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Super-inertial interest rate rules are not
solutions of Ramsey optimal policy

Jean-Bernard Chatelain∗and Kirsten Ralf†

August 11, 2025

Abstract

This paper demonstrates that the equilibrium determined by the commitment of a
Central Bank to a non-stationary ("super-inertial") interest rate rule (where the sum
of the parameters of the lags of the interest rate exceeds one and does not depend
on the persistence of shocks) does not correspond to the unique bounded solution
and the stable equilibrium of Ramsey optimal policy for the new-Keynesian model.
It always destabilizes inflation because of the rounding errors and the measurement
errors of the parameters of the monetary policy transmission mechanism. By contrast,
the commitment of a Central Bank to a stationary interest rate rule rule (where the
sum of the parameters of lags of the interest rate is strictly below one and depends on
the persistence of shocks) corresponds to the unique bounded solution and the stable
equilibrium of Ramsey optimal policy.
Postprint: Revue d’économie politique (2023), 133(1), 119-146.
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Titre: Les règles de taux d’intérêt super-inertielles ne sont pas des solu-

tions des politiques optimales de Ramsey.
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Résumé: Cet article démontre que l’équilibre déterminé par l’engagement d’une

Banque Centrale à suivre un règle de taux d’intérêt directeur non stationnaire "super-
inertielle" (où la somme des paramètres des taux d’intérêt passés dépasse un et ne
dépend pas de la persistence des chocs) ne correspond pas à une solution de l’équilibre
stable d’une politique monétaire optimale de Ramsey. Elle déstabilise toujours l’inflation
du fait des erreurs d’arrondis et des erreurs de mesure des paramètres du mécanisme
de transmission de la politique monétaire. En revanche, l’engagement d’une Banque
Centrale à suivre une règle de taux d’intérêt directeur stationnaire où la somme des
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paramètres des taux d’intérêt passé est strictement plus petite que un et dépend de
la persistence de chocs correspond à une solution de l’équilibre stable d’une politique
monétaire optimale de Ramsey.

1 Introduction

Ramsey optimal stabilization policy serves as a reference for determining the values of prede-
termined and non-predetermined macroeconomic policy targets, such as inflation and output,
and the policy maker’s instruments for a given policy transmission mechanism of the pri-
vate sector. The resulting welfare is usually higher than for alternative stabilization policies,
except in the case of a social planner (Ljungqvist and Sargent (2012)).
Optimizing private agents have predetermined state variables (such as their stock of

wealth) and non-predetermined decision variables (such as their flow of consumption). The
policy maker sets policy instruments, such as interest rates or tax rates. A social planner
maximizes welfare, choosing jointly and simultaneously the values of the private sector’s
non-predetermined variables and the policy maker’s policy instruments.
Ramsey optimal policy, however, is a Stackelberg dynamic-game equilibrium with the

policy maker as the Stackelberg leader and the private sector as the Stackelberg follower.
The private sector’s predetermined and non-predetermined variables are the policy maker’s
targets. Observing the private sector’s behavior as the leader, a policy maker can improve
private agents’welfare by choosing current and future values of his own policy instruments
(which are not under control of private agents). The policy maker performs two optimizations
which may lead to time-inconsistency if he re-optimizes in the future (Simaan and Cruz
(1973)).
In this paper we compare two different policy transmission mechanisms. In the first

model, the new-Keynesian Phillips curve is taken as the transmission mechanism; inflation is
the policy target; and the output gap serves as the policy instrument. In this setting, Clarida,
Gali, and Gertler (1999) and Gali (2015) found an auto-regressive stationary representation
of a Ramsey optimal policy rule with the sum of auto-regressive parameters strictly below
one. In addition, one policy-rule parameter depends on the auto-correlation of an exogenous
cost-push shock, for example, foreign energy prices. It is optimal to increase the sensitivity
of the policy instrument to a persistent exogenous shock in order to decrease the sensitivity
of the policy target (inflation) to this cost-push shock whenever the shock is more persistent
(Chatelain and Ralf (2022)).
The second transmission mechanism is modeled as a new-Keynesian Phillips curve to-

gether with an Euler consumption equation. There are two policy targets, namely inflation
and the output gap; and the funds rate serves as the policy instrument. Giannoni (2001,
p.34), Giannoni (2014, section 4.1 and appendix A.5), and Giannoni and Woodford (2003),
henceforth GW, found an auto-regressive non-stationary representation of a Ramsey optimal
policy rule such that the sum of the auto-regressive parameters is strictly larger than one.
They label this representation a “super-inertial rule". A super-inertial rule is thus defined
as a non-stationary rule with an eigenvalue larger than one which violates the condition that
all eigenvalues of the dynamic system of Ramsey optimal policy should be lower than one.
This implies a counter-intuitive advice for stabilization policy: “Because of a root larger
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than one, the optimal policy requires an explosively growing response of the interest rate to
deviations of inflation and the output gap from the target" (Giannoni, 2001, p.36). Further-
more, the parameters of this super-inertial policy rule do not depend on the auto-correlations
of a stationary cost-push shock or of a productivity shock included in the new-Keynesian
model.
However, “super-inertial rules" spread the idea that a destabilizing non-stationary interest-

rate rule is a result of Ramsey optimal stabilization policy. For example, Creel and Hubert
(2015) and Kara (2007) present a super-inertial policy rule as a benchmark equation for their
estimations of Taylor rules. Super-inertial policy rules are mentioned in textbooks, such as
Villieu (2015, p.354) and taught to graduate students. Simulations assuming super-inertial
optimal funds-rate rules are commonly done for other models of transmission mechanisms in
several central bank models (Adolfson et al. (2014), Chung et al. (2015)).
This paper explains why a super-inertial policy rule is not the mathematical solution of

the optimal program written by GW. According to Ljungqvist and Sargent (2012), Clarida
Gali Gertler (1999) and Gali (2015), Ramsey optimal policy under commitment implies that
the dynamics of the system have a stable equilibrium. Because GW destabilizing super-
inertial rule implies an unstable equilibrium, it is not the solution of Ramsey optimal policy.
More precisely, even with the unbelievable assumption of the perfect knowledge of struc-

tural parameters, one cannot avoid rounding errors for computing the optimal initial jumps
of non-predetermined variables which are non-linear functions of these structural parameters
with square roots and fractions. In our simulations, GW super-inertial stops being a valid
approximation of Ramsey optimal policy after six quarters for a 7 decimal rounding error
and after thirty-six quarters for a 16-decimal rounding error. For a plausible 10% error on
the auto-correlation parameter of the cost-push shock, the path of policy targets explodes
after one to three quarters. Then, following GW super-inertial rule leads very rapidly to
large loss relative to the Ramsey allocation.
As a remark, Hansen and Sargent (2007) robust Ramsey optimal policy under com-

mitment implies more structure than the stability of the equilibrium required for Ramsey
optimal policy under commitment. It involves selecting the optimal feedback rule parameters
from a Stackelberg dynamic game between the policy maker and an evil agent.
To solve the model, we use the following algorithm to determine the optimal policy rule

based on Ljungqvist and Sargent (2012, chapter 19), Chatelain and Ralf (2019 and 2020),
Hansen and Sargent (2007, chapter 5).
- In step 1, a Hamiltonian system of equations with the policy transmission mechanism

equations of the policy maker’s state variable and the Euler equations for the policy maker’s
Lagrange multipliers of the state variables is derived. This system of dynamic equations is
related to an unstable equilibrium. Its Hamiltonian symplectic matrix H has a saddle-point
equilibrium property, with half of its eigenvalues inside the unit circle and the other half
outside the unit circle.
- In step 2, an optimal-policy proportional feedback rule for the current and future

periods is found. To this end, one has to seek the stable subspace of the Hamiltonian matrix
H, solving a Riccati equation for the unique optimal welfare matrix P, which determines
a linear relation between the costate and the state variables. Using P, one determines
the unique optimal feedback matrix of policy rule parameters F, related to the benchmark
representation of optimal policy rules where the policy instruments respond to the current
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values of the policy maker’s state variables including auto-regressive forcing variables. This
paper highlights that this key step is missing in GW. Let us cite Ljungqvist and Sargent
(2012, p.781):

"We seek a “stabilizing”solution of (19.3.11) [the linear quadratic regulator
Hamiltonian system], i.e., one that satisfies:

t=+∞∑
t=0

βty
′

tyt < +∞.

[where policy target variables are in vector yt, taking into account a discount
factor β in the loss function]. A stabilizing solution satisfies µ0 = Py0 [that the
Lagrange multipliers µ0 are a unique linear combination to the policy targets
y0], where P solves the matrix Riccati equation (19.3.5). The solution for µ0
replicates itself over time in the sense that µt = Pyt."

- In step 3, the optimal initial conditions for non-predetermined state variables are com-
puted as linear functions of predetermined variables using blocks of the matrix P.1

- In the optional step 4, a representation of optimal policy rules is looked for, where
the policy instruments respond to lags or leads of state variables, the policy instruments, or
other variables, using linear substitutions of current values of state variables.
Reasons for the contradicting results of Ramsey optimal policy and super-inertial rules

are then:
(a) GW omit step 2 (seeking a proportional feedback rule solving a Riccati equation) so

that the dynamics of the state variables evolve around an unstable equilibrium.
(b) Using step 3, the optimal initial values of inflation and the output gap are found

by multiplying a matrix of non-linear functions (with square roots and fractions) of all
parameters with the vector of initial values of the auto-regressive shocks.
(c) These optimal initial conditions allow the GW super-inertial rule to approximate the

Ramsey optimal path only for a small number of periods, because the GW Hamiltonian
system of step 1 is locally unstable. Even if the policy maker knows all parameters with
an infinite precision, because the initial conditions of step 3 are non-linear functions (with
fractions and square roots) of these parameters, the probability of rounding errors is equal
to one for numerical simulations. Therefore, numerical simulations of the super-inertial GW
solution always imply to sub-optimal exploding paths after some periods. On two examples,
we show that a 7-decimal rounding leads to exploding paths after 7 periods and a 16-decimal
rounding leads to exploding paths after 33 periods. On two other examples, we consider a
more realistic confidence interval allowing a 10% measurement error on the auto-correlation
of the cost-push shocks by the policy maker. This 10% measurement error leads to exploding
paths after 2 to 4 periods with GW super-inertial rule.
In practice, there always exist confidence intervals for the parameters of the policy trans-

mission mechanism. Therefore, a commitment to a super-inertial policy rule would always

1Re-optimizing step 3 next period may contradict next period’s step 2 rule which was defined in the
current period, so that the policy maker has to commit himself to a probability of re-optimizing in the future
strictly below one (Schaumburg and Tambalotti (2006)).
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lead policy makers to do exactly the opposite of their objective: to maximize a loss function
to an infinite loss instead of minimizing it.
(d) By contrast, it is feasible to find a stationary representation of the Ramsey optimal

policy rule found in step 2 where the parameters of the policy rule depend on the auto-
correlation of shocks and where the sum of the parameters of the lags of the policy instrument
are strictly below one (step 4).
A GW super-inertial solution (using the optimal initial conditions found in step 3 without

solving the Riccati equation of step 2) can be used for any policy transmission mechanism
for any policy instrument. It is not confined to the new-Keynesian two-equations model
and an interest rate rule, which may have been irrelevant during the period of a binding
negative lower bound for funds rate for some countries. For example, we show that it can be
computed in the case of the new-Keynesian Phillips curve single equation with the output
gap as the policy instrument (Clarida, Gali and Gertler (1999)).
The rest of the paper is organized as follows: Section 2 compares the stability properties

of a super-inertial versus an inertial rule for the order-two transmission mechanism model
of the new-Keynesian Phillips curve model with a cost-push shock (Clarida Gali and Gertler
(1999)). Section 3 compares the stability properties of a super-inertial versus an inertial rule
for the order-four transmission mechanism of the new-Keynesian model with consumption
(GW). Section 4 concludes.

2 New-Keynesian Phillips Curve Transmission Mech-
anism

2.1 Ramsey optimal policy versus super-inertial rule

Clarida, Gali and Gertler (1999) and Gali (2015, chapter 5) solve Ramsey optimal policy
for a new-Keynesian Phillips curve and an auto-regressive cost-push shock where inflation
is the policy target and where the output gap is the (intermediate) policy instrument. We
compute a super-inertial rule applying the GWmethod on this transmission mechanism. We
then compare the stability properties of each equilibrium.
The monetary policy transmission mechanism is a new-Keynesian Phillips curve where

current inflation is positively correlated with discounted expected inflation (discount factor
β, 0 < β ≤ 1), current output gap (slope parameter κ > 0), and an auto-correlated cost-push
shock ut:

πt = βEtπt+1 + κxt + ut ⇔ Etπt+1 =
1

β
πt −

κ

β
xt −

1

β
ut, (1)

where E0 is the expectation operator at date 0 and t is a period index. Inflation in log
deviation from its equilibrium value at date t is denoted πt. Output in log deviation from
its target at date t, i.e. the output gap, is denoted xt. The exogenous stationary and
predetermined cost-push shock ut is auto-regressive of order one ( 0 < ρu < 1) with a given
initial value. Disturbances εu,t have zero-mean and are independent and identically normally
distributed:

ut = ρuut−1 + εu,t where εu,t is i.i.d. N
(
0, s2u

)
, u0 given. (2)

5



This transmission mechanism is a dynamic system of order two, including two policy
maker’s state variables (πt,ut) with one lag. Subject to this dynamic system, a policy maker
selects the output gap in order to control inflation, minimizing an expected discounted
quadratic loss function:

E0

+∞∑
t=0

βt
(
π2t
2

+ λx
x2t
2

)
(3)

where λx > 0 is the relative cost of changing the policy instrument xt.
Denoting Lagrangian multipliers φπ,t for the new Keynesian Phillips curve, the La-

grangian L is:

L = −E0
+∞∑
t=0

βt
(
π2t
2

+ λx
x2t
2

+ φπ,t [πt − βπt+1 − κxt − ut]
)
. (4)

Proposition 1 (i) Ramsey optimal policy implies a stable equilibrium with two eigenvalues
(δ, ρ) inside the unit circle.
(ii) The super-inertial equilibrium is unstable. It includes a third root 1

βδ
outside the unit

circle besides the two eigenvalues (δ, ρ) of Ramsey optimal policy inside the unit circle.
(iii) Ramsey optimal policy allows two representations of the policy rule, namely, the

benchmark proportional policy rule (step 2) and the stationary autoregressive policy rule
(step 4), but it does not allow the non-stationary super-inertial representation.

Proof. See Appendix.
The proof rests on solving a Riccati equation seeking a stable subspace of a Hamiltonian

system including Euler equations (step 2) for Ramsey optimal policy. For the super-inertial
rule the step solving the Riccati equation is omitted. In the latter case, the roots outside the
unit circle of the Hamiltonian system are left unchanged in accordance with a non-stationary
super-inertial policy rule. Table 1 summarizes the differences between the two different policy
equilibria.
Table 1: Ramsey optimal policy versus a super-inertial rule for order two dynamics.

Ramsey optimal policy Super-inertial rule
4 steps algorithm Includes Riccati step 2 Omits Riccati step 2

Step 2 proportional rule xt = Fππt + Fuut None
System order 2 3
Stable roots 0 < δ < 1, 0 < ρu < 1 0 < δ < 1, 0 < ρu < 1
Unstable roots None 1

βδ
≥ 1

Equilibrium Stable Unstable

Rule
Stationary

xt = δxt−1 − δ
1−δβρu

κ
λx
ut

Non-stationary
xt = xt−1 − κ

λx
πt

Both equilibria have the same theoretical initial values of inflation and the output gap
according to step 3. They are linear functions of the initial value of the cost-push shock u0
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and non-linear functions of all the parameters of the model: ρu, κ, β and λx:

π0 =
δ

1− δβρu
u0 and x0 = − κ

λx

δ

1− δβρu
u0 with:

0 < δ =
1

2

(
1 +

1

β
+

κ2

βλx

)
−

√
1

4

(
1 +

1

β
+

κ2

βλx

)2
− 1

β
< 1.

The next section investigates the consequences of rounding errors and of the imperfect
knowledge of at least one of the parameters of the policy transmission by the policy maker.

2.2 Instability and measurement errors

This section analyzes the sensitivity of impulse response functions of inflation and the output
gap to a tiny measurement error of the auto-correlation ρu of the cost-push shock for a super-
inertial rule versus Ramsey optimal policy. In table 2, the difference of calibration values
for ρu between Gali (2015) and GW, equal to 0.45, is larger than the one for the slope of
new-Keynesian Phillips curve, equal to 0.1037. New-Keynesian experts do not know exactly
the parameters of their model. They have much less prior knowledge of the persistence ρu
of the cost-push shock than of the slope κ of the new-Keynesian Phillips curve. In addition,
the slope of the new-Keynesian Phillips curve depends on a number of other structural
parameters (Gali (2015)).
We use Gali’s (2015, chapter 5) calibrations and the calibrations in table 1 of Giannoni

(2001), (2014) and Giannoni and Woodford (2003). Table 2 shows the disagreement on the
three parameters κ, ρu and λx of both calibrations.
Table 2: Gali’s (2015, chapter 5) calibration and GW calibration.
Authors β κ ρu λx σ ρv λi
Gali 0.99 0.1275 0.8 0.02125 − − −
GW 0.99 0.0238 0.35 0.04800 1/0.1571 0.35 0.236

The parameters σ, the inverse of the intertemporal elasticity of substitution of consump-
tion, ρv, the auto-correlation coeffi cient of a productivity shock, and λi, the relative cost of
changing the funds rate will be introduced and used in the next section.
Gali (2015) computes households’welfare so that the relative cost of changing the policy

instrument is endogenous: λx = κ
ε

= 0.02125 with an elasticity of substitution between
differentiated goods of 6. Gali (2015) and GW do not refer to any empirical estimations to
ground the point estimates of their calibrations. For example, the elasticity of intertemporal
substitution σ = 6.3654 is at the very top end of estimates of the cross-country meta-analysis
done by Havranek (2015) who claims in his abstract that a “calibration greater than 0.8 is
inconsistent with the bulk of empirical evidence". These large discrepancies amoung values
chosen for calibration by new-Keynesian experts do not support the hypothesis of the perfect
knowledge of parameters by policy makers.
For ρu = 0.8, the predicted paths of all variables in the Ramsey optimal policy equilibrium

are only approximated by the variables in the super-inertial rule equilibrium for a small
number of periods (see appendix). For a long number of periods, the super-inertial policy
diverges, because the initial values given by π0 = δ

1−δβρuu0 = −λx
κ
x0 (step 3) face rounding
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errors with probability one.
INSERT FIGURE 1 HERE
In figure 1, we consider the case where, although the true parameter is ρu = 0.8, the

policy maker believes the cost-push shock to be more persistent: ρu = 0.9. This leads to a
tiny change of the initial conditions for inflation π∗0 (ρu) and the output gap x∗0 = −επ∗0 (ρu),
identical for Ramsey optimal policy and the super-inertial rule. For Ramsey optimal policy,
it also leads to a tiny change of the response of the output gap to the cost-push shock Fu (ρu)
in the proportional feedback-rule. In figure 1, Ramsey optimal policy converges back to the
equilibrium. In the case of the super-inertial rule, the output gap diverges with respect to
Ramsey optimal policy at period two and inflation diverges at period four. Following GW
super-inertial rule leads very rapidly to large loss relative to the Ramsey allocation.
INSERT FIGURE 2 HERE
We now consider the zero-probability case in the real world where the policy maker

has the exact knowledge of Gali’s parameters according to table 2. GW implicitly bypass
step 2 of optimal policy rule and only use the optimal initial values of inflation and output
gap of step 3. However, even with the exact knowledge of parameters, these endogenous
initial optimal values of inflation and output gap are never exactly known, because they are
non-linear functions of these parameters (functions δ

1−δβρu and −
κ
λx

δ
1−δβρu ) with a numerical

infinite stream of decimals which are rounded at most at the 16-decimal as shown in figure
2. Even the number of decimals for ρtu = 0.8t increases with the number of periods: it is
rounded at the 16-decimal on period t = 16. The output gap and inflation start diverging
on period t = 34 (figure 2).
Although Clarida, Gali and Gertler (1999) and Gali (2015) did not mention the super-

inertial rule equilibrium, it has been central in a model including the consumption Euler
equation with the new-Keynesian Phillips curve, as will be detailed in the next section.

3 New-Keynesian Phillips Curve and Euler Consump-
tion Equation Transmission Mechanism

3.1 Optimal program

Giannoni and Woodford (2003) apply Ramsey linear quadratic optimal policy to the new-
Keynesian model, including not only the new-Keynesian Phillips curve and a cost push
shock, but also the representative household’s intertemporal substitution consumption Euler
equation and its auto-regressive forcing variable vt:

xt = Etxt+1 − σ (it − Etπt+1) + vt where σ > 0. (5)

Current output gap xt is positively correlated with the expected output gap and nega-
tively correlated with the real rate of interest, equal to the nominal rate it minus expected
inflation Etπt+1. We follow Giannoni and Woodford (2003) who use the notation σ for the
intertemporal elasticity of substitution.2

2Giannoni ((2001), (2014)) uses the notation “σ−1" for the intertemporal elasticity.
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An exogenous predetermined shock vt is auto-regressive of order one (0 < ρv < 1) with
given initial value. Disturbances εv,t have zero mean and are independently and identically
normally distributed:

vt = ρvvt−1 + εz,t where εv,t is i.i.d. N
(
0, s2v

)
, v0 given. Σε =

(
s2v 0
0 s2u

)
. (6)

Subject to these four equations with dynamics of order one (hence a dynamic system of
order 4), the policy maker maximizes a quadratic utility function where the output gap is a
second policy target λx ≥ 0 besides inflation, and where the policy instrument is the interest
rate with weight λi > 0:

−Et
+∞∑
t=0

βt
(
π2t
2

+ λx
x2t
2

+ λi
i2t
2

)
. (7)

Denoting Lagrangian multipliers φx,t for the consumption Euler equation, φπ,t for the
new-Keynesian Phillips curve, the Lagrangian L is:

L = −E0
+∞∑
t=0

βt
{

π2t
2

+ λx
x2t
2

+ λi
i2t
2

+ φx,t [xt − xt+1 + σ (it − πt+1)− vt]
+φπ,t [πt − βtπt+1 − κxt − ut]

}
. (8)

By comparison, in Clarida Gali and Gertler (1999) and Gali (2015, chapter 5) when
deriving Ramsey optimal policy, the intertemporal substitution equation of consumption
and its auto-correlated shock equation are set to zero, so that there is no interest rate
smoothing: it = xt = vt = 0, λi = 0, φx = 0. In their setting, the output gap xt plays the
role of the policy instrument in a “targeting rule": λx > 0 and inflation is the only policy
target.
This extended optimal program leads to proposition 2:

Proposition 2 (i) Ramsey optimal policy implies a stable equilibrium with four eigenvalues
δ1, δ2,ρu and ρv inside the unit circle.
(ii) The super-inertial equilibrium is unstable, with two other roots 1

βδ1
and 1

βδ2
outside

the unit circle in addition to the four roots of Ramsey optimal policy inside the unit circle.
(iii) Ramsey optimal policy allows two representations of the policy rule, namely, the

benchmark proportional policy rule (step 2) and a stationary autoregressive policy rule (step
4), but it does not allow the non-stationary super-inertial representation.

Proof. See appendix.
The differences between the two different policy equilibria are summarized in the following

table.
Table 3: Ramsey optimal policy versus a super-inertial rule for order two dynamics.
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Ramsey optimal policy Super-inertial rule
4 steps algorithm Includes Riccati step 2 Omits Riccati step 2

Step 2 proportional rule it = Fππt + Fxxt + Fuut + Fvvt None
System order 4 6

Stable roots
|δ1| < 1 |δ2| < 1

0 < ρu < 1 0 < ρv < 1
|δ1| < 1 |δ2| < 1

0 < ρu < 1 0 < ρv < 1

Unstable roots None
∣∣∣ 1βδ1 ∣∣∣ ≥ 1,

∣∣∣ 1βδ2 ∣∣∣ ≥ 1

Equilibrium Stable Unstable
Step 4 autoregressive rule Stationary Non-stationary

In what follows, we present the GW result within the four step algorithm of Ramsey
optimal policy. The predicted path of all variables in the Ramsey optimal policy equilibrium
are only approximated by the variables in the super-inertial rule equilibrium for a small
number of periods because the initial values given by π∗0 and x

∗
0 are non-linear functions of

all parameters and initial values of auto-regressive shocks (step 3) which face rounding errors
with probability one.

First step: Hamiltonian system

In step 1 of the algorithm, the linear state-costate Hamiltonian system is found along with
its boundary conditions from first order conditions of the Lagrangian. The Hamiltonian
system (H) includes the four equations of the policy transmission mechanism, namely, the
output gap equation, the new-Keynesian Phillips curve, the two auto-regressive equations
for the exogenous shocks, the three first order conditions, and the boundary conditions for
the initial and the final period:

(H)



4 transmission mechanism equations
∂L
∂xt

= 0⇒ λxxt + φx,t − β−1φx,t−1 − κφπ,t = 0
∂L
∂πt

= 0⇒ πt − β−1σφx,t−1 + φπ,t − φπ,t−1 = 0
∂L
∂it

= 0⇒ λiit + σφx,t = 0

φπ,t=−1 = φx,t=−1 = 0 and lim
t→+∞

φπ,t = lim
t→+∞

φx,t = 0.

u0 and v0 given, all equations for t = 0, 1, 2, ...

As we have one instrument for two targets the Hamiltonian system corresponds to a sys-
tem of six equations that can be written recursively with a matrix that has fours eigenvalues
inside the unit circle and two eigenvalues outside the unit circle (see appendix).
Because inflation and the output gap are forward-looking variables, they are optimally

chosen at the initial and the final date according to optimal initial and final conditions. The
marginal values of the loss function with respect to the output gap φx,t=−1 and to inflation
φπ,t=−1 are equal to zero at the initial date (GW have chosen the initial date to be t = −1,
while other authors prefer the initial date to be t = 0):

φπ,t=−1 = φx,t=−1 = 0 and lim
t→+∞

φπ,t = lim
t→+∞

φx,t = 0. (9)

Because the marginal value of the loss function with respect to the output gap at the
initial date t = −1 is zero (φx,t=−1 = 0), the initial interest rate is set to zero: i−1 = 0.
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First step (continued): Super-Inertial rule

In the case of an optimal commitment to Ramsey policy that has been in force since at least
period t− 2 (φx,t−3 = φπ,t−3 = 0 and it−3 = 0) which corresponds to step 3 of the algorithm,
GW eliminate Lagrange multipliers using linear substitutions between first order conditions
to find their super-inertial rule where the funds rate is a function of inflation, of the output
gap and of lags of funds rate and of the output gap:

"one can infer the value of the Lagrange multiplier φx,t−1 from the value of
it−1 using Equation (first order condition for the interest rate), and similarly, the
value of φx,t−2 from the value of it−2:

∂L
∂it

= 0⇒ it = − σ
λi
φx,t for t = −2,−1, 0, 1, ... (10)

Then, substituting theses values into equation (first order condition for the
output gap) for period t−1, one can also infer the value of φπ,t−1 from the value
of xt−1. One can, of course, similarly solve for the period t Lagrange multipliers
as functions of xt, it and it−1:

∂L
∂xt

= 0⇒ φπ,t =
1

κ
λxxt −

1

κ

λi
σ
it +

β−1

κ

λi
σ
it−1 for t = −1, 0, 1, ... (11)

Using these expressions to substitute out the Lagrange multipliers in equation
(first order condition for inflation), one obtains a linear relation among the en-
dogenous variables πt, xt, xt−1, it−1, it−1 and it−2 that must hold for any period
t ≥ 0, for an optimal commitment for Ramsey policy that has been in force since
at least period −2:

it =

(
1 +

κσ

β

)
it−1 +

1

β
∆it−1 +

κσ

λi
πt +

4σλx
λi

∆xt
4

for t = 0, 1, 2, ... (12)

GW label this representation of the first order condition of inflation “super-inertial": the
implied dynamics of the funds rate is explosive because the sum of parameters for the lags
of the funds rate exceeds one: 1 + κσ

β
> 1.

This equation is obtained using linear substitution across first order conditions without
including any restrictions in the stable subspace. In other words, the system including the
four equations of the transmission mechanism and the three first-order conditions which
form the Hamiltonian system is exactly equivalent (if and only if) to a system of equations
including additionally a super-inertial policy rule. Hence, the predicted path including the
super-inertial rule for optimal initial conditions is equivalent to the predicted path of the
Hamiltonian system for the same optimal initial conditions.
GW analysis stops at this step. However, the Hamiltonian dynamic system of a linear

quadratic regulator always includes eigenvalues outside the unit circle (Hansen and Sar-
gent (2007)), see appendix. Therefore, it is a locally unstable equilibrium. But Lagrange-
multiplier first-order-condition dynamics is only an intermediate step of computation for
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finding a representation of an optimal policy rule. Step 2 of the Ramsey optimal policy
algorithm seeks an optimal policy rule solving a Riccati equation so that the dynamics of
the state variables corresponds to a locally stable equilibrium.

2nd step: Riccati equation

Hansen and Sargent’s (2007) section 3.5 and Chatelain and Ralf’s (2020, 2021) solution
of this discounted linear quadratic regulator, augmented with forcing variables (vt, ut), is
to solve a discrete algebraic Riccati equation for the matrix P and then to compute the
rule parameters (Fx, Fπ) which depend on parameters (β, κ, σ) and preferences (λx, λi) but
do not depend on the auto-correlation of shocks. It also solves a Sylvester equation for rule
parameters (Fz, Fu) which depends on the auto-correlation of shocks (ρz, ρu) and of the other
parameters of the transmission mechanism:

φx,t = Pxxxt + Pxππt + Pxvvt + Pxuut, (13)

φπ,t = Pπxxt + Pπππt + Pπvvt + Pπuut. (14)

One finds the unique optimal proportional feedback interest rate rule:

it = Fxxt + Fππt + Fvvt + Fuut. (15)

As soon as there are two endogenous policy targets, there is no longer a closed form solution
for the parameters of matrices P and F. Numerical solutions are obtained using the linear
quadratic regulator instruction in Matlab or Scilab.

3rd step: Optimal initial conditions

Optimal initial conditions are obtained using φx,t = φπ,t = 0:(
x0
π0

)
= −

(
Pxx Pxπ
Pπx Pππ

)−1(
Pxv Pxu
Pπv Pπu

)(
v0
u0

)
. (16)

4th step: Inertial policy rule

To find the inertial policy rule, one applies the operator p(L) = (1− ρuL) (1− ρvL) (where
L is the lag operator) to both sides of the proportional feedback rule. Ramsey optimal
policy is determined by commitment from date t = 0 onwards to an inertial interest rate
rule, where the sum of the parameters of lags of the interest rate is below one and depends
on the auto-correlation of shocks,

it = (ρu + ρv) it − (ρvρu) it−2 + Fxp (L)xt + Fπp (L) πt + Fz (1− ρuL) εv,t + Fu (1− ρvL) εu,t.
(17)

This inertial policy rule is a representation of the policy rule which corresponds to the
unique bounded solution of Ramsey optimal policy for the new-Keynesian model.
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3.2 Robustness to measurement and rounding errors

We use GW calibration (table 2) to compute the sensitivity of impulse response functions of
inflation, the output gap, and the funds rate for a super-inertial rule versus Ramsey optimal
policy to a tiny measurement error of the auto-correlation ρu of a cost-push shock.
For ρu = 0.35, both, Ramsey optimal policy and the super-inertial rule, have the same

optimal path for inflation, the output gap and the funds rate for a number of periods.
However, if the initial conditions for inflation π∗0 and for the output gap x

∗
0 are numbers

which have been rounded for a given finite number of decimals by a computer software,
there is necessarily a date t where the super-inertial rule leads to unbounded inflation and
both, an exploding output gap and an exploding funds rate, whereas Ramsey optimal policy
still converges to its stable equilibrium.
INSERT FIGURE 3 HERE
Figure 3 shows impulse response functions for a cost-push shock of one unit, where,

although the true parameter is ρu = 0.35, the policy maker believes it is ρu = 0.4. This
leads to a tiny change of initial conditions for inflation π∗0 (ρu) and the output gap x∗0 (ρu),
identical for Ramsey optimal policy and the super-inertial rule. For Ramsey optimal policy,
it also leads to a tiny change of the response of the output gap to the cost-push shock Fu (ρu)
in the proportional feedback rule.
Ramsey optimal policy converges back to the equilibrium whereas, for the super-inertial

rule, the funds rate, the output gap, and inflation diverge after at most six quarters. The
policy maker anchors initial values believing the persistence of the cost-push shock is 0.4,
whereas it is 0.35 for both, the super-inertial rule and Ramsey optimal policy. Super-Inertial
policy diverges from Ramsey optimal policy for output gap (x) at period 3, for inflation (π)
at period 6, and for the funds rate (i) at period 2. Following GW super-inertial rule leads
very rapidly to large loss relative to the Ramsey allocation.
Coincidentally, excess inflation goes hand in hand with a negative output gap (recessions)

in Gali and GW benchmark impulse response functions. The new-Keynesian model has to
be interpreted as describing a stagflationist transmission mechanism when using Ramsey
monetary policy. The new-Keynesian model is not usually advertised as describing stagflation
by new-Keynesian authors.
INSERT FIGURE 4 HERE
In figure 4, we now consider the zero-probability case in the real world where the policy

maker exactly knows GWparameters given in table 2. The non-linear functions of parameters
providing optimal initial inflation, optimal initial output gap and optimal initial interest rate
has a probability equal to one to face rounding errors. SCILAB default option for solving
Riccati equations and optimal initial inflation, output gap and interest rate gives 7-decimal
rounded numbers. Rounding errors implies that the impulse response functions of the super-
inertial-rule equilibrium are such that the output gap and inflation start diverging in period
t = 8 (figure 4).
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4 Conclusion

In general, the result of Ramsey optimal policy is a proportional feedback rule which responds
to auto-regressive shocks, where the sensitivity of the policy instruments to these auto-
regressive shocks depends on the auto-correlation of these shocks (Chatelain and Ralf (2021)).
It is not necessary to look for other representations of Ramsey policy rules. Seeking these
alternative representations added a lot of confusion to the stabilization policy literature.
Because there is always uncertainty on the parameter of policy transmission mechanism,
stabilization policy aims to maintain the dynamic system of the policy targets as a locally
stable equilibrium. This fundamental guideline of Ramsey optimal policy should be kept in
mind.
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Appendix

Proof of proposition 1

Step 1: The Hamiltonian system includes the new-Keynesian Phillips curve and the non-
controllable dynamics of the cost-push shock. The first order condition on inflation is:

∂L
∂πt

= 0⇒ πt + φπ,t − φπ,t−1 = 0 for t = 0, 1, 2, ... (18)

The marginal equation with respect to the single policy instrument (output gap) implies
that the output gap is a linear increasing function of the Lagrange multiplier of inflation:

∂L
∂xt

= 0⇒ λxxt − κφπ,t = 0 for t = 0, 1, 2, ...⇒ xt =
κ

λx
φπ,t or φπ,t =

λx
κ
xt. (19)

With an initial natural boundary set to zero, the initial value of the policy instrument at −1
is also equal to zero:

φπ,−1 = 0⇒ x−1 = − κ

λx
φπ,−1 = 0. (20)

Step 1b: Super-inertial policy rule.
Using the above equation to substitute the Lagrange multiplier of inflation φπ,t by the policy
instrument xt leads to the super-inertial rule:

∂L
∂πt

= 0⇒ xt = xt−1 −
κ

λx
πt for t = 0, 1, 2, 3... (21)
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The policy instrument (the output gap) has non-stationary dynamics. The Hamiltonian can
be written using the Lagrange multiplier dynamic Euler equation ( ∂L

∂πt
= 0) or substitut-

ing the Lagrange multiplier by the policy instrument in the dynamic Euler equation. The
Hamiltonian system is a dynamic system of order three. It includes the co-state (λx or
equivalently xt) Euler dynamic equation of order one besides the order-two dynamics of the
state variables (πt,ut): 1 0 0

κ
λx

1 0

0 0 1

 πt+1
xt+1
ut+1

 =

 1
β
−κ
β
− 1
β

0 1 0
0 0 ρu

 πt
xt
ut

 (22)

 πt+1
xt+1
ut+1

 =

 1
β

−κ
β

− 1
β

− κ
βλx

κ2

βλx
+ 1 κ

βλx

0 0 ρu

 πt
xt
ut

 .

The characteristic polynomial of the Hamiltonian matrix is:(
X2 +

(
− 1

β
− κ2

βλx
− 1

)
X +

1

β

)
(X − ρu) . (23)

Two eigenvalues δ and ρu are inside the unit circle (for two predetermined variables φπ,t and
ut) and the third one δ′ = 1

δβ
is outside the unit circle.

0 < δ =
1

2

(
1 +

1

β
+

κ2

βλx

)
−

√
1

4

(
1 +

1

β
+

κ2

βλx

)2
− 1

β
< 1. (24)

Step 2: Following Hansen and Sargent (2007, chapter 5), we have to derive the solution of
the state-costate evolution equation that stabilizes the state-costate vector sequence for any
initial values of the policy maker’s state variables (π0, z0). The initial value of the costate
takes the following form which is replicated over time:

φπ,t = Pπππt + Pπuut. (25)

The elements of matrix P can be found solving a Riccati equation and a Sylvester equa-
tion or a Riccati equation of higher order (Chatelain and Ralf (2020)). Using the relation
between the costate and the policy instrument, it follows that this state-costate solution is
implemented by the control law:

xt = Fππt + Fuut. (26)

We label this control law the benchmark representation of the policy rule where the
current value of the policy instrument responds linearly to the current value of the state
variables. It is a proportional negative-feedback rule. The super-inertial rule (co-state Euler
dynamic equation of order one) is substituted by this static equation in the Hamiltonian
system, in order to force dynamics to remain within the stable subspace of the Hamiltonian
system. By so doing, the order of the dynamics decreases by a order equal to one. The
order of the dynamics of the Hamiltonian system is reduced to two, including only the two
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eigenvalues inside the unit circle: δ and ρu and excluding the non-stationary dynamics
related to the remaining eigenvalue outside the unit circle of the Hamiltonian:(

πt
ut

)
=

(
δ = 1

β
− κ

β
Fπ − 1

β
− κ

β
Fu

0 ρu

)t(
π0
u0

)
. (27)

This is the usual way to solve the linear quadratic regulator (Ljungqvist and Sargent
(2012)). Solving a Riccati equation leads to the following unique values of optimal parameters
for the new-Keynesian Phillips curve (Chatelain and Ralf 2019):

Fπ =
κ

λx

δ

1− δ and Fu =
−1

1− βρuδ
Fπ. (28)

Although there is a smoothing quadratic cost of changing the policy instrument, this
benchmark representation does not include an auto-regressive term for the policy instrument,
so it may not be called “inertial" but “benchmark optimal rule". An increase in the cost of
changing the policy instrument λx increases the persistence of inflation δ (λx) and reduces
the absolute value of the policy rule parameter |Fπ|. The control law is a counter example
which shows that a policy-instrument-smoothing quadratic term in the loss function does
not imply an auto-regressive term in the policy rule of Ramsey optimal policy.
Step 3: The optimal initial value of the policy target and the policy instrument are

obtained using the initial date transversality condition φπ,−1 = 0 and results from the solution
of the Riccati equation:

φπ,0 = Pπππ0 + Pπuu0 = 0⇒ π0 = −P−1ππ Pπuu0 =
δ

1− δβρu
u0 and (29)

x0 = − κ

λx
π0 = − δ

1− δβρu
κ

λx
u0. (30)

Knowing these initial conditions and the matrix solution of the Riccati equation, one can
compute welfare (Chatelain and Ralf (2020)).
Step 4: One substitutes inflation by a lag of the policy instrument in order to obtain an

observationally equivalent “inertial" policy rule to the benchmark policy rule of step 2. The
proof uses the step 2 policy rule, πt = 1

Fπ
xt−Aut with A = −1

1−βρuδ , and substitutes inflation
by the output gap in the transmission mechanism of step 2. One has the equivalence between
the system of step 2 and the system of step 4 with Clarida, Gali and Gertler’s (1999) inertial
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rule, for any initialization of the policy maker’s state variables (π0, z0):

(
ut+1
πt+1

)
=

(
ρ 0

(1− ρ)Aδ δ

)(
ut
πt

)
+

(
εt
0

)
xt = Fππt + AFπut so that:(

ut
xt

)
= N

(
ut
πt

)
with N =

(
1 0

AFπ Fπ

)

⇔



(
ut+1
xt+1

)
= N−1 (A + BF) N

(
ut
xt

)
+ N−1

(
εt
0

)
πt = 1

Fπ
xt − Aut so that:(

ut
πt

)
= N−1

(
ut
xt

)
.

(31)

One has:

N−1 (A + BF) N =

(
ρu 0

(1− δ)FπAρu δ

)
, (32)

where the bottom row of the matrix provides a representation of inertial the policy rule
(Clarida, Gali and Gertler (1999) and Gali (2015)):

xt = δxt−1 −
δ

1− δβρu
κ

λx
ρuut−1 or xt = δxt−1 −

δ

1− δβρu
κ

λx
ut for t = 1, 2, ... (33)

The representation of the inertial optimal policy rule for the output gap has an autoregressive
component δ which is strictly lower than one. It also depends on the auto-correlation of the
cost push shock ρu and on the shock ut.
Because of the exact equivalence of the two dynamic systems, with identical optimal

initial conditions, the paths predicted for inflation and the output gap for a given path of
the cost-push shock are identical. The system of step 2 equations is equivalent to the system
of step 4 equations for expected values, with dynamics of order two:

xt = Fππt + AFπut(
πt
ut

)
=

(
δ = 1

β
− κ

β
Fπ − 1

β
− κ

β
Fu

0 ρ

)t( δ
1−δβρu

1

)
u0

(34)

⇔


πt = 1

Fπ
xt − Aut(

xt
ut

)
=

(
δ − δ

1−δβρu
κ
λx

0 ρ

)t( − κ
λx

δ
1−δβρu
1

)
u0.

(35)

The two eigenvalues (δ,ρ) are inside the unit circle. The order two dynamics is stable.
Step 1B equation for expected values with step 3 optimal initial conditions is: πt

xt
ut

 =

 1
β

−κ
β

− 1
β

− κ
βλx

κ2

βλx
+ 1 κ

βλx

0 0 ρu

t δ
1−δβρu
− κ
λx

δ
1−δβρu
1

 εu,0.

Its dynamics is related to intermediate computation dynamics (step 1 with state-costate
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evolution of the Hamiltonian system) of a higher order (three) than the order (two) of the
dynamics of the policy maker’s state variables. Two eigenvalues δ and ρu are inside the unit
circle and one eigenvalue is outside the unit circle 1

δβ
. A non-stationary “super-inertial"

policy rule destabilizes the dynamic system obtained for Ramsey optimal policy.

Simulations

We replicate the Ramsey optimal policy impulse response function using Gali’s (2015) cali-
bration: β = 0.99, κ = 0.1275, ρu = 0.8. The impulse response function is the same as the
one for the super-inertial rule (figure 1). In the linear proportional rule, the parameter of
the response of the output gap to inflation is Fπ = 4.51 and the value of the related root is
δ = 1

β
− κ

β
Fπ = 0.429.

We now consider a change in the persistence of the cost-push shock which is erroneously
believed to be ρ = 0.9.
Table 4:

ρu 0.8 0.9

π0 = δ
1−δβρu 0.650 0.694

x0 = −6.π0 −3.900 −4.169
− 1
β
− κ

β
Fu −0.13003 −0.0694

Fu −6.8335 −7.301

For the super-inertial rule, there is only a change of the optimal initial conditions, which
are erroneous if the policy maker believes it is ρu = 0.9 whereas the true model is ρu = 0.8. πt

xt
ut

 =

 1
β

−κ
β

− 1
β

− κ
βλx

κ2

βλx
+ 1 κ

βλx

0 0 0.8

t δ
1−δβ.(0.9)
− κ
λx

δ
1−δβ.(0.9)
1

 εu,0.

For Ramsey optimal policy there is a change of initial conditions (which is erroneous)
and a change of the sensitivity of future inflation to the cost-push shock in the transition
matrix (which decreases if the persistence ρu increases):

xt = Fππt + Fu (0.9)ut(
πt
ut

)
=

(
δ = 1

β
− κ

β
Fπ − 1

β
− κ

β
Fu (0.9)

0 ρ = 0.8

)t( δ
1−δβ(0.9)

1

)
u0.

Proof of proposition 2

Denoting Lagrangian multipliers φx,t for the consumption Euler equation, φπ,t for the new-
Keynesian Phillips curve, the Lagrangian L is:
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L = −E0
+∞∑
t=0

βt
{

π2t
2

+ λx
x2t
2

+ λi
i2t
2

+ βφx,t+1 [xt + σ (it − πt+1)− xt+1]
+βφπ,t+1 [πt − κxt − βπt+1]

}

= −E0
+∞∑
t=0

βt


π2t
2

+ λx
x2t
2

+ λi
i2t
2

+ βφx,t+1

[(
1 + σκ

β

)
xt − σ

β
πt + σit − xt+1

]
+βφx,t+1

[
−κ
β
xt + 1

β
πt − πt+1

]  .

Usual matrix notations for the linear quadratic regulator are:

Q =

(
1 0
0 λx

)
, R = λi(

Etxt+1
Etπt+1

)
=

(
1 + σκ

β
−σ
β

−κ
β

1
β

)
︸ ︷︷ ︸

=Ayy

(
xt
πt

)
︸ ︷︷ ︸
=yt

+

(
σ
0

)
︸ ︷︷ ︸
=By

it +

( −1 σ
β

0 − 1
β

)
︸ ︷︷ ︸

=Ayz

(
zt
ut

)
.︸ ︷︷ ︸

=zt

Step 1: Euler equations and Hamiltonian system:

∂L
∂it

= 0⇒ λiit + σβφx,t+1 = 0⇒ it = − σ
λi
βφx,t+1.

We substitute the funds rate by the Lagrange multiplier for both equations of the transmis-

sion mechanism using the following matrix
(

βσ2

λi
0

0 0

)
.

The other first order conditions are:

∂L
∂xt

= 0 ⇒ λxxt + φx,t − β−1φx,t−1 − κφπ,t = 0
∂L
∂πt

= 0 ⇒ πt − β−1σφx,t−1 + φπ,t − φπ,t−1 = 0.

In matrix form:

β

(
1 + σκ

β
−κ
β

−σ
β

1
β

)(
φx,t+1
φπ,t+1

)
= −

(
λx 0
0 1

)(
xt
πt

)
+

(
φx,t
φπ,t

)
(
φx,t+1
φπ,t+1

)
= −

( 1
β

κ
β

σ
β

1
β

(β + κσ)

)(
λx 0
0 1

)(
xt
πt

)
+

( 1
β

κ
β

σ
β

1
β

(β + κσ)

)(
φx,t
φπ,t

)
.

We form the Hamiltonian matrix which is a particular case of the textbook matrix of the
Hamiltonian system of a linear quadratic regulator.
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
Etxt+1
Etπt+1
φx,t+1
φπ,t+1
vt+1
ut+1

 =



1 + κσ
β

+ σ2

λi
λx −σ

β
+ κσ

2

λi
−σ2

λi
−κσ2

λi
−1 σ

β

−κ
β

1
β

0 0 0 − 1
β

− 1
β
λx −κ

β
1
β

κ
β

0 0

−σ
β
λx −

(
1 + κσ

β

)
σ
β

1 + κσ
β

0 0

0 0 0 0 ρv 0
0 0 0 0 0 ρu



t+1
x∗0 (ρu)
π∗0 (ρu)
φx,0 = 0
φπ,0 = 0
v0
u0

 .

Giannoni’s (2000) matrix M is the first sub-matrix with the intersection of the first four
lines with the first four columns. The product of the four eigenvalues ofM is its determinant
equal to 1

β2
. Such a discounted symplectic matrix has two eigenvalues (δ1, δ2) inside the unit

circle and two “mirror" eigenvalue outside the unit circle (1/βδ1, 1/βδ2). The two other
eigenvalues inside the unit circle are the auto-regressive components of the shocks (δ1, δ2).
Giannoni (2000, p.35) mentions that this matrix has the same eigenvalues that the matrix

he constructed after substitution of the Lagrange multipliers φx,t and φπ,t by the funds rate
and its two lags. This means that he has constructed a mathematically equivalent system of
equations to the above Hamiltonian system of equations. He finds optimal initial conditions
(x∗0,π

∗
0), Giannoni (2000, p.35) which correspond to step 3. However, he does not perform

step 2, so that its impulse response functions are determined using optimal initial conditions
(x∗0,π

∗
0) and the Hamiltonian system of equations which includes two roots outside the unit

circle.
In Step 2, one solves a matrix Riccati equation to find matrix P and then the policy rule

parameters F which depend on preferences and parameters of the transmission mechanism:

φx,t = Pxxxt + Pxππt + Pxvvt + Pxuut

φπ,t = Pπxxt + Pπππt + Pπvvt + Pπuut

it = Fxxt + Fππt + Fvvt + Fuut.

In step 3, Optimal initial conditions are obtained using φx,t = φπ,t = 0:(
x∗0
π∗0

)
= −

(
Pxx Pxπ
Pπx Pππ

)−1(
Pxv Pxu
Pπv Pπu

)(
v0
u0

)
, (36)

so that optimal impulse response functions of Ramsey optimal policy are given by a system
which has four eigenvalues inside the unit circle:
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
Etxt+1
Etπt+1
vt+1
ut+1

 =




1 + σκ
β
−σ
β
−1 σ

β

−κ
β

1
β

0 − 1
β

0 0 ρv 0
0 0 0 ρu

+


σ
0
0
0

( Fx Fπ Fv Fu
)


xt
πt
vt
ut




Etxt+1
Etπt+1
vt+1
ut+1

 =


σFx + κ

β
σ + 1 σFπ − 1

β
σ σFv (ρu)− 1 1

β
σ + σFu (ρu)

−κ
β

1
β

0 − 1
β

0 0 ρv 0
0 0 0 ρu


t+1

x∗0 (ρu)
π∗0 (ρu)
v0
u0

 .

We highlighted which variables depends on ρu, which is the parameter which is not exactly
known in our example.
In step 4, we apply the operator p(L) on all terms of the the proportional policy rule.

The auto-regressive components of the shocks vt and ut are substituted by the two first lags
of the policy instrument: it−1 and it−2:

(1− ρuL) (1− ρvL) it =
(
1− (ρu + ρv)L+ (ρvρu)L

2
)
it =

it − (ρu + ρv) it + (ρvρu) it−2 = Fxp (L)xt + Fπp (L)πt + Fz (1− ρuL) εv,t + Fu (1− ρvL) εu,t.
(37)

The sum of the parameters of the two lags of the dependent variables is the sum S less the
product P of the two auto-correlation coeffi cients of shocks:

it = (ρu + ρv) it − (ρvρu) it−2 + Fxp (L)xt + Fπp (L) πt + Fz (1− ρuL) εv,t + Fu (1− ρvL) εu,t.
(38)

Because the two auto-correlation coeffi cients are between zero and one and are the roots of
the polynomial p, p(1) > 0. Hence, the sum of the two parameters of the lags of the interest
rate is strictly below one:

p(1) = 1− S + P > 0⇒ S − P < 1. (39)

Hence, this observationally equivalent representation of the benchmark optimal policy rule
is inertial. It also depends on the auto-correlation of shocks.

Simulations of the order four model of the transmission mechanism

We replicate Ramsey optimal policy impulse response functions using GW’s calibration. In
the linear proportional rule, the parameter of the response of the output gap to inflation is
Fπ = 1.71,Fx = −0.18, Fv = 0.15. Table 4 lists changes if the persistence of the cost-push
shock is erroneously believed to be ρu = 0.4.
Table 5: Changes of initial condition and sensitivity of the output gap to the cost-push

shock:
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ρu 0.35 0.4
x∗0 −0.465 −0.455
π∗0 1.315 1.405

σ
β

+ σFu −6.922 −7.447

Fu −2.098 −2.180

For the super-inertial rule, there is a change on the initial conditions x∗0 and π
∗
0, which

are erroneous if the policy maker believes it is ρu = 0.4 whereas the true model is ρu = 0.35.
For Ramsey optimal policy there is a change of the initial condition (which is erroneous)

and a change of the sensitivity of the future output gap to the cost-push shock in the
transition matrix.

Scilab Code

R=0.236;
Qpi=1; Qx =0.048; Qv=0 ; Qu=0 ;
beta1=0.99; gamma1=1/0.1571; kappa=0.0238;
rho1=0.35; rho2=0.4;
Ay=[1+(kappa*gamma1/beta1) -gamma1/beta1 ; -kappa/beta1 1/beta1] ;
Ayz =[ -1 gamma1/beta1 ; 0 -1/beta1 ]
Az=[rho1 0 ; 0 rho2 ];
Azy =zeros(Az);
A1=[ Ay Ayz ; Azy Az]
B1=[gamma1 ; 0 ; 0; 0]
A=sqrt(beta1)*A1
B=sqrt(beta1)*B1
q=[ Qx Qpi Qv Qu ]
Q=diag(q) ;
Big=sysdiag(Q,R)
[w,wp]=fullrf(Big)
C1=wp(:,1:4)
D12=wp(:,5:$)
[C1,D12]’*[C1,D12]
M=syslin(’d’,A,B,C1,D12)
[F,P]=lqr(M)
spec(A+B*F)
A1+B1*F
A1
Pyy=P(1:2, 1:2)
Pyz=P(1:2, 3:4)
v0=0
u0=1
z0=[v0; u0]
N=-inv(Pyy)*Pyz
Nz0=N*z0
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yz0=[ Nz0 ; z0]
Loss=yz0’*P*yz0
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Figure 1: Impulse response functions of inflation and the output gap, for 7 periods following a 

persistent cost-push shock of 1 unit (ρu=0.8 versus error ρu=0.9) for the new-Keynesian Phillips-

curve model.  

 

Figure 2: Super-inertial impulse response function, for 44 periods following a shock of 1 unit, with 

the exact knowledge of persistence ρ=0.8 (Gali 2015, chapter 5), with 16-decimal rounding errors on 

endogenous optimal initial inflation and optimal initial output gap. 
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Figure 3: Paths of the funds rate, the output gap and inflation, for seven periods following a cost-

push shock of one unit for the model with a new-Keynesian Phillips curve and an Euler consumption 

equation (ρu=0.35 versus error ρu=0.4).  

 

Figure 4: Super-inertial policy rule impulse-response functions, for 9 periods following a shock of 1 

unit, with the exact knowledge of persistence ρ=0.35 for the model including the new-Keynesian 

Phillips curve and the Euler consumption equation, with 7-decimal rounding errors on endogenous 

optimal initial inflation, optimal initial inflation and optimal initial interest rate. 
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