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Abstract
In recent years, the strong growth of renewable energy sources has led to considera-
ble instability in the electricity markets. As a consequence, this has increased trading 
activities in the continuous intraday market, especially close to delivery. This work 
presents an agent-based model that is able to reproduce the continuous market evo-
lution, distinguishing players in dispatchable and non-dispatchable power plants and 
analyzing the behavior and interactions between them. All players behave rationally, 
trying to maximize their revenues and minimize imbalances. The results show that 
the model is able to reproduce the main characteristics of the continuous intraday 
electricity market, such as the price path strongly dependent on internal and external 
information, such as the wind production forecast, possible outages, an increase in 
order arrival towards the end of the trading session and weak market efficiency. The 
strategies assigned to each agent have been formulated taking into account statistical 
analyses of historical orders placed during continuous trading in different European 
bidding zones. The analyses have been carried out in a scenario composed of ther-
mal plants with different marginal costs and wind agents, but the flexibility of the 
model gives the possibility to study many different scenarios.
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1  Introduction

In most European countries, the majority of energy trading occurs on spot mar-
kets that are divided into day-ahead (DAM) and intraday (ID) markets [1]. The 
ID session allows energy agents to mitigate imbalances and avoid high penalty 
costs. With the increased use of intermittent resources, such as wind and solar, 
forecasting power production has become more difficult, and the use of the ID 
market has become crucial to minimize imbalances [2]. As a result, the volume 
of energy exchanged on the ID market has grown significantly in recent years, 
with Germany and France showing increases of 18% and 38% respectively from 
2019 to 2020 [3]. To improve market integration and coupling, the Agency for 
the cooperation of energy regulators (ACER) [4] has launched the single intraday 
market coupling (SIDC) project, which allows ID market participants from most 
European countries to trade electricity on a common order book up to 1 h before 
delivery time [5]. The project includes continuous trading even in countries that 
have historically used the auction system, like Spain [6]. Consequently, research-
ers have focused on how players behave to maximize profits and minimize imbal-
ances, making algorithmic trading strategies highly relevant for studying balanc-
ing actions.

Agent-based models are well-developed systems for simulating energy market 
trading and studying the behavior of market participants and their interactions [7] 
[8]. Some examples are the electricity market complex adaptive system (EMCAS) 
[9], the national electricity market simulation system [10] and the agent-based 
modelling of electricity system [11] but they do not really consider the opera-
tional market rules of the continuous intraday market. Different strategies for 
trading in continuous have been implemented and improved from the ZI strategy 
[12] in which traders submit random bids only with a budget constraint to the 
adaptive-aggressiveness strategy (AA) [13] in which traders adapt their behavior 
following different market conditions deciding if maintaining a passive or aggres-
sive attitude on submitting orders. Meanwhile, other strategies have been adopted 
like the ZIP strategy [14] the GD strategy [10] and the GDX strategy [15] For 
many years the AA algorithm has been the best strategy able to replicate the con-
tinuous market but in [16] it is stated that it can be outperformed by other algo-
rithms when tested across a big number of market sessions.

Existing models in the literature, while proficient in depicting the continuous 
trading energy market, often overlook two critical aspects. Firstly, they fail to 
account for external events such as wind and solar forecasts, which have become 
integral for predicting the available energy supply [17]. Secondly, these models 
lack a consistent method for reproducing a continuous time frame, relying instead 
on a discretized approach.

Our work aims at creating an agent-based algorithm able to represent the 
continuous trading of agents in a more realistic scenario considering internal 
and external factors for a properly agents strategy. First of all the SIDC trading 
mechanism is perfectly replicated by reproducing a limit offers book [18] able to 
store all orders with a price-time merit order and to couple the orders following 
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the continuous trading matching algorithm based on the first-come-first-served 
rule [19]. Secondly, to successfully represent the agent’s behavior, players get the 
more realistic behavior as possible trying to maximize their revenues and mini-
mize the unbalances [20]. Agents are also divided into dispatchable and non-dis-
patchable power plants each one characterized by a reasonable trading strategy 
strictly correlated to the technology of the power plant and to the external and 
internal factors of the market sessions. The entire simulation employs an innova-
tive approach to replicate continuous interactions among agents, departing from 
the traditional discrete time-frame method.

The paper is structured as follow: Sect. 2 describes the intraday market focusing 
on continuous trading and underlines the main characteristics resulting from bidding 
in continuous throughout statistical analyses of historical market data. In Sect.  3, 
a detailed description of the proposed agent-based model is presented. Section  4 
highlights the results achieved by the algorithm implemented while conclusions are 
explained in Sect. 5.

2 � Intraday market

In this section, firstly the intraday market is described in detail then the relevant 
aspects of continuous market characteristics are highlighted.

2.1 � Market description

In Europe, the electricity spot market for hourly delivery products is divided into the 
day-ahead and intraday sessions set up in a temporal sequence [21]. The day ahead 
market is coupled among the majority of European countries and is based on a two-
sided auction. There the market participants can submit bids for the sell and buy side 
until 12am. CE(S)T of the previous day (d-1) of the delivery for all 24 hourly deliv-
ery products (Fig. 1).

Fig. 1   Assumed position of 
orders stored in the order book
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3  h after the day-ahead market closing, the intraday market starts (see Fig-
ure 2). Here, thanks to the single intraday market coupling (SIDC), agents of all 
European bidding zones have the possibility to exchange energy until 1 h before 
the delivery time using the continuous trading mechanism.

But since different studies such as [22] show that a hybrid model composed 
of a combination of auctions and continuous trading is more efficient in terms of 
liquidity, price volatility and market depth some countries decided to introduce 
different number of auctions besides continuous trading. As well as in the day-
ahead market auction, during intraday auctions agents can submit orders during a 
certain time-frame. Once the trading time closes, all bids are aggregated and cre-
ate the supply and demand curves. The intersection of the two curves forms the 
so-called system marginal price that is the uniform price of the auction market 
session. This system provides perfect price transparency but does not allow mar-
ket participants to adjust their position after the gate closure of the auction ses-
sion. Still, the continuous intraday trading is the most important option, and also 
the only option in important countries like France or Germany. Trading starts at 
15.00 of d-1 for hourly products and at 18.00 of d-1 starts the cross-border trad-
ing within the SIDC platform. Players can exchange energy in the Single Intra-
day market until 1 h before the delivery time and even closer to the real time in 
some market bidding zones (i.e. in Germany ID market players can trade until 
5  min before the delivery). Here, agents can submit bids at any time until 1  h 
before the real-time of delivery and they can trade among all European countries 
as long as there is enough transmission capacity available. All orders are stored 
in the shared order book (SOB) while the capacity is collected and updated in 
the capacity management module (CMM) and the information about concluded 
trades are available in the shipping module (SM). Order’s matching is a deter-
ministic process that follows the conclusion of trading. To obtain a match, orders 
must present the same contract referred to that specifying the product (hourly) 
and the delivery time and coming from the opposite side (sell/buy). The matching 
procedure follows the first-time first-served rule by which a transaction occurs 
immediately when the price of an entry buy (sell) order is higher (lower) than 
the price of a sell (buy) order already stored in the order book [23]. The matched 
price corresponds to the price of the order already presents in the book. Matching 
takes place always at the best possible price so for instance, a buy order will find 
a match with the cheapest sell order presented in the order book while a sell one 
will find a match with the most expensive buy order existing in the book.

Day-Ahead 
Auction

d − 1,
12:00 

Intraday 
Continuous 

starts 

d − 1,
15:00 

SIDC
starts 

d − 1,
22:00 

SIDC
closes 

d, 
s − 60 min

Market 
closes 

d, 
s − 30 min

Delivery

d, s 

Fig. 2   The daily routine of a typical European electricity spot electricity market. d corresponds to the day 
of the delivery and s corresponds to the hour of the delivery
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Once an order is executed it can generate multiple matches until its quantity reach 
zero or there are no more conditions for other matches. If a submitted order doesn’t 
find a match it can be stored in the order book. Order storage follows the price-time 
merit order, so sell (buy) orders are stored from the lowest (highest) to the highest 
(lowest) price as shown in Fig. 1.

If two orders coming from the same side present the same price, the first order 
submitted gets priority. Agents can apply particulars execution restrictions to an 
order submitted such as:

•	 Fill or Kill (FOK) restriction, by which the order will be deleted by the system if 
it is not immediately en entirely matched

•	 Immediate or Cancel (IOC) restriction, by which the order must be executed 
immediately even partially and the remaining quantity will be deleted by the sys-
tem

•	 All or Nothing (AON) restriction by which the order remains in the order book 
but can be executed only entirely [24]

Agents can also decide to submit the so called ’market orders’ which are executed 
immediately at the best price available in the market. In the following section, the 
most significant continuous trading market characteristics are explained.

2.2 � Market characteristics

Different studies have been led so far on historical orders submitted by agents dur-
ing the continuous trading sessions of the single intraday market coupling and many 
considerations has been carried out about the main aspects of this type of energy 
market. First of all, even if traders can trade continuously from the day before the 
delivery time, they use this market mainly during the last hours available for submis-
sion. This behavior stated in [2] is proved in [25] with Figure 3.

A second relevant aspect is the type of orders and prices submitted by differ-
ent agents based in their technologies. The agents are divided into two categories 
such as dispatchable (i.e. thermal) and non-dispatchable (i.e. wind) power plants, 
researches highlighted that dispatchable players submit regular orders around their 
marginal costs MC deciding if buy or sell energy comparing its production costs 
to the current market price MP . In particular if MC > MP they submit buy offers 
to buy energy at a cheaper price instead of producing it at higher costs otherwise 
they submit sell offers to gain higher revenues. An important consideration is that 
even if a power plant is accepted to bid in the day-ahead market, it will not sell its 
entire capacity but it will keep some percentage of energy available to sell during 
the continuous trading if market conditions can increase its profits. However non-
dispatchable players, without any production costs, submit mostly orders at the best 
market price so at Pmin for sell orders and Pmax for buy orders because they need to 
adjust their position after a new forecast production and they want to be sure to enter 
in the market. Dispatchable power plants are also willing to leave the orders in the 
order book until the end of the market session because an eventual transaction will 



183OPSEARCH (2025) 62:178–197	

D
en

si
ty

 tr
aj

ec
to

ry
   

 

Minutes to delivery

Fig. 3   Density trajectory refers to all orders submitted from 2020-01-01 to 2020-12-31 for delivery prod-
ucts across all 24 h of the market
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Fig. 4   Prices of orders submitted by a thermal power plant during a session of continuous trading in the 
Italy south bidding zone
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provide revenues, while non-dispatchable power plants retire immediately the order 
if no matches occur to don’t sell (buy) energy effectively at the minimum (maxi-
mum) market price. This behavior is proved in Figure 4 and 5 where the price of 
orders submitted by a thermal and a wind power plant during a session of continu-
ous trading in the Italy south bidding zones is shown.

Moreover, it is also stated that an increasing of natural resources, such as wind 
or solar, during the intraday session decrements the market price compared to the 
system marginal price that comes out from the day ahead market while a decrease 
of natural resources increments the current market price. The reason of this price 
fluctuation results from the fact that when renewables forecast a better power pro-
duction, they can sell the excess of energy at the lowest market price and so thermal 
power plants decide to buy energy from them avoiding production costs. On the con-
trary, when renewables forecast a decrease of production they must buy energy at 
any price to don’t incur into penalties imbalances and so the most expensive thermal 
power plants can sell their energy with high prices.

Additionally, we want to mention that the continuous intraday market shares 
not only design characteristics of financial markets but also share one important 
property. This is market efficiency. Several recent articles show that the European 
intraday markets are efficient, or extremely close to efficiency, see e.g. [26], [27] In 
mathematical terms this means that the price process satisfies the martingale prop-
erty, i.e. E[Pt+h|Ft] = E[Pt|Ft] for h > 0. Thus, an appropriate agent-based electricity 
market model should reflect this behavior.
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Fig. 5   Prices of orders submitted by a wind power plant during a session of continuous trading in the 
Italy south bidding zone
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3 � Agent based model

Our agent based model shall be able to cover realistic behavior seen on the mar-
ket. We assume only rational agents.

We consider N agents. We assume that there are two groups of agents, 
Nconventional fuel powered and NRES renewables, i.e. N = Nconventional + NRES. Thus, 
we ignore agents which hold portfolios of those physical assets. For non-dis-
patchable agents, we opted to simulate an energy production forecast for wind 
power plants by replicating a specific function described in Chapter 4.1 to form 
an energy production forecast curve. Currently, solar power plants are excluded 
from this simulation; however, their strategy would mirror that of the wind agent, 
contingent upon the solar forecast instead of the wind forecast. Consequently, 
incorporating a solar production forecast is not anticipated to significantly 
alter any results in this simulation. Since the ID market starts after the closing 
of the day-ahead session, at the beginning of the simulation, the supply–demand 
aggregation curve generating form the day-ahead auction is set up in order to 
point out which generators have been accepted in the market, which one have 
been excluded and which is the system marginal price. We assume that the n-th 
agent has a quantity qt,n that is already sold/bought at time t, often this referred 
as traded quantity. We consider the convention that positive quantity represents 
sold volumes and positive quantity refer to bought volumes. Thus, positive qt,n 
values should be associated with the generation of power and negative ones with 
consumption. For notation convenience, let qt = (qt,1, qt,2,..., qt,N) the traded quan-
tity vector at time t. Further we introduce with qmin

t
= (qmin

t,1
, qmin

t,2
,… , qmin

t,N
) and 

qmax
t

= (qmax
t,1

, qmax
t,2

,… , qmax
t,N

)  the minimum and the maximum quantity that can be 
delivered/consumed given the maximum flexibility of the n-th without going into 
imbalance. For a 100 MW conventional power plant that has at time t still all flex-
ibility to decrease the output to 0 this is qmin

t,n
= 0 andqmax

t,n
= 100 . For fluctuating 

renewables.
like wind and solar is qmax

t,n
usually a random variable due to unknown weather 

conditions. However, as pointed out by [28], risk-neutral agents optimize profit 
by bidding the median of the underlying distribution. We will adopt this behavior 
here as well. Note that if an outages of a conventional power plant happens, we 
get qmax

t,n
= 0 . Thus, under consideration of outages also qmax

t,n
 is a variable for fuel 

power plant that refers to a planned outage. If we consider a retailer agent, we 
have qmax

t,n
= 0 and qmin

t,n
 as the volume of the load profile of the asset

For the agent-based model we will assume for simplification (first) that only 
small minimal units are traded by the market participants (e.g. 1 MW). Thus, if 
an agent wants to sell or buy large volumes he has to place multiple orders. This, 
restriction is reasonable for efficient markets as multiple small trades have smaller 
volatility than one large one with the same volume. Still, this assumption could 
be easily relaxed but does not substantially change the results.

Due to the continuous trading nature theoretically, all agents could do an action 
every tiny time unit (e.g. milli seconds and even below). However, for model-
ling purposes, we assume that every agent checks if he may perform an action 
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on the market (e.g. submitting an order) just at specific potential action times. 
We denote the potential action times by τs,n for the s-th potential action of the n-
th agents. We consider τ0,n = 0 as initialization action. This is when every agent 
submits an initial bid to fill the order book when trading starts. We assume that 
the initial orders are based on the day-ahead market results. So all generators that 
have been accepted to bid in the day-ahead session fill the order book with buy 
orders, while excluded generators fill the order book with sell offers. Bit since, 
at the beginning of the session, wind agents are perfectly balanced, only thermal 
power plants fill the order book because they still have some capacity left avail-
able to sell or to buy. The initial market price corresponds to the system marginal 
price coming from the day-ahead auction result.

Further, as we restrict to equal sized bid volumes we can formally describe the 
order book by a pair of two ordered vectors. This (Bt, St) with Bt = (Bt,1,… ,Bt,MB

t
)  

for the buy side and St = (St,1,… , St,MS
t
)   for the sell side at time t with Mt and Mt 

indicating the corresponding length. We sort Bt increasingly and St decreasingly so 
that B1,t is always the best (= cheapest) buy order and S1,t is the best (= most expen-
sive) sell order. Obviously, it holds B1,t < S1,t otherwise there would be a match with 
a corresponding trade. After the initialization at t = 0 described above the B0 con-
tains 18 orders and S0 contains 2 orders. Thus, the market clearing price of the day-
ahead market is separating the buy and sell orders. This method facilitated the accu-
rate replication of the real order book mechanism. Now, a crucial part of our model 
is the definition of the potential action times τs,n. We assume that after evaluating a 
potential action of agent n the corresponding n-th agent determines its new potential 
action time. Thus, we do not allow that an action of other market participants trig-
gers an adjustment of current potential action time. But, again this is plausible in 
efficient markets. Further, actions might also be triggered by external events e1,n,..., 
eE,n relevant for the agent n, such as (partial) outages or forecast update times. Given 
time t we can define the next event after time t by.

en(t) = min{ei,n|ei,n > t, i = 1, . . . , E}. Formally, we define the potential action 
time by

for agent n, step s and tiny time ϵ > 0. We choose ϵ = 0.01. In addition we initial-
ize τ0,n = 0 as time for the initial action. The fraction in (1) gets smaller if the nomi-
nator gets smaller, i.e. we are getting closer to delivery. This definition can be used 
to define the next potential action time at time t of agent n by

(1)�s,n = min
{
en
(
�s−1,n

)
, �s−1,n + �s,n

}

(2)𝛿s,n =

⎧⎪⎨⎪⎩

max

�
T−𝜏s−1,n

qmax
𝜏s−1,n ,n

−q
𝜏s−1,n ,n

, ϵ

�
, qmax

𝜏s−1,n,n
> 0

max

�
T−𝜏s−1,n

q
𝜏s−1,n ,n

−qmin
𝜏s−1,n ,n

, ϵ

�
, qmax

𝜏s−1,n,n
< 0

(3)𝜏n(t) = min{𝜏s,n|𝜏s,n > t, s = 0, 1, ...}
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The corresponding vector τ (t) = (τ1(t),..., τN (t)) determines the next acting 
agent at time t. This is

Thus, the agent n(t) is checking for a potential action at time τn(t) and even-
tually performs an action. Afterwards, this agents computes her next potential 
action time by (1). These specific formulas guide the entire algorithm to precisely 
recreate a continuous time frame, aligning with the needs of reality and avoiding 
any discrete time operations. Now let us elaborate of the decision potential action 
and how the action changes the order book.

First, we remark that the action depends to some extent on the type of agent.
When a market player submits an order he decides if submitting a buy or a 

sell offers depending different factors: first of all, players aim at keep the posi-
tion declared at the end of the day ahead market, so if they register an increasing 
(decreasing) of the energy production they will try so sell (buy) energy to fill the 
gap. Secondly, the type of order and the decision of submitting is depending on 
the marginal costs and on the current market price, if marginal costs are higher 
than the market price there is no reason to sell energy because the revenues will 
be lower than the production costs. Third, all agents submit trying to maximize 
their revenues. In addition, the submission decision varies according to the par-
ticular technology. Due to the fact that a wind power plant doesn’t have produc-
tion costs, if it forecasts a decrease of power production it will try to buy the gap 
of energy at the maximum price allows in the market Pmax, on the other hand, 
when it forecasts an increase of production it will try to sell the surpluses at 0 
€/MWh. In the event that the order doesn’t find immediately a match, the wind 
agent retire the order from the order book to don’t effectively buy energy at a high 
price or sell its production at 0 €/MWh. A thermal power plant submits orders 
always at its marginal costs MC, deciding to buy or sell the energy available 
depending on the current market price MP . If MC > MP it tries to buy energy so 
it can keep its position buying energy at a cheaper price than its production price, 
while if MC <= MP it tries to sell energy increasing its revenues. The decision to 
buy or sell energy also affects the volumes qn to trade and consequently the prior-
ity to make a decision an. For instance, a thermal power plant that has 20% of its 
maximum capacity left after the closing of the day-ahead market, it will decide to 
submit more (less) often if its marginal costs are higher (lower) than the market 
price. This approach links market consequences to both external factors (power 
production forecasts associated with weather agents) and internal factors (market 
price dynamics). 

The market price at the beginning of the continuous trading coincides with 
the system marginal price coming from the day-ahead market result. So, all 
power plants that have been accepted in the day-ahead session could try to buy 
the quantity declared to sell previously if the match price of the transaction 
decrease during the intraday market, or they can sell the remain quantity if the 
transaction price of the matches increase. All power plants out of the day-ahead 
market can try only to sell energy at the beginning of the market and they can 

(4)n(t) = arg min
n=1,…,N

{�n(t)}
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turn into buyer agents only if they manage to sell a volume of energy and then 
the transaction market price becomes lower than their marginal costs.

Once the simulation starts, all thermal power plants submit an order to fill 
the order book. In particular all power plants accepted in the day-ahead market 
submit a buy order while the others submit a sell order. The last power plant 
accepted in the day-ahead market can decide if submitting a buy or sell order 
because its marginal costs are equal to the system marginal price. Every time a 
thermal agent got a match, it immediately submit an order in the opposite direc-
tion. For instance, if an agent n who sold (buy) energy gets a match, he imme-
diately submits a buy (sell) order at the same price reduced (increased) by the 
transaction costs. This behavior is due to the fact that once an agent sells (buy) a 
quantity, it has immediately a quantity available to buy (sell).

The algorithm governing the formulation of agents’ pricing strategies 
was crafted and developed using MATLAB. Simultaneously, the order book, 
designed to store and organize submitted offers, was implemented using the GO 
language. Seamless communication between these two algorithms is maintained 
throughout the simulation process.

3.1 � Wind prevision

In this subsection, the mathematical formulas used to replicate wind power pro-
duction forecasts Wt,i at time t for agent i are reported. The Wt,i might be inter-
preted as a matrix with NRES rows and the number of previsions updates (T ) 
columns. At the beginning of the session, every renewable agent i has initially 
expected power production E[W0,i] = µ0,i corresponding to the energy declared 
in the day ahead market. While at the end of the trading session, they will have 
a different power production WT,i with the same conditional expectation on the 
market opening, i.e. E[W0,i] = E[WT,i|F0]. In particular, we assume for the first 
column of the matrix a multivariate distribution around the initial value W0 = 
(W0,1, . . . , W0, N  )′ ∼ NN  (µ0, Σ0) with initial expectation µ0 = (µ0,1, . . . , µ0,N  
)′ and covariance matrix Σ0 which describes the (usually) positive correlation 
between the wind farms.

During the trading session, we assume a specific mean reversion update for 
the wind information: For each time step t the expected power production µt,i = 
E[WT,i|Ft] of the wind generators i is getting closer to the expected wind genera-
tion µT,i = E[WT,i] at final time T . More precisely we choose.

Wt,i = µT,i + ϕt(Wt,i − 1) − µT,i) + εt,i
with time-varying standard deviation of the innovation σt = 2✓ T −t + 2, time-

varying mean reversion
parameter ϕt = 1 ✓ T −t + 1 and εt,i ∼ N1(0, σt). Thus, the mean reversion 

decreases ϕt and the standard deviation σt when getting closer to delivery T to 
map a more realistic setting. However, it is clear that the wind power process 
could be replaced by a more sophisticated process, especially those estimated 
from real data.
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4 � Results and discussion

In this section, the results obtained from one scenario simulation of the agent-based 
model are shown and discussed.

The analyzed scenario considers 10 wind and 20 thermal plants. The marginal 
costs and the maximum capacity of each technology are reported in Table 1

The simulation starts with the supply–demand curve resulting from the day-ahead 
market auction for initialization of the intraday market, see Figure 6. On the x-axes, 
the aggregated volume of each generator ordered from the cheapest to the most 

Table 1   An example table of 
30 agents

Agent ID Type Marginal costs 
[EUR/MWh]

Maximum 
capacity 
[MW]

1 Wind 0 50
2 Wind 0 110
3 Wind 0 76
4 Wind 0 51
5 Wind 0 112
6 Wind 0 169
7 Wind 0 94
8 Wind 0 68
9 Wind 0 87
10 Wind 0 186
11 Coal 20 71
12 Coal 40 191
13 Coal 60 50
14 Coal 80 177
15 Coal 100 117
16 Coal 120 78
17 Coal 140 60
18 Coal 160 54
19 Coal 180 93
20 Coal 200 126
21 Natural gas 19 163
22 Natural gas 38 164
23 Natural gas 57 195
24 Natural gas 76 135
25 Natural gas 95 79
26 Natural gas 114 167
27 Natural gas 133 181
28 Natural gas 152 129
29 Natural gas 171 74
30 Natural gas 190 135
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expensive and the total demand are represented, while in the y-axes there are the 
marginal costs for all generators. The intersection between the demand and supply 
curve delimits with generators have traded during the day-ahead market and which 
one is excluded, the corresponding y-value of the intersection point determines the 
system marginal price as well as the starting market price for the continuous ID 
market.

The last generator accepted in the day ahead market is the thermal 19, so thermal 
20 and 30 are excluded and they didn’t sell energy while the system marginal price 
is P 0 = 180€/MWh.

In Fig. 7 is presented the position of each generator at the end of the day ahead 
and at the beginning of the intraday market at t = 0.

As already mentioned all accepted thermal power plants retain a small percentage 
of their total capacity to eventually sell it during the continuous trading. Wind power 
plants position corresponds to the power production forecast at t = 0. Once the ID 
market starts they forecast a new power production at any time stamp and conse-
quently they try to sell or buy energy to maintain the initial position at the end of 
the continuous session. In Figure 8 the energy production forecast during the trading 
time-frame of each wind plant is reported.

At the beginning of the session all agents forecast a certain production but an 
increasing of wind energy during the day leads to raise the power forecast for almost 
all generators. This states that wind agents will try to sell the excesses of energy at 
Pmin, the most expensive thermal power plants will not sell energy and some of the 
thermal accepted in the day ahead market will reduce their production deciding to 
buy energy at a cheaper price instead of producing it. In Figure 9 the order book at 
each time stamp is represented combining with the match price trading.
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Fig. 6   Supply–demand curve as in the supply-stack model used for initialization
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The match curve starts from the initial market price and decrease after some 
hours as expected. The order book presents a bigger number of orders close to the 
delivery because agents that didn’t manage to exchange their energy increase their 
action’s frequency and since the market price is decreasing the thermal agents with 
high costs are able to buy energy at their marginal price. Figure 10 refers the posi-
tion of each generator at the end of intraday market tf = T .
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As it was pointed out, wind power plants increase their production to sell 
energy to the most expensive thermal technologies that participated in the day 
ahead market. The previously excluded thermal power plants don’t have any vol-
ume of energy to buy so they remain turn off while the thermal plants that have 
marginal costs lower than the market price manage to sell their entire capacity 
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Fig. 9   Order book and match price trading
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successfully. To better understand the behavior of each market operator Figure 11 
shows at which time stamp t an agent submit a bid and when it finds a match.

Each agent that find a match at every submission does not increase the action 
frequency like agent 11 and agent 21 that are the cheapest thermal power plants of 
the market. Agents that don’t find a match increase their action frequency approach-
ing the delivery time like agent 10 or 27. For instance, it is interesting to notice the 
behavior of agents 26 that at the beginning of the market tries to sell energy unsuc-
cessfully but when the market price increase a bit he menages to sell at every action. 
Agent 16 is very active during the last 6 h of the market when the market price is 
around its marginal costs (120€/MWh) and 140€/MWh but it manages to sell all 
energy declared at the beginning of the ID market only during the last hour when the 
market price is stable around 140€/MWh.

4.1 � Outages

It interesting is also to notice what happens in case of an outage of a thermal power 
plant. Herein one of the cheapest thermal plants with marginal costs of 40€/MWh 
faces an outage at hour 8, 2 h before the end of the delivery. Consequently, it turns 
from a seller to a buyer to avoid unbalances as shown in Figure 12.

Focusing on line 12, it can be noticed that after the outage, the thermal power 
plant strongly increases the number of actions trying to buy the energy it needs. 
Moreover, prices of energy increased and some players, like thermal 28, change 
their strategy of selling energy instead of buying it. In fact, thermal 28 marginal 
costs amount to 152€/MWh and the prices of the energy after the outage increase 
around 150 and 160 €/MWh as noticed in Figure 13.
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5 � Conclusion

This work develops an agent-based model able to simulate the continuous trad-
ing energy market limited to a bidding zone with thermal and wind power 
plants. Each agent can trade energy along a centralized order book able to store 
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and match all orders submitted. At each iteration, the order book is updated and 
orders are stored with a price-time merit order mechanism. Once a match occurs, 
the order book gives back the price and the quantity of the energy exchanged, 
and the market price is updated. Players are supposed to trade rationally aiming 
at maximizing their revenues and keeping their position balanced and two price 
strategies are carried out outlining thermal and wind power plants. Results show 
that the implemented algorithm replicates the main intraday continuous market 
characteristics highlighted by various statistical analyses of historical orders 
taken from the German, Spain and Italian ID markets. Starting from the results 
of the day-ahead market, the model first implements a function that performs the 
forecast of the wind power production and then studies the effect on prices and 
the agent’s action. A fundamental role is playing the renewable energy capac-
ity production and the thermal marginal costs. In a scenario in which the wind 
production increases, the most expensive thermal power plants turn off and buy 
the energy declared at the end of the day-ahead market from the wind plants that 
can sell at 0 €/MWh, while the cheapest power plants sell their entire capacity as 
long as their marginal costs are still lower than the market price. By contrast, if 
a decrease of wind production is registered, wind power plants will try to keep 
their position by buying energy from the thermal power plants and the market 
price increase significantly. Furthermore, the algorithm shows that the number 
of transactions increases approaching the real time delivery since players that did 
not find a match previously have to increase their number of submissions to sell 
or buy all energy needed. This also replicates the reality when players know bet-
ter their position close to real-time and try to keep their position balanced sub-
mitting many orders. Additionally, the elaboration shows that in case of an out-
age of a thermal power plant, the price of energy increases significantly because 
agents suddenly need to buy the amount of energy previously declared at the end 
of the intraday market to not end the intraday session unbalanced. He increases 
her number of actions and other players characterized by higher marginal prices 
change their behavior trying to sell energy instead of buying it.

Researchers and professionals can utilize this model to explore diverse sce-
narios involving the integration of dispatchable and non-dispatchable power 
plants within a continuous trading energy market. Future research avenues may 
include the introduction of additional technologies such as batteries and hydro 
power plants. Moreover, incorporating an algorithm capable of replicating multi-
ple zones could facilitate the study of potential congestion consequences.
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