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Abstract
In this paper, we extend the market price of risk for delivery periods (MPDP) of electricity
swap contracts by introducing a dimension for jump risk. As introduced by Kemper et al.
[30], theMPDP arises through the use of geometric averaging while pricing electricity swaps
in a geometric framework. We adjust the work by Kemper et al. [30] in two directions: First,
we examine a Merton type model taking jumps into account. Second, we transfer the model
to the physical measure by implementing mean-reverting behavior. We compare swap prices
resulting from the arithmetic (approximated) average to the geometric weighted average.
Under the physical measure, we discover a decomposition of the swap’s market price of risk
into the instantaneous market price of risk and the MPDP.

Keywords Electricity swaps · Delivery period · MPDP for diffusion and jump risk ·
Mean-reversion · Jumps · Samuelson effect · Seasonality

JEL Classification G130 · Q400

1 Introduction

With the turn of the millennium, pricing derivatives on electricity has become important
through the liberalization of energy markets. Nowadays, new challenges appear due to the
transition to a climate neutral energy system: Electricity generated from renewable energy
sources, like wind and solar energy, clearly depends on the weather conditions of the sea-
son. Consequently, a rising share of renewable energy induces stronger intermittency and
seasonality effects influencing especially delivery-dependent pricing effects. In electricity
markets, such delivery-dependent futures contracts are the most important derivatives. They
deliver the underlying over a period of time since electricity is not storable on a large scale.
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We therefore call them electricity swaps. The dependence on the delivery time affects the
price dynamics, the pricing measure, and the swap’s market price of risk for delivery periods
(MPDP) introduced by Kemper et al. [30]. In this paper, we provide an extension of the
MPDP. To do so, we adjust the model to a Merton type model taking jumps into account.
In addition, under the physical measure, we identify a decomposition of the swap’s market
price of risk into the instantaneous market price of risk and the MPDP.

The delivery period is a unique feature of electricity markets that differs from other com-
modities such as oil, gas, or corn. In fact, it plays a crucial role in the pricing of electricity
swaps. Following the market model approach, the electricity swap price results from aver-
aging an instantaneous stream of futures with respect to the delivery time. This approach
goes back to the famous model by Heath et al. [23]. It was firstly connected to energy-related
derivatives by Clewlow and Strickland [15] and to electricity derivatives by Bjerksund et al.
[9] followed by a row of works (see, e.g., Koekebakker and Ollmar [34], Benth and Koeke-
bakker [5], Bjerksund et al. [9], Benth et al. [1], and Kemper et al. [30] for geometric settings,
Hinderks et al. [25] for a structural model and Cuchiero et al. [17]measure-valued processes).
One stream of literature investigates spot based price dynamics and derive electricity futures
based on the spot price referring to the day ahead market (see, e.g., Cartea and Figueroa,
[13], Cartea and Villaplana [14], Escribano et al. [19]). In this paper, we focus on a HJM-type
approach modelling the futures market directly. That is we consider so-called atomic swap
contracts inducing a delivery period of a month, that are used to price overlapping swap
contracts delivering for example over a quarter or a year. We refer to Benth et al. [1] and
Benth and Koekebakker [5] and Kemper et al. [30] for a construction of overlapping swap
contracts based on atomic swaps.

The delivery period can be incorporated in different ways of averaging. We distinguish
between three types of averaging: Arithmetic, approximated, and geometric averaging.Arith-
metic averaging is the classicalway to implement the swap’s delivery period and is convenient
for arithmetic price dynamics. In particular, continuous arithmetic averaging is applied by
Benth et al. [3], Benth and Koekebakker [5] Benth et al. [1], Benth et al. [4], Benth et al. [7],
Kleisinger-Yu et al. [32], Koekebakker and Ollmar [34], and Latini et al. [35], among others.
For discrete arithmetic averaging, we refer to Lucia and Schwartz [37] and Burger et al. [12].
Instead, arithmetic averaging of geometric price dynamics is poorly suited since the resulting
swap price dynamics are neither geometric norMarkovian. It requires, e.g., an approximation
of the swap price volatility introduced by Bjerksund et al. [9] whenever we want to consider
tractable swap price dynamics (see also Benth et al. [1], Benth and Koekebakker [5]). We
call this procedure approximated averaging. Geometric averaging, instead, does not require
any approximations whenever the price dynamics are of geometric type and lead to suitable
geometric dynamics (see Kemper et al. [30]). Hence, the geometric average is tailor-made
for relative growth rate models. Nevertheless, the geometric average does not preserve the
martingale property. This issue is tackled by Kemper et al. [30] using a measure change with
their MPDP. Usually, negative prices are not observable in the data of the futures prices,
such that we stick to a geometric setting and compare the latter averaging procedures while
adjusting the MPDP to a Merton type model.

Both papers, Kemper et al. [30] and Bjerksund et al. [9], investigate the modeling of the
delivery period explicitly through a continuous weighted averaging approach for geometric
futures prices. Both approaches lead to Markovian and geometric swap price dynamics. We
discuss similarities and differences between these approaches and introduce a numéraire
caused by the different averaging techniques in Sect. 2. In line with the market model
approach, we base the averaging procedure on a continuous stream of futures contracts that
is a martingale under the futures risk-neutral measure Q. As the futures have instantaneous
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Fig. 1 Measure changes between the physical measure P, the instantaneous risk-neutral measure Q, and
the swap’s pricing measure ˜Q as well as their connections with the swap’s market prices of risk �PQ, the

instantaneous market price of risk �P˜Q, and the MPDP denoted by �Q˜Q

delivery, we refer to Q as the instantaneous risk neutral measure. The resulting swap price
dynamics based on geometric averaging are not a martingale under Q. We then define the
MPDP of diffusion and jump risk and a new pricing measure ˜Q, which can thus be used to
price derivatives on the swap. We may refer to ˜Q as the “swap’s” risk-neutral measure since
the swap price is a ˜Q-martingale without any approximations.

Therefore, we call Q also the “instantaneous” risk-neutral measure. It is a clear advan-
tage that the approximated average preserves the martingale property of the swap under the
measure Q. A decomposition of the market price of risk for electricity swaps arises when
turning to the physical measure P. Figure1 gives an overview over the connections between
the differentmeasuresP,Q, and˜Q and the swap’smarket price of risk�PQ, the instantaneous
market price of risk �P˜Q, and the MPDP denoted by �Q˜Q.

Indeed, the MPDP is triggered by typical features of the electricity market enter-
ing the swap’s volatility. In particular, delivery-dependent effects like seasonalities and
term-structure effects play a crucial role. Fanelli and Schmeck [20] empirically identify
seasonalities in the swap’s delivery period by considering implied volatilities of electricity
options. Renewable energy, like wind and solar energy, intensify especially the seasonal
effects mentioned before.

An additional property of electricity and commodity markets is the Samuelson effect (see
Samuelson [43]): The closer we reach the end of the maturity, the more effect the volatility
has. Benth and Paraschiv [6] and Jaeck and Lautier [27] provide empirical evidence for the
Samuelson effect in the volatility term-structure of electricity swaps. It can also be observed
in the implied volatilities of electricity options, especially far out and in the money (see
Kiesel et al. [31]). Kemper et al. [30] characterize the MPDP for such seasonalities and
term-structure effects within a stochastic volatility model through the variance per unit of
expectation of the delivery-dependent effects. We contribute to the literature by investigating
the MPDP analytically, affected by seasonalities and the Samuelson effect. Moreover, we lay
the foundation for the empirical analysis of the MPDP by specifying the model under the
real world measure P.

Further characteristics of the observerd electricity swap prices are mean-reversion and
jump behavior. As mentioned by Latini et al. [35] and Kleisinger-Yu et al. [32] among
others, mean-reversion is an important property of the electricity swap prices. Koekebakker
and Ollmar [34] empirically validate that the short-term price varies around the long-term
price, which confirms mean-reverting behavior. As Benth et al. [7], we face the problem
of changing a mean-reverting process to the risk-neutral measure. We extend their measure
change to the geometric setting. We even provide a proof for stochastic volatility settings in
order to address models such as Kemper et al. [30] and Schneider and Tavin [44]. Besides
mean-reversion, Benth et al. [7] include jumps as an outstanding characteristic of electricity
prices. They consider compound Poisson processes under the physical measure in a mean-
reverting, arithmetic setting. While adjusting the paper by Kemper et al. [30] to jumps, we
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establish theMPDP of jump risk whenever the jump coefficient relies on delivery-dependent
effects.

In this paper, we follow a so-called Heath-Jarrow-Morton approach to model forward
markets, that iswedefine the swapwith delivery period as average over an infinite dimensional
stream of futures with instantaneous delivery. Note that these futures are not traded at the
market, only the swaps with delivery period are traded. In particular, it is not possible to
observe traded quotes of the futures and it is not possible to see if the spot price converges to
the futures if time approaches maturity of a futures. In fact, this relationship typically does
not hold true for the traded swaps either due to the delivery period (see e.g. Benth et al. [1]).
Another approach to model the forward market is to start with a model for the spot and define
the swap price as conditional expectation of the average spot during the delivery period,
where the expectation is taken under some probability measure that is equivalent to the real
world measure P. Note that it is not necessary to have a martingale measure for the spot:
as the underlying electricity is not storable on a large scale, it has to be consumed once
purchased. In particular, it is not possible to set up buy- and hold-strategies, that are required
in no-arbitrage portfolios. In this sense, the electricity spot is said to be “not tradable” (see
e.g. Benth et al. [1]).

Our contribution to the literature is twofold: First, we adjust the paper by Kemper et al.
[30] to the jump case under the instantaneous risk-neutral measure leading to an extended
characterization of the MPDP regarding diffusion and jump risk. Second, we transfer the
model to the physical measure P. Under P we compare the swap prices resulting from
geometric and approximated averaging as well as their risk-neutral measures revealing the
decomposition of the swap’s market price of risk into the instantaneous market price of risk
and the MPDP. Consequently, the model lays the foundation for empirical investigations in
the future.

The paper is organized as follows: Sect. 2 presents the geometric averaging approach under
the instantaneous risk-neutral measure applied to the jump-type futures curve. In addition,
it presents the MPDP of diffusion and jump risk. Section4 introduces the model under the
physical measure and identifies the decomposition of the swap’s market price of risk. An
example under the physical measure closes the section.

Finally, Sect. 5 concludes our main findings.

2 On theMPDP of diffusion and jump risk

We particularly focus on an electricity swap contract delivering 1 MWh of electricity during
the agreed delivery period (τ1, τ2]. At a trading day t ≤ τ1 before the contract expires, we
denote the swap price by F(t, τ1, τ2) settled such that the contract is entered at no cost. It can
be interpreted as an average price of instantaneous delivery. Motivated by this interpretation,
we consider a futures contract with price f (t, τ ) that stands for instantaneous delivery at
time τ ∈ (τ1, τ2]. Note that such a contract does not exist on the market but it turns out to be
useful for modeling purposes when considering delivery periods (see, e.g., Benth et al. [7]
and Kemper et al. [30]).

Following the approach by Heath et al. [23], we derive the price of an electricity swap
contract based on an instantaneous futures price model. More precisely, we compare two
types of swap prices resulting from geometric and approximated averaging. The goal of this
section is to investigate the pricing spread between both approaches in order to quantify the
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consequences of the approximation and thus the effect of the precise geometric averaging pro-
cedure. As the pricing spread goes alongwith different risk-neutral measures, we additionally
investigate the distance of both risk-neutral measures quantified by the MPDP. Moreover, we
characterize the MPDP for specific volatility functions and different jump size distributions.
Before doing so, we would like to repeat the main ideas of the MPDP introduced in Kemper
et al. [30].

2.1 The idea of theMPDP

The procedure for the derivation of the swap’s martingale measure used in this paper goes
back to Kemper et al. [30] starting with a futures contract with instantaneous delivery. The
dynamics for the futures price f (t, τ ) is given by

d f (t, τ ) = σ(ω, t, τ ) f (t, τ )dWQ

t . (2.1)

Kemper et al. [30] investigate the gap between the swap’smartingalemeasure associated with
two methodologies for implementing the delivery period: arithmetic weighted average with
approximation and the geometric weighted average without approximation. The geometric
weighted average creates a drift term. More precisely, the swap price dynamics under Q
resulting from geometric averaging without approximations evolve as

dF(t, τ1, τ2)

F(t, τ1, τ2)
= −1

2

(

EU
[

σ(ω, t,U )2
]− EU [σ(ω, t,U )]2

)

dt + EU [σ(ω, t,U )] dWQ

t ,

(2.2)

where the swap’s volatility is given by

EU [σ(ω, t,U )] =
∫ τ2

τ1

w(u, τ1, τ2)σ (ω, t, u)du . (2.3)

We refer to a more detailed discussion and motivation of the notation to Sect. 2.3 below.
This additional drift term gives reason for the existence of the MPDP whenever the futures
volatility depends on the delivery period. In particular, the MPDP is defined by

�
Q˜Q

1 := −1

2

VU [σ(ω, t,U )]

EU [σ(ω, t,U )]
, (2.4)

affecting the Brownian motionWQ. The MPDP introduced by Kemper et al. [30] is essential
to change the measure to the swap’s risk-neutral measure ˜Q. While Kemper et al. [30] base
the derivation of the electricity swap and the MPDP on a geometric dynamics with stochastic
volatility in the spirit of Heston [24], this paper focuses on a geometric jump diffusion with
deterministic volatility. Moreover, this paper investigates not only the connection between
the futures’ and swap’s risk neutral measure as in Kemper et al. [30] but creates also a bridge
to the physical measure.

2.2 Themodel

Consider a filtered probability space (�,F, (Ft )t∈[0,τ ],Q), where the filtration satisfies the
usual conditions. We first model the solution of a futures contract and then derive the corre-
sponding dynamics to avoid lacks of existence in the presence of jumps (see Papapantoleon
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[40]). At time t ≤ τ , let the logarithmic price process of the futures contract be defined as

ln f (t, τ ) = ln f (0, τ ) +
∫ t

0
σ(s, τ )dWQ

s +
∫ t

0
η(s, τ )d˜JQs −

∫ t

0
cQ(s, τ )ds , (2.5)

with initial non-random conditions f (0, τ ) > 0. Moreover, WQ is a one-dimensional stan-
dard Brownian motion under Q independent of the jump process ˜JQ. In particular, ˜JQ is
a compound compensated jump process defined through the compensated Poisson random
measure ˜NQ(dt, dz) = N (dt, dz) − �Q(dz)dt :

˜JQt =
∫ t

0

∫

R

z˜NQ(ds, dz) , (2.6)

with Lévy measure �Q(dz) = λQG(dz), which is independent of the delivery time, and
where λQ > 0 indicates the jump intensity and G(dz) the jump size distribution. The last
term in Equation (2.5) defines the compensator of the logarithmic return under the current
measure Q:

cQ(t, τ ) = 1

2
σ 2(t, τ ) + ψQ(iη(t, τ )) , (2.7)

where ψQ(ir) is the integrand of the Lévy-Khintchine exponential defined through the
moment generating function

ψQ(r) :=
∫

R

(

erz − 1 − r z
)

�Q(dz) . (2.8)

We assume that the futures price volatility and jump coefficients, σ(t, τ ) and η(t, τ ), are
deterministic and that the futures price f (t, τ ) is Ft -adapted for t ∈ [0, τ ]. We further
assume that they satisfy suitable integrability andmeasurability conditions (seeAssumption 1
in Appendix A for details) to ensure that the process in Equation (2.5) is aQ-martingale, and
that Equation (2.5) gives the unique solution to the process evolving as

d f (t, τ )

f (t−, τ )
= σ(t, τ )dWQ

t +
∫

R

(

eη(t,τ )z − 1
)

˜NQ(dt, dz) . (2.9)

As σ(t, τ ) depends on both, trading time t and delivery time τ , we allow for volatility
structures as the Samuelson effect or seasonalities in the delivery time, which are addressed
in Examples 3.1 and 3.2.

2.3 Implementing the delivery period

Following the Heath-Jarrow-Morton approach to price futures and swaps in electricity mar-
kets, the swap price is usually defined as the arithmetic weighted average of futures prices
(see, e.g., Benth et al. [1], Bjerksund et al. [9], and Benth et al. [7]):

F A(t, τ1, τ2) :=
∫ τ2

τ1

w(u, τ1, τ2) f (t, u)du, (2.10)

for a general weight function

w(u, τ1, τ2) := ŵ(u)
∫ τ2
τ1

ŵ(v)dv
, for u ∈ (τ1, τ2] , (2.11)
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where ŵ : (τ1, τ2] → R+
0 is the corresponding settlement function which is deterministic,

integrable and non-negative. Note that w defines a probability density function with support
on (τ1, τ2] since it is positive and integrates to one, that is

∫ τ2
τ1

w(u, τ1, τ2)du = 1. Hence,
we denote U as a random delivery variable with density w(u, τ1, τ2) (see also Kemper et al.
[30]). The most popular example is given by a constant settlement type ŵ(u) = 1, such that
the density becomes w(u, τ1, τ2) = 1

τ2−τ1
andU ∼ U((τ1, τ2]) is uniformly distributed over

the delivery period. This corresponds to a one-time settlement. A continuous settlement over
the time interval (τ1, τ2] is covered by a continuous discount function ŵ(u) = e−ru , where
r is the constant interest rate (see, e.g., Benth et al. [1]).

The arithmetic average of the futures price as inEquation (2.10) leads to tractable dynamics
for the swap as long as one assumes an arithmetic structure of the futures prices as well. This
is based on the fact that arithmetic averaging is tailor-made for absolute growth rate models.
Nevertheless, if one defines the futures price as a geometric process as in Equation (2.9), one
can show that the dynamics of the swap price F A defined through Equation (2.10) are given
by

dF A(t, τ1, τ2)

F A(t−, τ1, τ2)
=
[

σ(t, τ2) −
∫ τ2

τ1

∂σ

∂u
(t, u)

w(τ, τ1, τ2)

w(τ, τ1, u)

F A(t, τ1, u)

F A(t, τ1, τ2)
du
]

dWQ

t

+
∫

R

(

eη(t,τ2)z − 1 −
∫ τ2

τ1

∂eη(s,u)z

∂u

w(τ, τ1, τ2)

w(τ, τ1, u)

F A(t, τ1, u)

F A(t, τ1, τ2)
du
)

˜NQ(dz, dt),

(2.12)

for any τ ∈ (τ1, τ2] (see Benth et al. [1], cf. Chapter 6.3.1). Thus, the dynamics of the swap
price is neither a geometric process nor Markovian, which makes it unhandy for further
analysis. To overcome this issue, Bjerksund et al. [9] suggest an approximation in the setup
without jumps, which we call approximated averaging since it is the arithmetic average of
approximated logarithmic returns. Approximated averaging maintains the martingale prop-
erty meaning that the swap is a martingale whenever f is a martingale. If we transfer the
approximated averaging procedure to our jump setting, we can define the swap price process
based on approximated averaging by

dFa(t, τ1, τ2)

Fa(t−, τ1, τ2)
:=
∫ τ2

τ1

w(u, τ1, τ2)
d f (t, u)

f (t−, u)
du . (2.13)

In contrast, geometric averaging originates from the arithmetic average of logarithmic returns
without any need for approximations. Hence, in line with Kemper et al. [30], we define the
swap price originating from geometric averaging by

F(t, τ1, τ2) := e
∫ τ2
τ1

w(u,τ1,τ2) ln f (t,u)du
, (2.14)

(see also Kemna and Vorst [29]). Assume that the volatility and jump coefficients satisfy
further integrability conditions (see Assumption 2 in Appendix A). It turns out, that the
resulting swap price dynamics is a geometric process with a non-zero drift term:

Lemma 2.1 (The Swap Price under Q) Let Assumption 2 in Appendix A be satisfied. Under
the instantaneous pricing measure Q, the dynamics of the swap price process F(·, τ1, τ2),
defined in Equation (2.14), are given by

dF(t, τ1, τ2)

F(t−, τ1, τ2)
= E[σ(t,U )] dWQ

t +
∫

R

(

eE[η(t,U )]z − 1
)

˜NQ(dt, dz)

−
(

1

2
V [σ(t,U )] + E[ψQ(η(t,U ))] − ψQ(E[η(t,U )])

)

dt,
(2.15)
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where U denotes the random delivery variable with density w(u, τ1, τ2).

Proof Plugging the integral representation of the futures rate process from Equation (2.5)
into Equation (2.14) gives us F(t, τ1, τ2) = F(0, τ1, τ2)eX̄(t,τ1,τ2), where an application of
the stochastic Fubini Theorem (see Protter [42], cf. Theorem 65, Chapter IV.6) leads to

X̄(t, τ1, τ2) =
∫ t

0
E

[

σ(s,U )
]

dWQ

s

+
∫ t

0
E[η(s,U )]d˜JQs − 1

2

∫ t

0
E

[

σ 2(s,U )
]

ds −
∫ t

0
E[ψQ(η(s,U ))]ds . (2.16)

Then, Equation (2.15) follows using Itô’s formula (see, e.g., Øksendal and Sulem [39]). ��
Having presented the three procedures of continuous time averaging that are used to derive

the swap from an underlying futures curve, we would like to compare them: Arithmetic
averaging, defined by Equation (2.10), is tractable for arithmetic futures curves, whereas
approximated averaging, defined by Equation (2.13), and geometric averaging, defined by
Equation (2.14), are well suited for geometric futures curves. In line with a series of literature
(see Koekebakker and Ollmar [34], Benth and Koekebakker [5], Bjerksund et al. [9], Benth
et al. [1], and Kemper et al. [30]), we follow the geometric approach. Our goal throughout
this paper is to investigate the pricing spread between geometric and approximated averaging
analytically.

3 TheMPDP

Although the futures price f and the approximated Fa are martingales under the pricing
measure Q, the swap price F is not a Q-martingale: Indeed, the swap price process under Q
has a negative drift termconsisting of twoparts given by the swap’s variance and the difference
between the averaged Lévy-Khintchine integrand and the Lévy-Khintchine integrand of the
averaged jump coefficient. Hence, using geometric averaging leads to a new interpretation
of risk related to the delivery period as we will analyze in the following.

Analogous to Kemper et al. [30], we derive the corresponding risk-neutral measure ˜Q
under which the electricity swap price F is a martingale. For deriving the swap’s risk-neutral
measure, we thus define the MPDP extended to jumps in the following.

Definition 3.1 [(The MPDP)] At time t ∈ [0, τ1], the market price of diffusion and jump
risk for delivery periods associated to the delivery period (τ1, τ2] is defined by �Q˜Q :=
(�

Q˜Q

1 ,�
Q˜Q

2 ), where

�
Q˜Q

1 (t, τ1, τ2) := −1

2

V [σ(t,U )]

E [σ(t,U )]
, (3.1)

�
Q˜Q

2 (t, τ1, τ2) := −
∫

R
E[eη(t,U )z] − eE[η(t,U )]z�Q(dz)
∫

R

(

eE[η(t,U )]z − 1
)

�Q(dz)
. (3.2)

In general, the MPDP does not coincide with the market price of risk. In fact, it is an addi-
tional risk that has to be taken into account whenever approximated averaging is conducted.
Technically speaking, the MPDP characterizes the distance between the martingale measure
of the swaps, F and Fa , resulting from geometric and approximated averaging. In particular,
�1 refers to the additional diffusion risk, which is measurable and Ft -adapted as σ(t, u) is.
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It can be interpreted as the trade-off between the weighted average variance of a stream of
futures, on the one hand, and the variance of the swap, on the other hand (see also Kem-

per et al. [30] for an elaboration of the MPDP �
Q˜Q

1 and a detailed interpretation). �
Q˜Q

2 is
the additional jump risk, which is the difference between the Lévy-Khintchine integrands
standardized by the swap’s jump coefficient.

Remark 3.1 (i) Note that�Q˜Qwould be zero,whenever the volatility and jump coefficients
are independent of delivery time. For this reason, we call �Q˜Q the market price of risk
for delivery periods (MPDP).

(i i) The MPDP of diffusion and jump risk is strengthened by delivery-dependent effects
within the volatility and jump coefficients. For example, pronounced term-structure
effects or seasonalities in the delivery period within these coefficients capture a distinct
dependence on the delivery period and, consequently, lead to a high MPDP (see also
Example 3.1 and 3.2 for the MPDP of diffusion risk and Examples 3.3 and 3.4.

(i i i) �
Q˜Q

1 is in line with the MPDP for diffusion risk found in Kemper et al. [30], where a
stochastic volatility scenario is considered.

In a next step, we would like to characterize the MPDP of diffusion risk �
Q˜Q

1 more
explicitly. The MPDP of diffusion risk arises through delivery-dependent volatility effects
such as seasonality in delivery periods and the Samuelson effect (see Kemper et al. [30]).
We state the correspondingMPDP in the following two examples while assuming a one-time
settlement such that w(t, τ1, τ2) = 1

τ2−τ1
.

Example 3.1 (Seasonal Volatility) Inspired by Fanelli and Schmeck [20], we capture season-
ality in the delivery period by incorporating a trigonometric function into the futures volatility
σ(t, u) = S1(u) in (see Equation (3.1)) given by

S1(u) := a + b cos(2π(u + c)) , (3.3)

for a > b > 0 and c ∈ [0, 1). Note that S1(u) is constant over trading time and bounded
by 0 < (a − b) ≤ S1(u) ≤ a + b ≤ 2a. Additionally, we consider a finite trading and
delivery horizon, so that Assumptions 1 and 2 in Appendix A are satisfied. According to
Definition 3.1, this leads to a MPDP of diffusion risk of the following form

�
Q˜Q

1 (t, τ1, τ2) = −1

2

V[S1(U )]
E[S1(U )] , (3.4)

where

E[S1(U )] = a + b

2π(τ2 − τ1)

[

sin(2π(u + c))
]u=τ2

u=τ1
, (3.5)

E[S1(U )2] = a2 + b2

2
+ ab

π(τ2 − τ1)

[

sin(2π(u + c))
]u=τ2

u=τ1

+ b2

8π(τ2 − τ1)

[

sin(4π(u + c))
]u=τ2

u=τ1
. (3.6)

Example 3.2 [Term-Structure Volatility] We implement the Samuelson effect as in Schneider
and Tavin [44] into the futures volatility σ(t, u) = S2(u − t) (see Equation (3.1)) through an
exponential function with exponential damping factor 
 > 0 and terminal volatility λ̄ > 0
given by

S2(u − t) := λ̄e−
(u−t) . (3.7)
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Since S2(u − t) is deterministic and bounded by 0 < S2(u − t) ≤ λ̄ and we consider a finite
trading and delivery horizon with t ≤ u, Assumptions 1 and 2 in Appendix A are satisfied.

According to Definition 3.1, this leads to a MPDP of diffusion risk of the following form

�
Q˜Q

1 (t, τ1, τ2) = −1

2

¯̄
 − 
̄2


̄
e−
(τ1−t) , (3.8)

for constant parameters 
̄ := λ̄(1−e−
(τ2−τ1))

(τ2−τ1)

and ¯̄
 := λ̄2(1−e−2
(τ2−τ1))
2
(τ2−τ1)

implicitly depending
on the delivery period.

Hence, the MPDP of diffusion risk is constant for a fixed contract in Example 3.1, whereas
the Samuelson effect remains still visible in Example 3.2. For a detailed investigation of the
volatility term structure, we refer to Kemper et al. [30].

The MPDP of jump risk is triggered by delivery-dependent jump effects. We choose
η(t, u) independent of trading time thinking e.g. of seasonal effects that can be described
by η(u) = S1(u). In the following examples, we characterize the MPDP of jump risk and
the spread based on four suitable jump size distributions: Normal, exponential, negative
exponential, and gamma.We also state correspondingmoments of the distributions following
Gray and Pitts [22] (cf. Chapter 2).

Example 3.3 (Normal Jump Sizes) If the jump sizes are normally distributed with Z ∼
N(μJ , σ

2
J ) for |μJ | < ∞, σ 2

J < ∞, then the moment generating function is given by

MZ (η) = eμJ η+ 1
2 σ 2

J η2 , (3.9)

such that the MPDP and the spread in Equations (3.2) and (4.34) are given by

�
Q˜Q

2 (τ1, τ2) = −E[e 1
2 η2(U )σ 2

J+η(U )μJ ] − e
1
2E[η(U )]2σ 2

J+E[η(U )]μJ

e
1
2E[η(U )]2σ 2

J+E[η(U )]μJ − 1
. (3.10)

The fourth moment is attained by E[Z4] = μ4
J + 6μ2

Jσ
2
J + 3σ 4

J . Since η is finite and the
moment generating function and fourth moment of the jump sizes exist, Assumptions 1 and
2 in Appendix A are satisfied.

Example 3.4 (Exponential Jump Sizes) If the jump sizes are exponentially distributed with
Z ∼ Exp(λJ ), for λJ > 0, then the moment generating function is given by

MZ (η) =
(

1 − η

λJ

)−1

= λJ

λJ − η
, (3.11)

for η < λJ , such that the MPDP and the spread in Equations (3.2) and (4.34) are given by

�
Q˜Q

2 (τ1, τ2) = − λJ

E[η(U )]
(

1 − E

[

λJ − E[η(U )]
λJ − η(U )

])

, (3.12)

defined for η(U ) < λJ and E[η(U )] < λJ . The n-th moment is attained by E[Zn] = n!
λnJ

for

n ∈ N.
Since η is finite and the moment generating functions as well as the n-th moment of jump

sizes exist, Assumptions 1 and 2 in Appendix A are satisfied.
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Example 3.5 (Negative Exponential Jump Sizes) If the jump sizes follow a negative expo-
nential distribution with (−Z) ∼ Exp(λ−

J ), for λ−
J > 0, i.e. the density function is given by

f−Z (z) = λeλz for z ≤ 0, then the moment generating function is given by

M−Z (η) = λ−
J

λ−
J + η

, (3.13)

for λ−
J + η > 0, such that the MPDP and the spread in Equations (3.2) and (4.34) are given

by

�
Q˜Q

2 (τ1, τ2) = − λ−
J

E[η(U )]

(

1 − E

[

λ−
J + E[η(U )]
λ−
J + η(U )

])

, (3.14)

defined for λ−
J + η(U ) > 0 and λ−

J + E[η(U )] > 0. The n-th moment is attained by
E[Zn] = (−1)n n!

(

λ−
J

)n for n ∈ N. Since η is finite and the moment generating functions as

well as the n-th moment of jump sizes exist, Assumptions 1 and 2 in Appendix A are satisfied.

Example 3.6 (Gamma Jump Sizes) If the jump sizes follow a Gamma distribution with Z ∼
Gam(α, β), for α, β > 0, then the moment generating function is given by

MZ (η) =
(

1 − η

β

)−α

(3.15)

for η < β, such that the MPDP and the spread in Equations (3.2) and (4.34) are given by

�
Q˜Q

2 (τ1, τ2) = −
E

[

(

1 − η(U )
β

)−α
]

−
(

1 − 1
β
E[η(U )]

)−α

(

1 − 1
β
E[η(U )]

)−α − 1
, (3.16)

defined for η(U ) < β and E[η(U )] < β. The n-th moment is attained by E[Zn] = 1
βn

�(α)
�(α)

for n ∈ N for n > 0. Since η is finite and the moment generating functions as well as the
n-th moment of jump sizes exist, Assumptions 1 and 2 in Appendix A are satisfied.

3.1 On the swap’s martingale measure

We define a new pricing measure ˜Q, such that the swap price process F(·, τ1, τ2) is a
martingale. Following Øksendal and Sulem [39], define the Radon-Nikodym density through

ZQ˜Q(t, τ1, τ2) =
2
∏

j=1

ZQ˜Q

j (t, τ1, τ2) , (3.17)

where

ZQ˜Q

1 (t, τ1, τ2) := e− ∫ t0 �
Q˜Q
1 (s,τ1,τ2)d ˜WQ(s)− 1

2

∫ t
0 �

Q˜Q
1 (s,τ1,τ2)2ds , (3.18)

ZQ˜Q

2 (t, τ1, τ2)

:= e
∫ t
0

∫

R ln(1−�
Q˜Q
2 (s,τ1,τ2)z)˜NQ(ds,dz)+∫ t0

∫

R

(

ln(1−�
Q˜Q
2 (s,τ1,τ2)z)+�

Q˜Q
2 (s,τ1,τ2)z

)

�Q(dz)ds
.

(3.19)
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Assume that

EQ[ZQ˜Q(τ1, τ1, τ2)] = 1 , (3.20)

which means that ZQ˜Q(·, τ1, τ2) is indeed a martingale for the entire trading time. We will
show later that the martingale property is satisfied for suitable models such that Equation
(3.20) holds true. We then define the new measure ˜Q through the Radon-Nikodym density

d˜Q

dQ
= ZQ˜Q(τ1, τ1, τ2) , (3.21)

which clearly depends on the delivery period (τ1, τ2]. Girsanov’s theorem states that if we
define the process W˜Q and the random measure ˜N˜Q(dt, dz) by

dW
˜Q

t = dWQ

t + �
Q˜Q

1 (t, τ1, τ2)dt , (3.22)

˜N
˜Q(dt, dz) = ˜NQ(dt, dz) + �

Q˜Q

2 (t, τ1, τ2)�
Q(dz)dt , (3.23)

then W˜Q is a Brownian motion under ˜Q and ˜N˜Q(·, ·) is the ˜Q-compensated Poisson ran-

dommeasure of N (·, ·)with compensator
(

1 − �
Q˜Q

2 (s, τ1, τ2)
)

�Q(dz). Under some further

assumptions, ensuring that ZQ˜Q

2 stays positive and that ZQ˜Q is a true martingale (see
Assumption 3 in Appendix A), a straightforward valuation leads to the following result:

Proposition 3.1 (The Swap Price under˜Q) Let Assumption 3 in Appendix A be satisfied. The
swap price process F(·, τ1, τ2), defined in (2.14), is a martingale under ˜Q. The swap price
dynamics are given by

dF(t, τ1, τ2)

F(t−, τ1, τ2)
= E[σ(t,U )]dW˜Q

t +
∫

R

(

eE[η(t,U )]z − 1
)

˜N
˜Q(dt, dz) , (3.24)

where W˜Q is a Brownianmotion under˜Q and ˜N˜Q(·, ·) is the compound compensated Poisson
random measure under ˜Q with Lévy measure

(

1 − �
Q˜Q

2 (t, τ1, τ2)
)

�Q(dz) for t ∈ [0, τ1].

Proof We know by definition that �
Q˜Q

1 is a continuous adapted process that is square-

integrable and �
Q˜Q

2 is deterministic and càdlàg in time. Hence, all processes are predictable.
Following Øksendal and Sulem [39] (cf. Theorem 1.35), we need to show that Equation
(3.20) is satisfied, so that ZQ˜Q is a true martingale. Considering the dynamics of ZQ˜Q using
Itô’s formula, we have

dZQ˜Q(t, τ1, τ2)

= ZQ˜Q(t−, τ1, τ2)

[

−�
Q˜Q

1 (t, τ1, τ2)dW
Q

t −
∫

R

�
Q˜Q

2 (t, τ1, τ2)z˜N
Q(dt, dz)

]

,

so that ZQ˜Q is a local Q-martingale, where WQ and ˜NQ(·, ·) are independent of each other.
Hence, it is enough to show, that ZQ˜Q

1 and ZQ˜Q

2 are truemartingales.We can prove Novikov’s
condition regarding the continuous part (see, e.g., Protter [42], cf. Theorem 41, Chapter III.8)

as �
Q˜Q

1 :

EQ

[

e
1
2

∫ τ1
0 �

Q˜Q
1 (s,τ1,τ2)dW

Q
s

]

= e
1
2

∫ τ1
0 �

Q˜Q
1 (s,τ1,τ2)2ds < ∞ .
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Hence, ZQ˜Q

1 is a true martingale. Moreover, ZQ˜Q

2 is a true martingale under Q since

EQ[ZQ˜Q

2 (τ1, τ1, τ2)]

= EQ

[

eλ
Q
∫ τ1
0 ln(1−�

Q˜Q

2 (s,τ1,τ2)z)˜N
Q(ds,dz)

]

e

∫ τ1
0
∫

R

(

ln(1−�
Q˜Q

2 (s,τ1,τ2)z)+�
Q˜Q

2 (s,τ1,τ2)z

)

�Q(dz)
ds = 1 ,

where the last equality follows from the Lévy-Khintchine representation and Assumption 3
in Appendix A. Hence, we can apply Girsanov’s Theorem (see, e.g., Øksendal and Sulem
[39], cf. Theorem 1.35) and the assertion follows. ��

Note that the MPDP of diffusion and jump risk, �
Q˜Q

1 and �
Q˜Q

2 , are negative following
from Jensen’s inequality. Hence, the geometric averaging technique induces less risk than
the application of the approximated arithmetic average for which we need to pay a cost of
approximation risk.

As the Assumption 3 in Appendix A for the measure change in Proposition 3.1 is a bit
technical, we would like to give sufficient conditions for it in the next lemma:

Lemma 3.1 (i) The Novikov condition in Assumption 3 (i) is satisfied, if σ(t, u) is
deterministic and finite.

(i i) Assumption 3 (i i) is satisfied under the following conditions:

a) the jump size distribution takes only positive or negative values,
b) EU [η(t,U )] is strictly positive and finite, and
c) the moment generating function MZ (η) := E

[

eηZ
]

exists.

Proof (i) The result directly follows, when applying the conditions on σ to the market
price of diffusion risk for the delivery period in Eq.3.1.

(i i) In order to prove that �Q˜Q

2 (t, τ1, τ2)z ≤ 1, positive and negative jumps are considered
separately.

Case 1. Let us assume that the support of the jump size distribution is on z ∈ (0,∞), so
that condition a) is satisfied. To prove that the inequality holds true, numerator and

denominator of �
Q˜Q

2 are further investigated. By Jensen’s inequality for convex
functions, it follows for all z ∈ R, that

eE[η(t,U )]z ≤ E

[

eη(t,U )z
]

.

Hence, considering all jumps together yields a positive numerator in�
Q˜Q

2 given by
∫

R

E[eη(t,U )z] − eE[η(t,U )]z�Q(dz) ≥ 0 ,

which exists under condition c). Under condition b), it follows that eE[η(t,U ]z > 1

for all z > 0. Considering all jumps together, yields a positive denominator in�
Q˜Q

2
given by

∫

R

(

eE[η(t,U )]z − 1
)

�Q(dz) > 0 .

By definition of the market price of jump risk for delivery periods in Eq.3.2, it

follows that �Q˜Q

2 is negative.
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Case 2. Let us assume that the support of the jump size distribution is on z ∈ (−∞, 0),
so that condition a) is satisfied. To prove that the inequality holds true, numerator

and denominator of �
Q˜Q

2 are again further investigated. The numerator of �
Q˜Q

2
stays positive as in Case 1, since Jensen’s inequality is unaffected by the support
of the jump size distribution. Under condition b), it follows that eE[η(t,U ]z < 1 for

all z < 0. Considering all jumps together, yields a positive denominator in �
Q˜Q

2
given by

∫

R+

(

eE[η(t,U )]z − 1
)

�Q(dz) < 0 .

By definition of the market price of jump risk for delivery periods in Eq.3.2, it

follows that �Q˜Q

2 is again negative.

The remaining part of the assumption directly follows.
��

Note, that Example 3.3 is not applicable under the assumptions of Lemma 3.1, while all other
examples in this section satisfy the conditions in Lemma 3.1.

3.2 On the pricing spread

We would like to compare the approximated swap price Fa under Q (see Equation (2.13))
with the swap price F under ˜Q (see Equation (2.14)). The diffusion part of the swap price
dynamics coincides sinceweconsider a deterministic volatility structure. Theonly differences
are located in the compensator of the compound compensated Poisson process and the jump
coefficient. If the jump coefficient is independent of delivery time, the distribution of Fa

under Q and the distribution of F under ˜Q are the same. For differences in a stochastic
volatility setting, we refer to Kemper et al. [30]. For the swap prices F , F A, and Fa , we have
the following result under the instantaneous measure Q:

Corollary 3.1 (i) The swap price F is always smaller or equal than F A.
(i i) The pricing spread between F and Fa is attained by

Fa(t, τ1, τ2) − F(t, τ1, τ2) = Fa(t, τ1, τ2)
[

1 − D(t, τ1, τ2)
]

, (3.25)

D(t, τ1, τ2) = e− 1
2

∫ t
0 V[σ(s,U )]ds−∫ t0

∫

R

(

lnE[eη(s,U )z ]−E[η(s,U )]z)N (ds,dz) . (3.26)

(i i i) If the jump coefficient, η(t, u), is independent of the delivery time, then the swap price
F is smaller or equal than Fa.

Proof (i) The continuous arithmetic weighted average is greater than the geometric one,
which directly follows from Jensen’s inequality. More precisely,

F(t, τ1, τ2)
(2.14)= eEU [ln f (t,U )] Jensen≤ elnEU [ f (t,U )] = EU [ f (t,U )]

(2.10)= F A(t, τ1, τ2) .

(i i) Using Equation (2.13), we find that Fa(t, τ1, τ2) = eX̄
a(t,τ1,τ2), where X̄a(t, τ1, τ2) is

the solution of the following arithmetic Brownian motion:

d X̄a(t, τ1, τ2) = E[σ(t,U )]dWQ

t +
∫

R

lnE[eη(t,U )z]˜NQ(dt, dz)
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−
(

1

2
E[σ(t,U )]2 +

∫

R

E[eη(t,U )z] − 1 − lnE[eη(t,U )z]
)

dt .

Taking Eq.2.16 into account, the pricing spread is given by

Fa(t, τ1, τ2) − F(t, τ1, τ2) = Fa(t, τ1, τ2) (1 − D(t, τ1, τ2)) ,

such that F(t, τ1, τ2) = Fa(t, τ1, τ2)D(t, τ1, τ2), where

D(t, τ1, τ2) = eX̄(t,τ1,τ2)−X̄a (t,τ1,τ2) = e− 1
2

∫ t
0 V[σ(s,U )]ds−∫ t0

∫

R lnE[eη(s,U )z ]−E[η(s,U )]zN (ds,dz) .

(i i i) If η(t, u) ⊥⊥ u, then

D(t, τ1, τ2) = e− 1
2

∫ t
0 V[σ(s,U )]ds .

Since V[σ(·,U )] ≥ 0 by Jensen, it follows that D(t, τ1, τ2) ∈ (0, 1] and thus F ≤ Fa .
��

We conclude that arithmetic and in specific cases approximated averaging lead to higher
swap prices than the geometric average. We would like to stress that D in Equation (3.26)
is not affected by measure changes since it is characterized by a drift component and a pure
jump component exclusively (see also Equation (3.28)). Moreover, note that D can be seen
as stochastic discount factor, which can be used to derive the swap price F given Fa . Vice
versa, consider

Fa(t, τ1, τ2) = F(t, τ1, τ2)D
−1(t, τ1, τ2) . (3.27)

The exponential part of D−1 can be interpreted as a price (premium) per share, which we
pay for an imprecise averaged swap. Moreover, we can see D as the price process of a
non-dividend paying asset evolving as

dD(t, τ1, τ2)

D(t−, τ1, τ2)
= −1

2
V[σ(t,U )]dt +

∫

R

(

eE[η(t,U )]z

E[eη(t,U )z] − 1

)

N (dt, dz) , (3.28)

such that we can interpret D as a numéraire. If Fa is a martingale, then F
D is also amartingale.

If F is a martingale, then FaD is a martingale (see, e.g., Shreve [46], cf. Theorem 9.2.2). We
can thus use it to price options and other derivatives on the swap. In the subsequent section,
we introduce the model under its physical measure P.

Remark 3.2 (Delivery-Dependent Intensity) Let us consider an adjusted version of the futures
price under the instantaneous pricing measure Q similar to Equation (2.9) given by

d f (t, τ )

f (t−, τ )
= σ(t, τ )dWQ

t +
∫

R

(

eηz − 1
)

˜N τ (dt, dz) , (3.29)

where η ∈ R and the compensated Poisson random measure is defined by ˜N τ (dt, dz) :=
N (dt, dz) − λQ(τ )G(dz)dt , with a jump intensity adjusted to a deterministic, positive, and
bounded function of the delivery time.

(i) Analogous to Lemma 2.1, the dynamics of the swap price, defined by geometric
averaging, are given by

dF(t, τ1, τ2)

F(t−, τ1, τ2)
= E[σ(t,U )] dWQ

t +
∫

R

(

eηz − 1
)

N (dt, dz)

−
(

1

2
V [σ(t,U )] + E[λQ(U )]

∫

R

(

eηz − 1
)

G(dz)

)

dt,
(3.30)

123



308 Mathematics and Financial Economics (2025) 19:293–327

where U is the random delivery variable with density w(u, τ1, τ2).
(i i) If the volatility is independent of delivery time, then the approximated and geometric

average coincide and so their risk-neutral pricing measure. However, the resulting
swap price process in Equation (3.30) is not a martingale under Q since the intensity
is affected by the averaging procedure.

(i i i) In the case of delivery-dependent volatility, the MPDP from Definition 3.1 adjusts

to (�
Q˜Q

1 , 0). Hence, the MPDP associated to the Brownian motion stays the same
and its second dimension becomes zero since the jump coefficient η is independent of
delivery time. However, under the assumption that the intensity is delivery-dependent,
the swap price is in general not a martingale under ˜Q.

(iv) The swap price is a ˜Q−martingale, only if the swap’s jump intensity under ˜Q is
given by E[λQ(U )], i.e., if ˜N τ1,τ2(dt, dz) := N (dt, dz) − E[λQ(U )]G(dz)dt , is a
compensated Poisson random measure under ˜Q.

4 The real-worldmodel

A typical feature of electricity prices beyond seasonalities and the Samuelson effect is the
mean-reverting behavior (see, e.g., Benth et al. [1] and Benth et al. [7]). In order to implement
the drift feature, we derive the futures under the physical measureP. Note that wewill include
mean-reversion at the futures and thus the swap’s rate level. We then consider the resulting
market prices of risk transferring to the instantaneous and the swap’s risk-neutral measure.

4.1 The swap price under the physical measure

We now derive the price of a swap contract that delivers one unit of electricity during the
fixed delivery period (τ1, τ2], similar to Sect. 2 but now under the physical measure P. Hence,
starting from the physical measure P, the logarithmic futures price process from Equation
(2.5), given by

ln f (t, τ ) = e− ∫ t0 κ(s)ds ln f (0, τ ) +
∫ t

0
e− ∫ tv κ(q)dqμ(v, τ)dv

+
∫ t

0
e− ∫ tv κ(q)dqσ(v, τ )dWP

v +
∫ t

0
e− ∫ tv κ(q)dqη(v, τ )d˜JPv ,

(4.1)

whereWP is a Brownian motion under the physical measure P independent of the compound
compensated jump process ˜JP. In particular, ˜JP is defined through the P-compensated Pois-
son random measure ˜NP(dt, dz) = N (dt, dz) − �P(dz)dt with Lévy measure �P(dz) =
λPG(dz) that is independent of delivery time. Note that λP > 0 indicates the jump intensity
under the physical measure and G(dz) is the jump size distribution.

In order to characterize the futures price inmore detail, we introduce the following lemma.

Lemma 4.1 We assume that the coefficients satisfy suitable integrability and measurability
conditions (see Assumption 4 in Appendix A) such that

Equation 4.1 is the unique strong solution to the dynamics

d f (t, τ )

f (t−, τ )
= σ(t, τ )dWP

t +
∫

R

(

eη(t,τ )z − 1
)

˜NP(dt, dz) + cP(t, τ, ln f (t, τ ))dt, (4.2)
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where the drift-term is characterized by

cP(t, τ, Y ) = μ(t, τ ) − κ(t)Y + 1

2
σ(t, τ )2 + ψP(η(t, τ )) . (4.3)

Hence, the logarithmic futures evolves as

d ln f (t, τ ) = (μ(t, τ ) − κ(t) ln f (t, τ )) dt + σ(t, τ )dWP

t + η(t, τ )d˜JPt . (4.4)

Proof The unique strong solution follows fromBenth et al. [1] (cf. Proposition 3.1). Applying
Ito’s formula leads to the desired dynamics (see Øksendal and Sulem [39], cf. Theorem 1.16).

��
Note that the assumption behind the model induces a finite second moment as well as a

finite moment generating function of the jump size distribution. In Examples 3.3 to 3.6, we
consider suitable distributions for these jump sizes.

Remark 4.1 In the literature, we sometimes find the application of lognormal distributed
jump sizes (see, e.g., Borovkova and Permana [10] and Borovkova and Permana [11]). This
distribution, however, is not suitable for our setting since its moment generating function
E[eηZ ] is not finite at any positive value η (see, e.g., Gray and Pitts [22], cf. Chapter 2.2.6).
Hence, the lognormal distribution contradicts the integrability assumption inAssumption4 (i)
under the physical measure in Appendix A.

As in the previous section, we now derive the swap prices resulting from geometric and
approximated averaging.

Lemma 4.2 [The Swap Price under P] Let Assumption 4 and 5 in Appendix A be satisfied.
Then,

the swap price based on geometric averaging evolves as

dF(t,τ1,τ2)
F(t−,τ1,τ2)

= E[σ(t,U )]dWP
t

+ ∫
R

(

eE[η(t,U )]z − 1
)

˜NP(dt, dz) + c̃P(t, τ1, τ2, ln F(t, τ1, τ2))dt, (4.5)

where the drift term is given by

c̃P(t, τ1, τ2, Ȳ ) = E[μ(t,U )] − κ(t)Ȳ + 1

2
E[σ(t,U )]2 + ψP(E[η(t,U )]) . (4.6)

Proof Following the considerations in the previous section, the swap price is defined by the
geometric average in Equation (2.14). Using the integral representation of Eq.4.4 and the
stochastic Fubini theorem (see Protter [42], cf. Theorem 65), we can introduce the dynamics
of the swap’s logarithmic return by

d ln F(t, τ1, τ2)

= (E[μ(t,U )] − κ(t) ln F(t, τ1, τ2)) dt + E[σ(t,U )]dWP

t + E[η(t,U )]d˜JPt .

(4.7)

An application of Ito’s formula (see Øksendal and Sulem [39], cf. Theorem 1.16) yields the
desired swap dynamics. ��

Note that the speed ofmean-reversion κ(t) has to be independent of the delivery time. This
assumption ensures that ln F , in Equation (4.7), is again an Ornstein-Uhlenbeck process and
that the swap’s price dynamics in Equation (4.5) stay tractable. This is also in line with the
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findings in Benth et al. [7] (cf. Proposition 2.2) and Latini et al. [35]. In particular, the mean-
reverting effect comprises the jump component as well, even if we implement it through a
measure change of the Brownian part. More precisely, mean-reversion connected to jumps
covers indeed a unique feature of electricity markets known as spikes: Spikes are large jumps
quickly returning to the “normal” level (see, e.g., Klüppelberg et al. [33]). They arise as
electricity is not storable on a large scale and since the electricity demand is not elastic (see
Borovkova and Schmeck [11]).

Let us now investigate the swap price under the physical measure resulting from approx-
imated averaging (see Eq.2.13 in order to compare the pricing spread between both
approaches.

Lemma 4.3 Let Assumption 4 and 5 in Appendix A be satisfied. Then, the swap price dynamics
based on approximated averaging evolve as

dFa(t, τ1, τ2)

Fa(t−, τ1, τ2)

= E[σ(t,U )]dWP
t +

∫

R

(

E[eη(t,U )z] − 1
)

˜NP(dt, dz) + EU [cP(t,U , ln f (t,U ))]dt,
(4.8)

with EU denoting the expectation with respect to the random delivery variable U having
density w(u, τ1, τ2).

Proof We use the approximated averaging methodology (see Equation (2.13)) in order to
derive the swap price evolution and apply the stochastic Fubini theorem (see Protter [42], cf.
Theorem 65) leading to Equation (4.8). ��

4.2 The risk premium

We would like to close this section with a discussion of the risk premium in our setting. The
risk premium usually represents the difference between the forward price and the spot price
prediction at delivery time (cf. for instance Benth et al. [2]). In the case of swaps, Benth et al.
[7] extend the definition of the risk premium as the difference between the swap price and the
expected value of the spot price weighted over the delivery period. Inspired by the extended
definition of the risk premium to swaps by Benth et al. [7], we consider the risk premium as
the differences between the swap price and the expected value of the geometrically averaged
futures priceweighted over the delivery period. Additionally, we consider the risk premium as
a pricing spread (similar to in Corollary 3.1) resulting from different pricing methodologies,
i.e. the difference between two prices under the same measure.

Corollary 4.1 (Risk Premium)

(i) The risk premium between the swap price F and F A is always non-positive under the
physical measure, i.e.,

RPF,F A
(t, τ1, τ2) := F(t, τ1, τ2) − F A(t, τ1, τ2) ≤ 0. (4.9)
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(i i) The risk premium between the swap price F and Fa under the physical measure is
determined by

RPF,Fa
(t, τ1, τ2) := F(t, τ1, τ2) − Fa(t, τ1, τ2) = Fa(t, τ1, τ2) (D(t, τ1, τ2) − 1) ,

(4.10)

where D(t, τ1, τ2) is defined in Equation (3.26). Hence, the distance between F and
Fa is not affected by the measure change.

(i i i) The risk premium of the geometric swap price between the physical and the swap’s
risk neutral measure is defined by

RPF (t, τ1, τ2) := F(t, τ1, τ2) − EP [F(τ1, τ1, τ2)|Ft ] (4.11)

and is explicitly determined by

RPF (t, τ1, τ2) = F(t, τ1, τ2) (1 − DRP (t, τ1, τ2)) , (4.12)

where

DRP (t, τ1, τ2)

:= exp

{∫ τ1

0
e−

∫ τ1
s κ(v)dvE [μ(s,U )] ds + 1

2

∫ τ1

t
E [σ(s,U )]2

(

e−2
∫ τ1
s κ(v)dv + 1

)

ds

+
∫ τ1

t
ψP

(

E [η(s,U )] e−
∫ τ1
s κ(v)dv

)

+ ψ
˜Q (E [η(s,U )]) ds

+
∫ t

0
e−

∫ t
s κ(v)dvE [σ(s,U )] dWP

s −
∫ t

0
E [σ(s,U )] dW

˜Q
s

+
∫ t

0
e−

∫ t
s κ(v)dvE [η(s,U )] d˜JPs −

∫ t

0
E [η(s,U )] d˜J

˜Q
s

}

.

(4.13)

Proof (i) F is always smaller or equal than F A analogous toCorollary 3.1 (i) since Jensen’s
inequality also holds under the physical measure.

(i i) Analogous to Corollary 3.1 (ii).
(i i i) A straightforward evaluation of EP [F(τ1, τ1, τ2)|Ft ] leads to

EP [F(τ1, τ1, τ2)|Ft ] = F(t, τ1, τ2)DRP (t, τ1, τ2). (4.14)

So that Equation (4.12) directly follows.
��

Hence, the spread between the swap prices F and Fa under the physical measure P

coincides with the pricing spread fromCorollary 3.1 (ii) under the instantaneous riskmeasure
Q, as the numéraire in Equation (3.28) is not affected by a change of measure.

4.3 The swap price F under its risk-neutral measure ˜Q

In order to derive the swap’s martingale measure ˜Q, we introduce the swap’smarket price of
risk for the swap price resulting from geometric averaging in the next definition:

Definition 4.1 We define the swap’s market price of risk by �P˜Q := (�
P˜Q

1 ,�
P˜Q

2 ), where

�
P˜Q

1 (t, τ1, τ2) := E[μ(t,U )] − κ(t) ln F(t, τ1, τ2) + 1
2E[σ(t,U )]2

E[σ(t,U )] , (4.15)
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�
P˜Q

2 (t, τ1, τ2) := 1 −
∫

R

z�P(dz)
E[η(t,U )]

∫

R

(

eE[η(t,U )]z − 1
)

�P(dz)
. (4.16)

Note that the market price of risk does not enter the jump size distribution since we restrict

�
P˜Q

2 to depend on trading time and delivery period. Hence, the market price of jump risk
affects the jump intensity only.

We follow the methodology of Benth et al. [7] to change the measure from the physical
measure P to the swap’s risk-neutral measure˜Q. Therefore, let π = (π1, π2) be a predictable
process satisfying

E

[∫ τ1

0
‖π(s, τ1, τ2)‖2 ds

]

< ∞ . (4.17)

We define a new process ZP˜Q being the unique strong solution of

dZP˜Q(t, τ1, τ2) = ZP˜Q(t−, τ1, τ2)dH(t, τ1, τ2) , (4.18)

such that ZP˜Q(0, τ1, τ2) = 1, where

dH(t, τ1, τ2) = π1(t, τ1, τ2)dW
P

t + π2(t, τ1, τ2)d˜J
P

t . (4.19)

If π j satisfies Equation (4.17), then H is a well-defined square integrable martingale. Note

that the process ZP˜Q is known as the Doléans-Dade exponential of H that is explicitly given
by

ZP˜Q(t, τ1, τ2) = eH(t,τ1,τ2)− 1
2

∫ t
0 π1(s,τ1,τ2)2ds

∏

0<s≤t

(1 + �H(s, τ1, τ2)) e
−�H(s,τ1,τ2) .

(4.20)

If ZP˜Q is a strictly positive martingale, then we can define the equivalent probability measure
˜Q by

d˜Q

dP
= ZP˜Q(τ1, τ1, τ2) , (4.21)

where ZP˜Q functions as the Radon-Nikodym derivative. If we further assume that
EP[ZP˜Q(τ1, τ1, τ2)] = 1, then Girsanov’s theorem (see Øksendal and Sulem [39], cf.
Theorem 1.35) states for π := −�P˜Q that

W
˜Q

t = WP

t +
∫ t

0
�

P˜Q

1 (s, τ1, τ2)ds , (4.22)

is a Brownian motion with respect to ˜Q and

˜N
˜Q(dt, dz) = ˜NP(dt, dz) + �

P˜Q

2 (t, τ1, τ2)�
P(dz)dt , (4.23)

is a ˜Q-compensated Poisson random measure of N (·, ·).
Under the above assumptions specified later a straightforward valuation leads to the

following result:

Proposition 4.1 The swap price process F defined in Equation (2.14) is a martingale under
˜Q given by

dF(t, τ1, τ2)

F(t−, τ1, τ2)
= E[σ(t,U )]dW˜Q

t +
∫

R

(

eE[η(t,U )]z − 1
)

˜N
˜Q(dt, dz) . (4.24)
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We would like to investigate the consequences of our previous assumptions.

Remark 4.2 (i) The Doléans-Dade exponential in Equation (4.20) is positive if

π2(s−)�J > −1, i.e., if �
P˜Q

2 �J < 1. Hence, similar to Benth et al. [7], we need to
assume that the market price of jump risk is bounded and deterministic over the entire

time period such that �P˜Q

2 (t, τ1, τ2)z < 1 for �P-a.e. z ∈ R and for each t ∈ [0, τ1].
(i i) If ln f , and so ln F , is driven by a compensated Poisson process only, then the swap’s

market price of risk is attained by �P˜Q := (0,�P˜Q

2 ), where

�
P˜Q

2 (t, τ1, τ2) := 1 − E[η(t,U )] ∫
R
z�P(dz)

∫

R

(

eE[η(t,U )]z − 1
)

�P(dz)
+ E[μ(t,U )] − κ(t) ln F(t, τ1, τ2)

∫

R

(

eE[η(t,U )]z − 1
)

�P(dz)
.

(4.25)

In this setting, we need to require that κ(t) ≡ 0.

Note that a positive local martingale is a supermartingale. Hence, in order to prove
that the Radon-Nikodym density ZP˜Q is a true martingale, it is sufficient to verify that
EP[ZP˜Q(τ1, τ1, τ2)] = 1 is satisfied, which is proven in the next proposition.

Proposition 4.2 Under Assumption 6 in Appendix A, the process ZP˜Q defined by Equation
(4.18) is a strictly positive true martingale.

Proof In Appendix B, we prove this proposition even in a stochastic volatility framework. ��

4.4 The approximated swap price Fa under the instantaneous risk-neutral measure

We introduce the instantaneous market price of risk for the approximated swap price in the
next definition.

Definition 4.2 We define the instantaneous market price of risk for the approximated swap
by �PQ := (�

PQ

1 ,�
PQ

2 ), where

�
PQ

1 (t, τ1, τ2) := E[μ(t,U )] − κ(t) ln F(t, τ1, τ2) + 1
2E[σ 2(t,U )]

E[σ(t,U )] , (4.26)

�
PQ

2 (t, τ1, τ2) := 1 −
∫

R

z�P(dz)
E[η(t,U )]

∫

R

(

E[eη(t,U )z] − 1
)

�P(dz)
. (4.27)

Note that we assume that the market price of jump risk affects the jump intensity only.
The market price of risk does not enter the jump size distribution since we restrict �

PQ

2 to
depend on trading and delivery period.

Similar to the last subsection, we can define the equivalent (instantaneous) probability
measure Q by

dQ

dP
= ZPQ(τ1, τ1, τ2) , (4.28)

where ZPQ functions as the Radon-Nikodym derivative characterized by π := −�PQ. If we
further assume that EP[ZPQ(τ1, τ1, τ2)] = 1, then Girsanov’s theorem (see Øksendal and
Sulem [39], cf. Theorem 1.35) states that

WQ

t = WP

t +
∫ t

0
�

PQ

1 (s, τ1, τ2)ds , (4.29)
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is a Brownian motion with respect to Q and

˜NQ(dt, dz) = ˜NP(dt, dz) + �
PQ

2 (t, τ1, τ2)�
P(dz)dt , (4.30)

is a Q-compensated Poisson random measure of N (·, ·).
Under the above assumptions a straightforward valuation leads to the following result:

Proposition 4.3 The approximated swap price process Fa defined in Equation (2.13) is a
martingale under Q given by

dFa(t, τ1, τ2)

Fa(t−, τ1, τ2)
= E[σ(t,U )]dWQ

t +
∫

R

(

E[eη(t,U )z] − 1
)

˜NQ(dt, dz) . (4.31)

We refer to Sect. 4.3 for the consequences of the assumptions made above.

4.5 The decomposition of themarket price of risk

From the previous subsections, we know the corresponding market prices of risk for the
swap price resulting from geometric averaging (see Definition 4.1) and from approximated
averaging (see Definition 4.2). In this subsection, we identify a clear distinction between
both market prices of risk leading to a specific decomposition that is strongly connected to
the MPDP.

We now introduce the decomposition of the swap’s market price of risk, from Def-
inition 4.1, which finally connects the instantaneous market price of risk, specified in
Definition 4.2, and the MPDP, defined in Definition 3.1. The decomposition result is stated
in the next proposition.

Proposition 4.4 The swap’s market price of risk, �P˜Q, resulting from geometric averaging
(see Definition 4.1), decomposes into

�
P˜Q

j (t, τ1, τ2) = �
PQ

j (t, τ1, τ2) + �̄
Q˜Q

j (t, τ1, τ2) , for j = 1, 2 , (4.32)

where �
PQ

j is specified in Definition 4.2 and �̄
Q˜Q

j defines the spread of diffusion and jump
risk. More precisely,

�̄
Q˜Q

1 (t, τ1, τ2) = − 1

2

V[σ(t,U )]
E[σ(t,U )] , (4.33)

�̄
Q˜Q

2 (t, τ1, τ2) = −E[η(t,U )]
∫

R

zG(dz)

∫

R
E[eη(t,U )z ] − eE[η(t,U )]zG(dz)

∫

R

(

E[eη(t,U )z ] − 1
)

G(dz)
∫

R

(

eE[η(t,U )]z − 1
)

G(dz)
,

(4.34)

where �̄
Q˜Q

2 is independent of the jump intensity.

Proof The result is attained by subtracting the swap’s market price of risk �P˜Q defined in
Definition 4.1 from the instantaneous market price of risk �PQ defined in Definition 4.2. ��

Hence, we found a representation of the swap’s market price of risk of the swap price F ,
characterized by the instantaneous market price of risk of the approximated swap Fa and the

spread �̄Q˜Q =
(

�̄
Q˜Q

1 , �̄
Q˜Q

2

)

. We further investigate the spread in the next lemma.

Lemma 4.4 (i) The spread of diffusion risk, �̄Q˜Q

1 (t, τ1, τ2), is negative for all trading times
t ∈ [0, τ1].
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(i i) If the average jump size is positive, i.e., if
∫

R
zG(dz) > 0, then the spread of jump risk,

�̄
Q˜Q

2 , is negative.
(i i i) If the average jump size is zero, i.e., if

∫

R
zG(dz) = 0, then the spread of jump risk,

�̄
Q˜Q

2 , is zero.
(iv) If the volatility is independent of the delivery, i.e., if σ(t, u) ⊥⊥ u, then the spread of

diffusion risk is zero, i.e., �̄Q˜Q

1 (t, τ1, τ2) ≡ 0.
(v) If the jump coefficient is independent of the delivery, i.e., if η(t, u) ⊥⊥ u, then the spread

of jump risk is zero, i.e., �̄Q˜Q

2 (t, τ1, τ2) ≡ 0.

Proof The results in (i) and (i i) follow directly from Jensen’s inequality. The results in (i i i)
and (iv) follow from the fact that the numerator becomes zero whenever the delivery period
disappears. ��

As a result, whenever the spread �̄
Q˜Q

j is negative for j = 1, 2, then the approximated
swap induces more risk than the swap price based on geometric averaging. In particular, the
considered spread has the same properties as the MPDP (see Kemper et al. [30]). Indeed, a
comparison with our previous considerations in Sect. 2 gives the following insights:

Remark 4.3 (i) The spread of diffusion risk, �̄Q˜Q

1 , coincides with the MPDP of diffusion

risk, �Q˜Q

1 , in Equation (3.1) from Sect. 2.

(i i) The spread of jump risk, �̄Q˜Q

2 , does not coincide with the MPDP of jump risk, �Q˜Q

2 ,

from Equation (3.2) but with �
Q˜Q

2 (1− �
PQ

2 ). This connection occurs naturally by the
change of measure.

(i i i) The condition in Lemma 4.4(i i i) holds true, for example, when jump sizes follow are
standard normal distribution.

Hence, starting from the physical measure, we can find the swaps true martingale measure
based on the swap’s market price of risk defined in Definition 4.1. If we would like to adjust
already existing models using the instantaneous market price of risk, we can easily adjust the
model through the spread defined in Proposition 4.4 that is strongly connected to the MPDP
defined in Definition 3.1.

4.6 An example based on short-term long-term evolution

In this section, we give an example in the spirit of the popular short-term long-term models
based on Gibson and Schwartz [21] and Schwartz and Smith [45]. On the spot level, these
models typically divide the price evolution into a non-stationaryGaussian component, ginving
the long term mean of spot prices. It is influenced e.g. by political or regulatory decisions.
Furthermore, a stationary mean reverting component describes short term price fluctuations
due to imbalances in supply and demand. This mean reverting short term component leads
to a Samuelson effect in the futures price dynamics, see e.g. Benth and Schmeck [8]. Then,
the futures prices evolve according to

d f (t, τ )

f (t−, τ )
= σdWP

t +
∫

R

(

eη(t,τ )z − 1
)

˜NP(dt, dz)

+
(

μ − κ ln f (t, τ ) + 1

2
σ 2 + ψP(η(t, τ ))

)

dt, (4.35)
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where η(t, τ ) = e−
(τ−t) with 
 > 0 captures the term structure effect in the spirit of
Samuelson (cf. the volatility in Example 3.2), and ˜NP is a compund Poisson process. As
we want to give an example under the physical measure, we have added a drift term similar
to Equation (4.3) and assume constant drift and mean-reversion parameters μ and κ > 0
for simplicity. Assuming a gradual inflow of renewables, jumps are more likely downward
pointing as opposed to upward pointing jumps in power systems with more nuclear, hydro,
gas, and temperature dependent demand (cf. Paraschiv et al. [41] and Hinderks and Wagner
[26]). To capture the renewable effect within the jump size distribution, we assume for
simplicity a negative jump size distribution captured by the Dirac measure assigned to a
jump size of -1.

Under Assumptions 4 and 5 in Appendix A, the swap price dynamics under the physical
measure P based on geometric averaging evolve according to Lemma 4.2 as

dF(t, τ1, τ2)

F(t−, τ1, τ2)
= σdWP

t +
∫

R

(

eE[η(t,U )]z − 1
)

˜NP(dt, dz)

+
(

μ − κ ln F(t, τ1, τ2) + 1

2
σ + ψP(E[η(t,U )])

)

dt,
(4.36)

where the swap’s jump coefficient for a constant settlement type function w(u, τ1, τ2) =
1

τ2−τ1
is given by

E[η(t,U )] = 1 − e−(τ2−τ1)


(τ2 − τ1)

η(t, τ1) . (4.37)

Note that the Assumptions 4 and 5 are satisfied, since μ, κ , and σ are constant, η(t, u) is
deterministic and finite for t ∈ [0, τ1] and u ∈ [τ1, τ2] for a finite trading horizon τ1 < ∞,
and the second moment of the negative exponential distribution as well as the moment
generating function exist. To turn to the swap’s risk neutral measure ˜Q, the swap’s market
price of volatility and jump risk are given according to Definition 4.1 by

�
P˜Q

1 (t, τ1, τ2) := μ − κ ln F(t, τ1, τ2) + 1
2σ

2

σ
, (4.38)

�
P˜Q

2 (t, τ1, τ2) := 1 + E[η(t,U )]
λ−
J

∫

R

(

eE[η(t,U )]z − 1
)

G(dz)
. (4.39)

Thinking in the spirit of the short-term long-term framework, the Gaussian part of the
dynamics stands for long term evolutions. Thus, here �1 captures effects connected to the
incorporation of the delivery period that have a long term character. On the other hand, the
Jump component stands for short-term evolutions due to imbalances in supply and demand.
�2 captures delivery dependend effects connected to expectations on e.g. negative spikes in
the underlying.

Under Assumption 6, the swap price process F is a martingale under the risk neutral
measure ˜Q evolving as

dF(t, τ1, τ2)

F(t−, τ1, τ2)
= σdW

˜Q

t +
∫

R

(

eE[η(t,U )]z − 1
)

˜N
˜Q(dt, dz) , (4.40)

whereW
˜Q

t and ˜N˜Q(dt, dz) are as in Equations (4.22) and (4.23). Note that the Assumption 6
(i) is satisfied whenever

0 ≥ 2e−E[η(t,u)] + E[η(t, u)] − 2 , (4.41)
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which is for example true for t = 0, τ1 = 1
12 , τ2 = 2

12 , and a Samuelson parameter of

 = log 2. This corresponds to monthly delivery periods and fast mean reverting spikes in
the underlying that mean revert back half way within two days. The remaining assumptions
in Assumption 6 are satisfied, since μ, κ , and σ are constant, η(t, u) is deterministic and
finite for t ∈ [0, τ1] and u ∈ [τ1, τ2] for a finite trading horizon τ1 < ∞, and the fourth
moment as well as the moment generating function exist for the Dirac measure.

5 Conclusion

In the framework of jump diffusions, we develop the new framework of the so-called market
price of risk for the delivery periods (MPDP) formodelling the dynamics of the term structure
of swap prices. The main advantage is that this approach allows for a more precise pricing of
electricity swap contracts, while avoiding any kind of approximations when implementing
the delivery period in a geometric modelling setting.

We adjust the Heston type setting of Kemper et al. [30] to a jump framework of Merton
type leading to the MPDP for diffusion and jump risk. We thus identify the MPDP for the
jump component, which turns out to be negative as it is the case for the diffusion com-
ponent. In addition, we transfer the model to the physical measure under which we allow
for mean-reversion and delivery-dependent effects such as seasonalities and term-structure
effects. A comparison of the risk-neutral measures of the swap resulting from geometric and
approximated averaging, Q and ˜Q, offers the decomposition of the “swap’s” market price
of risk comprising the “instantaneous” market price of risk and the MPDP for jump and
diffusion risk. We may refer ˜Q to the “swap’s” risk-neutral measure since the swap price
is a ˜Q-martingale without any approximations. In contrast, the “instantaneous” risk-neutral
measure, Q, results from an approximation of the swap price leading in general not to the
“swap’s” pricing measure. Consequently, any pricing methodology based on approximated
averaging can easily be turned to the “swap’s” risk-neutral measure by an application of our
MPDP.

We compare swap prices resulting from geometric averaging with swaps based on approx-
imated averaging in line with with Kemper et al. [30] and Bjerksund et al. [9]. We find that
different averaging techniques lead to a pricing spread that stays untouched by measure
changes. In particular, the swap price based on geometric averaging turns out to be smaller
than the one resulting from approximated averaging. The spread itself can be characterized
by a change of measure based on the MPDP as introduced by Kemper et al. [30]. As the
MPDP leads to the swap’s pricing measure, ˜Q, the spread remediates the approximated swap
price and adjusts it downwards to the correct price of the swap contract.

We finally investigate the model under the physical measure. To this end, we consider two
types ofmodels characterized, on the one hand, by seasonality in the delivery time (see Fanelli
and Schmeck [20]) and, on the other hand, by the Samuelson effect (see Samuelson [43]). We
adapt them to a jump setting, and provide the corresponding discretized swap price models.
Seasonal delivery dependence causes aMPDP that is constant over trading time and seasonal
in delivery time. In contrast, term-structure dependence analytically induces a decreasing
behavior of the MPDP over trading time. Hence, the closer we reach the expiration date,
the more pronounced the MPDP, and the larger the pricing spread. Consequently, the MPDP
reduces risk caused by approximated averaging especially when the end of the maturity
approaches.
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To conclude, we expand the MPDP to the jump setting and investigate the MPDP influ-
enced by typical characteristics of the electricity market. We expect that a higher market
share of renewables cause higher delivery-dependent seasonalities in the volatility and con-
sequently leading to a growingMPDP. This applies especially for Germany, having ambitious
plans for future investments in renewable energy. This increases the importance of theMPDP
of diffusion risk, which has to be taken into account to ensure an accurate pricing procedure.
However, this is a questions for future research.

Appendix

ATechnical Requirements

Assumption 1 For themodel (2.5), wemake the following assumptions to apply Itô’s formula
(see Øksendal and Sulem [39], cf. Theorem 1.16):

(i) For A := {(t, τ ) ∈ [0, τ2]2 : t ≤ τ } the functions σ : A → R+ and η : A → R

are adapted such that the integrals exist, meaning that Q[∫ t0 σ 2(s, τ ) + ∫

R
|(eη(s,τ )z −

1)|�Q(dz)ds < ∞] = 1 for all 0 ≤ t ≤ τ .

In order to ensure existence and uniqueness of solutions to Equation (2.9) (see Øksendal and
Sulem [39], cf. Theorem 1.19), we further assume:

(i i) (At most linear growth) There exists a constant C1 < ∞ such that

|σ(t, τ )x |2 +
∫

R

|(eη(t,τ )z − 1)x |2�Q(dz) ≤ C1(1 + |x |2) , ∀x ∈ R . (A.1)

(i i i) (Lipschitz continuity) There exists a constant C2 < ∞ such that

|σ(t, τ )x − σ(t, τ )y|2

+
∫

R

|(eη(t,τ )z − 1)x − (eη(t,τ )z − 1)y|2�Q(dz) ≤ C2(|x − y|2) , ∀x, y ∈ R .

(A.2)

Hence, by Øksendal and Sulem [39] (cf. Theorem 1.19), it follows that EQ[| f (t, τ )|2] < ∞
for all t ∈ [0, τ ]. By the Itô-Lévy Isometry (see Øksendal and Sulem [39], cf. Theorem 1.17)
part (i i i) implies that

EQ[ f 2(t, τ )] = EQ

[∫ t

0
σ 2(v, τ ) f 2(v, τ ) + f 2(v, τ )

∫

R

(eη(v,τ )z − 1)2�Q(dz)dv

]

< ∞ ,

(A.3)

so that the square-integrability conditions are satisfied implying that f is a true martingale
under Q.

Assumption 2 For the geometric weightening approach in Equation (2.14), we need to apply
the stochastic Fubini Theorem (see Protter [42], cf. Theorem 65, Chapter IV. 6). Therefore,
we assume that

(i) σ (·, τ ) and η(·, τ ) areP×B((τ1, τ2])measurable, whereP is the predictable σ -algebra
making all adapted, càglàd processes measurable,

(i i) EQ

[

∫ τ1
0

∫ τ2
τ1

σ 2(t, u)w(u, τ1, τ2)du dt
]

< ∞,
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(i i i) EQ

[

∫ τ1
0

∫ τ2
τ1

η(t, u)w(u, τ1, τ2)du dt
]

< ∞,

(iv) EQ

[

∫ τ1
0

∫

R

∫ τ2
τ1

(eη(t,u)z − 1)2w(u, τ1, τ2)du �Q(dz)dt
]

< ∞,

such that the integrals still exist and linear growth and Lipschitz continuity are satisfied (see
Assumption 1).

Assumption 3 To apply Girsanov’s Theorem (see Øksendal and Sulem [39], cf. Theorem

1.35), we assume that �Q˜Q

1 and �
Q˜Q

2 are predictable, satisfying

(i) EQ[∫ τ1
0 �

Q˜Q

1 (s, τ1, τ2)2ds] < ∞, such that ZQ˜Q

1 is a true martingale, and

(i i) �
Q˜Q

2 (t, τ1, τ2)z ≤ 1 for �Q-a.e. z ∈ R and all t ∈ [0, τ1] and

EQ[∫ τ1
0 exp

{

ln(1 − �
Q˜Q

2 (s, τ1, τ2)z) + �
Q˜Q

2 (s, τ1, τ2)z
}

ds] < ∞, such that ZQ˜Q

2 is a

true martingale.

Assumption 4 For the model in Equation (4.1), we make the following assumptions to apply
Itô’s formula (see Øksendal and Sulem [39], cf. Theorem 1.16):

(i) The functionsμ : A → R, κ : [0, τ1] → R+, σ : A → R+, and η : A → R+ are adapted
such that the integrals exist, meaning that for all 0 ≤ t ≤ τ , we have P[∫ t0 μ2(v, τ ) +
κ2(v) + σ 2(v, τ ) + ∫

R
η2(v, τ )z2 + e2η(v,τ )z�P(dz)dv < ∞] = 1.

In order to ensure existence and uniqueness of solutions to Equation (4.4) (see Øksendal and
Sulem [39], Theorem 1.19), we further assume:

(i i) (At most linear growth) There exists a constant C1 < ∞ such that ∀x ∈ R:

|μ(t, τ )|2 + |κ(t)x |2 + |σ(t, τ )|2 + |η(t, τ )|2
∫

R

|z|2�P(dz)

+
∫

R

|eη(t,τ )z |2�P(dz) ≤ C1(1 + |x |2) . (A.4)

(i i i) (Lipschitz continuity) There exists a constant C2 < ∞ such that

κ2(t)|x − y|2 ≤ C2(|x − y|2) , ∀x, y ∈ R . (A.5)

Assumption 5 For the geometric weightening approach in Equation (2.14) applied in Sect. 4,
we apply the stochastic Fubini Theorem (see Protter [42], cf. Theorem 65, Chapter IV. 6).
Therefore, we assume that

(i) κ, μ, σ, η areP×B((τ1, τ2])measurable,whereP is the predictableσ -algebramaking
all adapted, càglàd processes measurable,

(i i) EP

[

∫ τ1
0

∫ τ2
τ1

μ(t, u)w(u, τ1, τ2)du dt
]

< ∞,

(i i i) EP

[

∫ τ1
0

∫ τ2
τ1

σ 2(t, u)w(u, τ1, τ2)du dt
]

< ∞,

(iv) EP

[

∫ τ1
0

∫

R

∫ τ2
τ1

(eη(t,u)z − 1)2w(u, τ1, τ2)du �P(dz)dt
]

< ∞,

(v) EP

[

∫ τ1
0

∫ τ2
τ1

η(t, u)w(u, τ1, τ2)du dt
]

< ∞.

Assumption 6 To prove that ZP˜Q is a true martingale, we assume that κ, μ, σ, η are
deterministic and that

(i) �
P˜Q

2 (t, τ1, τ2)z ≤ 1 for �P-a.e. z ∈ R and each t ∈ [0, τ1],

123



320 Mathematics and Financial Economics (2025) 19:293–327

(i i) �P has fourth moment, that is
∫

R
z4�P(dz) < ∞,

(i i i)
∫ τ1
0

∫ τ2
τ1

w(u, τ1, τ2)μ
2(t, u)du dt < ∞,

(iv)
∫ τ1
0

∫ τ2
τ1

w(u, τ1, τ2)η
2(t, u)du dt < ∞,

(v)
∫ τ1
0

∫ τ2
τ1

w(u, τ1, τ2)σ
4(t, u)du dt < ∞,

(vi)
∫ τ1
0 κ2(t)dt < ∞.

B Proof of Proposition 4.2

Inspired byBenth et al. [7], we prove thatEP[ZP˜Q(τ1, τ1, τ2)] = 1 and expand their Theorem
3.5 to a geometric setting with stochastic volatility in order to address settings as in Kemper
et al. [30]. For the scope of the proof, we consider the swap price F from Lemma 4.2
characterized by stochastic volatility of the form

σ(t, τ )
√

ν(t) , (B.1)

where σ(t, τ ) is deterministic and ν is the stochastic volatility that is modeled as a Cox-
Ingersoll-Ross process evolving as

dν(t) = κν (θν − ν(t)) dt + σν

√

ν(t)dBP

t , (B.2)

for ν(0) = ν0 > 0, where BP and ˜JP are independent of each other and BP and WP

are correlated. In particular, we assume a correlation structure d〈WP, BP〉t = ρdt where
ρ ∈ (−1, 1) such that we can rewrite BP = ρWP +√

1 − ρ2 B̄P for B̄P ⊥⊥ WP. Moreover,
we assume that κν, θν, σν > 0 satisfy the extended Feller condition, i.e., σ 2

ν < κνθν , to
ensure that EP[ν−2(t)] is bounded on the entire trading time t ∈ [0, τ1] (see Dereich et al.
[18], cf. Chapter 3). Note, that the extended Feller implies the classical Feller condition (see
Karatzas and Shreve [28], cf. Chapter 5) ensuring that the volatility stays positive.

We proceed in the following steps:

1. Derivation of a new risk-neutral measure ˜Qn through a stopping time τ̂n .
2. Proof that E

˜Q
[ZP˜Q(τ1, τ1, τ2)] is lower boundend, i.e.,

E
˜Q

[

ZP˜Q(τ1, τ1, τ2)
]

≥ 1 − 1

n
E
˜Qn

[

sup
s

ln F(s, τ1, τ2)

]

− 1

n
E
˜Qn

[

sup
s

ν−1(s)

]

− 1

n
E
˜Qn

[

sup
s

ν(s)

]

.

3. Proof that there exist upper boundaries for E
˜Qn [sups ln F(s, τ1, τ2)], E˜Qn [sups ν−1(s)],

and E
˜Qn [sups ν(s)], that are independent of n.

1. Derivation of ˜Qn . Similar to Benth et al. [7], we set g(z) := (1 + z) log(1 + z) − z
and define the predictable compensator of 1

2 〈Hc, Hc〉 +∑

t≤· g(�H(t)) by

C(t, τ1, τ2) := 1

2

∫ t

0
π
P˜Q

1 (s, τ1, τ2)
2 + πP˜Q

ν (s, τ1, τ2)
2ds

+
∫ t

0

∫

R

g(πP˜Q

2 (s, τ1, τ2)z)�
P(dz)ds ,

where H from Equation (4.19) now embraces stochastic volatility such that

H(t, τ1, τ2) :=
∫ t

0
π
P˜Q

1 (s, τ1, τ2)dW
P

s +
∫ t

0

∫

R

π
P˜Q

2 (s, τ1, τ2)z˜N
P(ds, dz)
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+
∫ t

0
πP˜Q

ν (s, τ1, τ2)d B̄
P

s .

Note that this stochastic volatility setting covers a three-dimensional market price of risk
π := (π1, π2, πν) for all independent random partsWP, ˜JP, B̄P. As we are in an incomplete
setting, we choose the market price of volatility risk, πν , such that the market price of risk

admits the same structure as in the Heston model, i.e., ρπ
P˜Q

1 + √

1 − ρ2π
P˜Q
ν = δν

σν

√
ν(t)

(see Heston [24]). Now let us define a sequence of stopping times

τ̂n := inf
{

t ∈ [0, τ1] : | ln F(t, τ1, τ2)| ≥ n, or |ν−1(t)| ≥ n, or |ν(t)| ≥ n
}

, (B.3)

and observe that for every n ∈ N, the stopped process C(t ∧ τ̂n, τ1, τ2) is bounded. Hence,
by by Lépingle and Mémin [36] (cf. Theorem III.1), we know that ZP˜Q(t ∧ τ̂n, τ1, τ2) is a
uniformly integrable martingale such that we can define the probability measure ˜Qn by

d˜Qn

dP
:= ZP˜Q(τ1 ∧ τ̂n, τ1, τ2) . (B.4)

2. Proof of lower boundary of EP[ZP˜Q(τ1)]. First, ZP˜Q is a positive local martingale by

the assumption that π
P˜Q

2 (t, τ1, τ2) ≥ −1 for all t ∈ [0, τ1]. Hence, it is a supermartingale,
so that we know the upper boundary for τ1 ≥ 0:

EP[ZP˜Q(τ1, τ1, τ2)] ≤ EP[ZP˜Q(0, τ1, τ2)] = 1 .

Next, we consider the lower boundary, following Benth et al. [7]:

EP[ZP˜Q(τ1, τ1, τ2)] ≥ EP[ZP˜Q(τ1, τ1, τ2)1τ̂n>τ1 ]
= EP[ZP˜Q(τ1 ∧ τ̂n, τ1, τ2)1τ̂n>τ1 ] = ˜Qn[τ̂n > τ1] ,

where the last equality follows from the change of measure defined in Step 1 (see
Equation (B.4)). By definition of the stopping time τ̂n (see Equation (B.3)), we deduce

EP[ZP˜Q(τ1, τ1, τ2)] ≥1 − ˜Qn[τ̂n ≤ τ1]

≥1 −
(

˜Qn

[

sup
s∈[0,τ1]

ln F(s, τ1, τ2) ≥ n

]

+ ˜Qn

[

sup
s∈[0,τ1]

ν−1(s) ≥ n

]

+˜Qn

[

sup
s∈[0,τ1]

ν(s) ≥ n

])

≥1 − 1

n

(

E
˜Qn

[

sup
s∈[0,τ1]

ln F(s, τ1, τ2)

]

+E
˜Qn

[

sup
s∈[0,τ1]

ν−1(s)

]

+ E
˜Qn

[

sup
s∈[0,τ1]

ν(s)

])

,

where the last inequality follows from Markov’s inequality. If we show that the expecta-
tions on the right hand side have upper boundaries that are independent of n ∈ N, then
EP[ZP˜Q(τ1, τ1, τ2)] = 1, which is addressed in the third step.

3. Proof of upper boundaries. In order to identify upper boundaries under the measure
˜Qn defined in Equation (B.4), we need to derive the dynamics of ln F , ν−1, and ν under
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˜Qn . We apply Girsanov’s theorem (see Øksendal and Sulem [39], cf. Theorem 1.35) to
Equations (4.7) and (B.2), where

W
˜Q
n

t = WP

t +
∫ t

0
�

P˜Q

1 (s, τ1, τ2)1[0,τ̂n ](s)ds ,

B
˜Q
n

t = BP

t +
∫ t

0

δν

σν

√

ν(s)1[0,τ̂n ](s)ds ,

are correlated standard Brownian motions under ˜Qn and

˜N
˜Q
n
(dt, dz) = ˜NP(dt, dz) + �

P˜Q

2 (t, τ1, τ2)1[0,τ̂n ](t)�
P(dz)dt ,

is the ˜Qn-compensated Poisson random measure. Moreover, by Ito’s formula, we find

dν−1(t) = ν−1(t)
(

κν + δν1[0,τ̂n ](t) − ν−1(t)(κνθν − σ 2
ν )
)

dt − σνν
− 3

2 (t)dB
˜Q
n

t .

Hence, we can show

E
˜Qn

[

sup
s∈[0,τ1]

|ν−1(s)|
]

(�)≤ 1

ν0
+ E

˜Qn

[

sup
s∈[0,τ1]

∫ s

0
ν−1(t)

(

κν + δν1[0,τ̂n ](t) − ν−1(t)(κνθν − σ 2
ν )
)

dt

]

+ E
˜Qn

[

sup
s∈[0,τ1]

∫ s

0
σνν

− 3
2 (t)dB

˜Q
n

t

]

(��)≤ 1

ν0
+ (κ + |δν |)E˜Qn

[∫ τ1

0
ν−1(t)dt

]

+ (κνθν − σ 2
ν )E

˜Qn

[∫ τ1

0
ν−2(t)dt

]

+ σνn
− 3

2E
˜Qn

[

sup
s∈[0,τ1]

∫ s

0
dB

˜Q
n

t

]

(���)= 1

ν0
+ (κ + |δν |)

∫ τ1

0
E
˜Qn

[

ν−1(t)
]

dt

+ (κνθν − σ 2
ν )

∫ τ1

0
E
˜Qn

[

ν−2(t)
]

dt .

Inequality (�) follows from the integral representation of ν−1 and the triangle inequality.
Inequality (��) results from the fact, that the extended Feller condition is satisfied (i.e.,
σ 2

ν < κνθν) and that ν−1 ≤ n under ˜Qn . Since both processes ν−1 and ν−2 are positive, the
supremum disappears in the first two cases and the upper boundary is used. Equality (���)

is reached by stochastic Fubini to the first two integrals and the last term disappears. From
Dereich et al. [18] (cf. Chapter 3), we know that the expectations of the inverse and the
inverse quadratic stochastic volatility, E

˜Qn

[

ν−1(t)
]

and E
˜Qn

[

ν−2(t)
]

, can be characterized
explicitly and are bounded independently of n, as long as the extended Feller condition
σ 2

ν < κνθν is satisfied. Hence, E
˜Qn

[

sups∈[0,τ1] |ν−1(s)|] ≤ c1 ⊥⊥ n.

Moreover, we can show that |ν|2 is uniformly integrable:

E
˜Qn

[

sup
s∈[0,τ1]

|ν(s)|2
]

= E
˜Qn

[

sup
s∈[0,τ1]

(

ν0 +
∫ s

0
κνθν − (κν + δν1[0,τ̂n ](t))ν(t)dt
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+
∫ s

0
σν

√

ν(t)dB
˜Q
n
(t)

)2
]

(�)≤ 4

(

v20 + E
˜Qn

[

sup
s∈[0,τ1]

(∫ s

0
κνθνdt

)2

+ sup
s∈[0,τ1]

(∫ s

0
(κν + δν1[0,τ̂n ](t))ν(t)dt

)2

+ sup
s∈[0,τ1]

(∫ s

0
σν

√

ν(t)dB
˜Q
n

t

)2
]

)

(��)≤ 4

(

v20 + 4E
˜Qn

[

(∫ τ1

0
κνθνdt

)2
]

+ 4E
˜Qn

[

(∫ τ1

0
(κν + δν1[0,τ̂n ](t))ν(t)dt

)2
]

+ 4E
˜Qn

[

(∫ τ1

0
σν

√

ν(t)dB
˜Q
n

t

)2
]

)

(���)≤ 4

(

v20 + 4τ1

∫ τ1

0
κ2
ν θ2ν dt + 4τ1(κν + |δν |)2

∫ τ1

0
E
˜Qn

[

sup
s∈[0,t]

ν(s)2
]

dt

+ 4σ 2
ν E˜Qn

[∫ τ1

0
ν(t)dt

]

,

)

where the first equality represents the integral version of ν. Inequality (�) results from the
Cauchy-Schwartz inequality to the sum and an application of the triangle inequality. We
apply Doob’s inequality to all expectations in Inequality (��). In Inequality (���), we apply
the Cauchy-Schwartz inequality to the first and second integral and apply Ito’s isometry to the
last summand. We finish with the stochastic Fubini to the second integral while making the
integrand even bigger. Note that for the last summand, we have E

˜Qn

[∫ τ1
0 ν(t)dt

] ≤ c̃ν ⊥⊥ n
since we can find explicit expressions in Cont and Tankov [16] (cf. Chapter 15). Setting
cν := 4v20 + 16τ 21 κ2

ν θ2ν + 16σ 2
ν c̃ν , then, by Gronwall, we receive E˜Qn

[

sups∈[0,τ1] |ν(s)|2] ≤
cνe16(κν+|δν |)2τ 21 =: c2 ⊥⊥ n.

Next, we show that | ln F |2 is uniformly integrable:

E
˜Qn

[

sup
s∈[0,τ1]

| ln F(s, τ1, τ2)|2
]

= E
˜Qn

[

sup
s∈[0,τ1]

(

ln F(0, τ1, τ2) +
∫ s

0

(

1 − 1[0,τ̂n ](t)
)

(E[μ(t,U )] − κ(t) ln F(t, τ1, τ2)) dt

−
∫ s

0

1

2
E[σ(t,U )]2ν(t)1[0,τ̂n ](t)dt

+
∫ s

0
E[σ(t,U )]√ν(t)dW

˜Q
n

t +
∫ s

0
E[η(t,U )]d˜J˜Qn

t

−
∫ s

0
E[η(t,U )]

(

1 − E[η(t,U )] ∫
R
z�P(dz)

∫

R
eE[η(t,U )]z − 1�P(dz)

)

1[0,τ̂n ](t)
∫

R

z�P(dz)dt
)2
]

(�)≤ 7

(

ln F(0, τ1, τ2)
2 + E

˜Qn

[

sup
s∈[0,τ1]

(∫ s

0

(

1 − 1[0,τ̂n ](t)
)

E[μ(t,U )]dt
)2
]
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+ E
˜Qn

[

sup
s∈[0,τ1]

(∫ s

0

1

2
E[σ(t,U )]2ν(t)1[0,τ̂n ](t)dt

)2
]

+ E
˜Qn

[

sup
s∈[0,τ1]

(∫ s

0

(

1 − 1[0,τ̂n ](t)
)

κ(t) ln F(t, τ1, τ2)dt

)2
]

+ E
˜Qn

[

sup
s∈[0,τ1]

(∫ s

0
E[σ(t,U )]√ν(t)dW
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The first equality represents the integral version of ln F . Inequality (�) results from the
Cauchy-Schwartz inequality to the sum and an application of the triangle inequality. We
apply Doob’s inequality to all expectations in Inequality (��). In Inequality (���), we apply
the Cauchy-Schwartz inequality to the first three integrals. We finish with Itô-Lévy Isometry
(seeØksendal andSulem [39], cf. Theorem1.17) to the last summand and an application of the
stochastic Fubini theorem to the fourth summand (including ln F) whilemaking the integrand
even bigger. By the previous considerations, we know that E

˜Qn

[∫ τ1
0 E[σ(t,U )]2ν(t)dt

] ≤
√

∫ τ1
0 E[σ(t,U )]4dtE

˜Qn

[√
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0 ν(t)2dt
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0 E[σ(t,U )]4dt√τ1c2 is bounded inde-

pendently of n and that
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0 E[σ(t,U )]4dt E

˜Qn

[∫ τ1
0 ν(t)2dt

] ≤ c2τ1
∫ τ1
0 E[σ(t,U )]4dt

is independent of n. By the choice of cY , an application of Gronwall’s inequality yields

EPn
[

sups∈[0,τ1] | ln F(s, τ1, τ2)|2
] ≤ cY e28

∫ τ1
0 κ(t)2dt =: c3 ⊥⊥ n , such that we have shown,

that ZP˜Q is indeed a true martingale.
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