This is consistent with the notion that technology improvements become more 
capital-oriented over time.

Next, we add various additional basic controls that may affect the impact of technol-
ogy shocks indirectly, consider a specification with state-by-year fixed effects, and test the 
baseline specification under a different clustering method. In column (9), we include as con-
trols government tax revenues per capita, government expenditure per capita, government 

40 The impact of IST news shocks is not robust, as the effect is unstable across specifications.
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debt per capita, state unemployment rate, party affiliation of state governor, state inequality, 
and state population size. These controls account for various potential confounding fac-
tors at the state level, including the size of states (population), efficiency and size of states’ 
public sector (taxes, expenditures, debt), states’ business cycles (unemployment), political 
incentives of states’ governors (party affiliation), and states’ income polarization (inequal-
ity). In column (10) we consider a quarterly-based sample, in which both outcome and 
resource ∗ tfp are quarterly-based (i.e., in this specification t represents a quarter-by-year 
cell). Such a specification enables adding state-by-year fixed effects, which control for all 
state-by-year changes, including the state indicators employed in column (9), as well as 
additional unobserved ones. The sample period in this case is 2005–2015, υt represents 
quarter fixed effects, and state-by-year fixed effects are included in lieu of ηi.41 In Column 
(11) we then re-estimate our core specification with a two-way clustering method, where 
standard errors are clustered by state and year. The outcomes in all cases indicate that our 
main result is robust to these sensitivity examinations.

In columns (12)-(14) we re-estimate our model with three restricted samples. In column 
(12) we exclude Montana, North Dakota, and Wyoming. Figure 4 indicates that these states 
are outliers in terms of their resource richness, hence this exclusion enables us to exam-
ine the extent to which our core results are affected by them. In column (13) we exclude 
states with zero resource endowments (e.g., Delaware, Maine, New Hampshire, and Rhode 
Island). This addresses the potential concern that our core results are driven by states with no 
resources. In Column (14) we exclude California, New York, and Texas from the sample to 
test the robustness of our results when the three largest states are excluded. This restriction 
addresses the concern that our results may be driven by the dominant states. The estimated 
values of θ in all these cases indicate that our core results are robust to these restrictions on 
the sample.

4.6.6  Results When Resource Measure is Interacted with the Oil Price

Next, we interact the cross-sectional measure of resource endowment (used in our baseline) 
with the oil price which is plausibly exogenous (James 2015). This measure then enters the 
estimated equation instead of our core resource measure. We examine the effects of TFP 
shocks across states, but also within them across time. Column (15) presents the results. 
The estimated value of θ maintains its sign and significance under this interacted measure. 
This indicates that the impact of technology shocks does not only depend on the existence 
of resource endowments, but also on their value.

4.6.7  Results Under State-Level TFP Shocks

As a final robustness test, we examine the assumption about the homogeneity of the techno-
logical shocks across U.S. states. The baseline empirical analysis adopts this assumption in 
an attempt to address potential endogeneity concerns, noting that aggregate technological 
changes are plausibly exogenous to intra-state indicators. Our analytical framework takes 
a similar perspective under the assumption that TFP shocks are correlated across states 
due to the intra-federal setting. To examine the robustness of the results to this homogene-

41 The sample period in this case is limited by the availability of data on Gross State Product at the quarter-
by-year level.
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ity assumption, we employ data from Caliendo et al. (2018). The latter estimated changes 
in measured TFP across U.S. states during two timeframes, 2002–2007, and 2007–2012. 
First, we note that the correlation of estimates across these two periods is highly positive, 
motivating the assumption about cross-state similarities in TFP patterns. Second, we adopt 
their estimates for the first period, as it is closer to the mid-point of our sample period, and 
consider them as cross-sectional differences in the absorption rate of national TFP changes, 
hence providing a cross-sectional dimension to the baseline national TFP measure.42 Inter-
acting this cross-sectional TFP measure with the baseline national TFP changes yields a 
state-level measure, with variations across both dimensions, namely states and time. We 
then employ this measure in lieu of tfp in the baseline specification. The results in column 
(16), under this modified specification, indicate that the main results hold and increase in 
an order of magnitude, thus pointing at the robustness of the analysis to the homogeneity 
perspective.

4.7  Longer-Term Effects of TFP Shocks

Our focus has been on the contemporaneous effects of TFP shocks. However, our analysis 
in Section 3 also gives insights concerning the dynamic patterns over time. Specifically, we 
find that resource-rich states should expand more strongly beyond the contemporaneous 
effect. Hence, we estimate and present the dynamic heterogeneous effects of TFP shocks 
across states with different levels of natural resources over the course of five years.43 We 
employ the method of local-projections of Jorda (2005).

The method of local projections gives us estimates of impulse response functions sepa-
rate regressions for each lead over the forecast horizon. The effect of TFP shocks at t + h 
with h = 0, 1, . . . , 4 is estimated by regressing dependent variables at t + h on shocks and 
covariates at time t. Responses thus do not rely on nonlinear transformations of reduced-
form parameters as in VARs.44 We define ∆t−1xi,t+h ≡ xi,t+h − xi,t−1 and estimate the 
sequential equations 

	

∆t−1(outcome)i,t+h = αh + βh(outcome)i,t−1 + γh(resource)i

+ δh(tfp)t + θh(resource ∗ tfp)i,t + ηh
i + νh

t + ϵi,t+h.
� (6)

The dependent variable is cumulative growth of the outcome variable, ∆t−1(outcome)i,t+h, 
for different values of h. Our main coefficients of interest are the ones on the resource ∗ tfp 
interaction variable, i.e., θh for the contemporaneous effect h = 0 and the different leads 
h = 1, . . . , 4. These 5 parameters shape the impulse response function, and hence enable us 
to trace the time profile of the effect of TFP shocks.

Figure 5 plots the impulse response functions for each of the outcome variables, together 
with 95% confidence intervals. For output, the gradual increase in the estimated value of 

42 For instance, during the 2002–2007 period the change in measured in TFP in Oregon was twice the size of 
that in Oklahoma, and three times that in New Hampshire.
43 The length of the examined horizon is based on a 1-year extension of the BFK framework in which the 
effects of TFP shocks are observed, and measurable over the medium-term horizon of approximately four 
years.
44 In Appendix B we present VAR estimates, and illustrate that the observed patterns are robust to the estima-
tion method.
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θh, as the lead h increases, indicates that after the contemporaneous negative effect of TFP 
shocks, technology improvements become more expansionary in resource-rich states, most 
notably starting in the second year, relative to those in resource-poor states. The impulse 
response functions for labor and capital inputs paint a similar picture. This is evident from 
the gradually decreasing (increasing) patterns in the unemployment rate (investment), indi-
cating again that positive TFP shocks are more expansionary in resource-rich environments, 
starting in the second year.

These patterns lend support to our analytical predictions, and importantly, they are also 
consistent with the outcomes noted in the initial BFK exercise in which the observed post-
contemporaneous expansionary impacts (noted as well, under the general sample) were 
stronger for resource-rich states than for resource-poor states.

5  Conclusion

We have examined, both analytically and empirically, how technological shocks interact 
with natural resource abundance to affect growth in output and inputs. We offered a two-
sector growth model with non-neutral technical progress and adjustment costs to show that 
cross-sector differences in the degree of substitution between capital and labor can induce 
corresponding differences in the contemporaneous and long-run reactions to technology 
improvements, most notably capital-augmenting ones. Using our model and U.S. industry 
data, we have computed elasticity parameters of different sectors, revealing that the ESKL 
is persistently higher in extractive industries. We have also computed time series for the 
capital- and labor-augmenting technology parameters and employed these in our empirical 
analysis.

Fig. 5  Impulse response functions for the effect of TFP shocks. The figure presents the impact of technol-
ogy shocks interacted with resource endowments on the natural logarithms of real per capita GSP, the 
unemployment rate, and real per-capita investment over a 5-year horizon, with 95% confidence intervals, 
following the method of local projections of Jorda (2005). The sample includes the 48 continental U.S. 
states and covers the period 1963–2015
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We have tested our analytical predictions empirically using a panel of U.S. states over a 
period of five decades. We have examined in detail the impact of the interaction of national 
TFP shocks and states’ resource abundance on growth in output and inputs of individual 
states. The use of national aggregate shocks and cross-sectional differences in geologically-
based resource endowments has enabled us to examine the causal effects of technology 
changes on output and inputs, and how these effects are affected by the presence of natural 
resources.

Consistent with our predictions, the estimates point at divergent effects of technology 
improvements on growth in output and inputs across resource abundance levels, both in the 
short and in the longer term. In the short-run, we have observed that technology improve-
ments, most notably capital-augmenting ones, are contractionary primarily in resource-rich 
states, and are non-contractionary or expansionary in resource-poor states. In the longer 
term, we have found that TFP shocks become more expansionary in resource-rich states 
relative to those in resource-poor states. We have shown that these results are robust to 
including various controls, treatment measures, aggregate shocks, sample restrictions, and 
specifications. In addition, we have showed that they also appear with the BFK methodol-
ogy, data, and period, including when their setup is corrected for earlier concerns.

Our results help to understand how technological change may manifest the adverse effects 
of natural resource abundance on output. In turn, they also provide a potential reconciliation 
for the ongoing, inconclusive, debate on the short-run effects of technology improvements 
by recognizing the role of natural resources and the differences in the degree of substitution 
between labor and capital inputs. Our results also point to the need to account for the techno-
logical environment for purposes of resource management, as well as to take account of the 
substitutability between factor inputs when considering the impact of technology shocks.

These insights have the following policy implications. Policymakers in resource-abun-
dant regions may consider implementing countercyclical labor market policies to mitigate 
short-term contractions caused by technology-driven labor displacement. This could include, 
for instance, targeted job training programs that equip workers with skills complementary 
to new capital-intensive technologies, thus reducing the likelihood of temporary unemploy-
ment spikes. Additionally, policies encouraging capital investment in downstream indus-
tries, such as resource-based manufacturing, may help smooth the transition and enhance 
the immediate productivity gains from technological improvements.

Furthermore, governments in resource-rich areas may consider adopting a phased 
approach to technological integration, ensuring that infrastructure and workforce develop-
ment keep pace with capital-intensive innovations. This could involve, for example, tax 
incentives or subsidies for firms that invest in skill development alongside technology 
adoption. Policymakers may also consider establishing, or exploiting existing, sovereign 
wealth funds or stabilization funds to buffer against short-term economic contractions, using 
resource revenues strategically to support labor market flexibility. By implementing these 
measures, resource-rich regions can benefit from the long-term benefits of technological 
improvements while minimizing the risks of short-term disruptions.
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Appendix

A. Proofs of the Propositions

Proof of Proposition 1

To derive the values of ωit and Ωit, we solve the firm’s long-run problem. Denote by k∗
it 

and n∗
it the long-run levels of productive capital and labor for a given vintage. Hence, 

n∗
et + n∗

mt = N , and the values of k∗
it and n∗

it are given by the solution to 

	
max

{k∗
it

,n∗
it

}

{
pi

[
(zktk

∗
it)

1−1/εi + (zntn
∗
it)

1−1/εi

] εi
εi−1

− Rk∗
it − wtn

∗
it

}
.� (7)

For simplicity, problem (7) assumes zero investment adjustment costs to obtain the long-
run values of the inputs. The first-order optimality conditions for capital and labor are 

	
pizkt

[
z

1−1/εi

kt +
(

zntn
∗
it

k∗
it

)1−1/εi
] εi

εi−1 −1

= R,� (8)

	
piznt

[(
zktk

∗
it

n∗
it

)1−1/εi

+ z
1−1/εi

nt

] εi
εi−1 −1

= wt.� (9)

The last two equalities can be combined to obtain the optimal effective capital per unit of 
effective labor. In particular, defining ωit as this long-run ratio, we can write 

	
ωit ≡ zktk

∗
it

zntn∗
it

=
(

zkt

znt

wt

R

)εi

.� (10)

Notice that the definition of ωit guarantees that nit = n∗
it in the long-run.

Equations (9) and (10) for the non-extractive industry give the factor price frontier, 

	 wt = znt

(
1 − zεm−1

kt R1−εm
)1/(1−εm)

.� (11)

The wage rate, wt, increases in the productivity of capital and of labor, zkt and znt, and 
decreases in the interest, R, provided that εm ̸= 1.

From (10) and (11), the optimal long-run effective capital per unit of effective labor is 

	
ωit =

[(zkt

R

)1−εm

− 1
]εi/(1−εm)

.� (12)

Hence, ωit increases with capital productivity, zkt. Labor producitivty, znt, on the other 
hand, does not affect relative effective use of inputs, ωit, because the direct negative impact 
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of znt on ωit and its indirect positive one on the wage cancel out exactly, which is a conse-
quence of the production function having constant returns to scale.

Finally, by imposing the fixed input proportions dictated by Eq. (12) on production func-
tion (2), we can write 

	
yit =

[
1 + ω

(1−εi)/εi

it

]εi/(εi−1)
zktk

∗
it.� (13)

Comparing this last expression to Eq. (1), and noting that the Leontief specification 
implies that at the optimum yit = Ωitzktk

∗
it, we recover the value of Ωit stated in the 

proposition.

Proof of Proposition 2

Notice that labor always moves towards the most productive sector and that, in the long run, 
the total level of employment equals the population size N . Consequently, if labor produc-
tivity increases in both sectors with both zkt and znt, it is immediate that the economy’s total 
level of output will increase as well in the long run. By imposing the fixed input proportions 
dictated by Eq. (12) on production function (2), we obtain labor productivity 

	

yit

n∗
it

= znt

(
ω

1−1/εi

it + 1
)εi/(εi−1)

.� (14)

To see how labor productivity varies with znt and zkt, our next step is to take the deriva-
tive of the right-hand side of Eq. (14) with respect to these two productivity parameters. 
Define λt =

(
zkt

R

)1−εm − 1. Note that λt > 0, since otherwise wt cannot be positive 
according to Eq. (11). Then, we obtain 

	

∂yit/n∗
it

∂znt
=

(
1

znt

)
yit

n∗
it

,� (15)

	

∂yit/n∗
it

∂zkt
=

[
εi

(
zkt

R

)−εm

Rλt

]
yit

n∗
it

,� (16)

which are always positive. Consequently, we have established that the economy’s long-
run output level increases in both znt and zkt.

Our next task is to analyze how the growth of labor productivity varies with εi ̸= εm. 
Equation (15) implies that the growth rate of yit/n∗

it induced by a change in znt only depends 
on the value of znt, and therefore, is independent of εi.

Conversely, the effect of εi on the growth of labor productivity caused by a change of 
zkt, which is given by the terms within squared brackets in Eq. (16), is positive if and only if 

	
1 + λ

1−εi
1−εm
t

(
1 + εi

1 − εm
lnλt

)
> 0.� (17)
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Using L’Hopital rule, it is easy to show that, if εi < 1, 

	

lim
λt→0

lnλt

λ
εi−1

1−εm
t

= lim
λt→0

1
εi−1
1−εm

λ
εi−1

1−εm
t

= 0,

and therefore, the last inequality holds under the restrictions on εe, εm, and zkt/R stated 
in Proposition 2. Lastly, note that this result can be interpreted relative to the growth impact 
on the non-extractive activity, which is obtained when εi = εm in Eq. (16).

Proof of Proposition 3

We start by recalling that in the short-run, capital and labor enter the production function in 
fixed proportions, and therefore, the level of employment can be below N . For example, the 
economy will have involuntary unemployment if k∗

i /n∗
i  rises but ket + kmt < k∗ = k∗

e + k∗
m, 

where k∗
i = znωin

∗
i /zk.

These fixed proportions are reflected in the values of ωit and Ωit defined in Proposition 
1. Using these values, and imposing the optimality condition over capital and labor associ-
ated to the Leontief specification (i.e., ωitzntnit = zktkit), we can write the short-run pro-
duction function, given by Eq. (1), in terms of the sectoral capital stock as 

	 yit = Ωitzktkit.� (18)

Therefore, in the short run, the firm decides how much to invest in gross capital forma-
tion taking input prices, production function (18), and the adjustment costs as given. Spe-
cifically, the firm solves the problem subject to the motion of capital, which is determined 
by Eq. (3), and the constant input proportion condition given by Eq. (12). The return R is 
defined as in the long-run problem. Notice that, however, in the long-run problem, defined 
by expression (7), we have assumed no adjustment costs, so that one unit of investment 
capital provides one unit of productive capital. In the short run, this is not the case, and then, 
the sum operator next to R provides the borrowed investment capital that still earns interest 
payments from the firm.)45

	
max

xit

{
piΩitzktkit − R

t∑
j=1

(1 − δ)t−jxij − wtnit

}
� (19)

The first-order optimality condition to this problem (for an interior solution) is 

	
xit =

(
Ψitzk

ϕ

R

) 1
1−ϕ

,� (20)

45 The terms affected by the sum operator in expression (37) provide the firm’s pending debt (dit), which is 
obtained by iterating the equation dij = (1 − δ)dij−1 + xij  from j = 1 to t.
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where Ψit = piΩi − wt

ωitznt
. Hence, a lower value of ϕ reduces the optimal amount of 

investment, and convergence toward the new long-run stock of productive capital occurs at 
a lower speed.

Note that if ϕ is sufficiently low, the increase in kit can be negligible. Under this sce-
nario, Eq. (18) implies that yit falls with zkt if Ωitzkt falls. In the non-extractive sector, 
εi = εm, and then, Eq. (12) implies that Ωmtzkt = Rεm z1−εm

kt . Therefore, for values of ϕ 
sufficiently low, ymt decreases in the short run with zkt if and only if εm > 1. However, if 
εm < 1, ymt always increases with zkt.

In the extractive sector, it is easy to show that Ωetzkt decreases with zkt if and only if 

	
1 +

[(zkt

R

)1−εm

− 1
](1−εe)/(1−εm)

< εe

(zkt

R

)1−εm
[(zkt

R

)1−εm

− 1
](εm−εe)/(1−εm)

.

Note that if εm = εe, the last inequality becomes 1 < εe. Hence, if εe = εm > 1, yet 
decreases with zkt. Additionally, when εm < εe < 1, the left-hand side of the inequality 
goes to 1, and its right-hand side goes to infinity as the value of (zkt/R)1−εm  goes to 1 from 
above. Therefore, another set of sufficient conditions for yet to decrease with zkt is when 
zkt/R is sufficiently low and εm < εe < 1.

Regarding the effects of znt, they result from the independence of ωi and Ωi from znt.

B Model with Natural Resources

To introduce natural resources into the model, we assume that production in the non-extrac-
tive sector is still given by Eqs. (1) and (2) for i = m. However, short-run production in 
the extractive activity is now the result of combining labor, capital, and the stock of natural 
resources (denoted by n) according to 

	 yet = Ωetn
γ [min {zktket, ωetzntnet}]1−γ

,� (21)

where γ ∈ (0, 1). Similarly, long-run production in e is given by 

	
yet = nγ

[
(zktket)1−1/εe + (zntnet)1−1/εe

] εe
εe−1 (1−γ)

.� (22)

Now, yet represents the flow of natural resources extracted from the ground at period 
t, while n denotes the stock of natural capital available for extraction. For simplicity, we 
assume that this stock is constant. Because the new input enters the production functions 
multiplicatively, it is easy to show that Propositions 1 to 3 hold with the new production 
functions for the extractive activity.

We finish this appendix with a final remark. In this extension of the model, we have 
assumed that the natural resource stock is constant. While this is clearly a restrictive assump-
tion, we do not believe it significantly affects our main conclusions. The analytical model 
serves as a guide for interpreting the results obtained from the empirical analysis, which 
examines a sample of U.S. states from 1998 to 2015. The stock of natural resources and its 
extraction rates remained relatively stable in the U.S. from 1998 to about 2009, although 
they experienced a rapid increase thereafter (see, e.g., U.S. Energy Information Administra-
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tion data at https://www.eia.gov). Crucially, this rapid increase should not amplify the ​n​e​g​a​t​
i​v​e short-run impact on output and labor. On the contrary, it would likely make these effects 
less pronounced, thereby reinforcing the robustness of our results.

C. Skilled Labor and Sector-Specific Productivity Shocks

The existence of skill-biased technical change has been widely documented in the literature 
(e.g., see Acemoglu 2002; Violante 2008). In this appendix, we illustrate how this type 
of technical change, along with the elasticity of substitution between physical capital and 
skilled labor may affect our main results.

In this version of the model, we consider three inputs used by sector i at time t: physical 
capital (kit), skilled labor (sit), and unskilled labor (nit). The economy is endowed with a 
fixed amount N  of unskilled workers who cannot cross borders. These inputs are combined 
according to the following short-run and long-run production functions, respectively,

	 yit = Ωit min {zkitkit, θitzsitsit, ωitznitnit} ,� (23)

	
yit =

{[
(zkitkit)1−1/µi + (zsitsit)1−1/µi

] µi
µi−1 (1−1/εi)

+ (znitnit)1−1/εi

} εi
εi−1

,� (24)

where zkit, zsit, and znit are the productivity levels of kit, sit, and nit, respectively. 
Note that these productivity levels are now sector specific. The parameter µi represents the 
elasticity of substitution between physical capital and skilled labor, and εi is the elasticity 
of substitution between the capital-skill input bundle and unskilled labor.46 Consistent with 
the evidence in favor of the capital-skill complementarity hypothesis (e.g., Krusell et al. 
2000; Duffy et al. 2004; Raveh and Reshef 2016), we assume that physical capital is more 
complementary to skilled labor than to unskilled labor, and then εi > µi.

In this version of the model, θit is the fixed ratio of zkitkit to zsitsit, and ωit is the fixed 
ratio of zkitkit to znitnit used in production in the short run. For simplicity, we assume that 
both physical capital and skilled labor are mobile across states and countries. Therefore, 
their prices (R and wst, respectively) are determined on world markets.

Similar to the benchmark model, the parameters Ωit, θit, and ωit must be consistent with 
the solution to the long-run problem. Denoting the long-run values of the variables with an 
asterisk, we can write this problem as

	

max
{k∗

it
,s∗

it
,n∗

it
}
pi

{[
(zkitkit)1−1/µi + (zsitsit)1−1/µi

] µi
µi−1 (1−1/εi)

+ (znitnit)1−1/εi

} εi
εi−1

− Rk∗
it − wsts

∗
it − wntn

∗
it.

� (25)

where wnt is the wage rate of unskilled labor.
The first-order optimality conditions for this problem imply that

46 This specification of the production function, where kit and sit are combined in a nested CES structure, 
and the resulting composite is then combined with nit at a second nested level, has worked well in empirical 
investigations of the capital-skill complementarity hypothesis. See, e.g., Duffy et al. (2004)
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piy

1/εi

it

[
(zkitkit)1−1/µi + (zsitsit)1−1/µi

] µi
µi−1 (1−1/εi)−1

(zkitkit)−1/µi zkit = R,� (26)

	
piy

1/εi

it

[
(zkitkit)1−1/µi + (zsitsit)1−1/µi

] µi
µi−1 (1−1/εi)−1

(zsitsit)−1/µi zsit = wst,� (27)

	 piy
1/εi

it (znitnit)−1/µi znit = wnt,� (28)

where yit is given by Eq. (24).
Combining the optimality conditions (26) and (27) gives the optimal ratio of physical 

capital to skilled labor, so that 

	
θit ≡ zkitk

∗
it

zsits∗
it

=
(

zkit

zsit

wst

R

)µi

� (29)

Equation (29) implies that θit increases in zkit, decreases in zsit, and is independent of 
znit.

In the same way, the optimality conditions (26) and (28) deliver the optimal ratio of 
physical capital to unskilled labor, which gives 

	
ωit ≡ zkitk

∗
it

znitn∗
it

=
(

zkit

znit

wnt

R

)εi
[

1 +
(

zkit

zsit

wst

R

)1−µi
] εi−µi

µi−1

.� (30)

It is easy to deduce from equation (30) that ωit increases in zsit and decreases in znit. In 
contrast, since zkit appears twice in Eq. (30), we obtain the first derivative to know how ωit 
is affected by changes in zkit, namely

	

∂ωit

∂zkit
=

(
zkit

znit

wnt

R

)εi

zkit

[
1 +

(
zkit

zsit

wst

R

)1−µi
] εi−µi

µi−1 −1 [
εi + µi

(
zkit

zsit

wst

R

)1−µi
]

.� (31)

This last expression is always positive.
To summarize, given that εi > µi, both equations (29) and (30) indicate that the opti-

mal amount of an input relative to another input, both measured in efficiency units, varies 
directly with relative input productivity levels and inversely with relative input prices.

The prices of physical capital and skilled labor are given exogenously. However, the 
wage rate of skilled labor is endogenous. From equations (28) to (30), applied to the non-
extractive sector (m), we can derive an expression for the wage of unskilled labor expressed 
as a function of exogenous variables and parameters,
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wnt =znmt


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1
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.

� (32)

Therefore, the unskilled-labor wage rate depends only on variables and parameters 
related to the non-extracted sector. It can be easily shown that wnt increases in znmt, zkmt, 
and zsmt. Recall that, due to capital-skill complementarity, the optimal efficiency units of 
physical capital and skilled labor relative to those of unskilled labor increase in zkmt and 
zsmt. This, along with the fact that there is always some degree of complementarity between 
the three inputs, implies that an increase in the productivity of any input raises the wage rate.

Substituting the fixed input proportions implied by Eqs. (29) and (30) into the long-run 
production function, given by equation (24), we obtain

	

yit =





[
ω

µi−1
µi

it +
(

ωit

θit

) µi−1
µi

] µi
µi−1

(
εi−1

εi

)

+ 1





εi
εi−1

znitn
∗
it,� (33)

or, alternatively, 

	

yit =




(
1 + θ

1−µi
µi

it

) µi
µi−1

(
1− 1

εi

)
+ ω

1−εi
εi

it




εi
εi−1

zkitk
∗
it.� (34)

Moreover, comparing this last expression to the short-run production function, given 
now by Eq. (23), we deduce that

	

Ωit =




(
1 + θ

1−µi
µi

it

) µi
µi−1

(
1− 1

εi

)
+ ω

1−εi
εi

it




εi
εi−1

.� (35)

Equation (35) indicates that Ωit decreases in both θit and ωit. Therefore, Eqs. (29) and 
(30) imply that Ωit decreases in zkit, as in the benchmark case. However, in the new version 
of the model, both znit and zsit also affect it—the former with a positive impact, while the 
latter has an ambiguous impact.

In what follows, we assume that zkit

znit

wnt

R > 1 and zkit

zsit

wst

R > 1, since R is constant, but 
wages tend to increase with the economy. We first analyze the effects of productivity shocks 
on long-run output. In the long run, all the economy’s available labor is used in production. 
Therefore, similar to what happens in the benchmark model, because labor is directed to 
the most productive activity, gains in any input productivity must result in gains in output. 
However, unlike in the benchmark model, since productivity shocks are now sector-specific, 
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long-run output will tend to increase more significantly in the sector where productivity 
parameters experience a larger rise.

Our next task is to determine how these long-run output gains induced by productivity 
shocks vary with the elasticities of substitution between inputs (εi and µi). The effects on 
long-run output can be inferred from Eq. (33), which is the relevant one because labor goes 
back to full employment in the long run, that is, n∗

et + n∗
mt = N . Therefore, we can assume 

that n∗
it does not vary significantly. We focus on the elasticities of the extractive activity, 

as we are interested in knowing, for example, how the different effects change when εe 
increases away from εm. From Eqs. (29) and (30), we see that εe does not affect θet but 
amplifies the positive effect of zket on ωet. While this suggests a stronger positive effect, the 
presence of εi within the CES structure of the production function introduces an additional 
channel—hereafter referred to as the CES channel—through which changes in the elasticity 
of input substitution influence the overall outcome, leading to ambiguity.

This ambiguity implies that, as observed in the benchmark model, the effect operating 
through input proportion responses may dominate for some subsets of the input elasticity 
parameters. Moreover, in most cases, when analyzing the impact of εe and µe, the CES 
channel will deliver the same outcome in our analysis. Therefore, our discussion will hence-
forth focus primarily on the impact on input proportions, while keeping in mind that the 
results hold for specific values of the elasticity parameters.

Hence, the results so far are similar to those of the benchmark model. An increase in the 
elasticity of substitution between the capital-skill bundle and unskilled labor in the extrac-
tive industry has a clear effect on the input proportion responses, contributing to a stronger 
positive impact of long-run output to changes in zket. However, this result may hold only 
for certain values of εe.

In contrast, an increase in µe makes ∂θe/∂zket more positive and ∂ωet/∂zket less posi-
tive. Equation (33) then suggests a weaker positive effect of capital-augmenting productiv-
ity on long-run output when the elasticity of substitution between capital and skilled labor 
increases in the extractive sector.

It is also easy to show that changes in the input elasticity parameters affect the long-run 
output response to skill-biased productivity shocks (zset) in qualitatively the same way as 
they do for an increase in zket.,47 Regarding the response to znet, as εe rises, ωet falls more, 
while θet does not vary. As a result, the impact of znet weakens as εe increases, since capital 
rises less due to its greater substitutability with unskilled labor. Conversely, the impact of 
znet on long-run output channeled through input proportions strengthens as µet rises.

We can thus draw the following conclusions. First, if the extractive industry exhibits a 
higher elasticity of substitution between capital and unskilled labor (i.e., εe > εm), there 
may exist values of εe and εm for which long-run output in the extractive sector rises more 
than in the non-extractive industry as a response to the same capital- or skill-biased produc-
tivity shock. Second, if the extractive industry has a higher elasticity of substitution between 
capital and skilled labor (i.g., if µe > µm), the opposite effect may occur—namely, long-
run output may increase less in the extractive sector than in the non-extractive industry for 

47 This can be easily deduce by comparing Eq. (30), which gives 

	
ωit

θit
=

(
zsit

znit

wnt

wst

)εi

[
1 +

(
zsit

zkit

R

wst

)1−µi

] εi−µi
µi−1

.

� (36)
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certain values of µe and µm as a response to an increase in zket or zset. Third, higher values 
of εe are less likely to amplify the long-run output impact when productivity shocks result 
from unskilled-biased technical change. Finally, since all these productivity shocks are sec-
tor specific, the impact will be stronger in the sector experiencing the greatest productivity 
increase.

Short-Run Effects

Let us now analyze the short-run effects for which Eq. (34) is now relevant. The maximiza-
tion problem that determines the optimal investment in physical capital is

	
max

xit

{
piΩitzkitkit − R

t∑
j=1

(1 − δ)t−jxij − wntnit − wstsit

}
� (37)

subject to the motion of capital, which is determined by Eq. (3), and the constant input 
proportion conditions given by Eqs. (29) and (30). Solving this problems delivers the same 
solution as the benchmark model, given by Eq. (20), but now Ψit = piΩit − wnt

ωitznit
− wst

θitzsit
. 

Therefore, following the same logic as in the proof of Proposition 3 in Appendix A, we can 
focus on the particular case where capital adjustment costs are so strong (i.e., ϕ sufficiently 
small) that the change in the capital input is negligible. In this scenario, Ωitzkit gives the 
response of short-run output to productivity shocks.

From Eqs. (29), (30), and (35), when zkit increases, both θit and ωit increase, pushing 
Ωit down. This implies that both skilled and unskilled labor decrease per unit of capital. 
Therefore, as in the benchmark model, capital-augmenting productivity shocks can reduce 
output in the short run if the decrease in Ωit in absolute value is larger than the increase in 
zkit.

Skill-biased technical change, on the other hand, is less likely—though not impossible—
to cause a decrease in short-run output. As zsit rises, ωit increases, but θit falls, making 
the overall impact on Ωit uncertain. This occurs because, while the amount of unskilled 
labor per unit of capital falls, the amount of skilled labor increases. Finally, in the short 
run, the impact of znit on sector i’s output can only be positive—note that as znit rises, ωit 
decreases, θit does not vary, and then Ωit increases.

We also aim to examine how input elasticities affect the strength of a potential negative 
short-run effect on output. Therefore, we focus on how the impact of zket and zset varies 
with εe and µe. As εe increases, ∂θet

∂zket
 remains unchanged, but ∂ωet

∂zket
 increases, potentially 

strengthening the negative effect on short-run output. The influence of εe on the short-run 
impact of zset is qualitatively identical to that of zket.

Conversely, an increase in µe, raises ∂θet

∂zket
 but decreases ∂ωet

∂zket
, thus implying that the 

influence of µe on the short-run response to a zkit shock is ambiguous. In contrast, µe has 
a well-defined impact on input proportion responses to changes in zsit. When µe increases, 
∂θet

∂zset
 becomes more negative and ∂ωet

∂zset
 less positive, making a positive effect of zsit on 

short-run output more likely.

We can summarize the short-run results when there are strong adjustment costs for the 
capital input as follows. First, capital-biased productivity shocks can negatively affect sec-
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toral output in the short run. Furthermore, as in the benchmark model, for certain values of 
εe and εm, an increase in εe can amplify this negative short-run impact. The influence of 
µe is less clear, as it affects the capital-unskilled-labor and the capital-skilled-labor ratios in 
opposite directions. Second, skilled-biased technical change is less likely to generate short-
run output losses due to the increase in the amount of skilled labor. Third, unskilled-biased 
technical change cannot reduce output in the short run. Finally, since productivity shocks 
are sector-specific, all these effects will be more pronounce if productivity gains impact the 
extractive industry more significantly.

D. Estimating ESKL and the Productivity Parameters

We introduce time and sector subindices when necessary to allow R, wt and εi to vary 
across time and sectors. Hence, Eqs. (2) and (10) become 

	
yet =

[
(zktket)1−1/εet + (zntnet)1−1/εet

] εet
εet−1

,� (38)

	

ket

net
=

(
zkt

znt

)εet−1 (
wet

Ret

)εet

,� (39)

	
ymt =

[
(zktkmt)1−1/εmt + (zntnmt)1−1/εmt

] εmt
εmt−1

,� (40)

	

kmt

nmt
=

(
zkt

znt

)εmt−1 (
wmt

Rmt

)εmt

.� (41)

We can use these to obtain 

	
znt = yit

nit

(
witnit

pityit

) εit
εit−1

, for i = e, m,� (42)

and 

	
zkt = yit

kit

(
Ritkit

pityit

) εit
εit−1

, for i = e, m.� (43)

Finally, equalizing Eqs. (42) and (43) across the two sectors delivers 

	

εmt

εmt − 1
=

ln
(

ymt/kmt

yet/ket

)
−

ln( Retket
petyet

)
ln( wetnet

petyet
) ln

(
ymt/nmt

yet/net

)

ln( Retket
petyet

)
ln( wetnet

petyet
) ln

(
wmtnmt

ymt

)
− ln

(
Rmtkmt

pmtymt

) � (44)

and 
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εet

εet − 1
=

ln
(

ymt/kmt

yet/ket

)
+ εmt

εmt−1 ln
(

Rmtkmt

pmtymt

)

ln
(

Retket

petyet

) .� (45)

Using data for yet, ymt, ket, kmt, net, nmt, wet, wmt, Ret and Rmt, we can thus obtain 
an estimate of εmt from Eq. (44). Then, taking εmt into Eq. (45) gives εet. Finally, substitut-
ing εmt and εet into (42) and (43) gives znt and zkt. We can thus obtain the ESKL for each 
of the two sectors and the common labor-augmenting and capital-augmenting productivi-
ties, at any given point in time.

More specifically, the EUKLEMS provides data for the variables required to perform the 
estimation. Output variables yet and ymt, and the stocks ket, kmt, net and nmt are directly 
available in the dataset. We compute the salaries wet and wmt by dividing total labor com-
pensations by total hours worked (nit). We compute Ret and Rmt by dividing total capital 
compensations by the total capital stock (kit). This is consistent, for example, with the com-
putations undertaken by Caselli and Coleman (Caselli et al. 2006).

E. Data

We use an annual state-level panel that, unless otherwise specified, covers the 48 continental 
U.S. states for the period 1963–2015. Real variables are expressed in 2009 prices. Descrip-
tive statistics for all variables are presented in Table A1.

Table A1  Descriptive statistics
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Variable definitions

 
Resource endowment: Recoverable state stocks of oil and natural gas (cross-sectional), 
normalized by average state income (averaged over 1958–2008). Alaska and Hawaii are 
excluded. Source: James (2015)

 
Real per-capita Gross State Product (GSP): Real Gross State Product divided by state popu-
lation. Source: U.S. Census Bureau.

 
Population: State population. Source: U.S. Census Bureau.

 
Real per-capita tax rates: State tax revenues divided by state population. Source: U.S. Cen-
sus Bureau.

 
Real per-capita government expenditures: Total expenditures of state government divided 
by state population. Source: U.S. Census Bureau.
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Real per-capita state outstanding debt: Total outstanding debt of state government divided 
by state population. Source: U.S. Census Bureau.

 
Party affiliation of governor: An indicator for the party of the governor; 0 = Republican, 
1 = Democrat, 0.5 = non-major party governor. Source: Marty and Grossman (2016).

 
Inequality: Theil Index measure of income inequality. Source: Frank (2009).

 
Unemployment rate: State unemployment rate. Source: U.S. Census Bureau.

 
Real per-capita capital stock: State capital stock divided by state population. Source: 
Garofalo and Yamarik (2002), including an extension of it available at the second author’s 
homepage.

 
Fernald TFP shocks: Aggregate, national TFP shocks, aggregated to an annual level. 
Source: Fernald (2014).

 
Federal tax shocks: Narrative-based federal tax shocks, aggregated to an annual level, and 
normalized by U.S. GDP; available up to 2007. Source: Romer and Romer (2010).

 
Business cycles: An indicator for whether the U.S. economy is in a recession. Source: U.S. 
Federal Reserve.

 
News shocks: Investment Specific Technology (IST) news shocks, aggregated to an annual 
level; available up to 2011. Source: Ben-Zeev (2018).

 
Monetary shocks: Monetary policy shocks a-la Romer and Romer (2004); available for 
1969–2007. Source: Tenreyro and Thwaites (2016).

 
JPT TFP shocks: Series of TFP shocks derived from Justiniano et al. (2011).

 
BS TFP shocks: Series of TFP news shocks derived from Barsky and Sims (2011).

 
FORD TFP shocks: Series of TFP shocks derived from Francis et al. (2014).

 
Zk: Capital-augmenting technology shocks. Computed from the model, as described in the 
text, vis-à-vis data from the EUKLEMS dataset. Source: O’Mahony and Timmer (2009).

 
Zn: Labor-augmented technology shocks. Computed from the model, as described in the 
text, vis-à-vis data from the EUKLEMS dataset. Source: O’Mahony and Timmer (2009).

 
GSP share of manufacturing: Share of state manufacturing sector in Gross State Product. 
Source: U.S. Census Bureau.

1 3

2194



Natural Resources, Technology Improvements, and Growth

 
GSP share of services: Share of state services sector in Gross State Product. Source: U.S. 
Census Bureau.

 
GSP share of agriculture: Share of state agriculture sector in Gross State Product. Source: 
U.S. Census Bureau.

 
GSP share of wholesale: Share of state wholesale trade sector in Gross State Product. 
Source: U.S. Census Bureau.

F. VAR analysis

In Sect. 4.7 of the paper, we have examined the dynamic patterns following the method of 
local projections (Jorda 2005). To examine the robustness of the observed patterns to the 
type of estimation method, we undertake an equivalent estimation under a VAR framework.

Specifically, we estimate

	

∆(outcome)i,∆(t−1,t) = α + β(outcome)i,t−1 + γ(resource)i

+ δ(tfp)t +
j=4∑
j=0

θj(resource ∗ tfp)i,t−j + ηi + νt + ϵi,t.
� (46)

Here outcome again denotes each of the three outcome variables. The results are pre-
sented in Table A2. Columns (1)-(3) examine the cases of GSP, unemployment, and capital, 
respectively. The observed patterns are qualitatively similar to those under the Jorda (2005) 
method outlined in Sect. 4.7. We note that upon impact, TFP shocks contract output and 
labor more strongly in resource-rich than resource-poor states, but there are no such differ-
ential impacts on capital. However, specifically from about the second or third years, output, 
labor, and capital expand more strongly in those same, initially contracted, resource-rich 
states. These results indicate that the main observed patterns are robust to this alternative 
estimation method.

Table A2  Resource endowments and technology improvements (VAR analysis)
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