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Abstract
Based on the work by Buettner (2017) showing a personality-based recommender system for electronic markets using social 
media data, we extend the work by proposing a novel deep learning-based engine to predict the user’s personality just based 
on electroencephalographic brain data. As brain-computer interfaces and hybrid intelligence devices enable access to human 
brains, using electroencephalographic brain data becomes more relevant in future. Contrary to the majority view of previous 
research, our results show that there is a link between personality traits and brain features of a user. With a four times higher 
probability of correctly predicting the personality of an independent user compared to naive prediction, we demonstrate the 
possibility of predicting a user’s personality based on their brain information and thus showing a new reliable approach for 
marketing purposes in electronic markets.

Keywords  Convolutional neural network · Predictive analysis · Five-factor model · Machine learning · Personality mining · 
Resting-state electroencephalogram

JEL Classification  C89 · C90 · D40 · M31 · M37

Introduction

Buettner (2017) has shown that personality traits (PTs) 
of users within electronic markets are of great interest to 
effectively recommend products based on their preferences. 
This assumes that PTs can influence user preferences and 
behavior (Barrick & Mount, 1991; Judge et al., 1999). The 
paradigm most widely used in research on PTs are the big 
five PTs: conscientiousness, extroversion, emotional stabil-
ity, openness to experience, and agreeableness (Costa & 
McCrae, 1992; Goldberg, 1990). Since PTs are mainly meas-
ured via self-reported questionnaires, which are quite subjec-
tive (Boyle et al., 2008; Gosling et al., 2003) and prone to 
forgery (Viswesvaran & Ones, 1999), various studies have 
successfully attempted to identify the traits via personality 

mining in social networks (Buettner, 2017; Golbeck et al., 
2011; Wald et al., 2012; Youyou et al., 2015). Through this 
technique, a more automated and accessible method for per-
sonality assessment was created. However, social media still 
has the problem that users can manipulate and thus falsify 
their digital footprint, which has an impact on the prediction 
of PTs (Eftekhar et al., 2014). Also, users often change their 
behavior in social networks (Guleva et al., 2022), impacting 
the classification results over time. However, PTs are actu-
ally related to an individual’s biological factors, like its brain 
structure, and therefore represent a temporally independent 
characteristic that remains quite unchanged throughout a 
subject’s lifetime (Costa & McCrae, 1992; Romero et al., 
2009).

For a long time, it was science fiction to read data from 
our brains and make this information usable for end con-
sumers, but several studies from the past year in particular 
show the potential of brain-computer interfaces (BCIs) to 
decode the human brain (e.g., Drew, 2023). Recent devel-
opments in consumer wearables that can read electroen-
cephalography (EEG) data suggest that applications will 
have easy and constant access to our brains in the future 

Responsible Editor: Reima Suomi

 *	 Ricardo Buettner 
	 buettner@hsu-hh.de

1	 Chair of Hybrid Intelligence, Helmut-Schmidt-University, 
22043 Hamburg, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s12525-025-00778-8&domain=pdf
http://orcid.org/0009-0004-9870-8193
http://orcid.org/0000-0003-2263-6408


	 Electronic Markets           (2025) 35:37    37   Page 2 of 20

(Crum, 2019). For example, earbuds, which use EEG sen-
sors to read the user’s brainwaves, have proven to be suc-
cessful (Ackerman & Strickland, 2022; Chatterjee et al., 
2022), resulting in Apple receiving a patent to use EEG 
sensors in their earbuds (Drew, 2023).

Users can hardly manipulate their brainwaves and the 
resulting EEG data, which makes them a suitable source 
for unbiased personality prediction (Brocke et al., 2013). 
Even though audio, video, and text are the most commonly 
used modalities for personality prediction (Agastya et al., 
2019), current developments in machine learning (ML) 
and especially deep learning make it possible to use EEG 
data as a basis for prediction. Some studies have performed 
affective EEG-based prediction of the big five PTs using 
ML methods and were able to show correlations between 
the traits and the physiological data (Bhardwaj et al., 2021, 
2022; Li et al., 2020a; Miranda-Correa & Patras, 2018). 
While this research has made great impact in showing the 
associations between personality and affective EEG data, 
the approaches are not suitable for applications in elec-
tronic markets. For these applications, a resting-state EEG 
solution is needed that works without external stimuli, so 
that data can be retrieved passively and automatically 
without having to assign it to an event such as a video or 
text. Although the current consensus in research is that no 
predictions about personality based on this data are possi-
ble (Korjus et al., 2015), there are initial individual studies 
suggesting that a correlation exists (Baumgartl et al., 2020; 
Jawinski et al., 2021).

Contrary to the majority view that the resting-state EEG 
data does not contain any information about the PTs of a 
subject, we hypothesize in this work: A person’s personality 
is linked to their resting-state EEG data. The hypothesis is 
based on the finding that traits are related to biological fac-
tors (Romero et al., 2009). There is a need for an objective 
and reliable artifact for EEG-based personality assessment 
beyond the limitations of classical tests, realized by intelli-
gent automation. Following this need, we state the following 
research question: How to design a resting-state EEG-based 
personality prediction engine to augment personality-based 
product recommendations in electronic markets?

In this work, we propose a personality prediction engine 
that ties in with Buettner’s (2017) work and is intended to 
replace the social media data used in his engine. In doing 
so, we create a more reliable and tamper-proof alternative 
for electronic markets. By developing a novel convolutional 
neural network (CNN) architecture that uses finer-graded 
EEG sub-bands, to the best of our knowledge, we are the first 
to predict all big five PTs based on resting-state EEG data. 
With the successful prediction of the PTs, we can confirm 
the hypothesis for the present dataset. The most important 
contributions of our work are:

1.	 Successful prediction of all big five PTs from resting-
state EEG data, demonstrating a reliable and passive 
way to predict personality based on physiological sig-
nals.

2.	 Presentation of an innovative Gaussian preprocessing 
filter for the improved subject-independent prediction 
of a subject’s PTs.

This work is organized as follows: In the research back-
ground, we describe PTs and how they affect (electronic) 
markets, we present the product recommendation system 
of Buettner (2017) and show the required paradigms for 
EEG data and examine further studies in the field of EEG-
based personality prediction. In the methodology section, 
we give an overview to our approach and our deep learning 
architecture, and present the dataset used, before evaluat-
ing and discussing our results. Finally, we conclude the 
work with limitations and future work.

Research background

Consumers and their personality‑based behavior

Personal data and its analysis have great value in elec-
tronic markets, for example for customer relationship 
management (Ngai et al., 2009), pricing (Rayna et al., 
2015), or customer acquisition (Kazienko et al., 2013). 
Also, much research has shown that a customer’s person-
ality influences their consumption behavior and purchas-
ing decisions (Barrick & Mount, 1991; Grubb & Grath-
wohl, 1967; Kassarjian, 1971). McElroy et al. (2007) have 
shown how PTs can influence online behavior. Devaraj 
et al. (2008) have shown that personality affects technol-
ogy acceptance. Buettner (2017) showed how personality 
can be used to efficiently suggest products to users. In 
most of these works, the five-factor personality theory of 
Goldberg (1990) and Costa and McCrae (1992) is used to 
describe the different PTs of a user. In their theory, they 
describe the big five PTs that can be utilized to describe 
personality: openness to experience, conscientiousness, 
extraversion, agreeableness, and neuroticism. These PTs 
are used to describe human behavior (Costa &McCrae 
1992). Openness to experience describes how open a 
person is to new experiences and events. Conscientious-
ness describes the degree of determination and exactness 
of a person. Extraversion describes how much a person 
focuses their attention on external impressions. A person 
has a high degree of agreeableness if they are social and 
cooperative. Finally, neuroticism describes the degree of 
emotional stability of a person.
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Personality‑based product recommender 
framework

As shown, it is nothing new that the personality of a user 
is related to their product preference (Kassarjian, 1971). 
In some individual projects, systems have been developed 
that have shown that products can be successfully sug-
gested to users based on their personality (Hu & Pu, 2010; 
Wu et al. 2013; Fernandez-Tobìas & Cantador, 2015). 
Based on the findings of this works, Buettner (2017) 
solved the “cold-start” problem, which describes the diffi-
culty of recommending a product with no information (Hu 
& Pu, 2011), by predicting the personality of users based 
on freely accessible social network data (Buettner, 2017).

As Fig. 1 shows, Buettner’s (2017) product recommender 
framework consists of three engines. The “retrieval and 
transformation engine” is designed to read the information 
from the social networks and convert it into a standard-
ized vector format. By using machine learning methods, 
the “personality prediction engine” uses the digital footprint 
of a user contained in the vectors to predict their big five 
PTs. The “product recommender engine” uses the predicted 
personality to suggest matching products to the user.

Table 1 shows the evaluation accuracies of the pre-
diction engine (Buettner, 2017). The matching is based 
on the scientific findings that personality influences user 
preferences and that these are related to product charac-
teristics (Govers & Schoomans, 2005; Wells et al., 1957; 
Solomon, 1983) or the so-called product personality (Jor-
dan, 1997). Buettner’s (2017) experiment confirmed these 
findings, and he was able to show that the right products 
can be suggested to users based on their personality with 
greater satisfaction.

The results show that it is possible to use information 
about a consumer’s personality to recommend products to 
them more successfully in terms of marketing in electronic 
markets. As explained in the introduction, however, social 
media data is subject to the problem of bias and manipula-
bility by users (Eftekhar et al., 2014; Guleva et al., 2022), 
which is why a method for personality prediction is required 
that cannot be influenced by the user.

EEG‑based personality trait prediction based 
on machine learning

BCIs that allow us to access the physiological data in the 
brain have been around for a long time, and there are many 
ways in which they obtain data (Rashid et al., 2020). The 
most commonly used method, especially in the consumer 
sector, are EEG-based BCIs, which can measure brain waves 
noninvasively using electrodes (Saha et al., 2021). These 
systems are based on the classical classification of the EEG 
frequency bands into delta, theta, alpha, beta, and gamma 
bands (Berger, 1929; Dustman et al., 1962; Hoagland et al., 
1937; Jasper & Andrews, 1936) and use ML methods to 
recognize patterns in these bands for prediction (Nicolas-
Alonso & Gomez-Gil, 2012). Due to the inexpensiveness 
and naturalness of EEG data, it is particularly suitable for 
use in (electronic) markets for personality prediction appli-
cations (Suzuki et al., 2019). The process of physiological 
signal analysis, and thus EEG-based PT prediction, can be 
simplified and improved by these modern ML techniques. 
However, due to the high complexity and dimensionality of 
EEG data compared to the total amount of data available, 
only few papers have been published in this area (Miranda-
Correa & Patras, 2018). While some studies have shown a 

Fig. 1   Buettner’s (2017) personality-mining based product recommender framework

Table 1   Evaluation accuracies 
of Buettner’s (2017) personality 
prediction engine

Openness Conscientiousness Extraversion Agreeableness Neuroticism ∅

Accuracy 0.709 0.616 0.647 0.674 0.686 0.666
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connection between emotional reactions and PTs, research 
agrees that no correlations can be identified from resting-
state EEG data (Korjus et al., 2015).

Affective‑state related prediction

ML methods based on affective states build on the under-
standing that the big five PTs are related to affective reactiv-
ity (Clark & Watson, 2008; John et al., 2008). Even if differ-
ent studies show different correlations between the traits and 
the emotional reactions, they agree that there is a relation-
ship between them (Finley et al., 2017; Kuppens, 2005; Letz-
ring & Adamcik, 2015; Shiota et al., 2006). Event-related 
potentials (ERPs), which are EEG signals that are related 
to certain stimuli (Sur & Sinha, 2009), are the most widely 
used paradigm for emotion-based prediction with EEG sig-
nals and confirm the already known correlation (De Pascalis 
et al., 2004; Lou et al., 2016; Speed et al., 2015). One of 
the stimuli used to generate emotions are videos. In several 
studies, videos, which are associated with emotions, are used 
to measure the EEG data of the participants while watching 
the videos (Li et al., 2020b; Subramanian et al., 2016; Zhao 
et al., 2017). In this context, Bhardwaj et al. (2022) used a 
long-short-term memory network to predict the correlation 
between the generated emotional EEG data and the big five 
PTs with an accuracy of 90.32% (Bhardwaj et al., 2022). 
The authors also demonstrated another approach in which 
they used genetic programming to distinguish extroverts 
from introverts with an average classification accuracy of 
71.15% (Bhardwaj et al., 2021). A cascaded network was 
used by Miranda-Correa and Patras (2018) to predict the 
PTs. The first level of the network uses a CNN + recurrent 
neural network architecture to determine the affective level 
while watching the videos. And in the second level, the PTs 
are predicted based on this sequence using a recurrent neural 
network with a mean F1-score of 0.562 (Miranda-Correa & 
Patras, 2018). In contrast to videos, Li et al. (2020a) used 
words associated with emotions as stimuli. Using a sparse 
regression model, they measured the correlations between 
the three EEG states neutral, positive, and negative and the 
big five PTs and showed that all five of them correlate with 
the emotions. What is special about the approach is that, 
compared to other studies, the authors chose a leave one 
subject out approach, whereby they were also able to show 
subject-independence in their model (Li et al., 2020a).

The studies show that there is a correlation between the 
PTs and the measured EEG data for emotions and that this 
correlation can be predicted using deep learning methods. 
However, this methodology is not suitable for use in elec-
tronic markets, as most approaches are based on subject 
dependency. And above all because external stimuli must 
be used to evoke the emotions, and no passive prediction is 
made in a resting-state without external stimuli.

Resting‑state related prediction

Research has long sought to show the relationship between 
resting-state neurophysiological data and PTs. While imag-
ing techniques such as functional magnetic resonance imag-
ing (fMRI) have shown the correlation in individual studies 
(Feng et al., 2018; Nostro et al., 2018), the consensus in 
research is that no information regarding PTs can be recog-
nized from resting-state EEG data (Korjus et al., 2015). Nev-
ertheless, the fMRI results suggest that there are intraindi-
vidual correlations. But imaging procedures are not suitable 
for use in electronic markets compared to EGG procedures 
due to their costs and physical characteristics.

Eysneck (1967) put forward an early theory that human 
personality is related to neurophysiological data. Accord-
ing to his theory, the PTs neuroticism and extroversion are 
related to brain arousal. More specifically, extroverted peo-
ple, for example, have a low level of brain arousal in the 
resting-state EEG (Eysneck 1967). Many studies have tried 
to confirm the theory by using brain arousal in the alpha 
band as suggested by Eysneck, but the results have been 
contradictory, and the theory could not be confirmed (Jaw-
inski et al., 2021). The resting-state EEG data differ greatly 
between subjects, which makes a statement about correla-
tion very difficult and leads to different results (Geissler 
et al., 2014). Jawinski et al. (2021) have therefore chosen an 
approach that includes significantly more subjects than pre-
vious studies and which, in addition to the alpha band, also 
includes the other bands in the analysis with brain arousal. In 
their study, they use resting-state EEG recordings in combi-
nation with electrooculography data and calculate the EEG 
vigilance score to measure the correlation between this and 
the big five PTs within all subjects. The study provided weak 
evidence that extroversion could be associated with brain 
arousal. A correlation was also found between openness to 
experience and a lower level of brain arousal (Jawinski et al., 
2021). Although the work provided weak evidence for an 
in-sample correlation of individual PTs with EEG data, no 
prediction of PTs was performed and thus there is still the 
same consensus that PTs cannot be predicted from resting-
state EEG data. Many older studies have discovered possible 
correlations between resting-state EEG data and one or more 
of the big five PTs. However, in a meta-analysis of many of 
these studies, Kuper et al. (2019) found that the evidence 
base is not robust and thus refuted the correlation, especially 
for the relationship between extraversion and neuroticism 
and frontal alpha asymmetry.

There have been some good ideas in the past that have 
linked PTs with resting-state EEG data. For example, Stel-
mack (1990) related extraversion to baseline brain arousal, 
but this has been refuted (Korjus et al., 2015). Attempts 
have also been made to link alpha band asymmetries with 
PTs (Coan & Allen, 2002; Davidson, 2001). However, these 
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results could not be confirmed in a meta-analysis (Wacker 
et al., 2010).

A novel approach that uses finer-graded frequency bands 
rather than the classical frequency bands has already been 
successfully applied for prediction cases in other application 
areas (Penava & Buettner, 2023; Penava et al., 2023), also 
specifically with resting-state EEG data (Breitenbach et al., 
2020, 2021; Flathau et al., 2021). Baumgartl et al. (2020) used 
the same methodology to predict extroversion with a balanced 
accuracy of 60.6% using a random forest algorithm. The work 
has thus shown for one of the PTs that a prediction is possi-
ble, even if subject independence was not strictly considered 
(Baumgartl et al., 2020). Jach et al. (2020) applied multivari-
ate pattern analysis, specifically support vector regression, to 
see if any of the big five PTs can be predicted from the spec-
tral power of resting-state EEG data. Their results show that 
agreeableness and neuroticism can be predicted based on this, 
but the other PTs cannot (Jach et al., 2020).

The studies shown, that are summarized in Table 2, sug-
gest that there could be a connection between resting-state 
EEG data and PTs, with individual studies even showing 
initial approaches to personality prediction. However, the 
studies also highlight the gap that calls for a subject-inde-
pendent solution for applications in electronic markets that 
can predict the big five PTs based on resting-state EEG data 
that does not require any stimuli.

A meta-analysis of many published studies that have 
attempted to link resting-state EEG data with PTs found 
that the results are controversial and unclear (Vecchio & De 
Pascalis, 2020). Table 3 shows that there have been some 
attempts in the past to link PTs to resting-state EEG data, 
but these could not be confirmed. What the table also shows, 
however, is that more recent work using ML methods and 
newer multivariate pattern analyses has yielded promising 
results, and in some cases has been able to predict indi-
vidual PTs based on resting-state EEG data. However, to our 

Table 2   EEG studies for personality prediction/correlation

Study Type Goal Subject-independence Results

Bhardwaj et al. (2022) Affective-state (videos) Correlation prediction of 
big five PTs

/ 90.32% average accuracy

Bhardwaj et al. (2021) Affective-state (videos) Extroversion prediction / 71.15% average classification 
accuracy

Miranda-Correa and Patras (2018) Affective-state (videos) Big five PT prediction / 0.562 mean f1-score
Li et al. (2020a) Affective-state (words) Show correlation of PTs 

and EEG
Yes All big five PTs correlate with 

affective EEG
Jawinski et al. (2021) Resting-state Show correlation of PTs 

and EEG
No Extroversion and openness to 

experience might be linked to 
resting-state EEG

Baumgartl et al. (2020) Resting-state Extroversion prediction Partial 60.6% balanced accuracy
Jach et al. (2020) Resting-state Big five PT prediction Yes Only agreeableness could 

consistently be decoded. 
Neuroticism partially

Table 3   Different research 
results on the predictive power 
of resting-state EEG data for the 
big five PTs

Study No predictive power Partial predictive 
power

Predictive 
power

Stelmack (1990) X (initial results were refuted)
Davidson (2001) X (promising results were not confirmed 

by the meta-analysis)
Coan and Allen (2002) X (promising results were not confirmed by 

the meta-analysis)
Korjus et al. (2015) X
Kuper et al. (2019) X
Jach et al. (2020) X
Baumgartl et al. (2020) X
Jawinski et al. (2021) X
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knowledge, there is currently no work that has managed to 
predict all of the big five PTs using resting-state EEG data.

Relevance for electronic markets

Today’s society is becoming increasingly digital, and 
human–computer interactions play a key role in electronic 
markets (Raji et al., 2024). Knowledge about a user’s per-
sonality can make it possible to individualize interactions 
in general and make them more user-friendly, improving 
the user experience in digital environments. The integration 
of personality-awareness into human–computer interaction 
could enable more engaging and effective user interfaces 
(Klados et al., 2020). With more specific reference to rec-
ommendation systems in electronic markets, in addition to 
Buettner (2017), several studies have empirically tested the 
positive influence of knowledge about a user’s personal-
ity on recommendations. For example, Yusefi et al. (2018) 
addressed the cold-start problem of new users for recom-
mendations. Using a questionnaire, they asked the big five 
PTs of a new user and clustered them based on the PTs. The 
new user was then recommended the items that active users 
from the same cluster, i.e., with similar personalities, had 
already rated positively. This reduced both the prediction 
error and improved the precision of the recommendation. 
In addition, Braunhofer et al. (2015) also looked at the new 
user problem in the scope of context-aware recommenda-
tion systems. In the context of a mobile tourism app, it was 
shown that the points of interest can be predicted more accu-
rately based on the personality of a new user than with the 
typically used demographic attributes such as age or gender. 
Specifically, they have shown that with the existing informa-
tion on preferences and associated personalities of active 
users, it is possible to “predict” the preferences of new users 
with their respective personalities. The personality is also 
determined here using self-reported questionnaires (Braun-
hofer et al., 2015).

To summarize, PTs are a critical factor in increasing 
usability and improving product recommendation systems 

in electronic markets. As traditional methods of personality 
assessment have their limitations, there is a need for alterna-
tives for robust and accurate personality assessment. While 
resting-state EEG offers a promising solution, there is cur-
rently no solution predicting all the big five PTs using that 
data.

Methodology

In this paper, we followed the design science research 
approach (Hevner et al., 2004), to develop our personal-
ity prediction CNN. The five-factor personality theory of 
Goldberg (1990) and Costa and McCrae (1992) is the under-
lying theoretical basis for our approach. Buettner’s (2017) 
personality-based product recommender system represents 
the scientific framework in which we will include our per-
sonality prediction CNN. Our approach corresponds to the 
well-established six-phase design science research frame-
work by Peffers et al. (2007), which is also shown in Fig. 2. 
In the first step, we summarized the relevant literature in the 
research background and identified the problem that no pas-
sively observable, objective, and reliable method for assess-
ing the big five personality traits exists for product recom-
mendation systems. Based on this problem and the finding 
that personality assessment based on resting-state EEG data 
could be a suitable method according to previous research, 
we inferred and set up our objective for an automated intel-
ligent system for this analysis. The individual objectives are 
derived from the problem and define that an artifact must 
be able to observe passively (1), must enable objectivity 
(2), and must allow an accurate and reliable assessment (3). 
In the third step, we proceeded to design the artifact based 
on the design objectives and developed a CNN-based archi-
tecture. In step four, we first addressed objectives (1) and 
(2) as proof-of-concept with exemplary data by investigat-
ing whether we can use the resting-state data as a model 
and then, in step 5, we checked whether and how well 
we can also achieve objective (3) by cross-validating the 

Fig. 2   Overview of our DSR process based on Peffers et al. (2007)
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architecture. The evaluation has given us the opportunity 
to iteratively adjust the parameters of the architecture so 
that we achieve the individual objectives in the best pos-
sible way. In the final step, by publishing our results in this 
paper, we ensure that the results are publicly available to the 
(research) community and can be used for further research. 
In the following, we present the artifact and its individual 
components.

Resting‑state EEG‑based personality prediction 
framework

Buettner (2017) has shown in his work that his framework 
can efficiently suggest products based on a user’s personal-
ity. Since social media data, which he uses to predict person-
ality, is susceptible to manipulation (Eftekhar et al., 2014; 
Guleva et al., 2022), we propose a new sub-framework that 
performs the prediction using resting-state EEG data. This 
sub-framework is shown in Fig. 3. As illustrated, the predic-
tion framework consists of two engines on the basis of which 
the user personality is predicted.

Retrieval and transformation engine

Small, portable EEG headsets that are inexpensive and 
suitable for consumers are nothing new (Debener et al., 
2012), but the market for these wireless EEG devices has 
developed rapidly, and there are now an enormous number 
of affordable EEG devices available (Niso et al., 2023). 
Over the last few years, hardware has moved out of the 
lab environment, with more and more companies devel-
oping applications for consumers that have clear benefits 
for them (Wexler et al. 2019). EEG sensing technology is 
now being integrated into everyday objects such as head-
phones (Ackerman & Strickland, 2022; Chatterjee et al., 
2022) and Apple, one of the largest technology companies, 
has also been granted a patent for the integration of EEG 
sensors in its earbuds (Drew, 2023). With the increasing 
number of devices that consumers can wear in everyday 

life, it is possible to record resting-state EEG data pas-
sively and automatically.

The most wireless devices have the option of storing the 
EEG data on the device and also providing it in real time via 
interfaces in “.eeg,” “.vmrk,” and “.vhdr” format (Niso et al., 
2023). The retrieval and transformation engine queries this 
data via the API interfaces, processes it, and converts it into 
the correct format for the personality prediction engine. The 
engine processes the data in raw form and only applies a 
notch filter to remove the power line noise (Ferdjallah & 
Barr, 1994) and resamples the data at 250 Hz. Then, the base 
channel is removed from the EEG data.

Spectral analysis can reduce the complexity of EEG data 
by transforming the time series data into frequency domain 
data (Buettner et al., 2019). Within the retrieval and trans-
formation engine, a power spectral density (PSD) accord-
ing to Welch’s approach is applied (Welch, 1967), which 
is implemented using the MNE library and starts at a fre-
quency of 0.5 Hz and has no limit in the upper spectrum of 
the EEG bands (Gramfort, 2013). Welch’s algorithm calcu-
lates the distribution of the data by using a sliding window 
to determine the periodogram in segments and averaging 
all estimates of the segments (Welch, 1967). This approach 
contains more information as the EEG spectrum is divided 
into finer sub-bands (Baumgartl et al., 2020; Breitenbach 
et al., 2020, 2021). The engine uses minimal preprocessing 
to save computational power and to be used more generally. 
The preprocessed data is passed to the personality prediction 
engine in “.csv” format. The CSV-file contains the pre-pro-
cessed data of an individual subject per row. A row consists 
of 62 electrodes times 1020 frequency bands.

Overfitting is a problem that occurs when not enough 
data is available and the model generalizes poorly but rather 
learns data by memorization and thus performs well on 
training data but cannot be applied to test data (Ying, 2019). 
A possible solution to this problem is the synthetic minor-
ity oversampling technique (SMOTE), where new samples 
are generated based on the interpolation of neighboring 
instances of the minority class (Chawla et al., 2002). The 

Fig. 3   Resting-state EEG-based 
personality prediction frame-
work
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engine therefore also applies SMOTE, implemented by the 
imblearn library, with the training data to compensate for 
the imbalance in the dataset. Nevertheless, there is still the 
problem that it is difficult to collect large-scale EEG data 
sets, which emphasizes the urgency of data augmentation 
for EEG data against overfitting (He et al., 2021).

Noise injection is listed as a possible augmentation 
method for EEG data, where a two-dimensional Gaussian 
noise is applied to the data to generate additional training 
samples (He et al., 2021). However, it should be noted that 
gaussian noise could destroy the temporal correlations of 
the EEG data, which is why it has so far only been applied 
to the original individual feature matrices of the EEG data 
(Wang et al., 2018). In our brain, there are many different 
signal generators (synapses, dendrites, etc.), some of which 
are millimeters apart but can react differently to the same 
stimuli and can generate a broad spectrum of frequencies 
(Bullock, 1990). Resting-state EEG data are therefore 
nonlinear by nature and tend to be characterized by chaos 
(Pritchard et al., 1995). There can be interactions between 
the individual generators which can change in seconds, min-
utes, or hours. A single EEG electrode receives signals from 
many of these generators and thus automatically captures 
noise (Bullock, 1990). In addition, according to Freeman 
and Viana di Prisco (1986), recorded EEG signals can also 
have three attractors. Firstly, there are resting-state attractors 
that occur continuously; then, there are cyclic attractors and 
finally there are a completely random attractors that also 
occur for different lengths of time and at undefined times 
(Freeman & Viana di Prisco, 1986). Da Silva et al. (1997) 
define noise signals as intrinsically random fluctuations that 
have a stochastic character. EEG signals recorded over time 
thus contain states in which noise is included (Da Silva et al., 
1997). In general, however, a big part of the gross EEG data 
follows a Gaussian normal distribution over the time-domain 
and not much is known about the generation of noise in 
our brain and whether it may hold any crucial information 
content (Elul, 1969).

Most of the work using noise in EEG refer to the fre-
quency and not the spatial domain (He et al., 2021). There 
are many different types of noise in the human brain. On 
the one hand, sensory noise can occur, which can be caused 
by odors or light. Electrical noise can also be generated by 
random membrane potentials. General synaptic noise has 
also been observed, as different EEG signals were measured 
in the same person even though the exact same stimuli were 
given several times. Noise is thus omnipresent in the EEG, 
and it has been shown that the noise level estimation can 
be performed with a Gaussian process (Faisal et al., 2008).

In other domains, it has been shown that noise can neg-
atively influence the robustness of ML models as it is an 
exception to the norm (Xu et al., 2014). Since in this work 
we try to develop a subject-independent CNN that predicts 

the PTs of a subject based on its EEG, we try to make the 
model independent of individual characteristics such as 
noise. The central limit theory states that the distribution 
of sample means adapts to the normal distribution as the 
quantity increases, which can also be transferred to the dis-
tribution of noise (Kwak & Kim, 2017). As shown before, 
the distribution of noise according to this principle is cov-
ered in many systems by the Gaussian distribution (Park 
et al., 2013).

To summarize, noise in the EEG data arises individu-
ally from several sources depending on the subject. It is not 
known to what degree information content is contained in 
the noise, but that parts of it can be explained by a Gauss-
ian distribution. In this paper, we hypothesize that because 
the noise is so individual and assuming that there is no 
information about PTs in it, the subject-independent pre-
dictive power of EEG-based CNN models for PTs becomes 
more robust when the noise in the model’s training data is 
smoothed by a Gaussian distribution. This would reduce the 
individual component of noise from the data and ensure that 
the data is less subject-dependent, and the model can gen-
eralize better.

In the retrieval and transformation engine, a special inno-
vative implementation of a one-dimensional Gaussian filter 
is therefore used as the last step to try to reduce the noise 
in the data, in contrast to noise injection. Since the engine 
removes the temporal domain from the data in the previ-
ous steps using spectral analysis, we do not run the risk of 
destroying temporal dependencies using the Gaussian filter. 
The classic one-dimensional Gaussian filter of the SciPy 
python package is used for noise reduction. The innovation 
within our implementation is that we do not run the filter 
over the entire data at the same time but use the individual 
data of the single electrodes. This ensures that the noise is 
only smoothed across the frequency bands within an elec-
trode and not across several electrodes and thus across the 
spatial dimension. The procedure is based on the fact that 
noise in EEG mostly refers to the frequency and not the spa-
tial domain (He et al., 2021). The procedure is only applied 
to the training data, which doubles the number of samples, 
as training is carried out with both the original and the aug-
mented data.

Personality prediction engine

The personality prediction engine receives the minimally 
preprocessed data, which on the one hand contains the 
PSD values of an individual subject and its values for the 
big five PTs per row. The spectral analysis has reduced the 
complexity of the data by removing the temporal domain. 
This allowed us to choose a simpler architecture, as no tem-
poral dependencies need to be considered, as is the case 
with recurrent neural networks, for example. Compared to 
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Baumgartl et al. (2020) who built on a simpler ML approach 
to predict partially subject-independent PTs based on EEG 
data, we use a newly created CNN architecture called Sub-
ject-Independent EEG-based Personality Trait Network 
(SIEPTNet), which is shown in Fig. 4. For most applications, 
artificial neural networks such as CNNs outperform simpler 
ML approaches (Janiesch et al., 2021).

SIEPTNet is a sequential CNN consisting of a total of 13 
layers. The input vector of SIEPTNet is one-dimensional 
and contains 63,240 features corresponding to the 62 EEG 
channels times the 1020 frequency bands per channel. All 
three convolutional layers are one-dimensional and have a 
kernel size of three with 64 filters. Each of the convolutional 
layers is followed by a batch normalization layer. Layers 5, 9, 
and 10 are each max pooling layers with a pool size of two 
and where padding is permitted. A dropout layer with a rate 
of 0.8 is added after the first and third max pooling layer to 
avoid overfitting. The last two layers are a standard flat layer 
and finally a fully connected dense layer with a single output 
unit and a sigmoid activation function.

The model is compiled with an Adam Optimizer (Kingma 
& Ba, 2014) and a fixed learning rate of 1e−4 using a binary 
cross-entropy loss function. A binary classifier model is 
trained for each of the five PTs so that the weights of the 
model can adapt to the PT in each case. The SIEPTNet archi-
tecture is orientated towards EEGNet, a compact CNN for 
the classification of EEG data (Lawhern et al., 2018). How-
ever, SIEPTNet is a one-dimensional CNN which is spe-
cialized in the classification of EEG data pre-processed by 

spectral analysis. The output of the model is a binary deci-
sion for the respective PT. The five decisions for the user’s 
PTs are available after the personality prediction engine.

User personality

The personality of an individual user was predicted by the 
proposed framework using the five PTs. No information 
about the respective user was required in advance and the 
framework determined their personality completely inde-
pendently of the individual subject. The information about 
the PTs can then be used in the product recommendation 
framework by Buettner (2017) to better recommend products 
to the user. In comparison to the stage where no information 
about the PTs of a user is available, we can only guess the 
user’s personality, which is correct with a probability of 2−5. 
The results shown later demonstrate that we can increase this 
probability from 3.125 to 12.53% with our framework and 
thus achieve a 4 times higher probability in predicting the 
personality of a particular user.

Personality‑based product recommendation 
framework

Our developed artifact utilizes consumer hardware devices 
for EEG measurement as part of the recommendation frame-
work. Due to their increasing availability and the ever-eas-
ier integration into everyday life, they represent a passive 
way of measuring the resting-state EEG (Drew, 2023) and 

Fig. 4   SIEPTNet architecture
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thus contribute to the fulfillment of the design objective 
(1). Resting-state EEG data contributes to the fulfillment 
of the second research objective of objectivity (2) due to 
their characteristics of not being manipulable by the user 
and thus being unbiased and not dependent on an external 
reviewer (Brocke et al., 2013). Through rigorous evaluation 
using tenfold cross-validation and the demonstrated perfor-
mance increase from 3.125 to 12.53%, we also fulfill the 
third objective for accurate and reliable assessment (3). At 
this point, we have developed an artifact with which the 
personality of a new user can be predicted. This knowledge 
can be embedded in a recommender framework in different 
ways. On the one hand, the PTs can be matched with product 
characteristics, which in turn are assigned to PTs, and sug-
gestions can be made based on the match (Buettner, 2017). 
Another option is to cluster existing users whose purchasing 
decisions are already known according to their personality 
and then integrate new users into the clusters (Yusefi et al., 
2018). And a matrix factorization-based recommendation 
algorithm could be developed based on known users and 
their personality and preferences (Braunhofer et al., 2015). 
All three methods have successfully shown that knowledge 
about the PTs of a new user can be used to recommend prod-
ucts more efficiently.

Validation procedure

To validate our framework, we first pre-processed the entire 
data as described using spectral analysis and merged it into 
CSV format with the PT scores. We then applied a stratified 
k-fold to split the data into ten train-test splits. The evalu-
ation in several independent folds helps to ensure that the 
model and the results can be generalized and are not based 
on lucky splits. In K-fold cross-validation, the data is divided 
into K segments of equal size, one of which is left out for 
testing in each iteration (Breiman, 1996). The procedure was 
performed individually for each of the five PTs and a random 
state of 42 was used for data splitting to have the same data 
for each PT in each split for comparability. For each split, 
we then performed SMOTE only with the training portion 
to have a balanced training set. We then applied a standard 
scaler to the training data and subsequently transformed the 
values to the test data. Further, we used the training data to 
train the model with a batch size of 16 and 200 epochs. We 
used a callback which saves the epoch with the best valida-
tion accuracy to be able to retrieve the best model at the 
end. After the training of the model was finished, we have 
evaluated it with the test data. We reported the following 
values: accuracy, balanced accuracy, F1-score, true posi-
tive rate (TPR), true negative rate (TNR), positive predictive 
value (PPV), negative predictive value (NPV), area under 
the curve score (AuC), and prevalence. In addition, we gen-
erated a confusion matrix for each fold. We then performed 

the same procedure again with the same random state for the 
splits, with the modification that after applying SMOTE, we 
additionally applied our gaussian filter to the training data to 
double it. By using the same random state, we were then able 
to compare whether the use of our innovative filter led to 
better results. The procedure shown ensures that we achieve 
valid results for a subject-independent prediction of the PTs.

Dataset

To demonstrate the quality and reliability of our approach, we 
utilized an extensive dataset of EEG data that is widely used in 
the scientific community. The data we used is part of the Leip-
zig Study for Mind–Body-Emotion Interactions (LEMON) 
dataset (Babayan et al., 2019). This dataset includes publicly 
available resting-state EEG data from 203 participants whose 
data was tagged using 62 digitized EEG channels. The study 
underlying the data was conducted in accordance with the 
Declaration of Helsinki. The protocol used was also approved 
by an ethics committee. Prior to the study, each participant 
was required to provide written consent that they agree to the 
anonymized sharing of their data. The dataset can be used 
freely under the Creative Commons Attribution 4.0 interna-
tional license. For each participant, 16 min of resting-state 
data were recorded, eight with eyes closed and eight with eyes 
open. In addition to the EEG data, the dataset also contains 
the assessment of the NEO-FFI personality survey of the indi-
vidual subjects. The assessment was carried out using a 5-point 
Likert scale, with values ranging from 0 (strong denial) to 4 
(strong approval) (Babayan et al., 2019). In order to generate 
a binary decision from the assessment of the five PTs, we cal-
culated the mean score for the individual values for all subjects 
and then grouped the subjects according to this score. The 
mean scores are given in brackets: neuroticism (1.50), extra-
version (2.41), openness for experiences (2.69), agreeableness 
(2.75), and conscientiousness (2.67). By grouping the subjects 
according to the mean scores, a certain imbalance has emerged 
within the individual PTs. Table 4 provides an overview of the 
distribution within the classes.

Results

The results of the validation process are shown below. 
Table 5 first shows the evaluation metrics of the model 
evaluation. These are the average scores of each criterion 
across the ten folds. Table 5 shows the results for running 
the model without applying the developed Gaussian filter.

In comparison, Table 6 shows the average evaluation 
results of the run in which the Gaussian filter was used for 
data augmentation. Table 5 shows that our new SIEPTNet 
architecture achieves a significant predictive gain for each 
of the PTs in balanced accuracy (i.e., predictive power) on 
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average across all folds compared to the random guess. 
Table 6 then additionally shows that with the innovative 
Gaussian filter a further predictive gain could be achieved 
for each PT except for conscientiousness. Figure 5 shows the 
comparison between the confusion matrices, which on the 
one hand shows the values averaged over the folds for the 
run without Gaussian filter, as well as the average values for 
the run with Gaussian filter. This also confirms the previous 
observation that the Gaussian filter increases the predictive 
power and further improves the classification results.

Discussion

The results presented show the potential of EEG data for 
the prediction of PTs. The presented personality prediction 
engine should be able to be integrated into the framework of 
Buettner (2017) without performance losses. For this rea-
son, Fig. 6 shows the comparison of the results achieved by 
the existing engine compared to the results shown. Buettner 

(2017) reported the accuracy for the prediction engine in 
his work. To compare the results, we also calculate the bal-
anced accuracy due to the imbalance of the data set, which 
is calculated from the arithmetic mean of the sensitivity and 
specificity (Dinga et al., 2019). Balanced accuracy is often 
used to evaluate imbalanced datasets (Brodersen et al., 2010).

The comparison in Fig. 6 shows that EEG data is a suitable 
substitute for the social media data in Buettner’s (2017) product 
recommender framework. In a direct comparison, the balance 
accuracy of the EEG data outperforms the values of the social 
media data for each of the five PTs. In addition to the superior 
results, EEG data also has the advantage over social media data 
that it cannot be manipulated in contrast to user behavior on 
social media and does not change over a lifetime (Brocke et al., 
2013; Costa & McCrae, 1992; Romero et al., 2009).

Epistemological discussion

The majority view in research assumed that there is no cor-
relation between resting-state EEG data and the big five PTs, 

Table 4   Class distribution 
within the personality traits

Openness Conscientiousness Extraversion Agreeableness Neuroticism

Yes (over mean score) 104 100 114 108 90
No (under mean score) 107 111 97 103 121

Table 5   Average evaluation 
metrics over 10 folds without 
Gaussian filtering

Openness Conscientiousness Extraversion Agreeableness Neuroticism

Accuracy 0.6069 0.6400 0.6394 0.6779 0.6208
Balanced accuracy 0.6109 0.6391 0.6329 0.6851 0.6121
F1-score 0.6537 0.5711 0.6551 0.7074 0.4927
TPR 0.8700 0.5255 0.6992 0.8300 0.5556
TNR 0.3518 0.7527 0.5667 0.5402 0.6686
PPV 0.6080 0.7658 0.7000 0.6341 0.5700
NPV 0.8899 0.6055 0.6632 0.8253 0.6694
AuC 0.5623 0.5836 0.5723 0.6296 0.5901
Prevalence 0.4929 0.5119 0.5403 0.4740 0.4266

Table 6   Average evaluation 
metrics over 10 folds with 
Gaussian filtering

Openness Conscientiousness Extraversion Agreeableness Neuroticism

Accuracy 0.6403 0.6398 0.6818 0.6874 0.6539
Balanced accuracy 0.6436 0.6391 0.6684 0.6897 0.6607
F1-score 0.7155 0.6390 0.7231 0.6922 0.6054
TPR 0.9036 0.6673 0.7856 0.7400 0.7111
TNR 0.3836 0.6110 0.5511 0.6394 0.6102
PPV 0.6008 0.6882 0.6992 0.6799 0.5801
NPV 0.8273 0.7033 0.6923 0.7402 0.7996
AuC 0.5617 0.5664 0.5490 0.6428 0.5647
Prevalence 0.4929 0.5119 0.5403 0.4740 0.4266



	 Electronic Markets           (2025) 35:37    37   Page 12 of 20

and it is therefore not possible to predict PTs based on this 
data (Korjus et al., 2015). However, the timeline in Fig. 7 
also shows that recent work has achieved promising initial 
results in predicting individual PTs, although no work has 
been successful with more than two PTs. One reason for 
the nevertheless positive results could be the use of more 
modern ML methods, with which more complex multivari-
ate pattern analyses can be carried out (Jach et al., 2020). 
Compared to the simpler ML methods, we have used a neu-
ral network for the prediction. Such deep learning methods 
outperform simpler ML methods in most use cases, as they 

can learn far more complex patterns (Janiesch et al., 2021). 
Our results show that the approach was successful, and that 
for the data available to us we have refuted the assumption 
that there is no correlation between the PTs and resting-state 
EEG data. To our knowledge, this makes us the first paper to 
successfully predict all five PTs. In addition, we were able to 
increase the predictive performance of our model for almost 
all PTs by applying our innovative Gaussian filter and thus 
significantly increase the subject-independent classification 
of the PTs. We suspect that by applying the filter we were 
able to remove the subject-individual noise from the EEG 

Fig. 5   Confusion matrices of all PTs

Fig. 6   Comparison of the 
balanced accuracies of both 
approaches
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data and thus make the data basis more robust. This leads to 
the assumption that the noise does not contain any relevant 
information about the PTs, as the performance of the model 
increases with its removal. However, this assumption is not 
proven by this work, but merely represents an observation 
that needs to be confirmed by future research.

Practical discussion

The information about a subject’s PTs is collected via BCIs 
in combination with our demonstrated methodology. This 
information can be used profitably in various ways. Van Erp 
et al. (2012) have identified seven areas of application for 
BCI applications in the industrial sector. The seven areas are 
as follows: device control, user state monitoring, evaluation, 
training and education, gaming and entertainment, cogni-
tive improvement, and safety and security. Device control 
describes the control of any industrial devices or machines 
and enables their remote control, for example. User state 
monitoring describes the possibility of tracking a user’s 
states such as fatigue, stress, workload, etc. Evaluation sim-
ply means using the brain’s data, e.g., for neuromarketing 
purposes, whereas training and education describes applica-
tions that utilize the brain's ability to change and adapt. BCIs 
also represent a new application platform for the gaming and 
entertainment industry. Cognitive enhancement describes 
applications that adapt a subject's brain activity based on 
neurofeedback, for example to increase agility. Safety and 
security BCI applications can increase general safety by, for 
example, tracking a user’s arousal state and, in some cases, 
recommending a break (Van Erp et al., 2012). Information 
about a subject’s personality can add great value in each of 
these areas.

Starting with evaluation, the information about the PTs 
can be used for more efficient (neuro-) marketing. Buettner 

(2017) has shown that this information can be used in elec-
tronic markets for better product recommendations and can 
thus increase the profitability of a company. The personality 
of a subject influences their way of learning and therefore 
has a direct influence on the education industry. Although to 
varying degrees, all of the big five PTs have an influence on a 
subject's education and learning (De Raad & Schouwenburg, 
1996). In particular, the openness PT is associated with the 
type of learning and learning goals, while the conscientious-
ness trait is associated with academic achievement (Jensen, 
2015). Different subjects therefore need different learning 
programs. Knowledge of PT enables the design of individu-
alized learning experiences, which has been a desired goal 
in education for several years and is increasingly possible 
through the electronic domain (Tetzlaff et al., 2021). Gam-
ing and entertainment is a big part of electronic markets. 
A gamer’s personality can determine their choice of game 
genre and also influence their compulsive buying behavior. 
A game developer can therefore use the information about 
a gamer’s PTs to develop a better marketing strategy for the 
game's online sales (Jin et al., 2023). Also, the gamers per-
sonality can be used a more individual game design in the 
entertainment industry (Peever et al., 2012). When it comes 
to operating machines (device control), there are three dif-
ferent personality types which are related to the big five PTs, 
among others. One of the types, for example, is the stressed 
operator, who needs different instructions in difficult situ-
ations than a more relaxed operator. Knowledge of the PTs 
can therefore make the operation of devices more efficient 
(Strubelt et al., 2019). In general, regarding device control, 
it is important to emphasize that personality plays a major 
role in the use and acceptance of human–machine interfaces 
by operators and that knowledge of the PTs is therefore of 
great benefit in this context (Stowers et al., 2017). BCIs also 
allow remote control of devices, enabling remote working in 

Fig. 7   Research on predictive power of resting-state EEG data for PTs over time
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this sector. The big five PTs are also related to remote work 
exhaustion and can be useful in predicting it. For example, 
neuroticism is a predictor of exhaustion, while agreeableness 
and conscientiousness are protectors (Parra et al., 2022). The 
big five PTs can also be an indicator of how well a person 
performs a job and how well that job fits the person (Bar-
rick & Mount, 1991). Likewise, some work-related traits 
such as work self-efficacy or satisfaction can be related to 
PTs, such as extroversion in this case (Van den Berg & Feij, 
2003). It has also been shown, for example, that variability 
in extraversion in group tasks increases the performance of 
the whole group (Kramer et al., 2014). Cognitive improve-
ment can be used to train and improve certain characteristics 
of a subject (Van Erp et al., 2012). If you know the PTs of a 
user, you can design cognitive improvement specifically for 
them so that they perform better on the job or a work group 
fits well together, although ethical issues must be consid-
ered here. PTs also influence how a person deals with and 
reacts to situations such as stress (Vollrath, 2001), attention 
or the (perceived) workload (Rose et al., 2002). For example, 
people with a high level of agreeableness and conscientious-
ness need social activity after a stressful event, while neu-
roticism, for example, is generally associated with traumatic 
stress (Hengartner et al., 2017). So, if a user’s condition is 
monitored using BCIs, it is important to know the PTs of 
this person to define appropriate measures and thresholds 
for exceptional situations. This information is also valuable 
in the context of safety and security related BCI applica-
tions that are closely linked to user state monitoring appli-
cations. In addition, the personality of a subject also has a 
direct influence on their perception of safety. For example, 
conscientiousness and openness are two traits that correlate 
positively with process control performance (Burkolter et al., 
2009). Especially in the electronic age, information security 
is of great relevance and PTs represent a major risk factor 
here in particular. Conscientiousness, for example, is a major 
indicator of positive activity towards information security 
(Uffen & Breitner, 2013).

Practical concerns

The practical added value of a tool for predicting a user’s 
PTs is relatively clear for all the areas of application of BCIs 
mentioned. However, before such a tool can be used in prac-
tice, important questions need to be clarified. The first aspect 
is that there are no security standards for BCIs and for con-
sumer hardware for reading EEG data, thus paving the way 
for cyber-attacks and data manipulation (Bernal et al., 2021). 
Theoretically, such applications can be used to intercept and 
analyze a user’s raw EEG data, which raises major concerns 
in data protection (Takabi et al., 2016).

Even if novel deep learning architectures like ours sup-
port decision-making, there are methodological drawbacks 

involved. One of the most important drawbacks is the 
dependency on more data to optimize the models (Ahmed 
et al., 2023). Especially with EEG data, this is a major prob-
lem, as existing data sets are difficult to obtain. For these 
reasons, we have developed a very efficient model that works 
subject-independently and thus delivers promising results. 
Nevertheless, the model and its further development is 
also dependent on additional larger data sets, which would 
increase the training time. Another aspect is the difficulty of 
interpreting deep learning models and the associated prob-
lem of being able to understand the decisions made by them. 
When implementing the artifact, the design principle should 
therefore be to use “white-box” approaches to ensure that the 
decisions are transparent (Rieg et al., 2020).

Ethical concerns

In addition to practical concerns, considerations of the ethi-
cal aspects of brain-reading technologies are an exceedingly 
important aspect in the implementation of the artifact shown. 
In his work on the rise of these technologies, Drew (2023) 
posed a risk to cognitive freedom and mental privacy. Brain 
data, in relation to other people related data, can reveal very 
intimate information about a human. An important aspect 
is that information that can be derived from the brain is 
directly linked to the human being who produces it, but at 
the same time, the individual cannot easily control it (Ienca 
& Andorno, 2017). Brain reading technologies that exploit 
a person’s inner thoughts jeopardize people’s right to cogni-
tive freedom, highlighting the urgency for legislative reform 
before such applications are implemented (Farahany, 2012). 
Ienca and Andorno (2017) therefore propose four new laws 
to protect cognitive liberty, mental privacy, mental integ-
rity, and the right to psychological continuity. These four 
new laws are designed to ensure that individuals retain the 
autonomy to control their mental states and reject neuro-
technological interventions, prevent unauthorized access 
to brain data, and avoid manipulation of neural processes. 
And also to ensure that an individual’s sense of identity is 
protected (Ienca & Andorno, 2017). Compliance with such 
proposed laws is particularly important for applications that 
use peoples brain data regarding their personality for mar-
keting purposes. When implementing such an application, 
it is therefore essential to pay attention to design principles 
that deal with these rights, for example by using homomor-
phic encryption to protect personal information from exploi-
tation (Popescu et al., 2021), or, for example, by having the 
models for evaluation only process the information locally 
at the persons premises and not uploading the brain data at 
all and processing it online (Xu et al., 2022).

If the capabilities of brain reading technologies continue 
to develop in this way, Kantian and privacy concerns could 
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materialize. In industry, the prediction of consumer behavior 
could give the impression that consumers are things without 
dignity and cognitive freedom. In the sense of Kantian ethics, 
people would then only be objects for the purpose of market-
ers. However, the artifact we have developed is probabilistic 
and the consumer retains free will and will probably never be 
completely predictable, which makes Kantian concerns unreal-
istic. Nevertheless, this makes it even more important for com-
panies to be completely transparent in such applications and to 
create maximum opacity in consent, data use and overview of 
the applications capabilities to ensure the dignity of the human 
being and their free cognitive will (Stanton et al., 2017).

Conclusion

Based on the finding that traits are related to biological fac-
tors such as genes (Romero et al., 2009), we initially hypoth-
esized that PTs must be detectable in a subject’s resting-
state EEG data. By building on Buettner’s (2017) personality 
prediction engine and creating a way to predict all five PTs 
using resting-state EEG data, we were able to confirm this 
hypothesis for the dataset used.

The results obtained for all five PTs show that in a future 
with an increasing number of consumer-graded EEG hard-
ware, which will enable electronic markets to access user-
related EEG data, the EEG data represents an alternative to the 
social media data in Büttner’s (2017) product recommender 
framework. Beyond the framework, we have also shown that 
there is great economic potential for the resting-state EEG-
based personality prediction engine in various industries.

Limitations and future work

The personality prediction engine is based on the fact 
that PTs do not actually change over a person's lifetime 
and remain stable (Costa & McCrae, 1992). We take this 
assumption as valid and therefore expect to predict the PTs 
in the EEG data over the measured period of the dataset. In 
future research, however, we want to test this assumption 
and try to falsify it by having our engine predict several 
individual time periods of the EEG from one subject and 
investigating whether the same result is predicted in each 
case or whether it changes over time.

In our work, we have presented and tested a new deep 
learning architecture for the analysis of EEG data. In future 
work, we will systematically test further architectural possi-
bilities such as 3D CNNs or 2D CNNs to create comparisons 
to the proposed 1D architecture (Craik et al., 2019). Last 
but not least, the personality prediction engine we proposed 
should be integrated and tested in various real-world elec-
tronic markets scenarios, which we proposed among others, 
in order to improve it. 
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