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Abstract
While the general theory for the terminal-initial value problem in mean-field games is widely
used in many models of applied mathematics, the modeling potential of the corresponding
forward-forward version is still under-considered. In this work, we discuss some features
of the problem in a quite general setting and explain how it may be appropriate to model
a system of players that have a complete knowledge of the past states of the system and
are adapting to new information without any knowledge about the future. Then we show
how forward-forward mean field games can be effectively used in mathematical models for
opinion formation and other social phenomena.

Keywords Mean-Field Games · Hamilton-Jacobi equations · Fokker-Planck equations ·
Social mathematical models

1 Introduction

Mean Field Games (MFGs) are models for large populations of competing rational agents
who seek to optimize an individual objective function. They were introduced for the first
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time in 2006 in [29]. The most investigated form has a forward-backward structure that can
be sketched by the following system of partial differential equations:{−ut (t, x) − tr(A(x)D2u(t, x)) + H(t, x,∇u(t, x)) = F(t, x,m(t)),

mt (t, x) −∑
i j

∂2i j (Ai j (x)m(t, x)) − div(Hp(t, x,∇u(t, x))m(t, x)) = 0. (1.1)

Here, a density of individuals m moves in the direction determined by the potential function
u. In the system above, A is a diffusion matrix, D2 is the Hessian, ∇ is the usual space
gradient and Hp is the gradient w.r.t. the variable p of the Hamiltonian operator H(t, x, p).
The notation ∂2i j stands for the second-order derivatives with respect to the space coordinates
xi ,x j , finally, in F the density m(t) := m(t, ·), i.e. the coupling may be nonlocal.

To give a hint of the idea behind the model, the Hamilton-Jacobi equation (HJ) contained
in the first line of the system solves, backward in time, an optimal control problem relative
to the strategic choice of any individual. This information is used, forward in time, to move
the density m accordingly to the second equation of (1.1).

The existence and uniqueness of equilibrium solutions of (1.1) can be found, for example,
in [7, 22]. Other researches on this subject are [25], where strong solutions for parabolic
problems were considered, or [37], for weak solutions of parabolic problems with Dirichlet
and Neumann boundary conditions. In [8] the authors discuss the existence of weak solutions
for first-order MFGs. The stationary case was also investigated in detail and it was first
considered in [29]. Generally, the uniqueness of solution is obtained (both for stationary and
time-dependent MFGs) via a monotonicity argument introduced in [29].

Another model closely related to our discussion is Hughes’ model [10, 27]. In this model,
the optimization process of each player relies solely on information about the current state
of the system, without any anticipation of future states. Consequently, the density evolution
is associated with a stationary HJ that incorporates only the present configuration of the
density. This model has been demonstrated to be suitable for effectively simulating scenarios
in which agents may change their strategy due to unforeseen events. Notably, they are prone
to changing their strategy instantaneously, with no consideration given to their past behavior.
Thismodeling approach is particularly useful for simulating large crowdfluxes of pedestrians.

A model that shares with the Hughes’ model the same kind of information used by the
agents (i.e. at any instant the actual state of the system) are Quasi-stationary Mean-Field
Games. The model has the advantage of being more analytically treatable than Hughes’ and
it has been proposed in [34] and successively reprised in [6]. Quasi-stationary Mean-Field
Games share the same kind of features with Hughes’: the agents may change instantaneously
behaviour or oscillating between

A version of a MFG system, in a forward-forward form, has been proposed in [2], as
effective way to approximate the stationary state of the system, and in [23, 24], in its one-
dimensional form, mostly with the purpose of studying the qualitative properties of the
system.

Our paper aims to investigate forward-forward Mean Field Games (FF-MFGs) from a
modeling perspective. We seek to demonstrate that FF-MFGs are not merely effective tools
for approximating stationary problems or theoretical curiosities; rather, they represent a
potent and, in some cases, more suitable model for simulating collective processes. In this
framework, agents are influenced by past states of the system, as they lack access to infor-
mation about the future. Instead, their current strategic choices are significantly shaped by
the collective past configurations. These distinctive features can be leveraged effectively to
model collective motion phenomena, where factors such as tradition and stubbornness play
a crucial role. Examples include opinion formation and voters’ tendencies.
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We present a concise overview of the paper’s content: In Sect. 2, we formally derive
a class of FF-MFGs, providing a stochastic interpretation in terms of optimal control for
stochastic differential equations. Section3 contains general results on existence and unique-
ness, demonstrating their broad applicability. We emphasize the generality of these findings,
showcasing proofs for solutions in the Cauchy problem and cases involving Dirichlet and
Neumann boundary conditions.

While we do not explore periodic solutions in this work, specifically when the state space
� = T

d , it can be demonstrated more straightforwardly compared to other cases. In Sect. 4,
we introduce and discuss two FF-MFGmodels for social processes, accompanied by various
numerical simulations that practically illustrate their features. The numerical tools employed
throughout the paper are briefly outlined in Appendix A.

2 Derivation and Interpretation of the Evolution Process

Let us denote by Xs ∈ R
n the quantity of interest (e.g. opinion, ideological position on a

political spectrum, etc.) at time s, which follows the stochastic differential equation (SDE){
dXs = β(s, Xs)ds + √

2σ(Xs) dBs, s ∈ (t, T ),

Xt = x,
(2.1)

for some x ∈ R
n . Here, σ(Xs) is a n×nmatrix, and Bs is a standard n-dimensional Brownian

motion. We define the quantity m as the probability density of players moving accordingly
to the SDE (2.1) and initial distribution m(0, x) = m0(x) ∈ P(Rn). Classical arguments in
diffusion theory imply that the measuresm of the initial distributionm0 will be characterized
by the dynamics given by the Fokker-Planck (FP) equation{

mt (t, x) −∑
i j

∂2i j (Ai j (x)m(t, x)) + div
(
β(t, x)m(t, x)

) = 0,

m(0, x) = m0(x)
(2.2)

with A(x) := σ(x)σ T(x).Without regularity assumptions on the coefficients and the data, the
latter has to be understood in the weak sense, see [7]. However, in the subsequent section, we
will adopt more robust regularity assumptions, ensuring the existence of classical solutions.

At the heart of the model lies in the selection of the drift, represented by β. We operate
under the assumption that the players remain uninformed about the future states of the system
(m(t, x) for t ∈ [t, T ]). However, they hold the belief that certain trends from the past might
resurface in the future. Consequently, the agents neither anticipate future distributions nor
factor in the temporal fluctuations of their own running costs. This unique characteristic
grants us the opportunity to model highly irrational strategic decisions, wherein individuals
are drawn towards past favorable outcomes, embodying the traits of a ’stubborn’ player.

While this inclination might present clear drawbacks in certain contexts, it finds relevance
in domains such as political opinions or voting intentions. Here, fluctuations around specific
poles of attraction, prevalent in the past, often resurface. Recent past events tend to exert
a more significant influence on individual choices, while distant past occurrences hold a
comparatively limited impact.

With the latter in mind, we fix t̄ ∈ (0, T ] and we define the optimal control problem
which gives rise to the forward-forward MFG system. Given the running cost function F :
R×R

n ×P(Rn) and the Hamiltonian H : R×R
n ×R

n as in (1.1), we define F̃ and H̃ as

H̃(t, x, p) := H(2t̄ − t, x, p), F̃(t, x, r) := F(2t̄ − t, x, r). (2.3)
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Observe that H̃ and F̃ depend on t̄ . Hence, the notations H̃(t, x, p; t̄) and F̃(t, x, p; t̄)would
have been more precise, but we decide not to write the dependence on t̄ to avoid too heavy
notations.

Assume that H , and H̃ as consequence, are convex and differentiable in the last variable
(all the assumptions on the data for a thorough study of the system will be given in the next
section). We consider the convex conjugate H̃∗ with respect to the last variable, defined as

H̃∗(t, x, η) := sup
p∈Rn

{
p · η − H̃(t, x, p)

}
,

and then the function � defined as � : R × R
n × R

n defined as �(t, x, η) := H̃∗(t, x,−η).
We consider the following optimal control problem, with value function defined as

v(τ, x) = inf
α

{
E

[ ∫ 2t̄

τ

e−λ(s−τ)
[
�(s, Y x,τ [α](s), α(s, Y x,τ [α](s)))

+F̃(s, Y x,τ [α](s),m(2t̄ − s))]ds + e−λ(2t̄−τ)u0(Y
x,τ [α](2t̄))

]}
, (2.4)

where Y x,τ [α](s) := Ys with s ∈ [τ, 2t̄] is assumed to be the unique strong solution to{
dYs = α(s, Ys)ds + √

2σ(Ys) dBs, s ∈ (τ, 2t̄),
Yτ = x

(2.5)

and λ ∈ [0,+∞) is a time discount factor. The function � previously defined represents here
the Lagrangian cost for the control. Because of the hypotheses on H and the properties of
the convex conjugate, we have (H̃∗)∗ = H̃ and then

H̃(τ, x, p) = max
η∈Rn

{−η · p − �(τ, x, η)} . (2.6)

The optimal solution of the optimization problem in (2.4) is given in feedback form by
α(τ, x) = −H̃p(τ, x,∇v(τ, x)). Moreover, a classic Dynamic Programming Principle (see
[3]) applies to the value function v(s, x) in (2.4) bringing us a differential representation
formula for v(s, x) in HJ form as

−vτ (τ, x) − tr(A(x)D2v(τ, x)) + H̃(τ, x,∇v(τ, x)) + λv(τ, x) = F̃(τ, x,m(2t̄ − τ)),

for τ ∈ [t̄, 2t̄), provided with the terminal condition v(2t̄, x) = u0(x).
We can interpret the function v(τ, x) as the value function for an agent who engages in

an optimal control problem at every instant t̄ ∈ [0, T ] within the time interval [t̄, 2t̄]. In
the absence of knowledge about the future states of the system, the agent replaces them by
mirroring the past states of the time interval [0, t̄], which are assumed to be known. The
discount coefficient λ gauges the significance of the past in this decision-making process.
Therefore, we anticipate that as λ approaches +∞, the models will converge towards an
instantaneous response of the system, where trajectory optimization is not performed.

Observe that, if we imagine a time dependence for the running and Lagrangian cost
functions, it is natural to imagine a dependence on t̄ for the functions F̃ and H̃ .

Considering the special nature of the coupling between v andm it is convenient to reverse
the time evolution: if we define v(τ, x) = u(2t̄ − τ, x) and we move the time interval in
[0, t̄] (with the substitution t = 2t̄ − τ ) we obtain{

ut (t, x) − tr(A(x)D2u(t, x)) + H(t, x, ∇u(t, x)) + λu(t, x) = F(t, x,m(t)), t ∈ (0, t̄]
u(0, x) = u0(x),
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which holds for any t̄ ∈ [0, T ] and therefore in particular for t̄ = T . Observe that we have
also used (2.3) to come back to the functions H and F .

We then set β(t, x) = −Hp(t, x,∇u(t, x)): the latter equation, coupled with (2.2), gives
a Forward-Forward MFG system.

Since the optimal controlmap do not take into account the actualmotion of the density, they
do not follow the same trajectories. Therefore, similar to the Hughes’ model, this framework
cannot be accurately labeled as a game. This is a critical aspect that enables our model to
describe potential changes in strategy and less rational behaviors among the players, as in the
case of high stubbornness and ideological bias. However, we maintain the term FF-MFGs
for consistency with the existing literature.

The model can be defined in a bounded open subset of Rn ; in such cases, additional
boundary conditions are necessary. A stochastic interpretation can be provided for Dirichlet
and Neumann boundary conditions: for Dirichlet boundary conditions, the player’s trajectory
must be halted upon reaching the boundary. In the case of Neumann boundary conditions,
a reflecting process at the boundary is incorporated into the stochastic differential equation
(2.1), as detailed in [30]. However, we do not delve into these interpretations here, as they
involve a readaptation of the backward-forward MFG developed in [16, 38].

3 Some Results About Forward-ForwardMean Field Games

The forward-forward model was introduced in [2] to approximate stationary MFGs. The key
insight is that the parabolicity in (3.1) should imply the long-time convergence to a stationary
solution.

In this section, we want to prove existence and uniqueness of classical solutions for the
forward-forward MFGs. In particular we discuss the existence and the uniqueness of the
FF-MFG general framework which includes the models that we are going to discuss in the
rest of the paper. We consider the forward-forward MFG problem described by the system⎧⎪⎪⎨

⎪⎪⎩
ut − tr(A(x)D2u) + H(t, x,∇u) + λu = F(t, x,m), (t, x) ∈ (0, T ) × �

mt −
∑
i j

∂2i j
(
Ai j (x)m

)− div
(
mHp(t, x,∇u)

) = 0, (t, x) ∈ (0, T ) × �

u(0, x) = u0(x), m(0, x) = m0(x), x ∈ �.

(3.1)

Here, � ⊆ R
n is an open domain. Note that in this section we consider the case λ ≥ 0. This

is done just to simplify the presentation. The presence of a negative smoothing term is not a
problem and the same results hold, since the function z(t, x) := e(|λ|−λ)t u(t, x) solves the
same Hamilton-Jacobi equation with λ replaced by |λ|. We distinguish between three cases,
giving rise to three different kind of problems. Namely, either

� = R
n , no boundary conditions prescribed, (C)

which is known as Cauchy problem, or we require � to be a bounded domain (the regularity
of such domain is stated in the hypotheses) complementing the system with homogeneous
Dirichlet or Neumann boundary conditions, i.e.

u(t, x)|x∈∂� = 0 , m(t, x)|x∈∂� = 0 , (D)

or, for x ∈ ∂�,

A(x)∇u(t, x) · ν(x) = 0 ,
[(∑

j

∂ j (Ai j (x)m)
)
i + mHp(t, x,∇u)

]
· ν|∂� = 0 . (N)



Dynamic Games and Applications (2025) 15:664–692 669

Recall that in (2.6) we have H(t, x, p) = max
α∈Rn

{−α · p−�(2T − t, x, α)
}
. Nevertheless,

the results given in this section are more general and may include other kind of Hamiltonian.
The existence and the long-time convergence of the forward-forward model have not been

addressed, except in a few cases, see [25] and [26]. In [26], the forward-forward problemwas
examined in the context of eductive stability of stationaryMFGswith a logarithmic coupling.
In [25], the existence and regularity of solutions for the forward-forward, uniformly parabolic
MFGs with subquadratic Hamiltonians was proven.

Other existence and regularity results were given in the periodic case [22, 23, 25]. In the
first two papers, the results are focused on the one-dimensional case, and are extended to the
congestion case,where theHamiltonian H can depend also on the density of the populationm.
This dependence appears in particular in the applications with traffic model. In the last paper,
the results include also the higher dimensional case, but with a dimension depending also on
the growth of the Hamiltonian. The proof method strongly relies on Sobolev estimates for
solutions of theHamilton-Jacobi equation, obtainedwithGagliardo-Nirenberg interpolations.

In our paper we do not include the congestion case, but, as already said, we consider more
general domains with Neumann and Dirichlet boundary conditions. Moreover, our result
applies for a generic dimension of the state space, requiring more regularity on the cost
functions. Unlike [25], our method uses the Schauder’s fixed point Theorem.

A general result for existence and uniqueness of solutions for systems of parabolic equa-
tions was given, just with Dirichlet boundary conditions, in [28, Theorem VII.7.1]. Hence,
the results provided in this section can be considered as a generalization of that (since we
include also the cases (N) and (C)) of that. Moreover, the proof was not given there, but the
techniques used (fixed-point method) are the same we use in this paper.

Except for these cases, the question of existence and regularity is open in all other regimes.
In the case of forward-forwardMFGs without viscosity, these questions are particularly chal-
lenging. Moreover, the long-time convergence has not been established even in the parabolic
case. Nevertheless, numerical results in [1] indicate that convergence holds and that the
forward-forward model approximates well stationary solutions.

Let P(�) (resp. Psub(�)) be the set of probability measures (resp. sub-probability mea-
sures) on � with finite first moments. Then, P(�) is a topological space endowed with the
weak*-convergence andmetrizable with respect to theWasserstein distance, which is defined
as the distance between two probability measures m1,m2 ∈ P(�) as

d1(m1,m2) = inf
(X ,Y )∈�(m1,m2)

E [|X − Y |]

Here �(m1,m2) is the set of all joint probability distributions (X , Y ) with L (X1) = m1,
L (X2) = m2. An equivalent definition is the following one:

d1(m1,m2) := sup
g∈Lip1(�)

{∫
�

g(x)d(m1 − m2)(x)

}
,

where with Lip1(�) we mean the space of Lipschitz continuous functions with Lipschitz
constant equal to one. The equivalence of the two definitions was given in [7].

The same definition applies in case of (D), with P(�) replaced by Psub(�) and test
function g with Lip(g) ≤ 1 and ‖g‖∞ ≤ 1, see [35]. This is called generalized Wasserstein
distance.

We observe that, in case of (N) and (C), we can restrict to test functions g with g(x0) = 0,
for a fixed x0 ∈ �. In particular, in case of Neumann condition we have ‖g‖∞ ≤ C , where
C = diam(�), and in case of the Cauchy problem we have |g(x)| ≤ |x |.
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Henceforth, when there is no possibility of mistake, we use the notation d1 to refer to both
Wasserstein distance and generalized Wasserstein distance.

We start giving the basic assumptions that we need for an existence and uniqueness result.

Hypotheses:
Let γ ∈ (0, 1) and C > 0. We assume that, in the cases (D) and (N), � is a bounded domain
with C2+γ boundary. Moreover, we suppose that

(H0) u0 ∈ C2+γ (�), m0 ∈ P(�), or Psub(�) in the case (D), with a C2+γ density, called
also m0. Moreover A(·) ∈ C2(�), A = σσ T with σ ∈ Lip(�;Rn×n) and for certain
μ2 > μ1 > 0 independent of x

μ1|ξ |2 ≤ 〈A(x)ξ, ξ 〉 ≤ μ2|ξ |2 ∀ ξ ∈ R
n;

(H1) H : [0, T ] × � × R
n → R, F : [0, T ] × � × P(�) → R (or F : [0, T ] ×

� × Psub(�) → R in the case (D)) are continuous functions and C γ
2 ,γ in (t, x)

variable, uniformly in the last variable. Moreover, H is differentiable and convex in
the last variable, and H(·, ·, 0) is globally bounded. Finally, the growth of H is at
most quadratic:

|H(t, x, p)| ≤ C(1 + |p|2), |Hp(t, x, p)| ≤ C(1 + |p|), |Hpp(t, x, p)| ≤ C;
(H2) For μ1, μ2 ∈ P(�) or Psub(�), the following condition hold:

|F(t, x, μ1) − F(t, x, μ2)| ≤ Cd1(μ1, μ2);
(H3) In case of boundary conditions, we require compatibility conditions for the initial

data: namely, in the setting (D), we require

u0(x)|x∈∂� = 0, m0(x)|x∈∂� = 0,

whereas in the setting (N)

A(x)∇u0(x) · ν(x)|x∈∂� = 0,
[
A(x)∇m0 + m0Hp(0, x,∇u0)

] · ν(x) = 0.

In the setting (C), we require instead a finite first order moment for m0, namely∫
Rn

|x |m0(dx) ≤ C .

From now on, C indicates a non-negative constant, that can change from line to line.

Theorem 3.1 Let Hypotheses (H1) − (H3) hold true. Then there exists a unique solution
(u,m) ∈ C1+ γ

2 ,2+γ ([0, T ] × �) × C1+ γ
2 ,2+γ ([0, T ] × �) for the FF-MFG system (3.1).

Proof The proof relies on the application of Schauder’s fixed point Theorem.

Step 1:Definition of themap.ForM > 0whichwill be chosen later,we consider the following
set:

X =
{
μ ∈ C([0, T ]; V ) | dV (μ(t), μ(s)) ≤ M |t − s| 12

}
,

where in case of (C) or (N), V = P(�) and dV = d1, otherwise in case of (D) V is the dual
of
{
φ ∈ C1(�) | φ|x∈∂� = 0

}
, with dV the classical distance induced by the duality norm:

dV (μ, θ) = ‖μ − θ‖V = sup
‖φ‖C1≤1
φ|∂�=0

〈μ − θ, φ〉.
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Note that X is closed and convex in the topology inherited by C([0, T ]; V ). In order to apply
Schauder’s Theorem, we define a functional � : X → X in the following way: for μ ∈ X ,
we take u = uμ as the solution of{

ut − tr(A(x)D2u) + H(t, x,∇u) + λu = F(t, x, μ(t)),

u(0) = u0,
(3.2)

with conditions (C), (D) or (N).
Then we choose �(μ) = m, where m = mμ is a solution, in the distributional sense, of

the FP equation ⎧⎨
⎩
mt −∑

i j
∂2i j

(
Ai j (x)m

)− div
(
mHp(t, x,∇u)

) = 0,

m(0) = m0(x),
(3.3)

with conditions (C), (D) or (N).

Step 2: estimates on u. In all the three cases, a solution u of (3.2) is unique and regular.
However, we need a uniform bound with respect to μ for u in order to apply Schauder’s
Theorem.

• In case of boundary conditions (D) and (N), from the comparison principle we have ‖u‖∞
uniformly bounded. Then from Theorem V.4.1 and Lemma VI.3.1 (resp. Theorem V.7.2)
of [28], we have u globally Lipschitz in the space variable x . Hence, we can linearize the
problem of u, which turns out to be the solution of{

ut − tr(A(x)D2u) + V (t, x) · ∇u + λu = F(t, x, μ(t)) + H(t, x, 0),

u(0) = u0,

with conditions (D) or (N), and with

V (t, x) :=
∫ 1

0
Hp(t, x, s∇u(t, x)) ds. (3.4)

Then we can apply the Corollary of Theorem IV.9.1 of [28] to obtain

‖u‖ 1+γ
2 ,1+γ

≤ C
(

‖F‖∞ + ‖H(·, ·, 0)‖∞ + ‖u0‖2
)
,

where C depends on the L∞ norm of V . Since u is globally Lipschitz, ∇u is globally
bounded, hence the constant C can be chosen independently from u.

• For the Cauchy problem (C), we can apply Theorem V.8.1 of [28] and obtain u ∈
C1+

γ
2 ,2+γ

loc ([0, T ] × R
n). Hence, we can consider the same linearization of the previ-

ous case: u satisfies again{
ut − tr(A(x)D2u) + V (t, x) · ∇u + λu = F(t, x, μ(t)) + H(t, x, 0),

u(0) = u0,

with V defined in (3.4). Since V ∈ L∞
loc([0, T ]×R

n), we can apply once again Theorem
IV.9.1 of [28] to get

‖u‖ 1+γ
2 ,1+γ

≤ C
(

‖F‖∞ + ‖H(·, ·, 0)‖∞ + ‖u0‖2
)
,

where the constantC depends on the L∞
loc norm of V . Observe that we get a global bound

on u, even if V is locally bounded.
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Now we prove that this bound is independent on μ. Since ‖F‖∞, ‖H(·, ·, 0)‖∞ and
‖u0‖2 do not depend on μ, we have to prove that V is bounded in L∞

loc uniformly in μ.
Exploiting the proof ofTheoremV.8.1 of [28]we observe that“The solution of theCauchy
problem can be obtained as the limit of a sequence of solutions of the first boundary value
problem”. More precisely, we consider an increasing sequence �N of smooth bounded
domains, with �N → R

n for N → +∞. The function u turns out to be the limit of the
solutions uN of the problems⎧⎪⎨

⎪⎩
uN
t − tr(A(x)D2uN ) + H(t, x,∇uN ) + λuN = F(t, x, μ(t)),

uN (0, x) = u0(x),

uN (x)|x∈∂�N = u0(x)|x∈∂�N ,

and the convergence uN → u holds, together with their derivatives, locally uniformly
in x . Since uN solves a HJB equation with Dirichlet boundary conditions, we can apply
again the results used in the case (D) (all the results hold also in case of non-homogeneous
boundary conditions). This implies, for all compact sets K and for all N > N0, with
K ⊂ �N0 , ���∇uN

���
L∞(K )

≤ C,

whereC does not depend onμ for what said in the case (D). Passing to the limit for N →
+∞, we get ‖∇u‖L∞(K ) ≤ C , which implies ‖V ‖L∞(K ) ≤ C with C not depending on
μ and gives the L∞

loc bound of V uniformly in μ.
Finally, u solves {

ut − tr(A(x)D2u) = G(t, x),

u(0) = u0,

with G(t, x) = F(t, x, μ(t)) − H(t, x,∇u) − λu ∈ C0,γ ([0, T ] × R
n). Observe that,

since F is Hölder in x uniformly in μ since uniformly in μ for hypothesis (H1) and
‖u‖ 1+α

2 ,1+α does not depend on μ for what proved before, we have ‖G‖0,γ bounded
uniformly in μ. Hence, from Theorem 5.1.9 of [32] we get

‖u‖1,2+γ ≤ C
(‖u0‖2+γ + ‖G‖0,γ

) ≤ C, (3.5)

where C does not depend on μ.

Step 3. Estimates on m and well-posedness of �. For the distributional formulation of
(3.3), m satisfies, for all 0 < s < t < T ,∫

�

m(t, x)ψ(x) dx +
∫ t

s

∫
�

m(r , x) f (r , x) dxdr =
∫

�

m(s, x)φ(s, x) dx,

for all f ∈ L∞ and for all φ ∈ L∞, where φ satisfy{
−φt − tr(A(x)D2φ) + Hp(s, x,∇u) · ∇φ = f ,

φ(t) = ψ,
(3.6)

with conditions (C), (D) or (N). We note that the results obtained for the HJ equation can be
applied also for the backward equation (3.6), with the change of variable (t, x) → (T − t, x).

We take f = 0 and the related φ which satisfies (3.6) with f = 0. Rearranging, we find∫
�

(
m(t, x) − m(s, x)

)
ψ(x) dx =

∫
�

m(s, x)(φ(s, x) − φ(t, x)) dx
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• In case of conditions (C) or (N), we choose Lip(ψ) = 1.

– As already said, for (N) we can also take ψ ∈ W 1,∞ and thanks to Lemma 3.2 of
[39] we have

|φ(t, x) − φ(s, x)| ≤ C |t − s| 12 , (3.7)

which implies, for a C not depending on μ,

d1(m(t),m(s)) ≤ C |t − s| 12 . (3.8)

– We argue in a similar way for the case (C). Here, we have ∇φ uniformly bounded in
L∞. Hence, φ solves{

−φt − tr(A(x)D2φ) = f − Hp(s, x,∇u) · ∇φ ∈ L∞,

φ(t) = ψ,

and applying again Theorem 5.1.2 of [32], (3.7) remains true, which implies once
again (3.8).

• As regards Dirichlet boundary conditions (D), we take ψ ∈ C1(�) with ψ|x∈∂� = 0 and
‖ψ‖1 ≤ 1. From Lemma 4 of [16] we get

‖φ‖ 1
2 ,1 ≤ C ‖ψ‖1 �⇒ dV (m(t),m(s)) ≤ C |t − s| 12 .

Hence, if we choose M sufficiently large, we have in all cases m ∈ X , and � : X → X is
well-defined.

Step 4. Applications of Schauder’s Theorem, existence result. To apply Schauder’s theorem,
we have to check that �(X) is relatively compact in C([0, T ]; V ) and continuous.

For the relatively compactness, let {μk}k ⊂ X , and let uk and mk be the solutions of the
HJ and the FP equation related to μk .

• For boundary conditions (D) or (N), as already seen, we have ‖uk‖ 1+γ
2 ,1+γ

≤ C , whereC

does not depend on k. Hence, up to subsequences, we can applyAscoli-Arzelà’s Theorem

and, for a certain u ∈ C 1+γ
2 ,1+γ ,

uk → u in C0,1([0, T ] × �),

In those cases, we take φk and φ the solution of (3.6) related to uk and u, withψ ∈ W 1,∞,
satisfying ψ|x∈∂� = 0 in case of (D). Then, arguing as before, φk is uniformly bounded

in C 1+γ
2 ,1+γ and, up to subsequences, φk → φ in C([0, T ] × �). Then, subtracting the

distributional formulations of mk and m with test functions φk and φ we get∫
�

ψ(x)(mk(t, x) − m(t, x)) dx =
∫

�

(φk(0, x) − φ(0, x))m0(dx) → 0,

which implies mk → m in C([0, T ]; V ).
• In case of boundary conditions (C), thanks to (3.5) we have ‖uk‖1,2+γ ≤ C . Since the

domain is unbounded, the convergence of uk towards u is true only in C0,2loc ([0, T ] × �),
with u ∈ C1,2+γ ([0, T ] × �). In this case we note that mk is the density of the following
process {

dXk
t = bk(t, Xk

t ) dt + √
2σ(Xk

t ) dBt ,

Xk
0 = X0,
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where X0 is any fixed process with L (X0) = m0, and

bk(t, x) = −Hp(t, x, Duk(t, x)), σ (x)σ T(x) = A(x).

In the same way we define the drift b and the process Xt related to m, solution of the FP
equation (3.3). Then, we have

E

[
|Xk

t − Xt |2
]

≤ 2E

[∫ t

0

∣∣∣bk(s, Xk
s ) − b(s, Xs)

∣∣∣2 ds

]

+4E

[∣∣∣∣
∫ t

0

(
σ(Xk

s ) − σ(Xs)
)
dBs

∣∣∣∣
2
]

.

The second integral is bounded using the Itô isometry and the Lipschitz bound on σ :

E

[∣∣∣∣
∫ t

0

(
σ(Xk

s ) − σ(Xs)
)
dBs

∣∣∣∣
2
]

≤ C E

[∫ t

0
|Xk

s − Xs |2 ds
]

.

For the first term we get

E

[∫ t

0

∣∣∣bk(s, Xk
s ) − b(s, Xs)

∣∣∣2 ds

]
≤ C E

[∫ t

0
|Xk

s − Xs |2 ds
]

+ C E

[∫ t

0

∣∣Hp(s, X
k
s ,∇uk(s, Xk

s )) − Hp(s, Xs,∇u(s, Xs))
∣∣2 ds] .

For the last integral we use the following strategy:

E

[∫ t

0

∣∣Hp(s, X
k
s ,∇uk(s, Xk

s )) − Hp(s, Xs,∇u(s, Xs))
∣∣2 ds]

≤ 2E

[∫ t

0

∣∣Hp(s, X
k
s ,∇uk(s, Xk

s )) − Hp(s, X
k
s ,∇u(s, Xk

s ))
∣∣2 ds]

+ 2E

[∫ t

0

∣∣Hp(s, X
k
s ,∇u(s, Xk

s )) − Hp(s, Xs ,∇u(s, Xs))
∣∣2 ds]

≤ C
∫ t

0

∫
Rn

|∇(uk − u)|2 mk(s, x) dxds + C E

[∫ t

0
|Xk

s − Xs |2 ds
]

.

This means

E

[
|Xk

t − Xt |2
]

≤ C
∫ t

0

∫
Rn

|∇(uk − u)|2 mk(s, x) dxds

+ C E

[∫ t

0
|Xk

s − Xs |2 ds
]

.

(3.9)

The space-time integral is handled in the following way: for a compact E ⊂ R
n , we have∫ t

0

∫
Rn

|∇(uk − u)|2 mk dxds =
∫ t

0

∫
E

|∇(uk − u)|2 mk dxds

+
∫ t

0

∫
Ec

|∇(uk − u)|2 mk dxds

≤
���uk − u

���2

C0,1([0,T ]×E)
+ C

���mk
���

L1([0,T ]×Ec)
.
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The first term goes to 0 for each compact E ⊂ R
n . For the second term, we note that mk

has finite first order moments, uniformly bounded in k. Actually, if we take the solution
φ of (3.6) with f = 0 and ψ = |x |, from standard regularity results (see [36]) we have

‖φ‖∞ ≤ C(1 + |x |).
Using hypothesis (H3), we obtain in the weak formulation of mk∫

Rd
|x |mk(t, x) dx =

∫
Rd

φ(0, x)m0(dx) ≤ C

(
1 +

∫
Rd

|x |m0(dx)

)
≤ C .

This implies that
��mk

��
L1([0,T ]×Ec)

can be chosen arbitrarily small, if we take E suffi-
ciently large. This implies that∫ t

0

∫
Rn

|∇(uk − u)|2 mk dxds = ω(k), where lim
k→+∞ ω(k) = 0.

Coming back to (3.9) and using Gronwall’s inequality, we finally obtain

E

[
|Xk

t − Xt |2
]

≤ C E

[∫ t

0
|Xk

s − Xs |2 ds
]

+ ω(k) �⇒

E

[
|Xk

t − Xt |2
]

≤ eCtω(k) → 0.

Since

d1(mk(t),m(t)) = sup
Lip(φ)=1

E

[
φ(Xk

t ) − φ(Xt )
]

≤ C
√
E[|Xk

t − Xt |2],

we have proved that mk → m in C([0, T ]; V ) (up to subsequences) for all the boundary
conditions (C), (D) or (N).

The continuity argument canbeproven in the samewayof the compactness. This concludes
the existence result.

Observe that, since u is smooth, we can split the divergence term in (3.3), obtaining for
m the equation⎧⎨

⎩
mt −∑

i j
∂2i j

(
Ai j (x)m

)− div(Hp(t, x,∇u))m − Hp(t, x,∇u)∇m,

m(0) = m0,

with conditions (C), (D) or (N). This implies, arguing as in the HJ equation, m ∈ C1+ γ
2 ,2+γ .

Step 5. Uniqueness. For the uniqueness, let (u1,m1) and (u2,m2) be two solutions of (3.1),
and set (z, μ) := (u1 − u2,m1 − m2). Then, called

V (t, x) :=
∫ 1

0
Hp
(
t, x, s∇u1(t, x) + (1 − s)∇u2(t, x)

)
ds,

the couple (z, μ) solves the following system:

⎧⎪⎪⎨
⎪⎪⎩
zt − tr(A(x)D2z) + V (t, x) · ∇z + λz = F(t, x,m1(t)) − F(t, x,m2(t)),

μt −∑
i j

∂2i j

(
Ai j (x)μ

)− div(μHp(t, x, ∇u1)) = div
(
m2(Hp(t, x, ∇u1) − Hp(t, x, ∇u2))

)
,

z(0) = 0, μ(0) = 0,
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coupled, in the case of Dirichlet boundary conditions, with conditions (D) for (z, μ). In the
case of Neumann boundary conditions, we have for the couple (u,m) and for x ∈ ∂� the
conditions

A(x)∇z(t, x) · ν(x) = 0[(∑
j

∂ j (Ai j (x)μ)
)
i + μHp(t, x,∇u1) + m2

(
Hp(t, x,∇u2) − Hp(t, x,∇u1)

)] · ν|∂� = 0.

• We start with the two cases (D) and (N). Multiplying by μ the Fokker-Planck equation
of μ, we obtain

1

2

∫
�

μ(t)2 dx + μ1

2

∫ t

0

∫
�

|∇μ|2 dxds +
∫ t

0

∫
�

μHp(t, x,∇u1)∇μ dxds

≤
∫ t

0

∫
�

m2
(
Hp(t, x,∇u2) − Hp(t, x,∇u1)

)∇μ dxds.

Since ‖∇u1‖∞ ≤ C , we get from Young’s inequality∫ t

0

∫
�

μHp(t, x,∇u1)∇μ dxds ≥ −μ1

4

∫ t

0

∫
�

|∇μ|2 dxds − C
∫ t

0

∫
�

μ2 dxds.

In the same way, since ‖m2‖∞ ≤ C and Hp is Lispchitz in the last variable, we get∫ t

0

∫
�

m2
(
Hp(t, x,∇u2) − Hp(t, x,∇u1)

)∇μ dxds

≤ μ1

8

∫ t

0

∫
�

|∇μ|2 dxds + C
∫ t

0

∫
�

|∇z|2 m2 dxds.

This means

1

2

∫
�

μ(t)2 dx + μ1

8

∫ t

0

∫
�

|∇μ|2 dxds

≤ C
∫ t

0

∫
�

μ2 dxds + C
∫ t

0
‖∇z‖2L∞([0,s]×�) ds, (3.10)

which implies, up to changing 2C with C ,∫
�

μ(t)2 dx ≤ C
∫ t

0

∫
�

μ2 dxds + C
∫ t

0
‖∇z‖2L∞([0,s]×�) ds.

Applying Gronwall’s Lemma, we get∫
�

μ(t)2 dx ≤ CeCt
∫ t

0
‖∇z‖2L∞([0,s]×�) ds,

which implies

sup
s∈[0,t]

∫
�

μ(s)2 dx ≤ CeCT
∫ t

0
‖∇z‖2L∞([0,s]×�) ds. (3.11)

Coming back to (3.10), we get

μ1

8

∫ t

0

∫
�

|∇μ|2 dxds ≤ C(1 + T eCT )

∫ t

0
‖∇z‖2L∞([0,s]×�) ds, (3.12)
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Putting together (3.11) and (3.12), we finally get

sup
s∈[0,t]

∫
�

μ(s)2 dx +
∫ t

0

∫
�

|∇μ|2 dxds ≤ C
∫ t

0
‖∇z‖2L∞([0,s]×�) ds, (3.13)

up to changing, once again, C(1 + eCT + T eCT ) with C .
To estimate the last integral, we study the equation of z. Since V ∈ L∞ and, for all
s ∈ [0, T ],

‖F(t, x,m1(t)) − F(t, x,m2(t))‖L∞([0,s]×�) ≤ C sup
r∈[0,s]

d1
(
m1(r),m2(r)

)
,

we have from the Corollary of Theorem IV.9.1 of [28],

‖∇z‖2L∞([0,s]×�) ≤ C

[
sup

r∈[0,s]
d1
(
m1(r),m2(r)

)]2
. (3.14)

Since in case of (D) and (N) the domain � is bounded and the test functions for d1 are
bounded, we have

[
sup

r∈[0,s]
d1
(
m1(r),m2(r)

)]2 ≤
⎡
⎢⎣ sup
r∈[0,s]

sup
Lip(φ)≤1
‖φ‖∞≤C

∫
�

φ(x) μ(r) dx

⎤
⎥⎦
2

≤ C sup
r∈[0,s]

∫
�

μ(r)2 dx .

Coming back to (3.13), we have

sup
s∈[0,t]

∫
�

μ(s)2 dx +
∫ t

0

∫
�

|∇μ|2 dxds ≤ C
∫ t

0
sup

r∈[0,s]

∫
�

μ(r)2 dx ds,

which implies, thanks to Gronwall’s Lemma, μ ≡ 0, and so z ≡ 0.
• For the Cauchy problem (C), we consider two processes (X1

t )t and (X2
t )t withL (X1

t ) =
m1(t), L (X2

t ) = m2(t) and X1
0 = X2

0. Arguing as in (3.9), we have

E
[|X1

t − X2
t |2
] ≤ C

∫ t

0

∫
Rn

|∇(u1 − u2)|2 m1(s, x) dxds + C E

[∫ t

0
|X1

s − X2
s |2 ds

]
.

Applying Gronwall’s Lemma, we have

sup
s∈[0,t]

d1
(
m1(s),m2(s)

)2 ≤ E[|X1
t − X2

t |2] ≤ C
∫ t

0

∫
Rn

|∇z|2 m1 dxds

≤ C
∫ t

0
‖∇z‖2L∞([0,s]×�) ds.

Using once again (3.14), we get

sup
s∈[0,t]

d1
(
m1(s),m2(s)

)2 ≤ C
∫ t

0
sup

r∈[0,s]
d1
(
m1(r),m2(r)

)2
ds,

which implies μ ≡ 0, and so z ≡ 0.

This concludes the uniqueness result and the proof. ��
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4 A Forward-ForwardModel for Opinion Formation and Dynamic
Voting

In this sectionwe introduce amodel which have the structure of a FF-MFG. The framework is
appropriate when we want to model a continuity of agents which are dynamically retrieving
information from the past environmental scenarios. We focus on an opinion formation model
set in a 1D space and a 2D voting model which share the same formal structure.

In recent years, the process of opinion formation, along with other sociological and eco-
nomic phenomena, has garnered considerable attention from physicists and mathematicians.
It has been observed that certain tools employed in statistical mechanics can be effectively
applied tomodel these phenomena. Notable works in this area include [15, 20, 44] and others.
Within this context, two active fields have swiftly emerged, commonly referred to as socio-
physics or, within the mathematical community, behavioral social systems. These fields are
dedicated to describing these phenomena from the perspective of physicists. For an overview
and up-to-date references, we recommend the monographs [4, 12, 21, 41]. Additionally, for
works with a more mathematical focus, consider [5], where the authors discuss the use of
partial differential equations in modeling for the social sciences, and [19], where the authors
employ Fokker-Planck equations to model socio-economic phenomena.

In the work [42], the authors propose an opinion dynamic model that describes the evo-
lution of an opinion in a population consisting of two groups: pliant and stubborn agents,
where the latter act as leaders. Themodel adopts the structure of amulti-population backward-
forward Mean Field Game. Drawing inspiration from [42], we adopt standard notation and
concepts, considering a population of homogeneous agents. Each agent is characterized by
the opinion X(t) ∈ � = R

d at time t ∈ [0, T ], where [0, T ] represents the time horizon
window. We also consider the presence of some advertised opinions, as clarified further
below. Notably, in the case of a Forward-Forward Mean Field Game (FF-MFG), there is no
modeling or theoretical necessity to bound T , unless for the numerical tools that are required
for approximating the solution.

We assume that the opinion X(t) is a solution of (2.1), where the dynamics are driven
by the control variable α. The presence of the stochastic term in (2.1) is motivated by the
effect of uncertainty in the opinion evolution. We consider a probability density function
m : � × [0, T ] → R representing the percentage of agents in state x at time t , satisfying

∫
�

m(t, x)dx = 1, for any t ∈ [0, T ].

The fundamental principle underlying our model is that each agent adjusts his opinion
based on the average opinion of their surroundings. Specifically, an agent is more sensitive
to and attracted by opinions with high density that are close to their own, while they give less
consideration to opinions that are too distant. This reflects a typical crowd-seeking behavior,
previously studied in its non-local variation in [42] and justified by a kinetic framework in
[45]. We consider a fixed probability distribution function g(x) (for example, g could be the
density of a normally distributed random variable). For any fixed t ∈ [0, T ], we define the
local average opinion as

m̄(t, x) := C(t, x)
∫

�

ym(t, y)g(y − x)dy,

where C(t, x) is a normalization variable, i.e., C(t, x) = 1/
∫
�
m(t, y)g(y − x)dy.
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Wemodel the running cost terms in (2.4) to penalize the distance from the average opinion
of the surroundings, determined by the shape of the distribution g. Thus,

F(x,m) = a1‖m̄(t, x) − x‖2. (4.1)

Simultaneously, we assume the existence of a collection of points {x̄i }i=1,...,N that rep-
resent special opinions where advertising is spent. These points serve as special points of
attraction, and their strength depends on the parameters ki . Therefore,

�(x, α) = 1

2

[
a2‖α‖22 + a3 min

i=1,...,N
ki‖x̄i − x‖22

]
. (4.2)

It’s worth noting that we also penalize the control, implying that the agents are stubborn
and prefer to change their opinion as little as possible. The parameters a1, a2, a3 ≥ 0 balance
the influence of these various principles guiding the evolution of the agents’ choices.

We observe that using the standard Legendre-Fenchel transform, the control depending
part of the hamiltonian is

H(x, p) = max
α∈Rd

{
α · p − a2‖α‖22/2)

} = 1

a2

‖p‖22
2

.

The final FF-MFG model that we obtain is, for (t, x) ∈ [0, T ] × R

⎧⎪⎪⎨
⎪⎪⎩
ut (t, x) + λu(t, x) + max

α∈Rd
{α · ∇u(t, x) − �(x, α))} = F(x,m(t)) + div(A(x)∇u(t, x)),

mt (t, x) − div
(∇u(t,x)

a2
m(t, x)

)
= div(A(x)∇m(t, x)),

m(0, x) = m0(x), u(0, x) = u0(x)

(4.3)

Remark 4.1 In the tests ahead, we notice that not all the assumptions (H0-H3) hold true.
Mainly, we simplify things by testing in squared areas without smooth boundaries and some-
times with initial conditions less regular than what required previously. We also play around
with different costs for the agents at different times to see how the model reacts. Despite that,
we consistently find that our approximations remain stable and converge well. This suggests
that there might be equilibrium points even under more general conditions, but we won’t
investigate further this issue. Instead, our focus in the next section will be on describing the
model’s behavior in simpler terms.

It is noteworthy that the model bears closer resemblance to [45] and other kinetic-based
frameworks than to [42]. This is due to our assumption that agents lack access to any informa-
tion about future states or changes in the dynamics of the system. Nevertheless, the model has
a steady-state formulation that adopts the typical stationary MFG form. Hence, we anticipate
that after a certain time, the solutions (u,m) will converge to (ū, m̄), which are solutions of
the system:⎧⎨

⎩
ρ + λū(x) + max

α∈Rd

{
α · ∇̄u(x) − �(x, α)

} = F(x, m̄) + div(A(x)∇u(x)),

div(A(x)∇m̄(x)) + div
(∇ū(x)

a2
m̄(x)

)
= 0,

(4.4)

where ρ ∈ R is a constant of compatibility between the two systems to be defined. Proving
the long-time convergence of this class of problems remains an open issue (cf. [1]).
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4.1 A 1D Opinion FormationModel: Tests

In this section, we highlight some of the features of the proposed model in the case d =
1. The primary objective of the following tests is to emphasize the distinctions from the
corresponding forward-backward system and to illustrate the qualitative characteristics of
the model. The simulations presented are obtained using semi-Lagrangian schemes (refer
to A and the cited references for details).

Test 1. A Forward-Backward/Forward-Forward comparison.
The objective of our first test is to compare our opinion formation model with its corre-
sponding forward-backward counterpart. It is essential to note that in the latter case, agents
forecast all future states of the system and optimize their policy based on those predictions.
In contrast, in our case, each agent determines their policy based on past states of the sys-
tem. The forward-backward coupling introduces additional computational challenges. Due
to the nature of its evolution, we cannot employ an explicit numerical scheme for both equa-
tions simultaneously. To address this, we adopt a solution strategy similar to [10], utilizing a
fixed-point argument until convergence to the equilibrium of the discrete system.

We consider the opinion domain� = R, and the initial values of the potential and density
functions are given by

u0(x) = min
i=1,2

ki
(
(x̄i − x)2

)
with (x̄1, k1) = (0.8, 1) and (x̄2, k2) = (0.2, 3),

m0(x) =
{
1 if x ∈ [0, 1]
0 otherwise

.

In other words, initially, the opinion is uniformly distributed, but agents are aware of two
polarizing opinions {0.2, 0.8} for which some prior advertisement may have been spent.
Specifically, the parameter of the pole x̄2 = 0.2 is set to k2 = 3, while the pole x̄1 = 0.8 has
a lower value parameter k1 = 1. The same parameters appear in the running cost �(x, α). The
strength of this factor is tuned by the weight a3 = 2, while the penalization of the control,
i.e., the resistance to change an opinion, is set to a2 = 1.

The distribution g(x) is set to g(x) = 1√
0.2π

e− x2
0.2 , modeling the influence on every agent

of their surroundings. The weight of this tendency to conform to the local mean is tuned by
a1 = 1.

Finally, the diffusion is set to A(x) ≡ 0.01, and the discount parameter is λ = 0.
In Fig. 1, we present the results of this initial test implemented with discretization param-

eters �x = 0.04 and �t = 0.02, covering approximately � ≈ [−4, 4] with homogeneous
Neumann boundary conditions. We observe that the density distribution of the agents, ini-
tially constant in [0, 1] and null elsewhere, splits into two clusters under the influence of
the initial choice of u0. During the initial phase, the right-hand-side cluster progressively
acquires a greater attraction capacity and tends to absorb the second cluster. Around t = 10,
this process concludes, and only one cluster is present, although it is still not centered on the
advertised pole x̄2. This occurs during the final phase of the system’s evolution, where the
cluster slowly moves toward x̄2, becoming the center of its distribution.

Notably, there is no formation of Dirac’s deltas due to the presence of a strictly positive
diffusion parameter A. Figure1 also displays the evolution of the control map determined by
the potential function u(t, x) and the mean opinion of the agents, i.e.,

∫
�
xm(t, x)dx , since∫

�
m(t, x)dx = 1. We observe the crowd reaching consensus around the pole x̄2.
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Fig. 1 Test 1. Forward-Forward model: evolution of the potential function u and density distribution m (top),
control map −∇u/a2 and mean opinion

∫
� xm(t, x)dx

Let us compare this with the forward-backward counterpart model. We maintain all the
parameters of the system unchanged, only inverting the evolution of the potential equation.
The results are presented in Fig. 2. We observe that the evolution of the system is markedly
different. Firstly, there is no formation of two competing clusters since the agents are aware
of all the future states of the system; therefore, only one attraction point emerges. Also in
this case, the ’winner’ of the competition is the pole x̄2, and the average opinion of the agents
monotonically aligns with this final state. A more evident comparison is also reported in
Fig. 3, where the evolution of the density of opinions is shown side by side.

Test 2. The effect of the discount variable λ.
In our second test, we aim to show the effect of the discount variable λ on the model. While it
makes sense to limit the influence of the past in the optimization process (clearly, the paradigm
of a player assuming that past scenarios will repeat in the future is potentially flawed),
adopting a larger λ tends to trivialize the model, transforming it into a simple relaxation
around the average. This effect is illustrated in Fig. 4, where, for the same parameters as
Test 1, the potential u and the density distribution m are shown for various choices of λ.
Notably, for λ ≥ 7, both u and m quickly move, in the early instants of the process, to a
stable configuration around the poles. This dynamic, less interesting and varied than for lower
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Fig. 2 Test 1. Forward-Backward model: evolution of the potential function u and density distributionm (top),
control map −∇u/a2 and mean opinion

∫
� xm(t, x)dx

Fig. 3 Test 1. Evolution of the density of opinion in the FF and FB model
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Fig. 5 Test 3. Forward-Forward model: evolution of the potential function u and density distribution m (top),
control map −∇u/a2 and mean opinion

∫
� xm(t, x)dx

values of λ, led us to restrict the remaining tests to the case λ = 0. For intermediate values
of lambda (e.g., λ ∈ (0, 7)), we expect to observe essentially the same type of behavior as
for λ = 0, albeit mitigated and relatively smoothed down around the attraction points of the
model.

Test 3. Cluster formation and strategic advertisement.
In our third test, we aim to illustrate two distinct features of our opinion model. In the first
one, we demonstrate how our model can generate clusters over time. To achieve this, we
consider the same setting as the previous test, with the only exception of the parameters
a1 = 1, a2 = 4, and a3 = 1. In practice, we penalize the possibility to change opinions,
fostering the ’stubbornness’ of our density of agents. The two attraction poles are again 0.2
and 0.8 with equal attraction capacities, i.e., (x̄1, k1) = (0.8, 1) and (x̄2, k2) = (0.2, 1).

The test results, depicted in Fig. 5, reveal a symmetric pattern around two attraction points.
Initially, the agents are uniformly distributed in density, but they quickly aggregate around the
two advertised poles. The problem’s inherent symmetry ensures that the average opinion of
all agents remains stable, with minor numerical oscillations, at the midpoint between the two
clusters, denoted as x = 0.5. Notably, in this scenario, the two clusters are interconnected,
indicating that the intersection of their support is not empty. By varying the distance ormaking
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Fig. 6 Test 3. FF model with ’strategic advertisement’: evolution of the potential function u and density
distribution m (top), control map −∇u/a2 and mean opinion

∫
� xm(t, x)dx

a different choice for the function g (as demonstrated in subsequent tests), it’s possible to
achieve two or more separated clusters.

We delve into the question of the best advertising strategy in a relatively stable situation
like the latter. Particularly, considering a limited advertising budget, is it more advantageous
to be the first one to advertise at one pole, or is it better to have the ability to advertise for a
longer duration? To address this question, we conduct the same test as before, setting

for t ∈ [0, 0.5], (x̄1, k1) = (0.8, 3), (x̄2, k2) = (0.2, 1);
then t ∈ (0.5, 10], (x̄1, k1) = (0.8, 1), (x̄2, k2) = (0.2, 3).

All the other parameters of the test are left as in the previous case. We call this case of
”strategic advertisement’.

In this scenario, the agent interested in advertising position 0.8 acts before and for a shorter
duration, while its competitor has a much longer advertising span but is less responsive at the
beginning of the simulation. Notably, the advertisement parameters k1 and k2 switch their
roles at t = 0.5, representing 5% of the total evolution of the system.

The results of this simulation are presented in Figs. 6 and 7. We observe that in the long
run, the position advertised with more anticipation, 0.8, becomes predominant, even though
at t = 0.5, when its advertising advantage ends, it is actually in a minority position if we
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Fig. 7 Test 3. Evolution of the density of opinion in the standard and ’strategic advertisement’ case

consider the average opinion of the agents. Therefore, we can assert, at least experimentally,
that in our model, advertisement in the initial evolution moments of the system is much more
relevant, essentially when the first split into clusters occurs. These initial moments lead to
non-trivial long-term effects of polarization, as observed in the literature [31].

4.2 A Dynamic 2DVote Model

In this section, we extend the previously introduced opinion formationmodel to a 2D political
spectrum setting d = 2. A 2D model is often utilized to provide a more detailed ideological
categorization of voters. An illustrative example of such 2D representations is the Nolan
Chart [43], where the axes represent personal freedom and economic freedom.

The distribution g(x) is chosen as the isotropic multivariate normal distribution

g(x) = g(x1, x2) = 1√
μπ

e− x21+x22
μ . (4.5)

More complex choices for modeling the influence of the surrounding on each voter are
possible.

As initial scenarios, we consider a uniform initial distribution of opinions m0(x) and a
constant initial cost u0(x), i.e.,

m0(x) = 1

4
χ[−1,1]2(x), u0(x) = 0,

where χB(x) is the indicator function of the set B.

4.3 FF-dynamic Vote Model: Tests

We present simulations conducted using the same schemes outlined in A, focusing on a
2D opinion of voting scenario with 2 candidates. The primary objective of these tests is to
demonstrate the effectiveness of the proposed model in simulating complex phenomena such
as cluster formation or the adoption of classic strategies to enhance the electoral performance
of a candidate.
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Fig. 8 Test 4. Evolution of the density of voters at t = 0, 0.38, 0.78, 1.18, 1.66, 10. The green squares are
the position of the two candidates, the red cross is the median voter position and the dotted white line is the
separation between the victory region of each candidate

Test 4: Stable Cluster Formation between Two Candidates
In this 2D setting, we showcase a fundamental cluster formation where voters polarize
between two candidates. It is essential to note that our model, relying on attraction poles,
naturally tends towards the formation of clusters over the long run. For this test and the
following one, model parameters a1, a2, and a3 are all set to one. The constant μ in (4.5),
representing the size of the area related to the conformism tendency of a voter, is set to 0.2,
while the diffusion parameter A is set to 0.01. We assume the presence of two candidates,
C1 and C2, positioned at (0.8, 0.8) and (−0.8,−0.8), respectively. Both candidates conduct
a political campaign with constant strength and efficiency, setting k1 = k2 = 1.

Since voters are initially evenly distributed across the entire political spectrum [−1, 1]2,
and the potential u0 is initially constant, no prior knowledge of the candidates’ positions is
assumed. Following themedian voter theorem [40], victory of one candidate over its opponent
is achieved when the average of all voters’ positions (i.e., the median voter) falls within the
respective victory regions, which are denoted as follows:

�1 := {x = (x1, x2) ∈ R
2 | x2 > −x1}

and �2 := {x = (x1, x2) ∈ R
2 | x2 < −x1}.

We approximate the solution using semi-Lagrangian schemes with �x = 0.04 and �t =
0.02. The problem is solved on a grid constructed in [−3/2, 3/2]2 with Neumann boundary
conditions. In Fig. 8, the outcomes are presented. Several interesting features of themodel are
observed: firstly, even starting with no prior knowledge of the candidates’ positions and no
previous advertisements, the initial moments of system evolution (t ∈ (0, 1)) significantly
influence the final results. The density of voters quickly splits equally between the two
candidates due to the symmetry of the data. Additionally, the conformism tendency generates
multiple clusters that progressively migrate toward the advertised positions of the candidates.
During this migration, multiple clusters may merge. In this scenario, we assume infinite
advertisement strength from each candidate (constant in time), and as t � 0, the density
distribution of voters cannot differ from one (or more) clusters at the advertised positions
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Fig. 9 Test 5.a. ’Having a moderate ally’ strategy: Evolution of the voter density at t =
0, 0.38, 0.78, 1.18, 10, 20. The green squares depict the positions of the three candidates, the red cross indi-
cates the median voter position, and the dotted white line represents the boundary between the victory regions
of each major candidate

of the candidates. In this case, there is a perfect balance between the two candidates, and
as evident from the position of the median voter (the red cross in Fig. 8), neither candidate
prevails over the opponent.

Test 5. Overcoming the impasse via different political strategies.
We explore the possibility of emulating typical electoral strategies in our model to overcome
the impasse caused by the symmetric setting in the previous test. One potential strategy
involves creating an electoral alliance to break the deadlock. How does the introduction of
a third candidate C3, positioned at (0.6,−0.2), influence the system’s evolution? For this
third candidate, we assume a very limited attraction strength by setting k3 = 0.2.

The results are presented in Fig. 9. The presence of the additional candidate C3 plays
a crucial role in the evolution of the voters. It facilitates the formation of a large central
cluster, which leans slightly more towards the victory region �1, where both C1 and C3 are
positioned. Although this central cluster initially has a limited impact on the position of the
median voter, it gradually attracts voters who initially leaned towards C2. Subsequently, the
cluster moves, passing through the position of candidateC3 before eventually reaching, over
an extended time horizon (t = 20), the more extreme position of candidate C1.

We explore another potential strategy: What if a candidate advertises a position that is not
its final goal? In this deliberately illustrative example,we assume that the position of candidate
C1 initially lies at the point (0.2, 0.2) but switches to (0.4, 0.4) at t = 2, to (0.6, 0.6) at
t = 4, and finally to (0.8, 0.8) (the candidate’s ultimate goal) at t = 6. Figure10 visually
demonstrates how this strategy immediately influences the position of the median voter,
effectively guiding the crowd of voters toward the final goal of C1. This occurs even with a
minor cluster formation before reaching the candidate C1’s final position. The tendency of
politicians to gravitate toward the position occupied by the median voter, or more generally,
toward the position favored by the electoral system, is sometimes referred to as Hotelling’s
law [13]. This test can also be viewed as a continuous version of the McKelvey-Schofield
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Fig. 10 Test 5.b. ’Advertising a more moderate position’ strategy. Evolution of the density of voters at t =
0, 0.38, 0.78, 1.18, 1.66, 10. The green squares are the advertised position of the two candidates (we note that
one candidate changes progressively its position), the red cross is the median voter position and the dotted
white line is the separation between the victory region of each candidate

theorem [33], where the authors observe that any position on a multidimensional political
spectrum can be reached by a sequence of majority votes.

5 Conclusions

In this work, we discuss the fundamental features of a general FF-MFG, illustrating how
such a framework can be utilized to formulate mathematical models in scenarios where a
large population of rational individuals is influenced by their past position and control. This
framework is particularly suitable for social mathematical models, allowing the inclusion of
non-local interaction terms, diffusion effects, complex strategic behaviors, agent stubborn-
ness, and more.

A A Semi-lagrangian Scheme for FF-MFG

In this appendix we provide more details about the numerical schemes that we used for
approximating the FF-MFG system. To simplify a bit the presentation we consider the case
where � ⊂ R

2, A(x) is a constant, i.e. A(x) ≡ ε and the Hamiltonian has the form (2.6).
The general case is straightforward and does not change the treatment of the non-linear part
of the equations.

Our numerical approach relies on the relation between the HJ framework and the corre-
sponding adjoint FP equation. Given a semi-discrete (discrete in space) numerical scheme
for the HJ part of (3.1), the same scheme can be used to construct a consistent approximation
for the FP equation.

Before proceeding, we define additional notation. Let ��x be an uniform grid on � with
constant discretization parameter �x > 0. Let xi, j denote a generic point in ��x . The space
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of grid functions defined on ��x is denoted by G(��x ), and the functions U and M in
G(��x ) (approximations of respectively u and m) are called Ui, j and Mi, j , when evaluated
at xi, j .

We utilize a semi-discrete numerical scheme N (x, p) : ��x × R
d → R monotone and

consistent to approximate the term − max
α∈Rd

{α · ∇u(t, x) − �(x, α))}+ div(A(x)∇u(t, x))+
F(x,m(t)) in (4.3). U is the solution of the ODE

Ut = −λU + N (x,DU , M), (A.1)

where DU is a discretization of the gradient operator on U . We use the adjoint structure of
the problem to approximate the FP part. The discrete approximation, M , is the solution of
the following system of ODE

Mt = K (x,DU , M), (A.2)

where K (x, x,DU , M) is the adjoint of N . We note that this operator depends on the mono-
tone approximation scheme used to discretize the HJ equation, and can be directly computed.
We stress that the features of positivity and mass conservation are still holding also at the
discrete level. Finally, the discretization in time can be performed with a standard numerical
scheme of our choice (we used just Explicit Euler).

Semi-Lagrangian scheme.
To describe a semi-Lagrangian scheme appropriate to approximate (3.1), we introduce the
operator

DUi, j := max
α∈R2

I[U ](xi, j , α) −U (xi, j )

h
− �(xi, j , α), (A.3)

where h a parameter of the same order of �x and

I[U ](xi, j , α) = 1

4

2∑
�=1

(
I[U ](xi, j + αh + e�

√
2εh)

+I[U ](xi, j + αh − e�

√
2εh)

)
. (A.4)

Here, I[U ](x) is an interpolation operator on the matrix U , and ei is the i unitary vector of
an orthonormal basis of the space. The term N (x, p) is therefore

N (x,DUi, j , M) = −DUi, j + F(t, xi, j , M).

We take the adjoint of N as described in [9], and we use it into (A.2):

K (xi, j ,DUi, j , Mi, j ) = 1

4

2∑
�=1

∑
k,s

(
βk,s [��,+

i, j (argmax
α

DUi, j )] + βk,s [��,−
i, j (argmax

α
DUi, j )]

)

here, the βk,s are the basis of the polinomial approximation used in the interpolation operator
I[U ](x) introduced above and

�
�,±
i, j (b) = xi, j + hb ± e�

√
2εh.

For the implementation of the homogeneous Neumann boundary conditions we used a sym-
metrized Euler scheme, as described in [10]. Another work that discusses more general
boundary conditions with similar tools is [11].
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