
Käppel, Martin; Ackermann, Lars; Jablonski, Stefan; Härtl, Simon

Article  —  Published Version

Explaining transformer-based next activity prediction by
using attention scores

Process Science

Provided in Cooperation with:
Springer Nature

Suggested Citation: Käppel, Martin; Ackermann, Lars; Jablonski, Stefan; Härtl, Simon (2025) :
Explaining transformer-based next activity prediction by using attention scores, Process Science,
ISSN 2948-2178, Springer International Publishing, Cham, Vol. 2, Iss. 1,
https://doi.org/10.1007/s44311-025-00018-4

This Version is available at:
https://hdl.handle.net/10419/323686

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  http://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s44311-025-00018-4%0A
https://hdl.handle.net/10419/323686
http://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Käppel et al. Process Science  (2025) 2:11 
https://doi.org/10.1007/s44311-025-00018-4

Process Science

Explaining transformer‑based next activity 
prediction by using attention scores
Martin Käppel1*, Lars Ackermann2, Stefan Jablonski3 and Simon Härtl3 

Abstract 

Predictive business process monitoring aims to enhance process execution by provid-
ing real-time predictions about the future evolution of a process instance. In recent 
years, several deep learning approaches have been established as state of the art 
for various predictive tasks, including those based on the transformer architecture. 
The transformer architecture is equipped with a powerful attention mechanism 
that assigns attention-based importance scores to each input element, guiding 
the model to focus on the most relevant parts of the sequence, regardless of their 
position. This capability leads to more accurate and contextually grounded predictions. 
However, like most deep learning models, transformers largely operate as a black box, 
making it challenging to trace how specific features influence the model’s predictions. 
In this paper, we conduct a series of experiments to examine the role of attention 
scores in a transformer-based next activity prediction model. Specifically, we investi-
gate whether these scores provide meaningful explanations for the model’s decisions. 
Our findings reveal that attention scores can indeed serve as effective explanations. 
Building on these insights, we propose two novel, global, graph-based explanation 
approaches that illustrate the model’s understanding of the process’s control flow. Our 
evaluation using various metrics on both real-world and synthetic event logs demon-
strates that these explainers effectively capture the model’s decision-making process. 
By improving interpretability, these insights not only enhance process participants’ 
confidence in predictive models but also offer a valuable foundation for refining 
model performance. Furthermore, our investigation into the reliability of attention 
scores offers valuable insights into how transformer models encapsulate temporal 
and sequential dependencies in prediction tasks.

Keywords:  Predictive process monitoring, Transformer, Attention mechanism, 
Explainability

Introduction
In recent years, predictive business process monitoring (Maggi et al. 2014; Grigori et al. 
2004) has experienced remarkable growth, driven by advances in artificial intelligence 
(Weinzierl et  al. 2024), and has established itself as a subfield in process mining (Di 
Francescomarino and Ghidini 2022). In contrast to post-mortem analyses of event data, 
which focus on past and current events, predictive business process monitoring provides 
runtime support for the execution of a business process by making various predictions 
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about the future evolution of the process instance (Di Francescomarino and Ghidini 
2022). This includes, among others, behavior-related predictions (e.g., next activity (Pas-
quadibisceglie et al. 2019; Camargo et al. 2019; Evermann et al. 2017)), outcome-related 
predictions (e.g., outcome (Kratsch et  al. 2021)), and time-related predictions (e.g., 
remaining time (Verenich et al. 2019)).

From a business perspective, early knowledge about the future of a process instance 
offers significant advantages, as it permits improved resource and time planning, better 
preparation of upcoming steps, and early identification of potential problems (Márquez-
Chamorro et  al. 2017; Maggi et  al. 2014). The latter, for example, allows process par-
ticipants to take timely corrective actions to mitigate risks (Di Francescomarino and 
Ghidini 2022).

Typically, predictive business process monitoring approaches involve constructing 
predictive models based on historical event log data captured by information systems 
(Grigori et  al. 2004). These models are then applied to ongoing process instances to 
generate valuable predictive insights (Maggi et al. 2014). In recent years, deep learning 
approaches have been established as state of the art for predictive tasks for mainly two 
reasons: First, they have proven to outperform traditional machine learning models like 
decision trees or support vector machines for different targets (e.g., next activity (Meh-
diyev et al. 2020), outcome (Kratsch et al. 2021), remaining time (Verenich et al. 2019)) 
in terms of accuracy and earliness of prediction. Second, they are completely data-driven 
so that they no longer require an explicit representation of the underlying process model 
(Senderovich et al. 2019). As a consequence, various kinds of deep learning architectures 
have been employed, among others Convolutional Neural Networks (Pasquadibisceglie 
et al. 2019), Long Short Term Memory Neural Networks (LSTM) (Evermann et al. 2017; 
Camargo et al. 2019), or more recently transformer architectures (Bukhsh et al. 2021).

Despite their strong predictive performance, deep learning models largely operate 
as black boxes, limiting insights into their reasoning and decision-making processes 
(Nauta et al. 2023). This lack of transparency is a significant factor in why people dis-
trust these models and, hence, marks a major obstacle to their usage in practice (Car-
valho et  al. 2019). The field of explainable artificial intelligence (XAI) aims to address 
this issue by developing techniques (so-called explainers) that explain the decisions of 
machine learning models (Carvalho et al. 2019; Nauta et al. 2023). In predictive business 
process monitoring both task-agnostic explanation techniques and techniques tailored 
towards the specific needs of predictive business process monitoring are applied (Wein-
zierl et  al. 2020). In general, explainers are categorized as either local or global based 
on their explanation scope. While local explainers aim to explain the prediction for a 
single process instance, global explainers seek to find an explanation to uncover how a 
model makes decisions across a collection of instances (e.g., an event log). Hence, global 
approaches provide insights into how a model makes decisions in general, whereas local 
approaches focus on explaining single predictions. Previous research in predictive busi-
ness process monitoring has predominantly concentrated on developing local explain-
ers, so the development of process-specific global explainers is still in its infancy.

Hence, the hypothesis proposed in the landmark work of Evermann et al. (2017) – that 
deep learning models for next activity prediction inherently learn the underlying pro-
cess structure – remains largely untested. Peeperkorn et al. investigated this hypothesis 
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specifically for LSTMs, finding that these models sometimes “struggle to learn process 
model structure”  (Peeperkorn et  al. 2023). Nevertheless, examining this hypothesis for 
other deep learning architectures remains a valuable research direction (Peeperkorn 
et al. 2023), especially given that LSTMs often face challenges with long sequences, as 
they tend to pay less attention to elements appearing earlier in the sequence. The trans-
former architecture (Vaswani et al. 2017) addresses this issue with a powerful attention 
mechanism, which assigns importance scores (so-called attention scores) to each ele-
ment of the input sequence, guiding the model to focus on the most relevant parts of 
the sequence, regardless of their position (Bukhsh et al. 2021; Vaswani et al. 2017). This 
architecture has led to new state-of-the-art approaches across multiple research fields 
(Vaswani et al. 2017) (e.g., large language models such as GPT-4 (OpenAI et al. 2024) 
and BERT (Devlin et al. 2019)).

As this architecture also demonstrates strong performance in predictive business pro-
cess monitoring by effectively predicting the next activity (Bukhsh et al. 2021), this paper 
explores the following research question: Can the attention scores within the transformer 
architecture provide insights into whether the trained prediction model has developed an 
understanding of a process’s control flow?

This article is an extended and revised version of a previously published conference 
paper (Käppel et al. 2024). In Käppel et al. (2024), we conducted initial experiments to 
examine whether the aforementioned attention scores could serve as a solid basis for 
developing XAI approaches. We also proposed two novel, global, transformer-specific 
explanation approaches and conducted a quantitative evaluation using real-world event 
logs. This extended version expands on our previous work by presenting additional 
experiments to gain deeper insights into the reliability of attention scores. Furthermore, 
we extend our evaluation to include synthetically generated event logs from process 
models, enabling a direct comparison between extracted explanation rules and corre-
sponding process models. We also present an embodiment of this approach as a soft-
ware tool and conduct a qualitative analysis of the extracted explanations.

The rest of the paper is organized as follows: Background section introduces basic ter-
minology and the fundamentals of the transformer architecture. After positioning our 
work with respect to related research (Related work  section), we conduct a series of 
experiments to investigate whether attention scores can serve as an explanation (Pre-
study: the relevance of attention scores section). Building on these findings, we present 
the proposed global explainers (Explanation approaches section). In Evaluation section, 
we perform a qualitative and quantitative evaluation of our approach on both real-world 
event logs and synthetically generated event logs. Concluding remarks section discusses 
potential limitations and implications for theory and practice, while Conclusion and 
future work section provides directions for future research.

Background
In this section, we first introduce key concepts and notations from the field of process 
mining that are essential for understanding the remainder of the paper. Next, we explain 
the functionality of the transformer architecture, with a strong focus on its attention 
mechanism, which plays a pivotal role in the proposed explanation approaches.
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Event logs and next activity prediction

A business process is a sequence of activities and decisions carried out to deliver a 
valuable outcome to the customer (Dumas et al. 2018). Each execution of such a busi-
ness process is called a process instance or a case  (van der Aalst 2016)). Modern IT 
systems record and store information about process executions in the form of event 
logs – sets of timestamped events that include various event attributes encapsulating 
information about the execution of activities (van der Aalst 2016)). In the following, 
we denote the set of activities of a business process as A and define an event formally 
as follows:

Definition 1  An event is as a tuple e = (a, c, t, d1, ..., dm) , where a ∈ A is the executed 
activity, c is a case identifier indicating the process instance to which the event belongs, 
t is the timestamp of execution, and d1, ..., dm represent the data payload, i.e., optional 
event attributes related with the execution of activity a.

Thus, at a minimum, an event contains the following event attributes: a case identifier, 
the executed activity, and the timestamp of execution (van der Aalst 2016)). Accordingly, 
we use functions πa(e) , πc(e) , πt(e) , and πd1(e), . . . ,πdm(e) to access the activity, case 
identifier, timestamp, and the data payload of an event e (van der Aalst 2016)).

All events belonging to the same process instance can be temporally ordered by 
their timestamp into a so-called trace (van der Aalst 2016)):

Definition 2  A trace is a non-empty, finite sequence of events σ = �e1, . . . , en� such 
that, for 1 ≤ i < j ≤ n , the following conditions hold:

•	 all events are ordered according to their timestamp (i.e., πt(ej) ≥ πt(ei) ) and
•	 all events belong to the same process instance (i.e., πc(ej) = πc(ei)).

The length of a trace, denoted by |σ | , refers to the number of events within that trace.
Based on this definition, we can define an event log as follows (van der Aalst 2016)):

Definition 3  An event log L is a set of traces of the same business process. The size of 
the event log, denoted by |L| , is defined as the number of traces contained in L.

To represent process instances at different points in time, we utilize the prefixes of 
a trace.

Definition 4  Let σ = �e1, . . . , en� be a trace and r ∈ {1, . . . , n− 1} . The prefix of a 
trace σ of length r is defined as a function hd that returns the first r events of σ , i.e., 
hd(σ , r) = �e1, . . . , er�.

Each prefix thus consists of a sequence of consecutive events from the start of the 
trace up to a specific point, capturing the process execution up to that moment.

A next activity prediction model receives a record of a running process instance 
(i.e., a prefix) as input and predicts the most likely subsequent activity. We therefore 
define next activity prediction formally as a function (Rama-Maneiro et al. 2021):
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Definition 5  Let σ = �e1, . . . , er� be a prefix of length r. Next activity prediction is 
defined as a function � that predicts for the activity of the next event er+1 , which is not 
yet known.

Thus, a next activity prediction approach aims to train a prediction model that approx-
imates this function � using a given event log. Most predictive business process moni-
toring approaches employ machine learning algorithms to learn the function � . In this 
paper, we do not define a new architecture but instead use the transformer architecture 
proposed by Bukhsh et  al. (2021). Since this architecture considers solely the activity 
event attribute and ignores the remaining event attributes of a prefix, we can – without 
loss of generality – represent traces and prefixes simply as sequences of activities. Thus, 
we denote a trace or a prefix as follows: σ = �πa(e1), . . . ,πa(en)�.

Transformer architecture and attention mechanism

The transformer architecture was originally introduced in Vaswani et  al. (2017) as a 
sequence-to-sequence model built on an encoder-decoder architecture equipped with 
a robust attention mechanism. Sequence-to-sequence modeling refers to tasks that con-
vert an input sequence into an output sequence of potentially different lengths, such as 
language translation (Zhao et  al. 2023). Since its introduction, the transformer archi-
tecture has also been adapted for sequence-to-vector tasks, where an input sequence 
is processed to output a fixed-size vector. Such adaptations are particularly relevant for 
classification or regression tasks, including next activity prediction or remaining time 
prediction (Bukhsh et  al. 2021). This adaptation is achieved by omitting the decoder 
part of the architecture, which is why this variant is also called an encoder-only trans-
former (Devlin et al. 2019).

In this work, we focus on describing this modified transformer architecture as applied 
to next activity prediction. Specifically, we employ the process transformer architecture 
outlined in Bukhsh et al. (2021) (see Fig. 1). The following sections describe the key com-
ponents of the architecture relevant to this study: the input, the attention mechanism, 
and the output of the transformer. For details on other aspects of the architecture, we 
refer the reader to Vaswani et al. (2017) and Bukhsh et al. (2021).

Input  The transformer receives a sequence of activities σ = (a1, . . . , an) as input. This 
input is then embedded into a high-dimensional space of dimension dm ∈ N>0

1 by con-
verting each element in the sequence into a so-called embedding vector (Vaswani et al. 
2017). As a result, for each element ai of the sequence, two embedding vectors of dimen-
sion dm are generated: a vector representing the element itself (so-called input embed-
ding) xiin ∈ R

1×dm and a vector representing the position (so-called position embed-
ding) xipos ∈ R

1×dm . Following common practice in transformer implementations, these 
embedding vectors are represented as row vectors.

Because the transformer processes the entire input sequence in parallel and does not 
inherently capture positional information, position embeddings are essential to avoid 
losing the order of the elements. Both vectors are then summed component-wise, 

1  In the architecture used in this paper dm is set to 36 (Bukhsh et al. 2021)
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resulting in a continuous representation of the input element that captures positional, 
semantic, and syntactic properties (Vaswani et al. 2017). This resulting vector, denoted 
as xi ∈ R

1×dm , serves as input for the transformer block (Vaswani et  al. 2017). Nota-
bly, these embeddings are automatically learned during training, allowing the model to 
dynamically adapt to the semantic and positional characteristics of the input data.

Transformer block  The heart of the transformer architecture, and central to its capa-
bilities, is the multi-head self-attention mechanism. This specialized form of attention 
significantly enhances the model’s ability to capture relationships within sequences. In 
general, an attention mechanism allows deep learning models to dynamically focus on 
different parts of an input sequence when generating output. The core idea behind atten-
tion is to assign varying scores to different elements in the input, indicating how much 
focus the model should pay them when performing a task. Hence, it allows to prioritize 
most relevant information leading to more accurate and contextual output. Attention 
mechanism can be integrated into various deep learning architectures. In the trans-
former architecture introduced in Vaswani et al. (2017), a refined version of the attention 
mechanism, known as self-attention is proposed. This mechanism enables the model to 
attend to all elements within the input sequence simultaneously, enhancing its ability to 
capture both local and global dependencies.

Self-attention mechanism: In the self-attention mechanism, the embedding vector xi 
is utilized in three distinct ways: as a query vector qi , a key vector ki , and a value vector vi . 

Fig. 1  Overview about the transformer architecture proposed in Bukhsh et al. (2021)
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These vectors are obtained by multiplying the embedding vector xi with the projections 
matrices WQ ∈ R

dm×dk , WK ∈ R
dm×dk , and WV ∈ R

dm×dv:

Because WQ , WK  , and WV  transform xi in a lower-dimensional space, they are referred 
to as projections. These matrices are automatically learned during training. According to 
Vaswani et al. (2017) dk and dv are typically set to the same value. In order to enhance 
computational efficiency, these vectors are packed row-wise into matrices Q ∈ R

n×dk , 
K ∈ R

n×dk , and V ∈ R
n×dv (Vaswani et al. 2017).

We then employ Q, K, and V to calculate an attention score that reflects the relative 
importance of each element (query) in relation to the others in the input sequence. Spe-
cifically, each element in the input sequence is compared to the currently considered ele-
ment by computing the matrix product QKT ∈ R

n×n . The values of the resulting n× n 
matrix are scaled by dividing by dk  and then normalized by applying a row-wise soft-
max operation:

This normalization mitigates the risk of vanishing gradients and improves training effi-
ciency (Vaswani et al. 2017). The resulting matrix Mσ is called the attention score matrix 
or simply the attention matrix2. Notably, the dimension of the attention score matrix 
depends on the length of the input sequence, resulting in attention score matrices of 
varying sizes for input sequences of different lengths.

Finally, each value vector vi (contained in V) is multiplied with the attention scores:

This step is intended to reduce the impact of value vectors that receive very low atten-
tion scores. The resulting matrix Attσ is the output of the self-attention mechanism.

Multi-Head Attention: To capture diverse relationships and patterns between the 
elements in the input sequence, we use h independent, parallel attention mechanisms, 
referred to as attention heads or heads. These heads are then combined into a so-called 
multi-head attention (Vaswani et al. 2017):

with headjσ = Att
j
σ.

In this formula, the attention score matrices from each attention head j are concate-
nated (i.e., the matrices are arranged side by side) resulting in a n× hdv matrix. This con-
catenated matrix is then multiplied by a learned weight matrix WO ∈ R

hdv×dm to project 
the result back to the initial dimension dm . In the result of the multi-head attention, each 

qi = xi ·WQ ∈ R
1×dk

ki = xi ·WK ∈ R
1×dk

vi = xi ·WV ∈ R
1×dv

Mσ = softmax

(

QKT

√

dk

)

.

Attσ = Mσ · V ∈ R
n×dv .

MultiHeadAttentionσ = concat(head1σ , . . . , head
h
σ )W

O ∈ R
n×dm

2  Please note that QKT  is often referred to as attention score matrix in the literature.
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row represents an enriched context vector of an element of the input sequence, while 
each column represents a specific feature across all elements.

To ensure that each head does not require the full dimension dm , the dimensions dk 
and dv are set to dmh  . This adjustment keeps the total computational cost comparable to 
that of a single-head attention mechanism. The process transformer presented in Bukhsh 
et al. (2021) employs four attention heads, resulting in dk = dv = 9.

The core idea behind the multi-head attention mechanism is that each attention head 
can potentially learn different relationships or types of dependencies between the ele-
ments of the input sequence. Because each head operates independently with its own 
weight matrices, it can focus on distinct patterns and dependencies. By calculating 
multiple attention heads in parallel, the model can capture more diverse and complex 
relationships within the sequence than it would be possible with a single attention 
mechanism.

Interpretation of the attention score matrices: Fig.  2 depicts an example of the 
attention score matrices for all heads obtained for a prefix of a real-world event log. 
Interpreting these attention score matrices is essential for understanding the explana-
tion approaches and is therefore described in detail. All attention score matrices can be 
interpreted identically, regardless of the head. Each attention score matrix illustrates 
how the elements in the input sequence relate to one another. In these matrices, rows 
and columns correspond to elements of the input sequence. While the rows represent 
these elements as queries, the columns represent them as keys. By examining a row, we 
can assess the importance the transformer model assigns to each other element in the 
input sequence from the perspective of the element represented by that row. In contrast, 
inspecting a column reveals the level of attention other elements in the input sequence 
assign to the key element associated with that column. The entries of the matrix indicate 

Fig. 2  Attention scores of all heads for the prefix 〈A_SUB, A_PAR, W_Afh, W_Afh, A_PRE, W_Com〉 of the 
BPIC12 event log
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the strength of the relationship, i.e., the attention scores, between each pair of elements 
in the input sequence. In the visualization, higher attention scores are represented by 
lighter cells, while lower scores appear as darker cells.

Further processing of the attention output: The outputs of the multi-head attention 
mechanism are further processed and aggregated through different layers. First, a drop-
out layer follows the multi-head attention mechanism to prevent overfitting (Bukhsh 
et al. 2021). Layer normalization is applied next to stabilize the values of the activation 
functions, thereby helping to mitigate the risk of exploding or vanishing gradients. Fol-
lowing this, a position-wise feedforward network is applied, which operates indepen-
dently of the position of elements in the input sequence. The purpose of this network is 
to increase the model’s capacity by applying non-linear transformations that enable the 
network to capture complex interactions between the features encoded in the dm-dimen-
sional representation of each element. Thus, the feedforward network complements the 
overall architecture by playing a distinct role: while the attention mechanism models 
relationships between elements in the input sequence, the feedforward network focuses 
on refining and enhancing the internal representation of each individual element.

Output of the transformer  The post-transformer block layers serve to prepare the mod-
el’s output for the final prediction. Global pooling condenses the sequence information 
into a fixed-size vector. The linear layers then transform this vector, combining impor-
tant features and adapting the model’s internal representation to match the output for-
mat. Dropout reduces the risk of overfitting, and the softmax layer produces probabili-
ties for each possible class. The softmax layer contains a neuron for each activity in the 
process, returning a probability distribution over the activities. Finally, the activity with 
the highest probability is selected as the predicted next activity using the argmax func-
tion (Bukhsh et al. 2021).

This probability distribution is called prediction vector. In the following, M denotes 
the trained transformer model and pσ = M(σ ) the softmax output for a given prefix 
σ . We call pσ prediction vector and denote with pσ (a) the prediction score for activity 
a ∈ A in the prediction vector.

Related work
The inherent black box nature of deep learning models has raised significant concerns 
across various domains regarding their interpretability (El-Khawaga et  al. 2022). Due 
to the shift in PBPM to deep learning models regardless of different prediction targets, 
this field of research is particularly affected by this problem. Explainable Artificial Intel-
ligence (XAI) has emerged to address these challenges, evidenced by rapid growth and 
diverse contributions across application areas over the past decade (Nagahisarchoghaei 
et  al. 2023). Exemplarily for this growth, we can see the survey of Rojat et  al. (2021), 
which identifies 31 XAI approaches specifically for time series data. Remarkable here is 
that roughly one-third of these approaches utilize attention scores for generating expla-
nations underpinning the potential of attention scores for XAI. Although it seems obvi-
ous that attention scores are suitable, there is an ongoing debate in literature, whether 
attention scores are trustworthy for explanation purposes, concluding that it must be 
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examined individually for each case (Wiegreffe and Pinter 2019; Jain and Wallace 2019; 
Serrano and Smith 2019). The works of Wiegreffe et al. (2019) and Serrano et al. (2019) 
propose a bunch of experiments that can be conducted to check the trustworthiness 
of attention scores. However, in the above-mentioned survey, none of the identified 
approaches include such evaluations.

In the following, we briefly discuss XAI approaches specific to the PBPM domain, with 
a strong focus on the next activity prediction. According to Carvalho et al. (2019) XAI 
approaches can be categorized as either model-specific or model-agnostic. Model-spe-
cific approaches are tailored to the inner workings of a particular model, whereas model-
agnostic approaches can be applied to any machine learning model. Although such 
model-agnostic approaches are universally applicable they often provide less detailed 
insights into the decision-making process of the models.

The survey by Stierle et  al. (2021) categorizes 20 XAI approaches within the PBPM 
domain and reveals that most are model-agnostic and limited to local explanations. 
Hence, there is a lack of global, model-specific explanation approaches in PBPM. When 
focusing only on model-specific explanation approaches for next-activity prediction, 
only three papers remain (Weinzierl et  al. 2020; Sindhgatta et  al. 2020; Hanga et  al. 
2020), but none of them employed the transformer architecture.

In Sindhgatta et al. (2020), an attention mechanism is used within an LSTM architec-
ture. However, this mechanism differs from the self-attention mechanism used by the 
transformer architecture. Additionally, the approach only provides accumulated atten-
tion scores for each prefix position without further exploration. Also, they do not con-
sider tests proposed by Wiegreffe and Pinter (2019); Serrano and Smith (2019) to verify 
the interpretability of the observed attention scores. Thus, the reliability of attention-
based explanations in PBPM is still an open question, which we address in Pre-study: the 
relevance of attention scores section.

The Explainable Next Activity Prediction (XNAP) approach by Weinzierl et al. (2020) 
focuses on next activity prediction using LSTM models, assigning relevance scores to 
each activity in the input prefix via layer-wise relevance propagation. However, like Sind-
hgatta et al. (2020) their analysis is limited to a qualitative study, lacking a quantitative 
evaluation.

Hanga et  al. (2020) also employ LSTMs but differ from the previously mentioned 
works by presenting explanations as directed and weighted graphs rather than assign-
ing relevance scores. In these graphs, nodes represent activities, and the weighted edges 
denote the predicted likelihood of transitions between activities. Thus, this graph can 
be considered only as a Directly Follows Graph. While this approach highlights possible 
transitions according to the LSTM model, it is unclear whether this graph representa-
tion fully explains the model’s decision-making process.

Beyond these directly related works, several other approaches (model-agnostic or 
local approaches as well as other prediction targets) offer valuable insights and inspira-
tion for the approaches developed in this paper. For example, the LORE (Guidotti et al. 
2018) approach approximates a black box model locally by generating instances close 
to a given input prefix and varying its features (e.g., continuous or categorical values). 
The LORELEY approach by Huang et al. (2022) extends LORE and tailors them to next-
activity prediction by restricting the modifying operations to avoid violating the process 
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control-flow. However, as a model-agnostic approach, LORELEY differs from the objec-
tive of our approach and is not directly comparable.

Features used by a prediction model play a crucial role in XAI approaches. Several 
studies examine the impact of specific features on the model prediction. For example, 
Rizzi et al. (2020) identify features responsible for incorrect outcome predictions using 
model-agnostic, local explainers such as LIME and SHAP, and improve prediction accu-
racy by reducing the influence of these features. General guidelines for feature selection 
are further discussed by Stevens et al. (2022), who advocate for minimal, independent 
feature sets that do not compromise model fidelity in outcome prediction tasks. Simi-
larly, Elkawaga et al. (2022) investigate to which extent explanations reflect data charac-
teristics, showing that feature selection is crucial for both prediction quality and reliable 
explanations. However, the transformer architecture investigated in our study, exclu-
sively utilizes the activity event attribute, making feature selection irrelevant for our 
purposes. Instead, we consider the events in the prefix as features and leverage atten-
tion scores to highlight parts of the input prefix deemed relevant by the model. While 
the aforementioned approaches primarily rely on input perturbations, Mehdiyev et  al. 
(2021) propose a local explanation technique for outcome prediction that clusters the 
latent space of deep learning models and explains these clusters using decision trees.

Pre‑study: the relevance of attention scores
At first glance, attention scores appear to offer an intuitive insight into the model’s deci-
sion-making process. However, in the literature, it is controversially discussed whether 
attention scores can genuinely serve as explanations, coming to different conclusions 
depending on the considered task (Wiegreffe and Pinter 2019; Jain and Wallace 2019). 
Therefore, before using attention scores as a key component in an explanation approach 
for next activity prediction, we assess their reliability in this context, i.e., whether they 
indeed highlight activities decisive for a prediction.

To this end, we conduct a series of experiments. First, we assess whether the real 
importance of an activity (so-called common feature importance) correlates with the 
importance indicated by the attention scores. In this context, common feature impor-
tance estimates how crucial an activity is for the model’s prediction by systematically 
removing or replacing it and observing the resulting impact on the model’s output. This 
heuristic approach helps identify activities that are essential for determining the next 
step in the process (Experiment 1). Second, we investigate whether attention scores in 
general affect the prediction (Experiment 2). Finally, we examine the degree to which 
particular attention scores contribute to the prediction (Experiment 3).

Datasets  For our study we use eight frequently used real-world event logs and four 
noise-free synthetically generated event logs (see Table  1). While synthetically gener-
ated event logs have the advantage that the degree of complexity can be controlled and 
the resulting explanations can be analyzed by referring to a process model, real-world 
event logs allow a more realistic evaluation of the effectiveness of the approach in prac-
tice even if the underlying process model is unknown (Klinkmüller et  al. 2018). The 
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real-world event logs are obtained from the 4 TU Center for Research Data3 and cover 
different domains:

•	 BPIC12: This event log contains records of three subprocesses of a loan applica-
tion process in a Dutch financial institute. Beside the whole event log, we obtain 
three additional event logs (O, W, and WC) by different filtering operations. While 
BPIC12_O is derived from BPIC12 by only keeping events whose activities start with 
“O_”, BPIC12_W only contains events whose activities begin with the prefix “W_”. 
The BPIC12_WC is a refinement of BPIC12_W only keeping events whose lifecycle 
attribute is set to “complete”.

•	 BPIC13_CP and BPIC13 Incidents are two event logs extracted from Volvo’s IT inci-
dent and problem management system.

•	 Helpdesk is an event log from the IT service domain containing records of the help-
desk process of an Italian software company.

•	 Sepsis: This event log of a Dutch hospital is from the healthcare domain and contains 
anonymized records of the treatment of patients with symptoms of a sepsis condi-
tion.

The synthetic event logs were generated with the PURPLE (Burattin et al. 2022) event 
log generator out of four process models that can be find in Appendix 2.

General experiment setup  All sub-experiments in this pre-study share a consistent 
setup. Each event log is randomly split into training and test data, with 70 % allocated 
for training and 30 % for testing. To ensure reproducibility, we set random seeds. For 
generating test samples, we extract all prefixes of at least length 1 from the traces in the 
test data. The transformer model is then trained on the training data using the stand-
ard hyperparameters (see Appendix 1) defined in Bukhsh et al. (2021). The resulting test 

Table 1  Descriptive statistics of the event logs ( |σ | is the trace length)

We focused only on control-flow relevant characteristics since the transformer model only considers activities

Event Log #Cases #Act. #Events AVG. |σ | Max. |σ | #Variants

BPIC12 13087 24 262200 20.04 175 4366

BPIC12_O 5015 7 31244 6.23 30 168

BPIC12_W 9658 7 170107 17.61 156 2643

BPIC12_WC 9658 6 72413 7.50 74 2263

BPIC13_CP 1487 4 6660 4.48 35 183

BPIC13-I 7554 4 65533 8.68 123 1511

Helpdesk 4580 14 21348 4.66 15 226

Sepsis 1050 16 15214 14.49 185 846

Complex Model 5000 15 76535 15.31 77 4192

LDD 1000 10 7514 7.51 8 4

Looped And 1550 6 38016 24.53 94 1550

Sequence 1000 12 12000 12.00 12 1

3  https://​data.​4tu.​nl/

https://data.4tu.nl/
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samples are subsequently used to obtain predictions, enabling an analysis of the influ-
ence of attention scores on the model’s performance.

To check whether the predictions for two prefixes σ and µ are close to each other, we 
compute the cosine similarity between the corresponding prediction vectors pσ and pµ 
to quantify their similarity (Manning et al. 2008):

If cosineSim(pσ , pµ) is greater or equal to an a-priori defined threshold δsim , we con-
sider both prediction as close together. We chose as default value for δsim = 0.8.

Since each prediction vector can be understood as a probability distribution over the 
activities of the process, we quantify the difference between two prediction vectors, p1 
and p2 , using a common statistical distance metric known as the Total Variation Dis-
tance (TVD) (Jain and Wallace 2019):

For further analysis, we interpret the attention scores as a probability distribution over 
the elements in the input sequence. Following the notation of Transformer architecture 
and attention mechanism section, we denote with Mj

σ the attention score matrix of head 
j obtained for an input sequence σ . To access a particular attention score within Mj

σ , we 
write Mj

σ (i, k ) to identify the score in the i-th row and the k-th column. Building on this, 
we can define both the attention score distribution for a head and the attention score 
distribution across all heads, respectively:

Definition 6  Let Mj
σ be the attention score matrix of head j obtained for an input 

sequence σ and

the vectorization of Mj
σ . The attribution score distribution of head j for σ is then defined 

as

where � · � denotes the L1-norm, i.e., the component-wise sum of the vector components.

The attention score distribution across all heads is then defined as follows:

Definition 7  Let σ be an input sequence, h the number of heads, v1σ , . . . , vhσ the vectori-
zation of the heads’ attention score matrices obtained for σ , and vsigma = (v1σ , . . . , v

h
σ ) the 

cosineSim(pσ , pµ) = 1−
pσ · pµ

�pσ � · �pµ�
.

TVD(p1, p2) =
1

2
·

|A|
∑

i=1
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i denotes the ith component of p.
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flattened representation across all heads. The attention score distribution is then defined 
as

where � · � denotes the L1-norm.

For quantifying the divergence between two attention score distributions α1 and α2 , we 
use the Jensen-Shannon-Divergence (JSD) (Jain and Wallace 2019)

that is based on the Kullback Leibler Divergence (KL) defined in Kullback (1952):

For comparing prediction vectors and attention score distributions, we use with TVD 
and JSD two different metrics. This choice is motivated by the distinct characteristics of 
TVD and JSD. The probability distribution in prediction vectors often focus heavily on 
one or few classes, meaning that a changed prediction typically goes in hand with strong 
shifts in probability mass. Because TVD effectively captures substantial shifts in a prob-
ability distribution (due to the absolute differences in the components of the prediction 
vectors), it is particularly suited for comparing prediction vectors.

JSD, on the other hand, is more appropriate for comparing attention score distribu-
tions because these scores tend to be more evenly distributed. JSD effectively captures 
subtle redistributions in focus, which may indicate a shift in the model’s internal rea-
soning, even if the final prediction remains stable. By emphasizing structural changes in 
distributions, JSD reveals meaningful changes in attention patterns.

Using both metrics allows us to capture different aspects of the model’s behavior: TVD 
identifies impactful changes in the model”s prediction, while JSD reveals internal shifts 
in the attention score distribution that may not directly affect the prediction but still 
indicate meaningful changes in the model’s focus.

Experiment 1 – Feature Correlation  In the first experiment, we assess whether the real 
importance of an activity (so-called common feature importance) correlates with the 
attention score feature importance, i.e., the feature importance indicated by the atten-
tion scores. The term feature is used in the context for an element of the input sequence.

Since, we cannot manually decide with a domain expert for each prediction, which 
activity (in this context feature) would be the decisive ones for a prediction, we rely on 
a heuristic to determine the common feature importance. The core idea behind this 
heuristic is to remove or perturb one element in the input sequence at a time, either by 
masking or replacing it with another activity and observing its effect on the models’ pre-
diction. Masking means that the element is replaced with a padding symbol (_), indicat-
ing to the model that there is no element.

ασ =
vσ

�vσ �
,
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Before calculating the common feature importance, we extract a directly follows graph 
(DFG) from the given event log. The DFG is then used to select activities that can be 
used to replace activities in the traces in a realistic way. Realistic means that it is likely 
that the modified trace represents a valid process execution.

Calculation of common feature importance: For calculating the common feature 
importance fcom for a trace σ , we proceed as follows: We first create a collection of mod-
ified versions of the original trace σ . Therefore, we iterate over all events in σ to generate 
for each event a set of modified traces in which the particular event ei has either been 
masked out or its associated activity has been replaced by another activity (or sequence 
of activities). In the case of a replacement, we select the replacement activity in depend-
ency of the position of ei with the help of the DFG:

•	 If ei is the first event of σ , we identify all possible start activities of the process in 
the DFG. Then we replace ei with each possible start activity to get several modified 
traces.

•	 If ei is the last event in the trace, we replace its activity with all activities that can suc-
ceed the preceding activity πa(ei−1) according to the DFG.

•	 For any other position (i.e, if ei is neither the first nor the last event), we substitute ei 
with all possible paths in the DFG that connect the activity of the preceding event, 
πa(ei−1) , to the activity of the subsequent event, πa(ei+1).

The union LM of all modified versions of σ obtained across all variations can then be 
used to compute common feature importance values per activity. Therefore, we initially 
set the common feature importance for each activity to zero. For each modified trace 
σm ∈ LM , we first determine the replaced activity and compute then the cosine similarity 
of the prediction vector obtained for σm and the prediction vector for the original trace 
σ . This similarity value is then added to the common feature importance of the replaced 
activity. It is important to note that we add this score regardless whether the prediction 
for σ and σm differs, because we are interested in influence of the activity on the predic-
tion. The larger the difference of the prediction vector, the higher is the impact. After 
evaluating all modified traces, we compute the mean of all similarity values belonging to 
the same replaced activity. Finally, we normalize the mean values so they sum up to 1.0 to 
obtain a probability distribution over the activities. Please note, that this feature impor-
tance is independent of the attention scores and only relates features and prediction.

Calculation of attention score feature importance: For calculating the attention score 
feature importance fatt , we rely on the same collection of modified traces LM as before. 
If the prediction of the original trace and a modified trace are similar (i.e., their cosine 
similarity is lower than δsim ), we determine the attention scores per activity from the 
transformers’ attention score matrices. After inspecting all modified versions, we com-
pute the mean of the cumulated attention scores per activity. It is crucial that we only 
consider modified traces with similar predictions to the original trace, because we want 
to identify, which activities are important for a particular prediction.

Finally, we calculate Kendall’s tau rank correlation τ (Kendall 1938) between common 
feature importance and attention score feature importance. Concerning interpretability 
Kendall’s tau is scaled into the continuous range [−1, 1] , where −1 indicates a perfect 



Page 16 of 42Käppel et al. Process Science  (2025) 2:11

negative correlation, 0 indicates no correlation, and +1 indicates a perfect positive cor-
relation. Hence, a low correlation means, that the relative importance of the features is 
not sufficiently reflected in the attention scores. Thus, the explanations derived from the 
attention scores would not use the same reasoning as the transformer to be explained. 
Hence, for reliable attention scores large values are preferable.

The results of the correlation of common and attention score feature importance are 
shown in Fig. 3. For the majority of the event logs the median correlation is slightly larger 
than 0.5. Following the guidelines proposed in Akoğlu (2018) after which values τ < 0.3 , 
0.3 ≤ τ ≤ 0.5 , τ > 0.5 indicate a weak, moderate, and strong correlation respectively, 
we observe a moderate to strong association. Nevertheless, for some of the event logs, 
the correlation is closer to zero, indicating no correlation. The latter applies to BPIC12, 
BPIC12-WC, and the Sepsis event log. In summary, the correlation between the com-
mon feature importance and the attention score feature importance is often significant, 
giving a first indication of reliable attention scores.

Experiment 2 – Attention Mechanism Parameter Manipulation  The next experiment 
examines the necessity of the attention mechanism, adhering to the experimental setup 
outlined in Wiegreffe and Pinter (2019). To this end, we first train exactly one baseline 
model Mb without any modifications in the training process. Then we train multiple 
manipulated transformer models where we either randomly initialize the attention 
parameters (i.e., matrices WQ , WK  , WV  , and WO ) or freeze the attention parameter to 
uniform values during training. The latter means that the attention score mechanism is 
completely eliminated, while the first means that the training process probably ends with 
different attention scores. Both modified training procedures are repeated five times to 
mitigate the influence of change, each initiated with unique random seeds to ensure var-
iability across the trials.

Fig. 3  Results for the Kendall Tau correlation of common and attention feature importance
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Subsequently, each manipulated transformer Mm (both the randomly initialized and 
the frozen) is compared against the baseline Mb . To this end, we send each test sample 
through all trained models (i.e., the baseline model and the manipulated transformers) 
and extract each time the corresponding attention score distribution and the predic-
tion vector. The attention score distributions and prediction vectors derived from Mb 
are then compared to those obtained from the corresponding Mm using JSD and TVD, 
respectively. To aggregate the values, we compute the average JSD and TVD values 
across all test samples for each model.

The rationale behind this experimental design is to assess whether varying attention 
score distributions (indicated by higher JSD values) lead to invariant predictions (indi-
cated by lower TVD values) (Wiegreffe and Pinter 2019; Jain and Wallace 2019). Thus, 
if identical predictions can be achieved with substantially different attention scores, this 
would imply that the attention mechanism barely affects the decision process of the 
model. Hence, the attention scores would have only minimal explanatory value.

To facilitate interpretation, we plot the mean JSD against the mean TVD achieved for 
each model (see Fig. 4). Models positioned further to the right and lower in the plots 
represent cases with less reliable attention scores. Notably, the majority of the event 
logs, regardless of whether they are real-world or synthetically generated, are positioned 
in regions indicating reliable attention scores. In cases where the models tend to be on 
the right side (Complex Model, Looped And, BPIC12, and BPIC12-W) the TVD values 
are significantly above zero. For Sequence and LDD, however, TVD values remain close 
to zero, suggesting that predictions are only minimally affected by changes in attention 
scores. Due to the simplicity of Sequence and LDD this observation is not surprising, 
since for most of the test samples the next activity is obvious, so that the model takes 
other options barely into account. At the same time, both Sequence and LDD are also 
on the left side, indicating only minor variations in the attention scores. Overall, these 
results suggest that the attention scores can be trusted.

To further investigate the stability of attention scores, we analyze the maximum atten-
tion value in a distribution, i.e., max(ασ ) , in relation to JSD. The motivation for this 
analysis is the hypothesis that high maximum attention values indicate a model’s strong 
focus on a particular input element. If this focus is consistent across different model ini-
tializations, it could suggest that strong peaks in the attention distribution align with 
stable and meaningful model behavior. Conversely, if high maximum attention values 
are associated with high JSD values, it would imply that even seemingly confident atten-
tion peaks may be unreliable and vary substantially across different model instances. By 
examining this relationship, we aim to assess whether strong attention peaks can serve 
as robust explanatory indicators.

Following Jain and Wallace (2019), we conduct a binning procedure in which all atten-
tion score distributions of the samples regardless of the model are categorized based on 
its maximum attention value. By combining results from multiple models, the analysis 
ensures that observed patterns are robust and not artifacts of specific model initializa-
tions. Specifically, each attention score distribution is assigned to one of four distinct 
bins, each defined by a numerical range for maximum attention values. Through the bin-
ning, we aim to examine how varying degrees (represented by the ranges of the bins) of 
selective focus correlate with shifts in attention distributions.
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Figure 5 visualize the distribution of JSD divergences (compared to the base model) as 
a function of the maximum attention value across all models in form of a violin plot. The 
height of each violin is scaled according to the number of instances in each bin, indicat-
ing how often JSD values lie in certain ranges. Thus, a wide area in the violin means that 
many JSD values are concentrated in this area. The violins can be interpreted as follows: 
A right-weighted violin means that the JSD values in this bin tend to be high. This indi-
cates that the attention values for this bin are susceptible to manipulation. In contrast, 
a left-weighted violin (wider left, with low JSD values) means that the JSD values in this 
bin are predominantly low. This indicates that the attention scores for this bin are robust 
and less manipulable.

The plots reveal that most attention score distributions fall within either the first or 
last bin, with minimal representation in the second and third bins. This pattern suggests 

Fig. 4  JSD vs. TVD plots. Rectangles = models with frozen weights, triangles = seeded base models. JSD 
can only take values between 0 and log(2) = 0.693 . The horizontal line at 0.1 serves as reference value to 
compare the process-specific results, with results obtained on general machine learning datasets. The value 
stems from Wiegreffe and Pinter (2019), where all TVD values were lower than 0.1
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that the model tends to react to certain elements either very strongly or hardly at all. 
Since the middle bins (second and third bins) are only minimally represented, the model 
rarely shows moderate attention to an element.

If attention score distributions fall into the last bin (0.00–0.25), there is often a right-
ward tendency. The first bin (0.75–1.00), on the other hand, shows a more heterogene-
ous picture, with some datasets tending to the left (BPIC13_CP, BPIC12_O, BPIC13-I, 
BPIC12_WC, Sequence) and two datasets (Complex, Looped And) showing a strong 
rightward tendency. The remaining logs are more centralized. Of particular interest are 

Fig. 5  All JSD vs. maximum value in the attention score distribution violin plots (scaled by count). The height 
is scaled by the count of instances per bin
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cases where the last bin shows a rightward tendency while the first bin shows a leftward 
tendency (e.g., BPIC12_W, Sequence, BPIC13_CP). In these cases, instances with low 
attention scores are more susceptible to manipulation than those with higher attention 
scores.

Overall, this binning approach shows that the interpretability of attention scores can 
vary within a dataset and that particular maximum attention thresholds may serve as 
indicators of model robustness. The detailed analysis also supports the initial findings 
from the first part of the experiment that the attention scores are predominantly trust-
worthy, suggesting they are suitable for explanatory purposes.

Experiment 3 – Attention Score Masking  In a third experiment, we investigate 
how particular attention values affect the prediction (see Fig. 6). In detail, we want to 
check whether the attention scores are closely linked with the information in the input 
sequence. Therefore, we examine whether removing an element from the input sequence 
has the same effect in terms of prediction as removing the element’s attention scores.

To do this, we once mask elements in the input sequence and once the corresponding 
attention scores in the heads’ attention score matrices and compare the model outputs 
via TVD. In the input sequence, we mask elements by replacing them with a padding 
symbol (_), indicating to the model that there is no element. In contrast, masking the 
attention scores is achieved by setting all values in the relevant rows and columns of the 
attention score matrices to zero. Figure 6 illustrates this conceptual difference between 
masking the input prefix and the attention scores of the heads’ attention score matrices.

We perform this procedure for all test samples, whereby each element in the sample 
is masked one time. For each of the masked samples, we obtain two prediction vec-
tors: a prediction vector pm for the masked sample and a prediction vector pam for the 
unmasked sample, where we masked the attention scores. We then compare pm and pam 
by calculating their TVD.

Low TVD values suggest that masking an element in the input sequence has a similar 
impact on the prediction as masking it within the attention score matrices. From this, 

Fig. 6  The former masks events (here activity B) directly in the prefix. The latter only masks rows and columns 
corresponding to the event in the attention score matrices. Predictions may be different
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it can be concluded that particular attention scores have relevance and can serve as an 
explanation. We observe that the histograms of TVD values (see Fig. 7) show a strong 
left skew, indicating that masking in the input prefix leads to almost identical predictions 
as masking in the attention score matrices. Minor deviations from this behavior appear 
only in the histograms for the Sequence and LDD event log.

Conclusion  The overall result of this series of experiments is that the attention scores 
possess good reliability. Only very simple event logs such as Sequence or LDD (both 

Fig. 7  Variation between predictions TVD between masked elements in the prefix and only masked 
attention scores matrix
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synthetically generated) deviate slightly from this observation, although both still have 
sufficient trustworthiness. This finding that the attention scores appear less reliable for 
very simple datasets is also consistent with the results in the study of Wiegreffe and 
Pinter (2019), where the same observation was made for datasets from other domains.

The reason for this anomaly lies in the simplicity of the underlying task so that the 
model does not require the powerful attention mechanism at all. Based on the results 
obtained, it is justified to build explanation approaches with attention scores as a pivotal 
component.

Therefore, especially the results from Experiment 2 are beneficial, for getting deeper 
insights how strong the attention scores are pronounced. Most of the time the atten-
tion score distributions fall either in the first bin (maximum attention score very high) 
or the last bin (maximum attention score very low) but barely in the second or third 
bin. Hence, we have either at least a very high attention score (first bin) or a lot of small 
attention score (last bin). This observation helps us to define thresholds, when to con-
sider an element in the input sequence as relevant or not.

Explanation approaches
In this section, we introduce two global transformer-specific explanation approaches. 
Each explainer receives as input a trained transformer prediction model and a set of pre-
fixes L to be explained. Both explainers construct an interpretable directed graph that 
visualizes the control-flow of the process, serving as an indicator of the extent to which 
the prediction model captures the control-flow of the process. Because our preliminary 
study in Pre-study: the relevance of attention scores  section provides strong evidence 
that attention scores are reliable for next activity prediction, our explanation approaches 
leverage them as a crucial component.

Explainer 1: backward explainer

The first explainer (so-called Backward Explainer) generates explanations for individual 
prefixes and subsequently integrates these into an overarching explanation for all pre-
fixes in L. This procedure is explained in the remainder of this section and involves cre-
ating a local graph Gσ for each prefix σ ∈ L , which is then merged directly into the global 
graph G.

Creating a local graph  An essential step in constructing a local graph Gσ for a prefix σ 
is to utilize the heads’ attention scores to identify relevant activities that are decisive for 
the prediction pσ . To do this we proceed as follows: An activity is considered relevant for 
the prediction pσ if its aggregated attention score across multiple modified versions of σ 
is sufficiently high. To generate these modified versions of σ , we apply randomly modi-
fication operations. Each modified prefix σm is then passed to the transformer to obtain 
prediction vector pσm and the attention score matrices Mi

σm
 for a head i.

To check whether the prediction for σm is still close to the prediction of σ , we compute 
the cosine similarity between pσm and pσ and compare it to a predefined threshold δsim . 
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If σm satisfies this condition, the attention scores for each element j in σm are aggregated 
across the different heads as follows:

In this equation attention score matrices Mi
σm

 from each head are first summed com-
ponent-wise, and then the jth column is summed. This yields an aggregated attention 
score vector ησm = (S1, ..., S|σm|) for each modification σm containing a total attention 
score for each event. This procedure is illustrated in Fig. 8.

Next, the total attention scores are further aggregated per activity to a vector ψσ by 
summing up the scores for all events belonging to a certain activity. The vector ψσ is 
then normalized to range within [0, 1]. We denote the total attention score for activ-
ity a as ψσ (a) . Finally, we filter activities based on a threshold δattr , keeping only 
activities with ψσ (a) > δattr to get only those activities with particularly high total 
attention scores. Thus, the set of relevant activities for input sequence σ is defined as 
Ar = {a ∈ A | ψσ (a) > δattr} . As a default value we set δattr to 0.1. This filtering is essen-
tial to exclude irrelevant elements that may have low but non-zero attention scores. 
Without this step, nearly all activities would be classified as relevant.

Analogously, we identify the most likely next activities, denoted as Pr , from the pre-
diction vector pσ , by selecting only those activities a with prediction scores exceeding 
an a-priori defined threshold δpred , i.e., pσ (a) > δpred . As a default value for δpred we 
used 0.1. We do not limit the selection to a fixed number of activities from pσ , because 
depending on the process the confidence of the model varies: for some prefixes, it may 
indicate that only one activity is probable (e.g., in case of a strict sequence), while in oth-
ers (e.g., at an AND split), multiple activities appear viable to be executed next. Building 
on this we can formally define local graph as follows:

Definition 8  Let σ be an input sequence, Ar the set of relevant activities identified in 
σ , and Pr the set of likely next activities for σ . A local graph for σ is a tuple Gσ = (V ,E) 
with

•	 V = Ar ∪ Pr being the set of nodes and
•	 E = {(s, t) | s ∈ Ar , t ∈ Pr} being the set of edges.

Sj =

|σm|
∑

n=1

(

n
∑

i=1

Mi
σm

)

nj

.

Fig. 8  Determining aggregated attention scores for each event in the prefix, assuming that M possesses 
two heads
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Thus, for constructing the local graph Gσ , we use all elements in Ar and Pr as nodes 
and establish edges between all nodes from Ar to all nodes from Pr.

Let us illustrate the procedure on the example depicted in Fig.  9. Given the pre-
fix σ1 = �B,A,C ,B,E� , the aggregated attention scores highlight activities B and C 
as relevant for the prediction, i.e., Ar = {B,C} . Additionally, the prediction vec-
tor pσ1 suggests that either activity B or D is likely to occur next, i.e., Pr = {B,D} . 
According to Definition  8 we get nodes V = Ar ∪ Pr = {B,C ,D} and edges 
V = {(C ,B), (B,B), (B,D), (C ,D)} . This graph can then be interpreted as follows: for exe-
cuting activity D, it is crucial that activities B and C have been executed before.

Merging local graphs  Each local graph Gσ is directly integrated into the global 
graph G. This integration involves adding the vertices and edges of Gσ to G 
if they are not yet included. To illustrate this step, suppose we have, in addi-
tion to the local graph Gσ1 from our example in Fig.  9, a second local graph 
Gσ2 = ({A,C}, {(A,C)}) . The resulting graph after merging Gσ1 and Gσ2 would then be 
G = ({A,B,C ,D}, {(C ,B), (B,B), (B,D), (C ,D), (A,C)}).

After merging a local graph into G, we apply a pruning step to remove undesired 
shortcuts that are unlikely to occur in the underlying process. Such shortcuts can arise if 
an activity in the front part of σ receives high attention for the prediction, but this activ-
ity is only indirectly required for the predicted activity, in that sense that this activity 
and the predicted activity are not directly sequential. To bring the global graph closer 
to a process model, we apply as heuristic, that we remove such shortcuts, that lead from 
an activity lying long back in the prefix to an activity that occurs later in the prefix. For-
mally, we remove edge (u, v) ∈ E if there exist edges (u, an) ∈ E and (an, v) ∈ E , for an 
activity an . Figure 10 illustrates this step on a short example. Please note, since we gener-
ally remove shortcuts there is a risk, that we may remove a desired shortcut. Since the 
idea is that we analyze all prefixes in an event log, the intention was that, direct connec-
tions are sufficient.

Explainer 2: attention exploration explainer

The Backward Explainer has a key limitation: it directly defines the edges of both the 
local and global graph when analyzing a prefix. Once an edge is inserted, it remains in 

Fig. 9  Example for BackwardExplainer. Relevant activities and likely next activities are highlighted boldfaced 
in red color in the input prefix and prediction vector
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the global graph unless it is identified as a shortcut and removed during the pruning 
step. Thus, existing edges are not updated with insights gained from subsequent pre-
fixes. To address this limitation, we move away from local graphs and postpone the 
decision to insert an edge until all prefixes have been explored. Therefore, we intro-
duce the so-called relevance scores for activities that are calculated across all prefixes, 
which then serve as the basis for the construction of the global graph. We call this 
advanced explainer the Attention Exploration Explainer.

Determining relevance  For determining a relevance score of an activity across all pre-
fixes, we cannot simply sum up its corresponding attention scores because that would 
lead to a continuous increase with each additional prefix. Hence, we need a scoring 
mechanism that increases the relevance score of an activity when it is relevant in a pre-
fix and decreases it when the attention score for an activity is consistently low across 
prefixes.

However, we cannot use the attention values in our scoring mechanism directly, 
because in the transformer architecture attention values are inherently non-nega-
tive. Thus, we introduce negative attention scores to encode minimal impact on the 
prediction. In this way, a positive score for an activity in a prefix can be seen as a 
weighted vote for adding an edge, while a negative score as a vote against edge inser-
tion in the global graph.

First, we identify relevant activities Ar in σ following the same method used in the 
Backward Explainer. Additionally, we store the positions of these relevant activities 
in σ in a set denoted as Iσ . Next, we evaluate the individual and collective impact 
of activities on the prediction using all subsets of Iσ . Thus, we consider the power 
set of Iσ , i.e., the set of all subsets, and denote them with P(Iσ ) . For each subset 
r ∈ P(Iσ ), we consider two scenarios: (i) masking out most and (ii) masking out few. In 
the “masking out most” scenario, we mask all positions not included in r. This has the 
effect that we exclude activities that are considered as irrelevant according to their 
attention scores (i.e., activities not contained in Ar ). In contrast, the “masking out a 
few” scenario masks positions within r, so that the relevant activities are excluded. 
Both masking scenarios are illustrated exemplarily in Fig. 11.

Fig. 10  Example for undesired shortcuts. In the prefixes we boldfaced the relevant activities. Also the 
relevant predictions are boldfaced. Graph 1 and 2 show the corresponding local graphs for the prefixes 1 and 
2. In the global graph we marked shortcuts as dashed lines
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Next, we compare σ with all of its masked versions. In the following, we denote a 
masked version of σ with σm , regardless of the applied masking strategy. Then, both σ 
and σm are passed through the transformer to obtain prediction vectors pσ and pσm , 
respectively. Similarly, as in the Backward Explainer, we identify for prefix σ the most 
likely next activities Pr from pσ and compute the aggregated attention score vectors 
per activity ψσ and ψσm.

Based on this, we calculate a score matrix Kσm for each masked version of a σ ∈ L . 
In this score matrix each activity a ∈ A has a corresponding row and column. Each 
entry in Kσm represents a vote for or against an edge between, the activities of the cor-
responding row and column.

The detailed procedure for computing the score matrix is outlined in Algorithm 1 
and is independent of the used masking scenario. In this algorithm, we compute a rel-
evance score for each activity in the masked prefix (Algorithm 1, l.2–15). Depending 
on whether the activity is masked or not in σm , the calculation differs:

•	 For masked activities: The score is calculated as the product of the prediction 
score and attention scores. If the prediction for a masked activity aligns with its 
prediction in the unmasked prefix, the score is negated, indicating reduced rel-
evance due to the activity’s negligible impact on the prediction. The intention 
behind multiplying pσ (a) with ψσ (am) is to weight the probability that an activity 
a is executed next by the attention score of the masked activity. This weighting is 
meaningful because:

–	 High pσ (a) and high ψσ (am) : Activity a is a likely prediction and am has strong 
impact on this prediction. Hence, there should be a strong vote for or against 
an edge between a and am.

–	 High pσ (a) and low ψσ (am) : Activity a is a likely prediction, but am seems not 
to be decisive for this prediction. Thus, a moderate vote for or against an edge 
is required.

–	 Low pσ (a) and high ψσ (am) : Activity a is unlikely to be executed next and am 
receives much attention from the model. Similar to the previous case, a mod-
erate vote is needed.

–	 Low pσ (a) and low ψσ (am) : It is unlikely that a is executed next and am 
receives barely attention. Thus, there is no indicator for a meaningful edge 
between a and am.

Fig. 11  Comparison between masking a few and masking most activities. The positions of relevant activities 
(boldfaced) are Iσ = {0, 1, 3, 5} , whereas the subset r = {0, 3} is depicted
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•	 For non-masked activities: The score is calculated differently. If an activity’s predic-
tion value remains unchanged under masking, the score is computed as the prod-
uct of its attention score and its prediction score from the unmasked prefix. The 
intent here is identical to those in case of the masked activity. If the prediction 
changes, however, the score is calculated as the product of the absolute differences 
in both attention scores and predictions, reflecting the impact of the activity in the 
masked prefix. This ensures that an appropriately weighted vote for or against an 
edge between an and a is given between activities that result in strong changes in 
the attention scores and activities that show clear changes in the prediction score. In 
both cases, the multiplication ensures that the score reflects the actual importance of 
the activity: Important activities with a high level of attention and strong influence 
are given a higher score, while inconspicuous or less influential activities are given a 
correspondingly lower score.

The resulting score is then entered in the corresponding cell in the score matrix, where 
the row represents the predicted activity and the column corresponds to the masked 
activity.

All matrices Kσm within the same masking scenario are then summed to get two sce-
nario-specific score matrices Kfew

σ  and Kmost
σ  . These matrices provide a comprehensive 

assessment of the relevance of each activity within σ , taking into account the influence of 
its presence or absence across different combinations.

Algorithm 1 computeRelevanceScore
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Constructing the explanation graph  To construct the explanation graph, we first aggre-
gate the score matrices obtained for each prefix across both masking scenarios:

Next, we normalize each row in Kfew and Kmost to ensure that the sum of each row is 
one, thereby facilitating comparability across different activities. Afterwards, we convert 
each entry in both matrices to a boolean value, by comparing it to a predefined thresh-
old δedge (set to 0.1 by default). Entries exceeding this threshold are marked as “true”, 
indicating significant relevance between activities, while entries below the threshold are 
marked as “false”, indicating no relevant relationship.

To integrate insights from both masking scenarios, we apply a component-wise logical 
OR operation between Kfew and Kmost . The resulting matrix K serves as an adjacency 
matrix, where a “true” value indicates a directed edge from the activity in the column to 
the activity in the row. In contrast, a “false” value indicates no edge. Finally, the global 
graph is constructed based on this adjacency matrix.

Evaluation
In this section, we evaluate our explainer from multiple angles. We begin by describing 
the implementation of our approach as a software tool and illustrating its practical appli-
cation (see Implementation section). To evaluate the approach itself, i.e., both explain-
ers, we employ quantitative and qualitative methods. Notably, qualitative evaluation in 
the context of XAI tends to introduce subjective biases, as they often favor explanations 
that appear intuitively plausible (Nauta et al. 2023). Hence, we prioritize a quantitative 
evaluation (see Quantitative evaluation section) relying on established objective metrics, 
followed by a concise qualitative assessment in Qualitative evaluation  section. In the 
qualitative analysis, we interpret the generated explanations exemplarily for a synthetic 
event log, comparing them against the process model used to generate this log.

Implementation

In this section, we present the implementation of our proposed explainers as a software 
tool. The tool is developed as a Python-based application that supports both command-
line usage and interaction through a graphical user interface (GUI). The GUI facilitates 
a more intuitive experience for process analysts and machine learning experts, allowing 
them to train models and apply our explainers seamlessly.

The software supports the entire workflow from pre-processing of event logs to train-
ing a transformer model and applying the explainers to the trained model. At each stage, 
users can customize various settings, which we briefly outline below:

•	 Pre-processing stage: Users can configure the splitting ratio for training and test 
datasets, as well as choose between various splitting methods (either random or 
time-based). If random splitting is selected, users can specify how many times the 
procedure should be repeated.

Kfew =
∑

σ∈L

K few
σ Kmost =

∑

σ∈L

Kmost
σ .
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•	 Training stage: In this stage, users can adjust the hyperparameters of the transformer 
model (e.g., number of training epochs, batch size). By default, the parameters rec-
ommended in Bukhsh et al. (2021) are pre-set, ensuring a proper starting configura-
tion. Users also have the option to specify whether the training should be conducted 
on GPU or CPU. While GPU training speeds up the training process, CPU training 
may offer more control and reproducibility through deterministic behavior.

•	 Explanation stage: Once the model is trained, users can select between the two 
explainers. Input fields are available to configure parameters specific to the explain-
ers such as prediction thresholds and attention score thresholds. Users can also cus-
tomize the masking scenarios according to their specific requirements. After running 
the explainers, the tool displays the explanation graphs and metrics.

Each step of the workflow generates artifacts (such as event logs, trained models, expla-
nation graphs, and metrics), which are saved along with their respective configurations. 
This saving ensures transparency and reproducibility by enabling users to track and 
replay their experiment settings and results.

For more technically advanced users, all functionalities provided by the GUI can also 
be accessed via the command-line interface. This is particularly useful for automating 
large-scale experiments. The source code of our application as well as all results of our 
experiments is available in the GitHub repository associated with this paper4.

Quantitative evaluation

In our experimental setup, we utilize all event logs from the pre-study. All models are 
trained in the same way as the baseline models in the pre-study, using a random split of 
70% for training and 30% for testing as well as the default hyperparameters (see Appen-
dix 1) proposed by Bukhsh et al. (2021). Additionally, test samples are extracted as in the 
pre-study, i.e., all prefixes with a minimum length of one.

Due to the absence of other transformer-specific global explainers, a fair comparison 
with other explanation approaches is not feasible. However, direct comparisons with 
existing local or model-agnostic approaches would be less meaningful, since local and 
global explainers pursue fundamentally different objectives, whereas local explainabil-
ity is a much simpler task. Similarly, model-agnostic approaches are at a disadvantage 
as they cannot provide the same level of detail, as model-specific approaches utilizing 
model internals.

A general challenge in evaluating explanation approaches is that correct but implau-
sible explanations for poorly performing black box models may be disregarded. This 
emphasizes the difficulty to distinguish between correct explanations for underperform-
ing models from incorrect explanations for capable models (Nauta et  al. 2023). In the 
case of our approach, an additional challenge arises: our explanation approaches are 
inherently tied to the attention mechanism of the model, requiring properly trained 
attention weights. We address these challenges by first evaluating the predictive per-
formance of the trained models to verify that it is properly trained. This approach 

4  https://​github.​com/​mkaep/​trans​former-​expla​inabi​lity

https://github.com/mkaep/transformer-explainability
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minimizes both the risk that our explainers are unfairly penalized due to errors inherent 
to the models and mitigates the probability of generating meaningless explanations if the 
attention weights are poorly trained.

To evaluate the predictive performance of the transformer models, we utilize com-
monly used metrics: weighted F1-score, weighted precision, and accuracy (Bukhsh et al. 
2021; Camargo et al. 2019; Pasquadibisceglie et al. 2019). Our models achieve a mean 
weighted F1-score of 0.74 across all real-world event logs (with minimum and maxi-
mum values of 0.46 and 0.93, respectively) and a mean weighted F1-score of 0.76 across 
synthetic event logs (minimum 0.51 and maximum 1.00). All values can be found in 
Table 2. Hence, these scores indicate that there are no no-skill models, suggesting that 
the attention weights have been properly trained. Achieving significantly higher values is 
prevented because the transformer solely focuses on the activity event attribute. In con-
sequence, many cases remain ambiguous and are not decidable for the model.

For our purposes a certain number of incorrect predictions are unproblematic, as our 
primary purpose is to elucidate the model’s decision-making rationale. Beside explaining 
correct predictions we also want explanations for wrong predictions. However, it is an 
essential and pivotal assumption that the model and in particular the attention weights 
are properly trained. Because our evaluation of the predictive performance shows that 
there are no no-skill models, we can assume that this assumption holds. This claim is 
also supported by the results of the pre-study, which indicate that these models have 
reliable attention scores.

Evaluation Metrics  For our quantitative evaluation, we adopt the metrics introduced 
in Nauta et al. (2023). These metrics are based on explanations in the form of a set of 
implications rules. This necessitates us to transform the global graph G = (V ,E) into 
rule sets, with rules of the form X → Y  , with X ,Y ⊆ V  . Therefore, each node v ∈ V  in 
the graph is transformed into a rule that links it with its direct successors Sv . Thus, for 
each vertex v ∈ V  , we obtain a rule of the form v → Sv . These rules can be interpreted in 
such a way that the right-hand side encompasses all possible predictions if the currently 
executed activity is v.

Table 2  Predictive performance of the trained models

Event log Weighted precision Accuracy Weighted 
F1-score

BPIC12 0.80 0.83 0.80

BPIC12_O 0.96 0.93 0.93

BPIC12_W 0.88 0.87 0.87

BPIC12_WC 0.75 0.78 0.75

BPIC13_CP 0.69 0.83 0.76

BPIC13-I 0.50 0.69 0.57

Helpdesk 0.74 0.79 0.76

Sepsis 0.49 0.51 0.46

Complex Model 0.52 0.57 0.51

LDD 0.88 0.92 0.89

Looped And 0.76 0.65 0.64

Sequence 1.00 1.00 1.00
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Below, we provide a brief overview of the intent behind the metrics and how they can 
be computed. For further details we would like to refer to Nauta et al. (2023):

•	 Correctness: This metric evaluates the truthfulness of an explanation (Nauta et al. 
2023). In the literature, the correctness is measured in two different ways: (i) by com-
paring the explanations to ground-truth explanations, or (ii) by calculating the cor-
relation between the explainer’s feature importance and the model’s feature impor-
tance. Because ground-truth explanations are not available in our setting, we rely on 
the second option. The calculation of the feature importance of explainer and model 
is identical to those used in the first experiment of our pre-study. Thus, this metric 
ranges from [−1, 1] , with higher values indicating that the explainer primarily uses 
the correct feature for its explanations.

•	 Completeness: This metric measures how closely the explanations coincide with the 
predictions of the black box model (Nauta et al. 2023). To calculate completeness, we 
treat the most likely next activities Pr of the transformer as ground truth and the expla-
nations (to be concise the right-hand sides) as predictions to be evaluated. Hence, we 
evaluate the explainer analogously to a machine learning model by comparing its pre-
dictions with ground truth data. Because the predictions are represented by one or more 
activities this results in a multi-label confusion matrix. From this matrix, we derive met-
rics such as precision, recall, and F1-score. Higher values indicate better completeness, 
meaning that the output of the explainer matches the predictions of the transformer.

•	 Consistency: The consistency metric judges the determinism of an explainer, i.e., 
whether an explainer provides the same explanations for two distinct models that 
yield similar outputs. To compute this metric, we first train an initial model M1 and 
then five additional models. From these, we select the model with the greatest differ-
ence from M1 based on the mean difference between their trainable weights. In the 
following, we denote this model with M2.

	 For each test sample σ , we calculate a consistency score cσ if the predictions of M1 
and M2 for σ are similar (evaluated using the cosine similarity) and if their feature 
importances align. The consistency score cσ is computed as follows: 

 where R1 and R2 are the rule sets generated by the explainer for M1 and M2 , respec-
tively, and the Jaccard coefficient measures the similarity between these rule sets. 
The intention behind this formula is that the difference between the similarity of 
the prediction vectors (i.e., |1− cosineSim(p1(σ ), p2(σ )) ) and the Jaccard coefficient 
should be close to zero. Or in other words: If the predictions are not similar, the Jac-
card coefficient should not be either and vice versa. The consistency scores is aver-
aged across all test samples to lie in the interval [0, 1]. A value of 1 indicates optimal 
consistency, i.e., that the explainer provides identical explanations for models with 
the same outputs.

•	 Continuity: The continuity metric evaluates whether an explainer provides similar 
explanations for slightly altered inputs (Nauta et al. 2023). The intent behind this 
metric is, that if a model provides stable, similar explanations for slightly mod-
ified inputs, this suggests that the explainer could also provide meaningful and 

(1)cσ = 1.0− |1− cosineSim(p1(σ ), p2(σ ))− Jacard(R1,R2)|,
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consistent explanations for similar, previously unseen data points (Nauta et  al. 
2023). Thus, it can be used as an indicator of the robustness of explanations. By 
varying the input, we examine the extent to which the new explanation deviates 
(Nauta et  al. 2023). Therefore, we create for each test sample σ a collection of 
modified versions of σ by applying masking and replacing as in the pre-study. For 
each modified sample σm , we compare the corresponding prediction vector pσm 
with the prediction vector pσ obtained for the original sample σ . If these vectors 
are similar (i.e., cosineSim(pσm , pσ > δpred ), we calculate a continuity score using 
Equation  1. Here, the rule sets R1 and R2 , represent the explanations generated 
for σ and σm , respectively. The final continuity score is obtained by averaging the 
continuity scores across all modified samples. Similar to the consistency metric, 
this score takes values in the interval [0, 1], whereas 1 indicates perfect continuity 
(Nauta et al. 2023).

•	 Contrastivity: The contrastivity metric serves as the counterpart to the con-
tinuity metric. While the continuity metric focuses on modifications that result 
in similar predictions, contrastivity examines modifications that produce dif-
ferent predictions. Therefore, we only consider modified versions σm of σ , if 
cosineSim(pσm , pσ ) < δpred (i.e., we invert the condition compared to the continu-
ity metric). Apart from this modification, the metric is calculated in the same way 
as the continuity metric. Thus, it evaluates how distinct the explanations of an 
explainer are for dissimilar inputs (Nauta et al. 2023). This metric also ranges from 
[0, 1], with a value of 1 indicating perfect contrastivity.

•	 Compactness: The compactness metric measures how concise an explanation is. 
Therefore, two different aspects can be measured: the number of rules generated 
by an explainer and the average length of the rules’ right-hand sides. Due to the 
limitations of human cognitive capacity, shorter rules are preferable, because they 
are easier to understand. Consequently, this metric is particularly relevant in prac-
tical applications. However, it is important to note that this metric favors brev-
ity, which does not necessarily correlate with the quality of the explanations. An 
explanation with fewer or shorter rules may lack essential information and, thus, 
may not always be the most comprehensible or accurate. For this reason, com-
pactness should only be evaluated in conjunction with other metrics.

To apply the metrics, a fixed percentage (80%) of prefixes is randomly selected from 
each event log to accommodate their varying sizes. Metrics are then computed for 
each prefix individually, followed by averaging these values. Table  3 reports these 
average values along with their standard deviations. In the following, we abbreviate 
Backward Explainer as BE and Attention Exploration Explainer as AE.

Discussion of the results  We consistently observe high correctness values, indicating 
a clear correlation between high attention scores and the activities decisive for predic-
tion. This observation holds for both real-world and synthetic event logs. Only in the 
cases of BPIC12_O and the synthetic Looped And and Sequence event logs do the values 
drop slightly. Since the correlation values, with exception of these logs, exceeds 0.5, we 
observe a moderate to strong correlation overall. By comparing AE and BE, we find that 
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the explainers generally behave similarly. However, in the cases of Sepsis, Helpdesk, and 
Sequence, BE achieves significantly higher values.

A more varied pattern emerges for the completeness metric when calculated using 
the F1-score. Depending on the event log, either relatively poor values (BPIC12, 
Complex Model, LDD, Sequence, Sepsis) or quite good values (BPIC13) are achieved. 
Further analysis shows that low F1-completeness is primarily due to low recall values 
(see row Completeness (Recall) in Table 3). Although the explanations are often cor-
rect (as indicated by significantly higher completeness precision), not all explanations 
are captured. In the resulting graphs (or rules), this means most of the edges are cor-
rect (high precision), but some edges are missing (low recall).

However, there are notable differences between the two explainers. The AE explainer 
consistently outperforms the BE in precision completeness. A similar trend is seen for 
recall completeness, where AE performs nearly identical to BE for BPIC12, BPIC12_0, 
BPIC12_WC, and Complex Model but outperforms BE in BPIC12_W, BPIC13_CP, 
BPIC13_I, Sepsis, and Looped And. Only for Helpdesk, Sequence, and LDD are small 
differences (3 to 5%) observed in favor of BE. These findings suggest that AE’s expla-
nations align more closely with the predictions of the model. These observations will 
also be visible in the qualitative evaluation in Qualitative evaluation section.

For the consistency metric, we observe extreme differences both between the event 
logs and between the explainers. While some event logs show nearly perfect consist-
ency for each explainer (AE on BPIC13_CP and BE on Looped And), others exhibit 
very poor consistency close to zero (BPIC13_I for the BE and Looped And for AE). 
The extreme diametral behavior of BE and AE in the case of the Looped And is aston-
ishing. An explanation for this behavior is that the attention scores of the two models 
selected for the calculation of the consistency metric are very different. Nevertheless, 
on some event logs the models come to the same prediction, since other parts of the 
architecture significant contribute to the prediction. However, the relevant activities 
( Ar ) derived from the attention scores differ fundamentally, which affects the struc-
ture of the global graph and thus the performance of the explainers. Since it is not a 
general pattern, it is a strong indicator that there are dataset specific reasons for that. 
Aside from these outliers, both explainers typically show mediocre consistency scores 
around 0.5 across most event logs.

For the continuity metric, the AE explainer nearly always achieves high values, typi-
cally above 0.85. Only for the synthetic Sequence and LDD event logs do we observe 
lower values (0.57 and 0.78, respectively). In contrast, the BE explainer performs worse, 
showing mostly lower values for BPIC12 (0.71), BPIC12_W (0.81), BPIC13_CP (0.49), 
BPIC13_I (0.19), Sepsis (0.57), Helpdesk (0.73), Complex Model (0.72), LDD (0.57), 
and Sequence (0.78). Overall, we can conclude that AE is a highly robust explainer, 
providing meaningful explanations even for previously unseen data. Although the BE 
cannot compete these values most of the time, it still achieves relatively high continu-
ity scores around 0.7. When evaluating the counterpart, i.e., the contrastivity metric, 
we find consistently low values across all event logs, with both explainers perform-
ing similarly. The combination of high continuity values and relative low contrastivity 
scores suggests that the changes in the input have hardly any effect on the prediction. 
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This is essentially due to the fact that the transformer primarily learns the most fre-
quent execution paths, as it is limited to the event activity attribute. As a result, it 
tends to provide “standard” predictions even in cases of significant modifications in 
the input prefix. This observation is also in line with prior experiments conducted in 
Käppel et al. (2021), which indicate that prediction models usually focus on frequent 
execution variants and treat exceptional cases as standard variants.

With regard to the compactness metric, we observe that the BE explainer tends to gen-
erate more rules, although they usually remain within a range that does not hinder inter-
pretability (fewer than five rules). Exceptions can be noted for BPIC12 (13.04), Sepsis 
(7.72), Complex Model (7.47), and Sequence (7.08), where BE produces more rules com-
pared to AE. When examining the mean length of the right-hand sides of the rules, we 
observe that the AE explainer consistently produces longer rules. However, these lengths 
remain below 5, which still enables human interpretability. In contrast, the Backward 
Explainer explainer typically generates rules with mean lengths around 1. When com-
bined with its performance in other metrics, particularly completeness and continuity, 
we see this as an indicator that BE’s rules are potentially too short to adequately capture 
the process behavior.

In summary, the performance of both explainers is nearly identical when comparing 
real-world and synthetic event logs. However, notable differences exist between the two 
explainers. Based on the most relevant metrics for explainer quality – correct and com-
pleteness – we consider the AE explainer to be the superior choice.

Qualitative evaluation

To provide a clearer and intuitive understanding of the explainers’ performance and 
weaknesses, we discuss exemplarily their output for the synthetic Complex Model event 
log (cf. Fig. 12). Because it is the most complicated process model we used for the gen-
eration of the synthetic event logs it offers the best insights into the effectiveness of the 
explainers. For creating the explanation graphs, we used all prefixes from the test log and 
start with a minimum prefix length of one. Including all prefixes is essential to capture 
the full process behavior, as this allows us to trace the step-by-step development of a 
process instance.

For better comparability, the nodes in both explanation graphs were manually aligned 
similarly to the activities in the process model. At first glance, the BE explanation graph 
shows significantly more edges than the AE graph, reflecting the results of the compact-
ness metric. Although there are significantly more edges in the graph of the BE, the com-
pleteness recall values of both explainers are nearly identical (0.10 vs. 0.11). However, 
the AE outperforms the BE with regard to completeness precision (0.30 vs. 0.19). Hence, 
this example confirms the finding of the quantitative evaluation that the AE finds fewer 
incorrect edges. Nevertheless, both graphs contain erroneous transitions. For example, 
the AE graph contains a reflexive edge at the node for activity A and an unwanted short-
cut from A to J. The latter is also contained in the BE graph.

Nonetheless, similarities to the process model are evident in both explanation graphs. 
The initial (A-B-C) and the subsequent AND gateway after activity D are clearly recog-
nizable. While both explainers correctly identify that activities H, E, and P can follow 
D, the AE graph does not cover all possible follow-up sequences, whereas the BE allows 
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more flexible process executions. A similar pattern occurs at the second AND gateway 
(after activity B), where the AE graph identifies various options but ends in dead ends, 
while the BE graph identifies significantly more transitions.

Concluding remarks
Based on the results of the quantitative and qualitative evaluation, we can answer our 
research question as follows: the transformer’s attention scores are effective for check-
ing and visualizing its process understanding. Although the transformer model pro-
duces some incorrect predictions – primarily because it relies solely on the activity event 
attribute for its predictions – certain patterns in the control flow, such as loops or XOR-
gateways, cannot always be predicted correctly. Nevertheless, we were able to observe 
these patterns in the explanation graph. The reason for that is, that the transformer con-
siders the different options related with these patterns, paying them a certain probability, 
although he cannot predict the correct one due to its limited information.

In the rest of this section, we conclude the work with some theoretical and practical 
implications. Additionally, we discuss potential limitations of our approach.

Theoretical and Practical Implications  Our approach offers valuable opportunities for 
advancing transformer-based predictions of the next activity. In the following, we out-
line the primary implications of our work for both theory and practice in the field of 
process mining and especially for the subfield of next activity prediction.

Fig. 12  Resulting explanation graphs for Complex Model Event Log. Top: The underlying real process model. 
Left: Attention Explorer generated graph. Right: Backward Explainer generated graph
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Our work has three main theoretical implications. First, our study enhances the the-
oretical understanding of how transformer models capture and interpret process struc-
tures, highlighting the relationship between model internals (i.e., attention scores) and 
recorded process behavior in form of traces. From a more general point of view, it delivers 
insights into how transformer models encapsulate temporal and sequential dependencies 
in prediction tasks. Second, the global explanatory capabilities of the proposed explain-
ers contribute to assessing the overall process understanding of the prediction model and 
ensure consistency in explanations. Unlike many local explainers, which may yield con-
tradictory explanations across different process instances, our approach provides a holis-
tic view of the process logic, fostering coherence across explanations. Third, our approach 
has the potential to lay the foundation for a new class of process discovery techniques, 
which extract process workflows based on predictive logic. As a consequence, a predic-
tion model would become an active component in process analysis and (re)design.

From a practical standpoint, our work has two main implications. First, our approach 
enhances transparency and trust in prediction models. By making the decision-making pro-
cess of the model more transparent and interpretable, process participants gain a clearer 
understanding of the predictions and have more confidence in the model’s predictions. 
This is particularly important for processes, where the predictions directly impact business 
operations or strategic decisions as well as for processes in critical contexts, where a predic-
tion may have drastic consequences (e.g., healthcare systems). Second, the insights gained 
through the explainers can serve as a promising starting point for model improvement 
and debugging. Especially in cases of erroneous predictions, the explainers provide useful 
insights that can guide the model improvement, either through retraining or by providing 
additional training data to address situations where the model currently struggles. Moreo-
ver, by analyzing the outputted graph structure, practitioners can identify potential weak-
nesses or areas for refinement. This also allows to some degree to anticipate potential future 
behavior of the prediction model, even for situations that were not observed until now.

Limitations  There are some limitations in our work. First, our experiments in both 
pre-study and evaluation are limited to eight real-world event logs and four synthetically 
generated ones. Although the real-world event logs stem from diverse domains and have 
heterogeneous characteristics, it is possible that the obtained results would vary with 
different event logs. Nonetheless, our findings provide encouraging evidence that our 
explanation approach can handle common data quality issues in real-world logs, such as 
noise or inconsistencies.

In our explanation approaches, we aggregate the attention scores across all four atten-
tion heads, offering a holistic perspective on the entire attention mechanism but without 
distinguishing the individual contributions of individual heads. Thus, it remains unex-
plored what particular heads learn or how their interpretations might differ. However, 
as the objective of our study was to explore, whether attention scores as a whole give 
insights into what the prediction model has learned, we considered it appropriate to 
first focus on the aggregated attention mechanism. While aggregating may lead to losing 
fine-grained information, this choice primarily affects the detail level of the explanation 
rather than the overall usefulness of the explainers.
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Another limitation is that our explanation approach relies solely on attention 
scores as model internals. Although these scores play a crucial role in the architec-
ture, as verified in the pre-study, other components and layers of the transformer 
architecture also influence the prediction. Currently, the impact of these compo-
nents is widely unexamined. However, this flaw is mitigated by the fact that the sub-
sequent layers primarily process the attention scores further, so that they can be still 
considered as the central element in the model’s decision-making process.

Our explainers employ various thresholds, such as those determining the predic-
tion similarity or the relevance of an attention score. These thresholds affect the 
explanation quality because they control the addition or removal of edges in the 
explanation graph. For the attention score thresholds, this issue is somewhat alle-
viated, as the pre-study reveals that attention scores are typically either very high 
or very low, allowing setting a threshold with minimal information loss. However, 
configuring the prediction thresholds is more challenging, as the ideal threshold 
can vary depending on the particular process and its execution state. In our study, 
we chose a universal threshold expected to perform reasonably well across different 
processes. However, the threshold would be ideally adapted to the specific process 
characteristics. For example, a lower threshold is suitable for flexible processes with 
numerous decision points and alternative execution paths, while a higher thresh-
old is appropriate for more sequential processes. Given that in practice, processes 
are often a mixture of flexible and largely sequential parts, a dynamic adjustment of 
thresholds depending on the current execution state would provide the best result.

Conclusion and future work
This paper investigates whether a trained transformer model for next activity pre-
diction, based on the architecture proposed in Bukhsh et  al. (2021), has gained an 
understanding of the control-flow of the underlying process. Given that attention 
scores are at the heart of the transformer architecture and a key factor for its effec-
tiveness, we thoroughly investigated their reliability for explanation purposes. Our 
experiments provide strong evidence that attention scores offer valuable insights 
into the decision-making of the prediction model, effectively supporting the assess-
ment and visualization of its process understanding. To this end, we developed 
two transformer-specific global explainable artificial intelligence approaches based 
entirely on attention scores, which create graph structures resembling process mod-
els. These graphs illustrate how attention scores for particular activities are linked 
to predictions. We evaluated both explainers using established quantitative metrics, 
revealing that attention score based explainers hold substantial potential. However, 
because the prediction models only incorporate control-flow information, the pro-
cess cannot be fully learned. In future research, we plan to improve the explainers 
by analyzing the distinct relationships learned by individual attention heads more in 
detail. Moreover, we aim to replace the current masking and modification operations 
for determining the relevance of events with more sophisticated techniques tailored 
to the specific needs of process data. Additionally, we plan to extend our explanation 
approach to transformer architectures that incorporate additional features, such as 
resource or time information.
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Appendix 1: Hyperparameter configuration
The following table list the hyperparameter configuration used for the training of the 
transformer models.

Hyperparameter Value

Epochs 10

Batch size 12

Learning rate 0.001

GPU usage True

Number of heads 4

Embedding Dimension 36

Dimension of the feed forward network 64

Appendix 2: Process models
In the following the process models used for generating the synthetic event logs are depicted:

Complex Model

 

Fig. 13  BPMN model for the Complex Model event log

LDD

 

Fig. 14  BPMN model for the Long Distance Dependency event log
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Looped And

 

Fig. 15  BPMN model for the Looped And event log

Sequence

Fig. 16  BPMN model for the Sequence event log
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