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Abstract
Given the critical role of data availability for growth and innovation in financial services, especially small and mid-sized 
banks lack the data volumes required to fully leverage AI advancements for enhancing fraud detection, operational effi-
ciency, and risk management. With existing solutions facing challenges in scalability, inconsistent standards, and complex 
privacy regulations, we introduce a synthetic data sharing ecosystem (SynDEc) using generative AI. Employing design 
science research in collaboration with two banks, among them UnionBank of the Philippines, we developed and validated 
a synthetic data sharing ecosystem for financial institutions. The derived design principles highlight synthetic data setup, 
training configurations, and incentivization. Furthermore, our findings show that smaller banks benefit most from SynDEcs 
and our solution is viable even with limited participation. Thus, we advance data ecosystem design knowledge, show its 
viability for financial services, and offer practical guidance for privacy-resilient synthetic data sharing, laying groundwork 
for future applications of SynDEcs.

Keywords  Synthetic data · Data sharing platform · Data ecosystem · Financial services · Data scarcity

JEL classification  M15

Motivation

In the wake of recent global crises, the enhancement of 
financial services has become a crucial driver for accelerat-
ing economic recovery, particularly in developing economies 
where these services are essential for expanding financial 
inclusion and fostering socioeconomic growth (Demirgüç-
Kunt et al., 2022; Pazarbasioglu et al., 2020; White et al., 

2021). However, given the financial services industry’s reli-
ance on information, increasing data availability is key to 
success. This is especially true for smaller financial institu-
tions, which lack the necessary volume of high-quality data 
to leverage current AI model advancements. This lack of 
data results in missed opportunities, with developing coun-
tries potentially losing out on up to 5% of GDP through 
improvements in fraud protection, operational efficiency, and 
workforce allocation (White et al., 2021; Zachariadis, 2020).

Although the sharing of financial transaction data could 
reduce risks and improve transparency (Brodsky & Oakes, 
2017), thereby driving economic growth (O’Leary et al., 
2021), it faces significant obstacles related to privacy regu-
lation and information security. Existing solutions such as 
open banking and federated learning have significant limita-
tions. Open banking, which enables customer-approved data 
exchange between financial institutions, often produces unre-
liable data due to selective participation (He et al., 2023) and 
lacks coverage of B2B transactions (Preziuso et al., 2023). 
Federated learning, an approach for training a model with-
out direct data exchange, faces scalability issues, restricts 
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participants to a single shared model, and lacks adaptability 
(Baabdullah et al., 2024; Chatterjee et al., 2024). Therefore, 
research is required to explore data ecosystems that facilitate 
the exchange of data between financial institutions and regu-
latory bodies while safeguarding the privacy of individual 
users’ information (Assefa, 2020).

In the pursuit of establishing such an ecosystem enabling 
financial data sharing, the application of synthetic data gen-
eration emerges as a promising solution. Synthetic data, 
currently primarily used in financial services to tackle class 
imbalance in fraud detection models by synthesizing new 
fraudulent samples (Charitou et al., 2021), produces artificial 
data that if done correctly maintains privacy while capturing 
and generalizing the patterns and attributes essential for the 
training of machine learning models. Combining this with 
data sharing enables the creation of a secure and robust data 
ecosystem.

While plenty of research on synthetic data generation 
exists, significant gaps remain for its practical application 
within data ecosystems. Research has largely focused on 
algorithm development, leaving critical questions unan-
swered about how to design an ecosystem for privacy-pre-
serving data exchange with the capability to handle complex 
data and achieve interoperability across institutions (Oliveira 
et al., 2019). Additionally, there is limited guidance on 
which algorithms are most effective in a context where syn-
thetic data is leveraged to be shared between institutions 
and not merely used to increase the amount of training data 
(Langevin et al., 2022). Practical strategies for integrating 
shared synthetic data within machine learning models are 
also sparse, though such strategies are essential for realiz-
ing synthetic data’s potential in AI applications (Sattarov 
et al., 2023; Strelcenia & Prakoonwit, 2023). Finally, incen-
tives, for big as well as small players, necessary to encour-
age participation in a synthetic data-sharing ecosystem 
remain underexplored, despite being vital for fostering the 
cooperative engagement on which such ecosystems depend 
(Gelhaar & Otto, 2020). In response, our research seeks to 
answer the following questions: What architecture is best 
suited for secure data exchange? Which algorithms are most 
effective for data generation? What are the optimal strategies 
for utilizing shared synthetic data within individual insti-
tutions? And do the incentives within such an ecosystem 
effectively encourage participation? Furthermore, there is a 
need for specialized engineering and management method-
ologies tailored to the unique demands of financial services, 
where stringent privacy regulations and the complex nature 
of transaction data introduce distinct challenges (Oliveira 
et al., 2019).

Our research goal is to provide design knowledge for a 
synthetic data ecosystem that enables financial institutions 
to share financial transaction data and generate utility from 
doing so. Our study contributes to the existing literature in 

two significant ways. First, it advances the field of data eco-
systems by addressing privacy challenges and exploring the 
use of data from multiple institutions for machine learning 
(Brée et al., 2024). Second, it offers practical guidance for 
financial institutions on generating and utilizing synthetic 
data, including benchmarking different algorithms, setups, 
and training schemes. Given the current lack of guidance on 
the conceptualization and implementation of such systems, 
this leads us to the following research question:

RQ: How to design a financial data ecosystem (SynDEc) 
based on synthetic data sharing?

To address the RQ, the paper adopts a multifaceted 
approach to investigate architectural design decisions. It 
encompasses an examination of synthetic data generation 
techniques within the ecosystem, explores its implications 
for training predictive models, and seeks to identify and mit-
igate potential challenges to the ecosystem’s stability and 
functionality. Additionally, it assesses the generalizability 
of the derived principles beyond the domain of financial 
fraud detection.

The paper is organized as follows: In the next section, 
we present an overview of data ecosystems in financial ser-
vices and synthetic data generation. Next, we outline, the 
Design Science Research Methodology by Peffers et al. 
(2007), combining context-driven innovation and iterative 
development, which we use as our methodological founda-
tion. In the first of our four design cycles, we diagnose the 
problem space through the meta (MR) and design require-
ments (DR) based on both literature and expert interviews. 
Based on this, our initial set of design principles (DP) is 
derived and instantiated as a system architecture. Building 
on this the second design cycle evaluates the feasibility of 
different synthetic data generation and integration methods. 
The following design cycle extends this by evaluating the 
proposed approach in new domains while also investigating 
improvements to the ecosystem based on data generation and 
exchange. Lastly, design cycle four takes a network view, 
investigating design elements to ensure early challenges fre-
quently seen in data ecosystems can be overcome. Finally, 
we discuss the findings, outline limitations, provide a per-
spective for future work, and conclude with a brief summary.

Related work

Data ecosystems in financial services

The growing recognition of data as a critical asset for inno-
vation, growth, and value creation has led firms to increas-
ingly seek external sources to enhance their data capabilities 
(Bagad et al., 2021; Gelhaar & Otto, 2020). One promising 
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approach is the formation of inter-organizational networks, 
where organizations collaborate to share resources and 
knowledge (Gray & Sites, 2013). Within this context, data 
ecosystems have emerged as an effective framework for data 
exchange (Abbas et al., 2021; Heinz et al., 2022; Zuiderwijk 
et al., 2014). Defined as “a set of networks composed of 
autonomous actors that directly or indirectly consume, pro-
duce, or provide data and other related resources” (Oliveira 
& Lóscio, 2018, p. 4), data ecosystems are built around four 
key constructs: (1) actors, (2) their roles, (3) relationships 
among them, and (4) the resources they require. Actors in 
these ecosystems—whether organizations, individuals, or 
institutions—take on roles such as data consumers, provid-
ers, and intermediaries, each contributing uniquely to the 
ecosystem's function (Oliveira & Lóscio, 2018; van Schalk-
wyk et al., 2016). The roles they assume drive specific tasks, 
such as data intermediaries connecting various actors and 
data consumers analyzing and providing feedback to data 
providers. These interactions, and the dependencies that 
arise from them, form the relationships that underpin the 
ecosystem (Heimstädt et al., 2014; Oliveira & Lóscio, 2018). 
At the core of a data ecosystem, data platforms provide the 
technical infrastructure for processing and managing data 
from diverse sources, enabling various data applications. 
These platforms often incorporate data marketplaces, which 
serve as self-service platforms that connect data producers 
and consumers (Gröger, 2021). Another closely related con-
cept is data spaces, which are frequently used to describe 
data-sharing ecosystems across organizations and thus will 
be used as synonyms in this paper (Otto et al., 2019).

Building on this foundation, recent research has shifted 
its focus to the governance and operationalization of data 
ecosystems, particularly in the areas of data sovereignty 
(Jarke, 2017) and trust (Gelhaar & Otto, 2020; Schäfer et al., 
2023), which are critical for ensuring secure and reliable 
data exchange. However, in their comprehensive review of 
data ecosystems, Brée et al. (2024) identified several gaps 
within the literature that are currently under-researched, 
among them data security and the integration of artificial 
intelligence and machine learning within data ecosystems. 
On the one hand, data security deals with ways data can 
be stored and shared within data ecosystems while remain-
ing protected as well as the influence of such measures on 
the utility of data ecosystems (Brée et al., 2024). On the 
other hand, machine learning and artificial intelligence have 
become central to the formation of data ecosystems, yet there 
is a need for a deeper understanding of the requirements for 
sharing AI training data and how training on shared data 
should be conducted (Brée et al., 2024). Our research seeks 
to address these challenges by proposing a new type of data 
ecosystem centered on synthetic data, which offers a means 
to mitigate privacy risks while maintaining the benefits 
of data sharing. Additionally, we investigate strategies for 

maximizing the utility of shared data to enhance individual 
organizational performance, thereby contributing to both the 
theoretical and practical development of data ecosystems.

With current research on data ecosystems, predominantly 
concentrating on applications within healthcare, Industry 
4.0, and smart cities (Cappiello et al., 2020), this study 
tries to extend this focus to the financial services industry. 
Given the sector’s significant dependence on highly sensitive 
data and its advanced application of machine learning tech-
nologies, this context provides a suitable setting to address 
previously identified research gaps in data security and the 
implementation of AI models within data ecosystems. Cur-
rent research on data ecosystems within the financial ser-
vices industry can be broadly categorized into two research 
streams. The first stream centers on open banking, a cus-
tomer-focused ecosystem where established standards facili-
tate the secure sharing of banking data with various actors 
within the financial services ecosystem, based on customer 
requests (Cosma et al., 2023). While this approach grants 
consumers greater control over their data, it also raises 
significant data security concerns due to the decentralized 
nature of data storage across multiple providers—a critical 
issue given the heightened sensitivity of financial transaction 
data (Y. Wang et al., 2018). Furthermore, open banking does 
not provide institutions with an efficient and secure mecha-
nism for large-scale data exchange, which is essential for 
applications such as fraud detection and anti-money launder-
ing (Asrow, 2021). The second stream of research revolves 
around federated learning, a methodology that completely 
eliminates data sharing by enabling distributed training of 
shared models, thereby ensuring compliance with privacy 
protection regulations (Awosika et al., 2024; Lei et al., 2023; 
Perez et al., 2023). However, federated learning presents 
significant challenges, including computational overhead, 
scalability issues, and still privacy risks, as malicious actors 
might be able to infer sensitive data from the model param-
eters shared during the training process (Baabdullah et al., 
2024; Chatterjee et al., 2024). Additionally, the necessity 
for participants in a federated learning ecosystem to agree 
on a single model architecture, which is difficult to modify 
once established, further complicates its implementation. 
The constraints of existing solutions, coupled with the fact 
that data ecosystems do not emerge organically but instead 
necessitate strategic planning around a shared value proposi-
tion, have resulted in the lack of a comprehensive financial 
data ecosystem to date (Adner, 2017; Immonen et al., 2014). 
This is aggravated by a research gap in the development 
of specialized engineering and management methodologies 
tailored to the needs of such an ecosystem (Oliveira et al., 
2019) which are especially critical in the financial services 
sector, where stringent privacy requirements and the com-
plex nature of financial transaction data introduce distinct 
challenges. Consequently, further research is essential to 
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address these challenges and to delineate the architectural 
frameworks necessary for the creation of robust and secure 
data ecosystems within the financial industry.

Synthetic data generation and its application

Synthetic data can be defined as “data that has been gener-
ated using a purpose-built mathematical model or algorithm, 
with the aim of solving a (set of) data science task(s)” (Jor-
don et al., 2022, p. 5). This generation process can take many 
forms as comprehensively categorized by Bauer et al. (2024) 
into 20 distinct method types. Among these, generative 
adversarial networks (GANs) are the most popular. GANs 
learn by pitting a generator (synthesizes data from random 
noise) and a discriminator (classifies samples as real or fake) 
against each other, resulting in two highly skilled networks 
(Goodfellow et al., 2014). This architecture is highly adapt-
able, as discriminator and generator can be easily adjusted to 
new tasks (e.g., time series or graph generation) while being 
frequently the best-performing synthetic data generation 
method (Bauer et al., 2024). Another commonly employed 
synthetic data generation method is autoencoder-based 
architectures, especially variational autoencoder (VAE) 
(Kingma & Welling, 2013). VAEs are trained by mapping 
an input sample to a hidden representation, which is then 
mapped back to the original vector, thus creating a model 
that synthesizes valid data from a lower dimensional rep-
resentation. This decoder model is then used to generate 
data from random noise which makes it especially useful for 
learning from data with disentangled features (Bauer et al., 
2024). Third, recurrent neural networks, feedforward neural 
networks which include recurrent edges, are able to generate 
sequential data of arbitrary length. This makes them ideal for 
sequence generation tasks such as speech synthesis, music, 
and time series generation (Lipton et al., 2015). Finally, vir-
tual environments are computer simulations in which algo-
rithms interact with each other based on predefined rules, 
generating synthetic data in the process (Bonabeau, 2002).

In the context of machine learning, synthetic data is pri-
marily utilized in three key areas: (i) private data release, (ii) 
data de-biasing and fairness, and (iii) data augmentation for 
robustness (Jordon et al., 2022). As the focus of this paper 
is employing synthetic data for private data release, it will 
be investigated in more detail. Hereby, private data release 
describes the case where synthetic data is used to mitigate 
disclosure risk, allowing privacy concerns and regulatory 
issues to be circumvented by substituting real data with syn-
thetic data (Esteban et al., 2017; Jordon et al., 2018). How-
ever, this comes with certain risks of disclosure, which users 
need to be aware of. While multiple risks exist, the most 
relevant is membership inference which seeks to determine 
if an individual was part of the original dataset (Bun et al., 
2021; Jordon et al., 2022). This risk is particularly critical in 

the context of financial transaction data, as revealing a user’s 
membership in a specific bank’s dataset could enable mali-
cious actors to carry out more targeted fraudulent activities, 
making fraud prevention more difficult. Research on dealing 
with membership inference risks in synthetic data, primarily 
drawn from the healthcare domain, can be divided into two 
major streams. The first stream focuses on achieving guaran-
teed privacy by modifying models to conform to differential 
privacy principles, ensuring both the data and the model are 
protected. Algorithms implementing this are the PATE-GAN 
(Jordon et al., 2018) or DP2-VAE (Jiang et al., 2022) archi-
tectures. The second research stream focuses on evaluating 
and managing privacy risks within acceptable limits for a 
given volume of published synthetic data, providing various 
metrics and thresholds for guidance (H. Chen et al., 2023; 
Yan et al., 2022). Popular measures are the nearest neighbor 
adversarial accuracy risk (Yale et al., 2020), the member-
ship inference risk (Choi et al., 2018), and the meaningful 
identity disclosure risk (Emam et al., 2020). Furthermore, 
these measures have also been adopted by regulators such as 
the European Medicines Agency and Health Canada which 
both provide thresholds for identifying disclosure risk (Yan 
et al., 2022).

As the complexity of models continues to grow, neces-
sitating larger datasets, synthetic data has been applied in a 
variety of fields, where it is used to facilitate more efficient 
and effective development of AI solutions (Lu et al., 2023). 
In financial services, these have been mainly use cases that 
inhibit a strong class imbalance such as anti-money laun-
dering and financial fraud detection. Here, synthetic data 
generation is used to increase the amount of data within the 
minority class, thereby increasing training efficiency (E. Alt-
man et al., 2024; Hilal et al., 2022). The current landscape 
is largely dominated by GAN-based architectures especially 
Wasserstein GANs due to their superior training stability 
(Hilal et al., 2022; Sethia et al., 2018; Strelcenia & Pra-
koonwit, 2023). However, recent advancements have seen 
transformer-based architectures (Nickerson et al., 2023) and 
diffusion-based models (Sattarov et al., 2023) emerging as 
competitive alternatives to GANs. Due to the internal usage 
of this synthetic data, data privacy has not been a main con-
sideration when building these models. Data privacy consid-
erations have mostly been explored in academic studies that 
aim to make their synthetic data publicly available. These 
studies typically employ virtual environment-based systems, 
such as multi-agent simulations, which simulate financial 
transaction data by modeling interactions between known 
actors and behaviors (E. Altman et al., 2024; Jensen et al., 
2023; Lopez-Rojas et al., 2016). While these approaches 
are very secure from a privacy perspective as real data is 
only used during model evaluation of the synthetic data, 
they require significant manual work to identify patterns and 
changing behaviors need to be detected first, before they can 
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be integrated into the simulation (Bauer et al., 2024). How-
ever, the automatic generation and sharing of synthetic data 
derived from real data have not been extensively explored. 
As privacy concerns intensify due to regulatory pressure 
and customer expectations, as well as a growing necessity 
for extensive datasets to support cutting-edge machine learn-
ing models (Hittmeir et al., 2019), employing synthetic data 
has the potential to address privacy challenges in data eco-
systems. Recent studies by Sattarov et al. (2023) and Lan-
gevin et al. (2022) have begun to investigate this potential 
for financial services. However, these studies primarily focus 
on comparing different data generation methods and present 
synthetic data sharing as merely one potential application. 
This leaves significant research gaps regarding the mecha-
nisms for data exchange, the optimal strategies for learning 
from cross-institutional synthetic data, and the incentives 
for participating institutions, reaching beyond financial ser-
vices and tackling current challenges in data ecosystems in 
general. Moreover, these studies offer little guidance on the 
design of such an ecosystem, highlighting a clear need for 
establishing design principles and best practices.

Research approach

A design science research project was initiated to address 
a research gap in approaches to enhance privacy protec-
tion within data ecosystems while preserving data utility 
for machine learning applications. This need, combined 
with the financial services industry’s demand for solutions 
to address the limitations of inter-organizational collabo-
ration in tackling financial fraud and anti-money launder-
ing detection, prompted the research effort. This project is 
aimed at designing an innovative artifact that provides finan-
cial institutions with a tool to easily exchange high-quality 
data with each other enabling them to increase their fraud 
and anti-money laundering detection performance, creat-
ing guidance on how to implement such a system, as well 
as to evaluate its benefits and the associated privacy risks 
(Gregor & Hevner, 2013; Peffers et al., 2007). To achieve 
these objectives, we adopted design science research (DSR), 
a framework particularly suited for the iterative develop-
ment of novel artifacts addressing solution spaces with 
broad implications for both theoretical and practical prob-
lem domains (Peffers et al., 2007) and providing theoreti-
cally justified prescriptive knowledge (Gregor et al., 2020). 
Following this paradigm, we focus on creating artifacts 
that serve organizational purpose, in our case enabling data 
sharing despite privacy restrictions, through a structured 
research process that rigorously builds and evaluates viable 
solutions (A. R. Hevner et al., 2004; March & Smith, 1995). 
Following Scheider et al. (2023), our artifact is a “model” 
(March & Smith, 1995), a type of DSR artifact that serves 

as a simplified representation of reality and accumulates 
specific design knowledge (March & Smith, 1995); thus, 
DSR provides a suitable framework for our study (A. R. 
Hevner, 2007; Iivari, 2007). Our model presents a struc-
tured approach to designing a data ecosystem under privacy 
and data complexity constraints, exemplifying a solution 
to the problem discussed in the earlier sections. Our meth-
odological approach to DSR—the design science research 
methodology (DSRM) by Peffers et al. (2007) has six steps, 
arranged in sequential order, and incorporates an iterative 
research procedure by design. The process typically starts 
with the identification of a research problem with practical 
relevance, in our case, the challenge of data scarcity within 
financial fraud detection. Next, the solution objectives are 
designed to address the stated challenges and to create a 
meaningful artifact. In line with DSR, the insights gained 
from the build-and-evaluate process must be generalizable 
and therefore applicable in more generic settings (Jones & 
Gregor, 2007). Also, the design artifacts should result in 
profound disruptions to traditional ways of doing business 
(A. Hevner & Gregor, 2022). Based on these objectives and 
on theory, the artifact is designed and developed in the next 
research process step. Phase 5 comprises evaluation, which 
is necessary to test whether an artifact achieves the purpose 
of its creation and to prove this achievement using rigorous 
methods (Venable et al., 2016). The evaluation phase also 
helps one to better understand the problem at hand and thus 
to realize improved outcomes (A. R. Hevner et al., 2004). 
Due to the iterative nature of this process, it can be repeated 
until a suitable artifact is derived. The design knowledge in 
the form of DPs with their DRs and MRs generated during 
this process can be seen as a nascent design theory, cap-
turing a general solution in a class of artifacts (Baskerville 
et al., 2018). While MRs are high-level, generalized goals 
that an artifact must satisfy to address a class of problems, 
providing the foundational objectives for artifact design 
(Walls et al., 1992), DRs are specific, actionable specifica-
tions that detail the necessary features and characteristics an 
artifact must have to fulfill the meta-requirements (Gregor 
& Hevner, 2013). Lastly, DPs are prescriptive, actionable 
guidelines derived from design requirements and grounded 
in both theoretical foundations and empirical evidence, pro-
viding clear instructions for creating artifacts that meet the 
specified requirements and address the underlying problem 
space (Gregor et al., 2020). Thus, especially the DPs can be 
used to guide actions in a wider range of problems, in par-
ticular, data ecosystems where data with a complex structure 
needs to be shared under privacy restrictions (A. R. Hevner 
et al., 2004). They contribute to the theoretical advance-
ment of the information systems (IS) community and pro-
vide valuable guidance for practitioners in designing similar 
artifacts (Baskerville et al., 2018; Sein et al., 2011). Since 
the DSR approach requires integration into an organizational 
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context, the project was conducted in collaboration with 
the UnionBank of the Philippines, a rapidly growing digi-
tal bank, as well as a European neo bank with a focus on 
wholesale transaction banking. Both banks rapidly scaled 
their digital transaction infrastructure in recent years and 
are now looking for new ways to tackle transaction fraud and 
money laundering. While the banks granted us deep insights 
into the problem of limited transaction data and provided 
invaluable feedback through all cycles, it was decided that 
prototyping and evaluation would be conducted on publicly 
available datasets instead of real bank data to reduce risks 
and allow fast iterations to create a solid understanding of 
potential pitfalls.

Within this DSRM framework, four iterative design 
cycles were conducted, thus allowing for continuous refine-
ment of the artifact’s design based on feedback and derive 
insights (Mullarkey & Hevner, 2019; Sein et al., 2011). In 
the next paragraph, the activities in each cycle are intro-
duced which are outlined in the following graphic (Fig. 1).

First, the DSRM project starts with problem identifica-
tion and motivation, focusing on stakeholder problems and 
challenges. This was done by conducting a systematic litera-
ture review on data ecosystems, synthetic data, and financial 
fraud detection as well as semi-structured interviews with 
employees at different levels at our partner banks, who are 
engaged in data sharing initiatives, fraud detection or data 

analytics, and machine learning projects. Furthermore, these 
interviews were used to identify the objectives of our solu-
tion by deriving DRs and MRs. Next, we iterated the first 
“Design—Demonstrate—Evaluate” cycle. In the design 
phase, we formulated the initial set of DPs. These princi-
ples were then translated into a system architecture during 
the demonstration phase, specifying its material properties 
like algorithms and interaction layers. Subsequently, an 
evaluation was conducted, involving feedback from aca-
demics and industry experts through four semi-structured 
interviews. The outcomes helped evaluate the feasibility of 
the initial design and led to the refinement of selected DPs 
in the second iteration. In cycle 2, we conducted a literature 
review identifying suitable algorithms for synthetic financial 
transaction data generation and based on them, instantiated 
a prototype which was subsequently evaluated on a publicly 
available real-world credit card transaction dataset to iden-
tify the most suitable synthetic data generation algorithm, 
establish the feasibility of the solution, and demonstrate the 
privacy-preserving properties of synthetic data. Based on 
additional expert feedback as well as two large simulated 
financial transaction data sets, cycles 3 and 4 refine the exist-
ing DPs and introduce new ones where needed. While cycle 
3 explores the local level of the ecosystem in more detail, 
cycle 4 focuses on the global level and cooperative chal-
lenges within the ecosystem. Throughout the DSRM cycles, 

Fig. 1   Steps and design cycles within our design science research study based on Peffers et al. (2007)
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we iteratively abstracted the requirements, DPs, and system 
features. Thus, our main theoretical contributions lie in the 
abstracted artifacts, particularly the DPs, which are first 
derived in “Design of initial DPs” and continuously refined 
throughout the paper.

Problem identification and motivation

The diagnosis phase consists of two tasks: understanding the 
problem and solution domain and defining the ecosystem’s 
requirements. First, we positioned our DSRM project within 
the domain of inter-institutional collaboration within finan-
cial services. With a major focus of such collaboration being 
financial fraud detection, a first literature review on data 
ecosystems, synthetic data, and financial fraud detection was 
conducted. Following the methodology by Webster and Wat-
son (2002), four search strings were established (Table 1) 
and the following databases: ScienceDirect, EBSCOhost, 
SpringerLink, IEEE Xplore, and AISeL, were queried for 
articles containing the previously defined search string in 
title, abstract, or the author keywords. Furthermore, only 
papers written in the English language and published within 
the past 5 years were included. This initial query resulted 
in a total of 3794 papers, which were then filtered based on 
a screening of titles and abstracts. While for papers iden-
tified by the “Fraud Detection” query strings only papers 
were included that deal with financial transaction fraud and 
either focus on privacy or a multi-organizational context, 
for papers selected by the “Data Ecosystem” string the only 
inclusion criteria were a focus on data ecosystems. After 
adding more relevant papers through a forward and back-
ward search a total of 61 papers were selected for inclusion 
in the literature review.

The analysis of the first part of our literature review 
focusing on fraud detection revealed that the limited availa-
bility of data is a significant challenge, especially for smaller 
organizations (Kulatilleke, 2022; Pranto et al., 2022). Espe-
cially with increasingly sophisticated adversaries (Qiao 
et al., 2024) and thus, more complex fraud detection models, 
frequently built based on deep learning architectures, more 

data is needed for model training (Aurna et al., 2023; Hilal 
et al., 2022). This need for increasing amounts of training 
data is further aggregated by the extreme class imbalance 
of datasets (large datasets are needed for a sufficient num-
ber of samples in the minority class) as well as the fast-
changing nature of fraudulent patterns (Abdul Salam et al., 
2024; Ryman-Tubb et al., 2018). Tackling this, frequently, 
the proliferation of cross-institutional data is presented as a 
potential solution, to increase the amount of available data 
and train better and more robust models (Kong et al., 2024; 
Myalil et al., 2021; Qiao et al., 2024). However, due to the 
high sensitivity of financial transactions and the connected 
risk of privacy leakage, this exchange is usually prohibited 
by external regulation or internal guidelines (Bian & Zheng, 
2023; Pranto et al., 2022; Ryman-Tubb et al., 2018). To over-
come this problem, frequently federated-learning-based 
solutions are proposed, allowing the raw data to remain 
local, while a joined model is trained (Kong et al., 2024; 
Lei et al., 2023; Pranto et al., 2022). While these approaches 
show some promise, they retain significant drawbacks such 
as the computational overhead, scalability issues, and the 
necessity to agree on a single model architecture, which is 
difficult to modify once established (Baabdullah et al., 2024; 
Chatterjee et al., 2024). This leads us to the conclusion that 
there is a need for a data ecosystem that allows financial 
institutions to exchange data with one another while staying 
compliant with laws and internal regulations on data privacy 
and giving them the freedom to use this data to fulfill their 
specific needs.

Definition of solution objectives

Looking for potential solutions, we drew on the second 
part of our literature review focusing on data ecosystems 
providing relevant insights on how such challenges can be 
navigated and potentially overcome in the context of finan-
cial data. Particularly papers from the healthcare domain 
(H. Chen et al., 2023; Morley-Fletcher, 2022), investigations 
into the emergence (Gelhaar & Otto, 2020) and organization 
(Langer & Mukherjee, 2023) of data ecosystems as well as 

Table 1   Results of systematic literature search

a Detailed filter criteria can be found at https://​anony​mous.​4open.​scien​ce/r/​Synth​eticD​ataEc​osyst​ems-​801C/​Cycle1_​Initi​alDes​ignPr​incip​les/​
README.​MD

ID Search string Hits Filter: titlea Remove dupli-
cates

Filter: 
abstracta

Fwd and Bwd 
search

Total

I “Financial” AND “Fraud Detection” 2471 336 449 30 5 35
“Transaction” AND “Fraud Detection” 990 139

II “Financial” AND “Data Ecosystem” 164 13 19 18 8 26
“Synthetic Data” AND “Data Ecosystem” 169 6

https://anonymous.4open.science/r/SyntheticDataEcosystems-801C/Cycle1_InitialDesignPrinciples/README.MD
https://anonymous.4open.science/r/SyntheticDataEcosystems-801C/Cycle1_InitialDesignPrinciples/README.MD
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the preconditions for data sharing (Fassnacht et al., 2023), 
were detrimental in deriving the design requirements pre-
sented in the following section.

To extend our insights into the domain beyond academic 
literature next, nine semi-structured interviews with employ-
ees at various levels at our project partners, with a focus on 
fraud detection or data science, were conducted (for details, 
see Table 2). Querying them for challenges as well as poten-
tial solutions for tackling data scarcity within their domain.

Based on this, we formulated two meta-requirements 
(MR) that any solution must adhere to. MR1 emphasizes the 
ease of data sharing between financial institutions, encom-
passing both technical, legal, and collaboration aspects. 
The need for technical ease of use was informed by insights 
drawn from the medical field, where challenges related to 
tool availability and varying data standards were identified 
as hindrances to data sharing (van Panhuis et al., 2014). 
The legal dimension in ecosystem usability was motivated 
by diverse regulatory requirements across jurisdictions, as 
observed in existing approaches to sharing financial transac-
tion data (Blake et al., 2019). Lastly, ease of collaboration 
was drawn from the ecosystem literature, where cooperative 
challenges were outlined as a major hurdle to data ecosystem 
development (Gelhaar & Otto, 2020). MR2 highlights the 
necessity of increased utility as a result of sharing data. This 
requirement emanated from discussions with our partners 
regarding their goal of establishing a data-sharing ecosystem 
and from the literature describing incentives for participation 
in data ecosystems (Gelhaar et al., 2021).

Next, we refined the MRs into more specific DRs, draw-
ing from literature as well as the knowledge of our project 
partners.1 To incentivize users to participate in data-sharing, 
setup as well as reoccurring costs need to be as low as pos-
sible, which is reflected in MR1 and propagates into DR1 

and DR2. This is important because while a data standard for 
financial transaction data exists, different banks diverge from 
it (Major & Mangano, 2020), which was also confirmed dur-
ing our interviews (“Different data providers have different 
schemas and transaction languages.”—Interviewee 2); thus, 
a data ecosystem needs to be flexible enough to accommo-
date various input data structures (DR1). This is particularly 
important as data needs to be regularly updated and the cost 
for these updates should be as low as possible. Furthermore, 
data privacy standards imposed by regulators and internal 
policies must be upheld (“In terms of data sharing we do not 
engage in anything, because this is the pain with financial 
institutions, we are really protective of our data”—Inter-
viewee 8–1). Our interviews revealed that in the context of 
our partner institutions, this means that all real data must 
be processed locally within the financial institution (DR2). 
From a data-centric perspective, the performance of machine 
learning methods can be enhanced by increasing the vol-
ume of training data available (Sun et al., 2017). Thus, MR2 
can be achieved by enabling the combination of data from 
multiple sources through the data ecosystem and making it 
accessible as a unified data source (DR3). Given the goal of 
creating an ecosystem that is applicable to multiple tasks, the 
absence of a dominant algorithm in many fields (e.g., fraud 
detection), and the insight from our interviews that banks 
prefer to build and exclusively own their solutions (“One 
model will not be enough, it will be a collection of models 
which answer different questions …”—Interviewee 8–1), 
the data ecosystem must support diverse types of algorithms 
(DR4). Additionally, the imbalanced nature of fraud data 
necessitates tools on the ecosystem to address data imbal-
ances through filtering, oversampling, and undersampling 
(DR7), as most machine learning algorithms perform better 
on balanced datasets (Longadge & Dongre, 2013). As fraud 
patterns change quickly when discovered, the timely integra-
tion of recent fraud patterns into fraud detection algorithms 
is crucial (Benchaji et al., 2021; Zhu et al., 2021). As this is 
utterly important, two DRs were dedicated to achieving this. 
First, institutions should have the capability to automatically 

Table 2   Overview interviewees for solution requirements

*Interviewee from UnionBank of the Philippines

ID Job title Expertise Years of experience Length of interview

Interviewee 1 Chief data scientist Data science 10 years 00:51:10
Interviewee 2 Senior data scientist Data science 5 years 00:37:34
Interviewee 3 Data scientist Data science 5 years 00:36:30
Interviewee 4 Chief financial officer Fraud detection  > 20 years 00:38:36
Interviewee 5 Senior compliance officer Fraud detection  > 20 years 00:59:08
Interviewee 6 Junior compliance officer Fraud detection 4 years 00:44:27
Interviewee 7* Head of the AI center of excellence Data science  > 20 years 00:19:25
Interviewee 8* Head of data science ventures Data science 10 years 00:31:03

1  A detailed mapping from interview quotes to DRs can be found on: 
https://​github.​com/​Farum​an/​Synth​eticD​ataEc​osyst​ems/​blob/​master/​
Cycle1_​Initi​alDes​ignPr​incip​les/​README.​MD

https://github.com/Faruman/SyntheticDataEcosystems/blob/master/Cycle1_InitialDesignPrinciples/README.MD
https://github.com/Faruman/SyntheticDataEcosystems/blob/master/Cycle1_InitialDesignPrinciples/README.MD
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update the data (“fraud, money laundering patterns will 
change, behavior patterns will change and that's why you 
need to establish this relationship where there is a continu-
ous flow of information”—Interviewee 4), ensuring that the 
dataset incorporates the most recent fraud patterns (DR5). 
This not only aligns with MR1 by enhancing user conveni-
ence and reducing the need for frequent user inputs but also 
guards against model drift (Zhang, 2022). However, even 
with automatic updates, the dataset may still be dominated 
by outdated fraud patterns, posing a risk to the algorithms 
(Paleyes et al., 2023). Therefore, users should be able to 
incorporate pattern-based artificial data into the ecosystem 
(“…[the] machine has the benefit of learning the patterns 
you, as a human, identify as problematic. In the current 
world, such patterns are the key to everything because crimi-
nals will always evolve.”—Interviewee 6) (DR6). Allowing 
the data ecosystem to benefit from expert domain knowledge 
is not yet reflected in the data (Richhariya, 2012). After hav-
ing defined the problem as well as the solution space and 
outlined our requirements, we can now commence the first 
design, implementation, and evaluation cycle.

Cycle 1: DPs and system architecture 
for synthetic data sharing

During the initial phase of the DSRM project, founda-
tional DPs were established, integrating expert insights, 
relevant literature, and domain requirements, to develop a 
synthetic data ecosystem for financial institutions. Build-
ing on these insights an architecture for such an ecosystem 
was proposed.

Design of initial DPs

In our first design phase, our primary emphasis was on iden-
tifying the foundational DPs. Building on the DRs derived 
in the previous section and following the recommendations 
of Chandra et al. (2015), we created DPs that followed the 
structure “Provide the system with [material property—in 
terms of form and function] in order for users to [activity of 
user/group of users—in terms of action], given that [bound-
ary conditions—user group’s characteristics or implementa-
tion settings]” (Chandra et al., 2015, p. 4045). Furthermore, 
to ground these artifacts in practical relevance, expert inter-
views with our partners were conducted to justify the DPs 
derived from the literature. Figure 2 depicts the relationship 
between MRs, DRs, and DPs.

DP1—Provide the system with modular systems design 
in order to ensure independence of local data and cross-
institutional proliferation of synthetic data given that the 
raw data is sensitive: To address DR1 and DR3, the data 
ecosystem must possess the capability to process data from 
diverse sources while enabling the integration of this data 
for synthetic data generation. Drawing upon the principles 
of modular systems theory (Tiwana et al., 2010), institutions 
are granted flexibility in designing their module structures 
while adhering to a standardized representation, thereby 
ensuring that the data can be exchanged with the ecosystem. 
Additionally, once the initial setup is complete, automated 
data updating becomes straightforward, as all computations 
can be performed locally, without the need for sensitive data 
to be transmitted outside the local system. This capability 
fulfills the requirements outlined in DR5.

DP2—Provide the system with the ability to generate 
synthetic transaction data using generative adversarial 

Fig. 2   Relationship between MRs, DRs, and DPs using the final set of DPs
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networks (GANs) in order to remove private data, given 
guidelines, or regulations on data sharing: Most models 
created in financial institutions, such as fraud detection 
algorithms, need to be trained on transaction-level data as 
its granularity and connectedness over time allows for com-
plex patterns to emerge (Hilal et al., 2022) This combined 
with DR4, which requires users to train different types of 
algorithms and mandates a data ecosystem to provide the 
user with access to such low-level data. However, sharing 
transaction-level data poses challenges due to regulatory 
constraints (Blake et al., 2019) and internal policies man-
dating its local storage (DR2). As anonymization is not 
able to preserve both data utility and privacy for heavily 
interconnected data (Loukides et al., 2010), we propose to 
solve this challenge by using GANs, due to their unique 
ability to learn patterns in data and generate synthetic data 
nearly indistinguishable from the original (Walia et al., 
2020). This enables us to preserve real data locally while 
sharing only the privacy-preserving GAN-generated data 
within the data ecosystem. This data can then be merged 
with synthetic data from other institutions and allows the 
training of machine learning models on the combined data-
set. Therefore, ensuring the confidentiality of sensitive data 
while empowering the ecosystem to enhance fraud detec-
tion capabilities by training algorithms with substantial 
volumes of high-quality data.

DP3—Provide the system with a back-testing mecha-
nism in order to ensure newly generated synthetic data 
matches in composition and fraud detection training 
performance with real data given that data quality can-
not be independently verified: To facilitate the seamless 
integration of data from multiple institutions (DR3) and 
enable frequent system updates without human interven-
tion (DR5), it is essential to establish a robust quality 
control mechanism. This mechanism serves to uphold the 
integrity of the data introduced into the ecosystem, as 
only a few bad data points can have tremendous effects 
on machine learning models (Chakravarty et al., 2020). 
One approach to achieve this is by implementing a back-
testing procedure, which ensures that the synthetic data 
accurately captures the underlying patterns of the local 
real data (Dankar et al., 2022).

DP4—Provide the ability to alter synthetic data to give 
it the optimal composition for the training of machine 
learning models given that data in fraud detection is 
highly skewed: To further enhance model performance, 
a data-sharing ecosystem should be designed to provide 
users with the ability to alter and extend the existing data 
to create the right data for their use case. In financial 
services use cases, such as money laundering or fraud 
detection, the balance between the classes often is a chal-
lenge (Al-Hashedi & Magalingam, 2021), resulting in the 

requirement, that a data ecosystem should be able to pro-
vide more balanced datasets (DR7). This can be accom-
plished by equipping users with advanced filtering options 
or enabling them to manipulate the existing data through 
techniques such as under- or oversampling (Lopez-Rojas 
& Axelsson, 2012).

Demonstration of DPs by instantiation in a system 
architecture

Based on the DRs and DPs, we present a multi-layered plat-
form architecture for a synthetic data ecosystem. While the 
local processing layer is implemented at every institution, 
the synthetic data generation as well as the fraud detec-
tion layer are centralized. An overview of this architecture 
mapped with corresponding DPs can be seen in Fig. 3.

Local processing layer  The local processing layer is modu-
lar and situated at every financial institution (DP1). Here, 
the GAN models are trained on sensitive transaction data 
to produce accurate synthetic representations of this data 
(DP3). Furthermore, the conversion to the data standard 
the synthetic data needs to conform to is enforced. Moreo-
ver, back-testing is done to ensure data quality while guar-
anteeing that the real data never leaves the local environ-
ment (DP2).

Global data layer  Contrary to the previous layer, the syn-
thetic data layer is not situated at a specific institution. 
Instead, this layer is where synthetic data is merged and 
modifications to the data composition through the addition 
of pattern-based data generators or the artificial rebalancing 
of different classes can be achieved (DP4).

Fraud detection layer  This layer is accessible to any partici-
pating company allowing them to access the synthetically 
generated data and modify it to fit their models by providing 
capabilities to subsegment and alter data, making it optimal 
for their custom fraud detection models.

Evaluation of derived DPs and system architecture

After deriving the system architecture from our DPs, we 
presented both to two experts from our partner institution 
as well as 2 academics (for details, see Table 3).

The feedback gathered from the experts was overall 
positive and especially the use of modular system design 
(DP1) to ensure reduced complexity of the eco-system and 
complete control of the local layer by the single institutions 
was highly appreciated. Furthermore, DP4 was approved 
by experts stating that “balancing data is a major concern 
when training ML models and a system providing smart 
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support for that could be particularly helpful” (Interviewee 
10). Lastly, the proposed architecture was seen as a good 
first outline to create a prototype; however, the computa-
tional resources required to train the synthetic data genera-
tion models for frequent updates were raised as a concern. 
When discussing the proposed DPs as well as architecture 
with academic experts from the field of design science 
research, data sharing, and fraud detection, DP2 was criti-
cized for multiple reasons. First, the limitation to a single 
technology for data generation (GANs) was seen as being 
too restrictive and limiting the system’s adaptability to dif-
ferent domains (“Why do you limit yourself to a single data 
generation algorithm?”—Interviewee 10). Furthermore, 
concerns emerged about the feasibility of generating finan-
cial transaction data from limited local data and the utility 
of synthetic data to benefit fraud detection performance (“I 
doubt that abstracted data from other institutions with dif-
ferent data distributions can improve fraud detection per-
formance.”—Interviewee 9).

Cycle 2: Synthetic financial transaction data 
generation and privacy

In the second cycle of the DSRM project, different methods 
for synthetic data generation were evaluated, thus tackling 
one of the limitations identified by expert feedback. This 
is done by testing the insights from a systematic literature 
review on synthetic data generation on a real-world financial 
fraud detection dataset, leading to the refinement of DP2.

Design of synthetic data generation

Addressing the expert feedback, the second design cycle 
focuses on the refinement and extension of DP2. Based on 
the comments, it was adjusted to DP2—Provide the sys-
tem with the ability to identify, validate, and apply context-
specific synthetic data generation techniques with mutually 
agreed on over-sampling in order to remove private data, 
given guidelines or regulations on data sharing so that it is 

Fig. 3   System architecture (ver-
sion 1)

Table 3   Interviewees for validation of DPs and platform architecture

*Interviewee from UnionBank of the Philippines

ID Job title Expertise Years of experience Length of interview

Interviewee 7* Head of the AI center of excellence Data science  > 20 years 00:23:16
Interviewee 8* Head of data science ventures Data science 10 years 00:20:27
Interviewee 9 Research assistant Statistical modeling 5 years 00:31:26
Interviewee 10 Research assistant Design science research 5 years 00:22:01
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no longer restricted to a single method for generating syn-
thetic data and includes the necessary validation of selected 
techniques to obtain optimal data generation performance.

To validate DP2 and identify suitable methods to gener-
ate synthetic financial transaction data, a literature review 
following vom Brocke et al. (2009) was conducted. In the 
first step, top publications regarding synthetic data genera-
tion were reviewed, resulting in our search string which was 
then used to identify journal articles and conference papers 
written in English and published after 2020 in the following 
databases: ScienceDirect, EBSCOhost, SpringerLink, IEEE 
Xplore, and AISeL. The results can be seen in Table 4.

From these papers, 46 distinct algorithms were extracted 
and grouped by their underlying algorithm type. Conse-
quently, GANs emerge as the primary underlying mecha-
nism (used by 55.3% of algorithms) for generating syn-
thetic transaction data. GAN models work by creating two 
neural networks that learn by competing in synthesizing 
and identifying synthetic data and thus, once trained, can 
generate synthetic data that is indistinguishable from real 
one (Goodfellow et al., 2014). However, different imple-
mentations exist. To allow for variations between the algo-
rithms tested and address the high degree of similarity 
between the different GAN architectures, we decided to 
only include two of them in our comparison: CTGAN (L. 
Xu et al., 2019), which was the most mentioned algorithm 
and is a representative of GANs taking only dependen-
cies between attributes, but not samples, into account and 
TimeGAN (Yoon et al., 2019) (ranked third by mentions) 
which incorporates the temporal dimension between sam-
ples. To tackle the criticism from cycle one, we extended 
our overview beyond GAN-based architectures. The most 
frequently mentioned implementations using other algo-
rithm types were Gaussian mixture models, which learn the 
distribution for each attribute and then generate new sam-
ples by drawing from these (S. Xu et al., 2021) and TVAE 
(Ishfaq et al., 2023), a variational autoencoder (VAE), 
which works by learning to compress and decompress data 
into a low-dimensional space and then use the decompress 

module in combination with random noise to synthesize 
new data. The literature predominantly focuses on applying 
these algorithms to health records (Xing et al., 2022), with 
limited exploration in other domains such as traffic data (S. 
Xu et al., 2021) and IoT data (Liu et al., 2019); however, 
none of the papers identified has examined the application 
of these methods for the cross-institutional proliferation of 
financial transaction data. Furthermore, while Weldon et al. 
(2021) found that using only synthetic data can achieve 
performance gains, others, such as Frid-Adar et al. (2018), 
show that mixing synthetic and real-world data is more 
beneficial. Thus, the optimal algorithm for generating 
financial transactions in the context of synthetic data shar-
ing as well as the necessity of combining synthetic with 
real data remains unclear. Lastly, by employing algorithms 
that do not provide privacy guarantees by themselves, it 
remains unclear how safe it is to share the generated data. 
To tackle these two privacy measures frequently used in 
the literature, nearest neighbor adversarial accuracy and 
membership inference risk precision were used to ensure 
the evaluated algorithms do not leak information (Yan 
et al., 2022). While nearest neighbor adversarial accuracy 
measures if a classifier is able to distinguish between real 
(holdout set) and synthetic data and thus is a good indi-
cator for privacy leakage through overfitting (Yale et al., 
2020), membership inference risk precision measures how 
easy it is for an attacker to predict if a record is part of 
the train dataset or not based on the synthetic data (Choi 
et al., 2018). As no thresholds for these measures for finan-
cial transaction data exist, the ones for medical data were 
employed, which can be seen below (Table 5).

Demonstration of synthetic financial data 
generation

In this section, we operationalized the derived DPs into 
a prototype system in Python using a modified version of 
the synthetic data vault library (Patki et al., 2016). Look-
ing at the system architecture from design cycle one, the 

Table 4   Results of systematic literature search

Search string Hits Selected Fwd and Bwd search Total

(“synthetic data generation” OR “artificial data generation”) AND (“transaction data” OR “time 
series data”)

289 47 8 55

Table 5   Thresholds for privacy 
measures in medical synthetic 
data generation literature

Measure Threshold Literature

Nearest neighbor adversarial accuracy 0.030 Yale et al. (2020)
Membership inference risk precision close to 0.5 Zhang et al., (2019, Appendix D)

Choi et al., (2018, Appendix F)
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local and global data layers were implemented, resulting 
in an ecosystem that allows data ingestion, synthetic data 
generation, and data sharing. Furthermore, the ecosystem 
was created in a way that allows to switch between differ-
ent synthetic data generation methods, thus enabling the 
evaluation of different algorithms for financial transaction 
data generation.2

Evaluation of synthetic financial data generation 
algorithms

This evaluation compares the different synthetic data gener-
ation approaches outlined before. As a real-world source for 
performance comparison, the credit card transaction data-
set from the IEEE-CIS Kaggle competition3 was chosen. 
This dataset was selected because credit card transactions, 
reflecting user spending patterns, are closely comparable to 
bank transactions. Furthermore, it was the only real dataset 
identified, which allowed matching transactions to users, 
allowing for models expecting time series data to be trained. 
However, limitations exist, such as the limited observation 
period (6 months), many obscured features as well as the 
inability to identify senders of payments but only receivers. 
As we aim to analyze the benefits of sharing synthetic data 
across financial institutions, we split the dataset by credit 
card provider, creating four distinct subsets. An analysis 
across subsets showed significant differences, aligning with 
anticipated variations in multi-institutional bank datasets. 
After obtaining a suitable dataset, we defined our evalu-
ation process. For this, first, a Bayesian parameter search 
was used to tune the hyperparameters of the different syn-
thetic data generation models using a subsample of 100,000 
data points for each institution.4 After selecting the best 
hyperparameter combination for each generation model, an 
XGBoost classifier (commonly used in fraud detection as 
per Interview with Interviewee 5 as well as Al-Hashedi and 
Magalingam (2021)) was trained on either real data, syn-
thetic data, or combination of both (hyperparameter where 
tuned using threefold cross-validation). The results of this 
process were assessed using the ROC AUC score on a hold-
out dataset (30% of the total data). The ROC AUC score 
was chosen as it provides a comprehensive evaluation of the 
classifier’s performance across different levels of sensitivity 
and specificity and is frequently used in the literature (Sun 
et al., 2023). Furthermore, the evaluation was conducted in 

two stages. The first one covered the performance of indi-
vidual synthetic data generation algorithms, thus helping us 
to validate DP2, while the second one looked at the overall 
benefit of the proposed synthetic data ecosystem. In the first 
stage, the focus was on evaluating the performance of dif-
ferent generation algorithms (Fig. 4), revealing that GMMs 
(ROC AUC score 0.52) and TimeGANs (ROC AUC score 
0.5) underperformed expectations. This can be explained by 
the composition of the data. While GMMs struggled with 
the high dimensionality of the data (148 features), TimeG-
ANs had problems with short transaction chains (below 2 
transactions per user) due to the short observation period. 
While CTGAN (ROC AUC score 0.59) performed a little 
better, TVAE (ROC AUC score 0.89) excelled, particularly 
thriving in scenarios with limited training data, notably in 
datasets for “Discover” and “American Express,” which 
had fewer than 10,000 transactions. Thus, confirming that 
the selection of the right algorithm is crucial and therefore 
validating DP2.

Next, we analyzed the privacy implications of the pro-
posed algorithms, ensuring that the tested algorithms meet 
the previously defined privacy objectives and thus can be 
used in our proposed synthetic data ecosystem. As can be 
seen in Table 6, apart from TIMEGAN, all of the proposed 
algorithms stay within our previously defined privacy thresh-
olds, leading us to the conclusion that, for the proposed 
dataset, GMM, CTGAN, and TVAE are able to sufficiently 
obscure the data and can thus be used in our ecosystem.

The second-stage evaluation assessed the advantage of 
training on shared synthetic data versus isolated real data. 
Figure 5 compares the performance of models trained on 
isolated real data, isolated synthetic data, shared synthetic 
data, and shared synthetic data combined with isolated 
real data. Models trained solely on synthetic data from one 

Fig. 4   Comparison between different synthetic data generation algo-
rithms

2  The full implementation of Cycle 2 can be found on https://​github.​
com/​Farum​an/​Synth​eticD​ataEc​osyst​ems/​blob/​master/​Cycle2_​Algor​
ithmC​ompar​ison/​README.​MD
3  https://​www.​kaggle.​com/c/​ieee-​fraud-​detec​tion
4  A detailed description of the hyperparameter tuning procedure can be 
found here:https://​github.​com/​Farum​an/​Synth​eticD​ataEc​osyst​ems/​blob/​
master/​Cycle2_​Algor​ithmC​ompar​ison/​02_​param​Search/​README.​MD

https://github.com/Faruman/SyntheticDataEcosystems/blob/master/Cycle2_AlgorithmComparison/README.MD
https://github.com/Faruman/SyntheticDataEcosystems/blob/master/Cycle2_AlgorithmComparison/README.MD
https://github.com/Faruman/SyntheticDataEcosystems/blob/master/Cycle2_AlgorithmComparison/README.MD
https://www.kaggle.com/c/ieee-fraud-detection
https://github.com/Faruman/SyntheticDataEcosystems/blob/master/Cycle2_AlgorithmComparison/02_paramSearch/README.MD
https://github.com/Faruman/SyntheticDataEcosystems/blob/master/Cycle2_AlgorithmComparison/02_paramSearch/README.MD
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source underperformed compared to those trained on real 
data. Yet, combining synthetic data from multiple sources 
led to a further performance drop, likely due to varying 
fraud cases across providers, which dilutes relevant pat-
terns. However, merging synthetic with real data for each 
institution boosted performance, increasing the ROC AUC 
score by 1%.

To better understand the impact of this improvement, we 
can look at the recall or what percentage of fraudulent cases 
are identified. Using synthetic and real data combined, we 
find that 2.14% more true positives are detected. Combining 
this with an estimated number of 24.16 million fraudulent 
card transactions per year only in the EU (European Cen-
tral Bank, 2021), the improved model would have detected 
about half a million additional transactions. Thus, showing 
the benefit of our ecosystem. However, this fusion of shared 
synthetic data with local real data is not yet reflected in any 
DP; however, the evaluation showed it to be a critical princi-
ple of our proposed design. Thus, a new DP: DP5—Provide 
the capability to combine synthetic data to find an optimal 
composition for the training of machine learning models 
given scenarios with data from multiple institutions was cre-
ated, incorporating this important design criterion. Based on 
this the proposed system architecture was revised, which can 
be seen below (Fig. 6).

Moreover, the outcomes of this design cycle were pre-
sented to additional experts in the field and two primary 

critiques emerged: the constraint that the design was only 
validated in a singular context on a single dataset, which 
poses questions about its generalizability, and the inher-
ent challenges in establishing such an ecosystem, particu-
larly concerning the incentivization mechanisms required 
to encourage active participation among the financial 
institutions.

Cycle 3: Local synthetic data recombination 
and usage

In the third cycle, we expanded the scope of our data ecosys-
tem design to address a broader range of applications beyond 
fraud detection, aiming to validate the DPs’ versatility and 
robustness in two contexts. Furthermore, the design ele-
ments of the local data level were investigated in more detail, 
resulting in the refinement and validation of DP5 and DP2.

Design of mechanisms at the local data level

Building on the expert feedback, in this iteration of our 
research, we broaden the scope of our data ecosystem design 
to encompass a wider range of applications, aiming to demon-
strate the versatility and robustness of our DPs in various con-
texts. Furthermore, this iteration focuses on investigating the 
design elements on the local data level, thus providing design 
knowledge for the individual institutions within the ecosystem. 
On the one hand, we focus on the validation and refinement of 
DP5—Provide the capability to combine synthetic data to find 
an optimal composition for the training of machine learning 
models given scenarios with data from multiple institutions 
by exploring the effect of the mixing percentage between syn-
thetic and real data. On the other hand, we investigate DP2—
Provide the system with the ability to identify, validate, and 
apply context-specific synthetic data generation techniques 
with mutually agreed on over-sampling in order to remove 
private data, given guidelines or regulations on data sharing 
in more detail by developing design recommendations on how 
to train the synthetic data generation models.

To extend our investigation to new domains, we consulted the 
literature and solicited input from our partner institutions, iden-
tifying money laundering detection as a significant use case that 
heavily relies on machine learning (Z. Chen et al., 2018) and often 
lacks sufficient training data (Jensen et al., 2023). Subsequently, 

Table 6   Privacy measures per 
algorithm

Measure GMM CTGAN TVAE TIMEGAN

Nearest neighbor adver-
sarial accuracy

0.000554 0.00189 0.001499 0.000241

Membership inference 
risk precision

0.485238 0.489603 0.469872 0.130435

Fig. 5   Comparison between synthetic and real data combinations
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an examination of the literature regarding the enhancement of 
machine learning performance through the incorporation of syn-
thetic data was conducted, aiming to determine an optimal ratio of 
real to synthetic data (mix-in percentage). While some researchers 
only oversample the minority class using synthetic data (Charitou 
et al., 2021; Strelcenia & Prakoonwit, 2023), others train models 
exclusively on synthetic data (Sattarov et al., 2023) or combine 
real with synthetic data (Dahmen & Cook, 2019). Thus, it remains 
unclear if there is an optimal mix-in percentage that individual 
institutions should incorporate into their design.

To find the optimal way to generate synthetic data for our 
ecosystem, this section investigates data generation configu-
rations that utilize the entire dataset as well as those trained 
on distinct data subsets and further analyzes the benefit of 
different pre-processing steps during the synthesizing pro-
cess. Due to the challenge of dataset imbalance, models 
tend to be biased towards the majority class, decreasing the 
quality of data in the minority class; mitigating this issue, 
oversampling can be applied during the generation process 
to enhance generator robustness, albeit at the risk of distort-
ing dataset composition (too many positive samples) (Kiran 
& Kumar, 2024). Second, the construction of distinct syn-
thetic data generators for each class has been proposed as 
an alternative solution. Enabling the generator to better cap-
ture the characteristics of each individual class. However, 
this results in the problem that the minority class generator 
is only trained with a small dataset, which might harm its 
generalizability (Eilertsen et al., 2021). To remedy this, Fan 
et al. (2022) have suggested a novel methodology where the 
generator for the minority class is pre-trained using samples 
from the majority class, thus circumventing the problem.

Demonstration through implementation 
of different training and data‑fusing schemes

In this section, we operationalized the derived DPs into a 
prototype system in Python using a modified version of the 

synthetic data vault library (Patki et al., 2016). Building upon 
the architecture from design cycle two, the local layer was 
modified to accommodate for different generation schemes 
with and without oversampling as well as pre-training on 
the local level. Furthermore, the training scheme of the pre-
diction model was modified so that the system was able to 
accommodate training with different mix-in percentages.5

Evaluation of different training and data‑fusing 
schemes

One challenge in evaluating the broader feasibility of our 
synthetic data sharing ecosystem is the lack of publicly 
available financial transaction data (Jensen et al., 2023). 
However, multiple researchers have shown that simulated 
financial transactions can be suitable for validating new 
models or even evaluating interventions (Langevin et al., 
2022; Sattarov et al., 2023). Therefore, in this as well as 
the next cycle, we will use two datasets, one for anti-money 
laundering (IBM-AML6) and one for fraudulent transac-
tions (IBM-CCF7), which were generated by using a multi-
agent-based approach, simulating actors that act according 
to predefined rules, thus creating a stream of transactions 
(E. Altman et al., 2024; E. R. Altman, 2019). The resulting 
datasets have the advantage of being magnitudes larger in 
size (IBM-AML: 31898238/ IBM-CCF: 24386900) than the 
data used in the previous cycle (IEEE-CIS: 1097231) and 
have a network structure more similar to the one in real data. 
However, due to its simulation-based nature, it might not 

Fig. 6   Updated system architec-
ture (version 2)

5  The full implementation of Cycle 3 can be found here: https://​
github.​com/​Farum​an/​Synth​eticD​ataEc​osyst​ems/​blob/​master/​Cycle3-​
4_​Ecosy​stemE​valua​tion/​README.​MD
6  https://​www.​kaggle.​com/​datas​ets/​ealtm​an2019/​ibm-​trans​actio​ns-​
for-​anti-​money-​laund​ering-​aml
7  https://​www.​kaggle.​com/​datas​ets/​ealtm​an2019/​credit-​card-​trans​
actio​ns

https://github.com/Faruman/SyntheticDataEcosystems/blob/master/Cycle3-4_EcosystemEvaluation/README.MD
https://github.com/Faruman/SyntheticDataEcosystems/blob/master/Cycle3-4_EcosystemEvaluation/README.MD
https://github.com/Faruman/SyntheticDataEcosystems/blob/master/Cycle3-4_EcosystemEvaluation/README.MD
https://www.kaggle.com/datasets/ealtman2019/ibm-transactions-for-anti-money-laundering-aml
https://www.kaggle.com/datasets/ealtman2019/ibm-transactions-for-anti-money-laundering-aml
https://www.kaggle.com/datasets/ealtman2019/credit-card-transactions
https://www.kaggle.com/datasets/ealtman2019/credit-card-transactions
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inhibit all characteristics found in real data. As the selected 
datasets do not include a financial institution (IBM-CFF) 
or the number of financial institutions present in the data 
is too big (IBM-AML, 122333 different banks), the data 
was artificially grouped. This was done by segmenting the 
data based on the location of the individual (IBM-CCF)/
bank (IBM-AML) connected to a transaction, creating clus-
ters that simulate the transactional networks of hypotheti-
cal financial institutions. As a result, the IBM-CCF dataset 
included four financial institutions with a relatively even 
data distribution, while the IBM-AML dataset emerged with 
seven banks of which two banks held over 75% of the data. 
This contrast in dataset composition affords a unique chance 
to explore the synthetic data sharing ecosystem’s functional-
ity under a broad array of conditions. Moreover, an analysis 
of client distribution post-split for each provider highlighted 
significant disparities, aligning with the anticipated diversity 
suspected within multi-institutional datasets. Details on the 
specific distributions are outlined in Table 7.

To limit the variables of this investigation, the synthetic data 
generation model and the fraud prediction model were kept 
constant. For the synthetic data generation model, the previ-
ously superior TVAE-based generator8 with hyper parameters 
tuned to the individual institution was used. Similar to Cycle 
2, a XGBoost classifier with hyperparameter selection using 
threefold-cross validation was chosen as the prediction model 
and the performance comparisons were done using the ROC 
AUC score on a holdout dataset (30% of the data).

Before, investigating the approaches modifying the local 
layer, the transferability of synthetic transaction data sharing 
beyond transaction fraud detection was evaluated (Fig. 7). To 
do this, we compared the average ROC AUC score between 
the dataset constructed for financial fraud detection (IBM-
CFF) and the one constructed for anti-money laundering 
detection (IBM-AML).

Figure 7 demonstrates that across both datasets, models 
trained with synthetic shared data surpassed those trained 
without it, enhancing the ROC AUC score by 3.6% in the 
transaction fraud dataset (IBM-CCF) and 6.6% in the anti-
money laundering dataset (IBM-AML). This effect can be 
considered substantial within this context as even recently 
introduced fraud detection algorithms often only increase the 
ROC-AUC score by a few percentage points (Hashemi et al., 
2023; Lebichot et al., 2021). This performance gain suggests 
that the data ecosystem’s effectiveness extends beyond merely 
detecting financial fraud but is also suitable for other use cases 
utilizing financial transaction data such as money laundering 
detection. Thus, confirming the versatility and potential of 

the synthetic data ecosystem in addressing a broad range of 
data challenges in financial services. Subsequently, we explore 
whether a specific mix-in percentage of real and synthetic data 
yields optimal results for machine learning performance. To 
accomplish this, we systematically assess the impact on model 
performance by varying the proportion of real and synthetic 
data used in training the models, exploring a spectrum from 
0% (no synthetic data) to 300% (3 times as much synthetic as 
real data). Figure 8 visualizes this experiment.

Observing the modest upward trajectory of the aggre-
gated performance line (black), we can conclude that there 
is a positive effect of adding synthetic data. However, in con-
trast to the more volatile performance trends of individual 
banks (grey), it appears there is not a universally optimal 
mix-in percentage. Instead, distinct peaks in performance 
suggest that the most effective mix-in ratios vary by bank. 
Consequently, we infer that allowing banks to adjust the 
mix-in percentage independently is most beneficial. This 
insight has been integrated into DP5, which mandates that 
banks have the autonomy to determine their mix-in ratios, 
leading to the updated principle: DP5—Provides the capa-
bility to combine synthetic data to find optimal composition 
for the training of machine learning models given scenarios 
with data from multiple institutions.

Finally, we explored various configurations and preproc-
essing methods for synthetic data generation to offer optimal 
guidance for setting up these processes at the local level. 
Essentially, there are two primary setups. The first, referred 
to as “full,” involves training the synthetic data generation 
model on the entire dataset. To mitigate the risk of the model 
predominantly generating samples from the majority class, 
versions that randomly oversample the minority class to a 
specified percentage of the data (“_OS{X}”) while training 
the synthetic data generator have been implemented. The 
second setup, “sep” entails training distinct generation mod-
els for each class. An extension of this approach, “sepPre” 
utilizes separate generators for each class but pre-trains the 
minority class generator with majority class data. The out-
comes of these varied approaches are detailed in Table 8.

The analysis of the data presented in Table 8 yields sev-
eral key findings. Initially, the “full” model demonstrates its 
ability to surpass the baseline performance, yet models built 
on the same training scheme but utilizing oversampled data 

Table 7   Distribution of data across the different banks

IBM-CCF IBM-AML

Bank Pct of data Bank Pct of data Bank Pct of data

0 21.54% 0 5.93% 4 29.94%
1 18.58% 1 11.90% 5 45.35%
2 39.16% 2 2.87% 6 2.12%
3 20.72% 3 1.90%

8  A detailed description of the hyperparameter tuning procedure can 
be found here: https://​github.​com/​Farum​an/​Synth​eticD​ataEc​osyst​
ems/​blob/​master/​Cycle3-​4_​Ecosy​stemE​valua​tion/​02_​param​Search/​
README.​MD

https://github.com/Faruman/SyntheticDataEcosystems/blob/master/Cycle3-4_EcosystemEvaluation/02_paramSearch/README.MD
https://github.com/Faruman/SyntheticDataEcosystems/blob/master/Cycle3-4_EcosystemEvaluation/02_paramSearch/README.MD
https://github.com/Faruman/SyntheticDataEcosystems/blob/master/Cycle3-4_EcosystemEvaluation/02_paramSearch/README.MD
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exhibit a notable decline in performance. Thus, leading us to 
the conclusion, that for financial transaction data, oversam-
pling the data before training the synthetic data generation 
model is not suitable. Moreover, the “full” setup outperforms 
configurations where synthetic data generators are trained 
separately for each class (“sep”). This subpar performance 
stems from the “sep” model’s poor-quality synthetic data 
for the minority class, which fails to capture training data 
patterns due to limited training dataset size. However, when 

the minority class model is pre-trained using data from 
the majority class (“sepPre”), a significant performance 
improvement is observed, surpassing all other methods. 
This enhancement is primarily due to the model’s capacity 
to generate higher-quality samples of the minority class with 
greater variability. Further discussions with partner institu-
tion experts emphasized the advantage of creating class 
data separately as it enhances privacy by preventing leaks 
of sensitive information like fraud rates by independently 

Fig. 7   Comparison between 
models trained with and without 
synthetic data for both datasets

Fig. 8   Effect of synthetic data mix-in percentage on performance

Table 8   Comparison between 
different synthetic data 
generation models

Dataset Method ROC AUC score Dataset Method ROC AUC score

IBM-AML Without shared data 0.7168 IBM-CCF Without shared data 0.6817
Full 0.7371 Full 0.7042
fullOS_10 0.6435 fullOS_10 0.6618
fullOS_20 0.6199 fullOS_20 0.6360
sep 0.7209 sep 0.6817
sepPre 0.7473 sepPre 0.7323
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producing the samples for each class. Consequently, we have 
refined DP4 to encapsulate these insights: DP2—Provide the 
system with the ability to identify, validate, and apply con-
text-specific synthetic data generation techniques with mutu-
ally agreed on over-sampling in order to remove private data, 
given guidelines or regulations on data sharing.

Cycle 4: Network effects of financial data 
sharing

In cycle four of our DSRM project, we delve into the global 
data layer, guided by the literature and expert insights to 
address cooperative challenges within the proposed syn-
thetic financial data ecosystems. Aiming to refine our DPs 
to enhance the ecosystem’s capability to effectively manage 
these challenges.

Design of mechanisms at the global data level

Addressing the second aspect of expert feedback and 
informed by the literature on data ecosystems, this cycle 
focuses on the global data layer and its DPs to ensure that 
the created ecosystem is able to handle the challenges of 
data ecosystems described by Gelhaar and Otto (2020). 
Because cooperative challenges play a dominant role in 
the early stage of an ecosystem, the following cycle will 
focus on these (Autio & Thomas, 2014). In their paper, 
Gelhaar and Otto (2020) describe four major cooperative 
challenges that need to be addressed for a data ecosystem 
to emerge successfully. First, it is necessary to build trust 
between the participants. Second, it needs to be shown 
that all actors benefit from participating in the ecosys-
tem. Third, it is important to identify the right number of 
participants. Fourth, interoperability needs to be enabled 
through the agreement on standards. Thus, the focus of 
this section is to evaluate existing DPs through this lens 
and analyze whether refinements or additional principles 
are necessary for the development of an ecosystem capa-
ble of effectively addressing these challenges. First, trust 
between ecosystem partners can be built in multiple ways. 
On the one hand, trust can be increased by adequate con-
trol mechanisms (Geisler et al., 2021), which is already 
reflected in DP3—Provide the system with a back-testing 
mechanism in order to ensure newly generated synthetic 
data matches in composition and fraud detection training 
performance with real data given that data quality can-
not be independently verified which ensures sufficient data 
quality in the synthetic data ecosystem. On the other hand, 
Majava et al. (2016) show that intermediaries play a signifi-
cant role in increasing participants’ trust in an ecosystem. 
In the financial services ecosystem, this role is typically 

held by public regulators. To incentivize them to partici-
pate in the ecosystem and allow them to ensure data quality 
and thus increase trust, we propose DP6—Provide access 
for external collaborators, such as regulators, to leverage 
the synthetic data within the ecosystem given a diverse set 
of synthetic data available. This gives regulators access 
to the ecosystem while adhering to the existing privacy 
measures. However, it remains unclear if access to purely 
synthetic data can provide enough value and thus incentiv-
ize their participation in the ecosystem. The next challenge 
data ecosystems face is that all actors need to benefit from 
participating in the ecosystem. While we already demon-
strated in previous iterations that our data ecosystem is able 
to increase the overall performance, it remains unclear how 
this performance gain is distributed between institutions. 
To address this, further investigation is needed to check if 
adjustments to our design need to be made to create suffi-
cient incentives for all institutions. Connected to this prob-
lem is identifying the right number of participants. While 
our previous cycles show that the ecosystem is beneficial 
if all institutions participate, it remains unclear if a similar 
effect exists, if only part of the institutions is included in 
the ecosystem. To incorporate this into our DPs, DP3 was 
extended to not only describe the monitoring of outgoing 
synthetic data but also cover the evaluation of performance 
gained by using the shared synthetic data from the data 
ecosystem. This results in DP3—Provide the system with a 
back-testing mechanism in order to ensure newly generated 
synthetic data matches in composition and fraud detection 
training performance with real data given that data quality 
cannot be independently verified. The last cooperative chal-
lenge that needs to be overcome is interoperability through 
the agreement on standards. At the moment, that is already 
incorporated in DP1—Provide the system with modular 
systems design in order to ensure independence of local 
data and cross-institutional proliferation of synthetic data 
given that the raw data is sensitive, from a data perspective 
where the local layer of the ecosystem is used to align the 
data so that it can be easily shared with the system later. 
Furthermore, we argue that creating DPs for the financial 
data ecosystem contributes to the standardization of the 
ecosystem from an infrastructure and ecosystem perspec-
tive and thus by creating these DPs we contribute to over-
coming this challenge.

Demonstration through the introduction 
of non‑sharing entities and individual performance 
benchmarking

In this part, we further improved the prototype developed 
in Python, by altering the global data layer to allow for the 
participation of entities that do not contribute data. Addi-
tionally, we updated the system to track and report the 
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performance to each participating institution, thus allowing 
institutions on an individual level to see the performance 
gain from engaging in the data ecosystem.9

Evaluation of ecosystems with non‑sharing entities 
and individual performance benchmarking

Similar to the previous cycle, this evaluation again utilizes 
the two synthetic datasets (IBM-AML and IBM-CFF), due 
to their high data quality, size, and diversity. Moreover, the 
ecosystem setup and evaluation scheme are adopted from 
the previous cycle, utilizing the “sepPre” training scheme.

We start with evaluating DP6, which allows regulators 
to access purely synthetic data within the data ecosystem. 
To validate this DP, the synthetic data that is provided to 
the regulators need to be of sufficient quality for them to 
derive meaningful insights and effectively improve their 
models. However, as this cannot be easily evaluated, we 
use the performance of a prediction model trained on the 
data available to the regulator (only synthetic data) as 
a proxy for the quality of the data. As the architecture 
chosen in Cycle 3 generates separate models for different 
classes, more data of a specific class can easily be gener-
ated. This is especially relevant for cases where only syn-
thetic data is used as no additional positive samples from 
the real data exist. Thus, the experiment conducted had 
two steps. In the first step, regulator models were trained 
on synthetic data with different amounts of minority class 
samples (indicated by OS_{percentage of minority class 
cases}). From this selection, the over-sampling ratio with 
the best performance was chosen and compared to the 
performance of the models trained at the different banks, 
once trained on a combination of real and synthetic data, 

and once trained with only real data. The results of this 
experiment can be seen in the following diagram (Fig. 9).

The regulator model, trained exclusively on synthetic 
data, exhibits performance that, while not matching that 
of the bank’s internal models (trained on a mix of real and 
synthetic data), remains significant. The model approaches 
the performance of the bank’s baseline models (trained 
on real data only), as illustrated in Fig. 9. This capability 
offers considerable advantages to collaborators who would 
otherwise lack access to such data. Consequently, allowing 
regulators to access synthetic data emerges as an effective 
strategy to foster collaboration and enhance trust in the 
ecosystem. Therefore, DP6—Provide access for external 
collaborators, such as regulators, to leverage the synthetic 
data within the ecosystem given a diverse set of synthetic 
data available is validated and was added to our DPs for 
synthetic data ecosystems.

Subsequently, the adjustment to DP3 is validated, 
checking if all banks profit from the synthetic data eco-
system and evaluating if the synthetic ecosystem includ-
ing fewer institutions is still able to profit from the net-
work effects of the ecosystem. To investigate this, we plot 
the performance of each institution against its baseline 
(score without any artificial data), which can be seen 
below (Fig. 10).

As evidenced in Fig. 10 for each single bank in both 
datasets, the performance increases by combining real and 
synthetic data. Furthermore, looking at the rightmost panel 
of Fig. 10, it can clearly be seen that there is a negative cor-
relation (− 0.09) between the performance gained by par-
ticipating in the ecosystem and the size of the bank. Thus, 
showing that small banks over proportionally profit from 
participation, providing a clear incentive for them to engage 
in the ecosystem. However, even if absolute performance 
gained by bigger banks is lower, we argue that they still 
have a sufficient incentive to participate due to their large 
volume of transactions, where even small changes in the 

Fig. 9   Regulator models using different resampled data and performance of the regulator model (only synthetic data) vs. the bank models

9  The full implementation of Cycle 4 can be found here: https://​
github.​com/​Farum​an/​Synth​eticD​ataEc​osyst​ems/​blob/​master/​Cycle3-​
4_​Ecosy​stemE​valua​tion/​README.​MD

https://github.com/Faruman/SyntheticDataEcosystems/blob/master/Cycle3-4_EcosystemEvaluation/README.MD
https://github.com/Faruman/SyntheticDataEcosystems/blob/master/Cycle3-4_EcosystemEvaluation/README.MD
https://github.com/Faruman/SyntheticDataEcosystems/blob/master/Cycle3-4_EcosystemEvaluation/README.MD
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fraud detection percentage result in a high absolute sum 
of prevented losses. These results lead us to the conclu-
sion that all banks contributing to the ecosystem profit from 
their involvement and thus the designed ecosystem is able to 
overcome another one of the previously outlined challenges.

Next, we investigate our synthetic data ecosystem for 
cases where not all institutions engage in synthetic data 
sharing. To achieve this, we simulated environments, where 
none, 50%, 75%, or 100% of all banks were part of the eco-
system. The results can be seen in Fig. 11.

Despite the significant difference between the two data 
sets regarding their data distribution (with IBM-CCF having 
an equal distribution between banks, while IBM-AML has a 
highly skewed one), we can clearly see that in both cases, even 
with only half of the banks being part of the ecosystem (IBM-
CCF: 2 banks/IBM-AML: 3 banks), a significant performance 
gain is achieved. Thus, it seems the benefits of the synthetic 
data ecosystem can be realized from an early stage onwards, 
making it easy to overcome the hurdle of a minimum number 

of members needing to participate in the ecosystem, thus tack-
ling another of the challenges outlined previously.

Summarizing these results, we were able to demonstrate 
that the proposed data ecosystem is able to deliver excess 
performance for all participants in the network on an indi-
vidual level and it can be seen that even for data ecosys-
tems with only a fraction of the institutions participating in 
synthetic data sharing, still a significant performance gain 
can be achieved. Furthermore, there seem to be network 
effects to some extent where more partners in the ecosys-
tem increase its overall utility. As these results validate the 
incentives for partners to participate in an ecosystem, we 
confirm our DP3—Provide the system with a back-testing 
mechanism in order to ensure newly generated synthetic 
data matches in composition and fraud detection training 
performance with real data given that data quality cannot 
be independently verified.

Discussion

This research paper is aimed at extending the research on 
privacy in data ecosystems as well as machine learning of 
multi-organizational datasets by investigating these chal-
lenges in the field of financial fraud detection. This was done 
by deriving DPs for an innovative synthetic data-sharing 
ecosystem that allows financial institutions to exchange 
financial transaction data while protecting client privacy 
and learning effectively from this multi-institutional data. 
To create this artifact, we followed the process of DSRM 
(Peffers et al., 2007), with this paper covering four “design-
implement-evaluate” cycles. Starting with the problem iden-
tification our study contributes to descriptive knowledge 
concerning the problem space by identifying data scarcity 
in combination with the inability to share data due to pri-
vacy protection as a major hurdle for financial institutions, 
validating the existing research on cross-organizational 
fraud detection collaboration within financial services 
(Abdul Salam et al., 2024; Kong et al., 2024). During the 
exploration of the solution, space synthetic data sharing 

Fig. 10   Performance gain per individual bank and performance gain by institution size

Fig. 11   Performance (avg per bank) by percentage of participating 
institutions
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was identified as an underexplored solution to tackle data 
scarcity in financial fraud detection extending the literature 
on cross-organizational collaboration in the field (Chatter-
jee et al., 2024). Furthermore, the exploration of synthetic 
data to allow privacy-compliant data sharing as well as our 
experimentation on multi-organizational synthetic data dur-
ing multiple “design-implement-evaluate” cycles reaches 
beyond financial services and addresses significant chal-
lenges in the realm of data ecosystems (Brée et al., 2024). 
Moreover, our research extends beyond studies that simply 
outline the requirements of such a data ecosystem (Immonen 
et al., 2014). We validate these requirements and the derived 
DPs through rigorous experimentation on publicly available 
datasets and through close collaboration with industry part-
ners and experts, ensuring the practical applicability and 
robustness of our findings. Furthermore, by extending data 
ecosystem research into a less frequently explored domain 
(Cappiello et al., 2020), we are able to validate the applica-
bility of existing knowledge and uncover new insights with 
potential for generalization. We achieve this by developing 
prescriptive knowledge and nascent theory concerning the 
solution space, offering a set of DPs for designing a synthetic 
data sharing ecosystem and providing a first instantiation in 
the form of a platform architecture. To provide more detailed 
insights into this solution space, additional key findings are 
encapsulated in Table 9, clustered by key areas which we 
deductively derived a posteriori from our study.

As shown in Table 9 under the generation dimension, we 
contribute to the literature on synthetic data generation in 
multiple ways. First, we identified the necessity for a strictly 
separated local layer (where real data is transformed) and 
a global layer (where data is shared). Second, we transfer 
existing algorithms to a new setup including cross-organ-
izational data with a complex data structure and compare 
their performance on a prediction task (Pathare et al., 2023) 
identifying TVAE as the most performant algorithm for syn-
thetic financial data generation while still showing sufficient 
privacy. Third, we extend the research on the generation 
setup by consolidating different training schemes from mul-
tiple sources (Eilertsen et al., 2021; Fan et al., 2022; Kiran & 
Kumar, 2024) and comparing them to each other, identifying 
training on data sub-clusters as the most beneficial setup.

Moving forward to training models based on synthetic 
data, as shown in Table 9 under the prediction dimension, 
we extend the literature which often looks at synthetic data 
generation performance separately but provides little guid-
ance on how the generated data is best used in a data eco-
system (Dankar et al., 2022). Our research further shows 
that a mixture of synthetic and real data is most useful when 
combined; however, the exact mix-in percentage is highly 
organization and context-specific. Moreover, we demon-
strated that using purely synthetic data can still be beneficial 
for players with no access to real data; however, adjustments 

need to be made to the composition of the data by artificially 
rebalancing it.

As can be seen in Table 9’s ecosystem dimension, our 
research investigates the complexities of data ecosystems, 
analyzing how the incentives for participation affect per-
formance outcomes across various sizes of institutions. 
This analysis also places our findings in the context of the 
research by Gelhaar and Otto (2020) about the initial chal-
lenges encountered within data ecosystems. By implement-
ing design interventions that clearly articulate performance 
benefits and facilitate the integration of external collabora-
tors, our research substantiates the ecosystem’s capacity to 
overcome these early hurdles. Further, our empirical evi-
dence suggests that even partial participation in the data eco-
system can lead to substantial performance improvements, 
thereby affirming the ecosystem’s operational feasibility and 
enhancing its attractiveness to potential participants.

In the last dimension in Table 9, we demonstrate the 
generalizability of our derived design knowledge beyond 
a single use case and application area. This was done in 
two ways. First, through validation with experts from the 
field in academia and the private sector. Second, through 
performance evaluation in two financial services domains 
and three datasets which required data sharing with privacy 
restrictions. While performance gains might seem insignifi-
cant, small changes in fraud detection rate can have major 
implications on financial institutions (Levi, 1998). Thus, our 
research not only confirms the relevance of our DPs and sys-
tem architecture but also sets the stage for their application 
beyond the immediate context of financial transactions, sug-
gesting a blueprint for extending beyond financial services 
to other domains where data needs to be shared with privacy 
restrictions (Susha et al., 2019).

For practitioners, our contribution is two-fold: For man-
agers and decision-makers, we demonstrate the value of 
synthetic data-sharing ecosystems that allow both large 
and small institutions to securely collaborate on data while 
ensuring privacy. This approach is particularly relevant in 
industries with complex, highly sensitive data, such as finan-
cial services, where data ecosystems do not emerge organi-
cally and require careful planning allowing for shared value 
propositions and services (Adner, 2017; Immonen et al., 
2014). Furthermore, our framework addresses regulatory 
requirements on data privacy and our results suggest a 
robust foundation for scaling and sustaining privacy-focused 
data ecosystems. For system architects, we outline a set of 
DPs that guide practitioners in structuring the architecture 
of these ecosystems. These principles assist in selecting 
suitable synthetic data generation methods, implementing 
mechanisms for data quality assurance, and integrating data 
to enhance AI model performance. By focusing on these 
core areas, our contribution provides architects with action-
able guidance toward building secure and resilient synthetic 
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data-sharing ecosystems. This framework, therefore, serves 
as a blueprint for future system designers working within 
regulated environments where data privacy and AI perfor-
mance are essential.

Limitations and future research opportunities can be iden-
tified across our four key areas of insight. Regarding data 
generation, the current study was constrained by the avail-
able data, which prevented the consideration of advanced 
graph-based synthetic data generation methods such as 
TransGAN (X. Wang & Yang, 2024). Additionally, while 
privacy was tested, it was not fully guaranteed by the mod-
els used, highlighting the need for future research on the 
effectiveness of differentially private synthetic data genera-
tion methods such as PATEGAN (Jordon et al., 2018) in 
a synthetic data ecosystem. From a prediction standpoint, 
further investigation is required to determine how models 
can be aligned when data schemas—and thus the synthetic 
data—differ between institutions. Moreover, the design of 
an effective back-testing mechanism to ensure the ecosys-
tem’s predictive performance should be explored. On the 
ecosystem level, additional research is necessary to explore 
ecosystem usage incentives, building on the work by (Gel-
haar et al., 2021), which was beyond the scope of this paper. 
Finally, while this study was limited to financial services due 
to resource constraints, future research should explore the 
applicability of the defined DPs beyond this domain, testing 
their general applicability.

Conclusion

Based on the need for increased data availability to foster 
economic growth, this paper provides the design and evalu-
ation of a synthetic data-sharing ecosystem for financial 
institutions under privacy constraints. The main contribution 
lies in providing guidance on how to train models based on 
shared data. By formulating a set of DPs, practical insights, 
and prototype testing, iterative design cycles were used to 
provide a robust framework for constructing a data ecosys-
tem that leverages synthetic data. Each DP, from ensuring 
data quality and enhancing adaptability through transforma-
tion and resampling to fostering trust among ecosystem par-
ticipants and facilitating regulatory access to synthetic data, 
extends existing research on synthetic data sharing and gen-
eration, particularly in the context of financial transaction 
data. For practice, our example instantiation and codebase 
can be used as a reference architecture for future instantia-
tions. We not only address the identified need for an efficient, 
privacy-preserving financial data ecosystem but also set a 
foundation for future exploration in broader domains where 
data sharing under privacy restrictions is paramount. Thus, 
this contribution offers guidance for overcoming technical, 
trust-related, and regulatory challenges in data ecosystems, 

unlocking the potential for data-driven innovation and future 
economic development.
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