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Abstract
We present a new discrete time version of Kyle’s (Econometrica 53(6):1315–1335, 1985)
classic model of insider trading, formulated as a generalised extensive form game. Themodel
has three kinds of traders: an insider, random noise traders, and a market maker. The insider
aims to exploit her informational advantage and maximise expected profits while the market
maker observes the total order flow and sets prices accordingly. First, we show how themulti-
period model with finitely many pure strategies can be reduced to a (static) social system in
the sense of Debreu (Proc Natl Acad Sci 38(10):886–893, 1952) and prove the existence of
a sequential Kyle equilibrium, following Kreps and Wilson (Econometrica 50(4):863–894,
1982). This works for any probability distribution with finite support of the noise trader’s
demand and the true value, and for any finite information flow of the insider. In contrast to
Kyle (1985) with normal distributions, equilibria exist in general only in mixed strategies
and not in pure strategies. In the single-period model we establish bounds for the insider’s
strategy in equilibrium. Finally, we prove the existence of an equilibrium for the game with
a continuum of actions, by considering an approximating sequence of games with finitely
many actions. Because of the lack of compactness of the set of measurable price functions,
standard infinite-dimensional fixed point theorems are not applicable.

Keywords Information asymmetry · Kyle model · Extensive form game · Sequential
equilibrium · Komlós’ theorem

Mathematics Subject Classification 91A18 · 91A27 · 91A11 · 28A33

JEL Classification C73 · D53 · D82 · G14

1 Introduction

In this paper, we study the discrete time version of Kyle’s [23] classic model of a specialist
market with asymmetrically informed agents. We propose to model it as a generalised exten-
sive form game that is explained below. The Kyle model features three (kinds of) traders:
an informed trader, called the insider, random noise traders, and a market maker. While
the insider acts strategically in order to exploit her informational advantage about the true
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value of an asset, the uninformed noise trader submits orders stochastically independent. The
market maker cannot distinguish between informed and uninformed trades, and thus he sets
prices depending only on the total order flow, from which he learns conditional distributions
of the true value. In a Kyle equilibrium, the insider trades optimally given the price function
of the market maker, and given the insider’s strategy the market maker’s prices are rational
(in the case of risk-neutrality, they fulfill a zero-profit condition).

Kyle’s model has been a workhorse model for understanding the role of asymmetric
information in the formation of prices. For practitioners it can serve as a conceptual tool
to explain the incentives of market makers to provide different prices to different market
participants based on their level of informedness. This can be one reason why brokers offer
better terms to retail customers, a phenomenon widely discussed in connection with payment
for order flow (we refer to Çetin and Danilova [11] and for a recent empirical study see
Lynch [24]).

In his seminal paper, [23] proposes a discrete time model assuming normal distributions
and a risk-neutral insider and market maker. The continuous time model was first compre-
hensively studied in Back [2] under the distributional assumption that noise trades follow a
Brownian motion. The Kyle-Back model has been extended in various directions, and we
can only cite a selection here.

A general principle to establish equilibria follows the inconspicuous trade ansatz. The
resulting equilibrium insider strategy is inconspicuous in the sense that the accumulated total
demand process has the same law as the accumulated demand of the noise trader alone.
Furthermore, the true value, which is independent of the noise trader’s demand, has to be
a nondecreasing function of the accumulated total demand at maturity. The market maker’s
price function of the total demand and time is chosen such that any insider demand process
that leads to the terminal accumulated total demand described above is optimal. In Çetin and
Xing [15] the existence of an inconspicuous equilibrium is shown if noise trades follow a
Poisson process instead of Brownian motion. Further extensions include trading with default
risk in Campi and Çetin [9] and a random trading horizon in Çetin [10]. The case of dynamic
private information where the insider’s information evolves over time is considered in Back
and Pedersen [3] and Danilova [16]. For a thorough overview we refer to the monograph
Çetin and Danilova [13].

The inconspicuous trade ansatz does not work for risk-averse market makers. In the con-
tinuous time model, Çetin and Danilova [12] prove the existence of a non-inconspicuous
equilibrium that is derived from a fixed point (see the discussion below). In Back et al. [4]
there are several assets, and the distribution of the true value and the accumulated total
demand at maturity are coupled through an optimal transport map.

In the single-period model, under normality assumptions, [23] shows that there exists a
unique equilibrium in the class of affine-linear equilibria (if the insider’s demand in equilib-
rium is an affine function in the true value, then the price function is automatically affine in the
total demand). McLennan et al. [25] extend uniqueness to a broader class of equilibria. Çetin
and Larsen [14] study whether Kyle’s affine-linear equilibrium is stable for different trading
times. Rochet and Vila [29] study a related single-periodmodel where the insider can observe
the trade of the noise trader and show the existence of a unique equilibriumwhile relaxing the
assumption of normality. Kramkov and Xu [21] further relax distributional assumptions by
connecting the problem to the dual problem of a certain class of optimal martingale transport
problems.

In the present paper, we specify the discrete time Kyle model with a risk-neutral insider
and market maker as a generalised extensive form game. The approach is purely discrete
but has the advantage that the proof of existence of an equilibrium is not based on the
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normal distribution or on any other special probability distribution as in most of the previous
literature. Rather, our approach works for any probability distribution with finite support
of the noise trader’s demand and the true value, and for any finite information flow of the
insider. Such a flexible mathematical framework is particularly useful for realistic models
with a market participant possessing superior information that is not perfect and evolves over
time. It turns out that equilibria exist in general only in mixed strategies of the insider (see
Example 1). This is in contrast to the classic Kyle model with normal distributions, in which
equilibria exist in pure strategies. In addition, we can characterise the set of all equilibria (see
Remark 2), which enables a systematic study of Kyle equilibria.

The game tree, the so-called extensive form, gets to the heart of the decision theoretical
nature of the Kyle model: nodes in the tree signify the realised history of order and infor-
mation flows, based on which the insider makes a trading decision. Even though the market
maker “does not explicitly maximize any particular objective” [23], rational pricing can be
considered as an action of the market maker that is restricted by the assumed behaviour
strategy of the insider (we refer to Remark 1 for a detailed discussion). Our purely discrete
approach makes the assumptions of the Kyle model very explicit: The trades of the insider
and the noise trader occur truly simultaneously, and the insider is not able to observe the
current trade of the noise trader. After the orders are submitted the market maker sets the
price.

In continuous timemodels the chronological sequence is a bit less explicit. Inmostmodels,
accumulated trades of the noise trader are given by a Brownian motion or another diffusion,
and admissible insider strategies are of finite variation. In this constellation, trading volumes
are of different orders, and the chronological sequence of trades becomes irrelevant in the
continuous time limit. On the other hand, there are continuous time generalizations of classic
game trees, but with serious and in some cases even insoluble conceptual problems caused
by the lack of immediate successors of nodes. We refer to Alós-Ferrer and Ritzberger [1],
especially Subsection 5.7, for a detailed discussion. It is beyond the scope of the paper to
relate this to continuous time Kyle models. In continuous time timing games (in which each
player has only one move) Riedel and Steg [28] show the existence of a subgame-perfect
Nash equilibrium.

Our first main result (Theorem 2) shows the existence of a sequential Kyle equilibrium in
the sense ofKreps andWilson [22]. Since themarketmaker does not have perfect information,
a sequential equilibrium is based on his beliefs regarding the true value that generalise
conditional probabilities derived from Bayes’ rule. The concept of a sequential equilibrium
is a refinement of a subgame-perfect Nash equilibrium. Subgame-perfectness rules out non-
credible strategic plans that are not realised in equilibrium (cf. Subsection 2.3).

The proof of Theorem 2 relies on a fixed point theorem for a self-correspondence acting
on the insider’s dynamic strategies and the market maker’s pricing functions. This is concep-
tually different to the fixed point theorem in the continuous time model of [12] in which the
functional acts on the probability distributions of the accumulated total demand at maturity,
and the dynamic quantities are constructed from a fixed point distribution.

In Sect. 3, we establish basic properties of equilibria in single-period Kyle games. The
insider’s demand is nondecreasing in the true value, but there need not exist a nondecreasing
price function of the market maker (Example 3). Since the insider uses the noise trades
as camouflage to remain unobserved by the market maker, the following obvious question
arises: Are the insider’s demands in equilibrium uniformly bounded for a family of models
such that the (exogenous) noise trader’s demands lie in a fixed bounded interval? The answer
turns out to be positive if the probabilities of the insider’s demand at the boundaries of the
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interval are bounded away from zero (see Theorem 7 that also provides the range of insider’s
demands explicitly).

In Sect. 4, we prove the existence of an equilibrium in the continuous state game (The-
orem 8) by considering an approximating sequence of discrete state games. In view of
Example 3, admissible price functions only need to be measurable but not continuous in
the total demand. This leads to the problem that the set of price functions (equipped with
pointwise convergence almost everywhere) is not sequentially compact, and standard infinite-
dimensional fixed point theorems of Schauder-Tychonoff’s or Kakutani-Fan’s type (see, e.g.,
Theorem 10.1 and Theorem 13.1 in [26], respectively) cannot be applied directly to the
continuous game.

2 The Kyle model as extensive form game

We specify the discrete time, discrete state Kyle model as a generalised extensive form game.
Extensive form games have a reputation of being notationally burdensome, but possess great
interpretive power that is rooted in its tree structure. In general, we follow the notation of
González-díaz et al. [19, Chapter 3] in the spirit of Selten [30]. In line with the literature, we
label quantities related to the insider by X , related to the noise trader by Z , and related to the
market maker by Y .

2.1 Extensive form

Trading takes place over the course of T ∈ N trading rounds at times t = 1, 2, . . . , T . The
insider possesses private information about the true value of the asset, not known to the noise
trader or market maker. There are N ∈ N fundamental information states 1, . . . , N , and the
true value is a mapping

v : I → R, i �→ vi , where I := {1, 2, . . . , N },
such that v1 ≥ v2 ≥ . . . ≥ vN . The flow of information is specified exogenously by a
refining sequence of partitions of I :

It := {It,1, . . . , It,Nt } ⊆ 2I , t ∈ {1, 2, . . . , T }, Nt ∈ {1, 2, . . . , N }.
Refining means that for every element It,i ∈ It with t ≥ 2, there is It−1, j ∈ It−1, called a
predecessor, such that It−1, j ⊇ It,i . A subset It,i ⊆ I represents the information states in
I which are still attainable at time t . There can be multiple states i leading to the same true
value. This allows to model the change of conditional probabilities of the true value over time
in a flexible way. By contrast, for some injective function i �→ vi , the conditional probability
of a state can only increase or drop to zero over time. For notational convenience we define

IT+1 := {{1}, {2}, . . . , {N }}.
The full revealing of the true value is not a restriction of generality since at the future fictive
date T + 1, trading has already concluded. Even the extreme case that the insider has no
information at all until the end is not excluded: the sequence of partitions would be given by
I1 = I2 = . . . = IT = {I }.

Each round of trading can be broken down into two steps. Firstly, new information about
the true value of the asset is revealed to the insider. Secondly, both insider and noise trader
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Fig. 1 Diagram of the game tree from Definition 1. The dotted boxes denote the set of nodes where the insider
(marked X ) and the noise trader (marked Z ) take a decision

simultaneously trade a discrete quantity of shares from the set

EX :=
{
x1, . . . , xK

}
⊆ R and EZ :=

{
z1, . . . , zL

}
⊆ R, resp., where K , L ∈ N.

The set EX could be, e.g., multiples of the minimal (fractional) order size. The market maker
only observes the sum and sets a price. Since the noise trader does not trade strategically,
her action can be placed after that of the insider in the tree in Definition 1 below (see also
Fig. 1). This sequence of information disclosures, insider and noise trades spans the game
tree, formally given by:

Definition 1 [Game tree] The game tree (T, E) is given by the set of nodes

T := {r , I1,i1 , (I1,i1 , x1), (I1,i1 , x1, z1), (I1,i1 , x1, z1, I2,i2), (I1,i1 , x1, z1, . . . , It,it , xt ),
(I1,i1 , x1, z1, . . . , It,it , xt , zt ), (I1,i1 , x1, z1, . . . , It,it , xt , zt , It+1,it+1) :
t ∈ {2, . . . , T }, (x1, . . . , xT ) ∈ (EX )T , (z1, . . . , zT ) ∈ (EZ )T ,

(I1,i1 , . . . , IT+1,i ) ∈ I1 × · · · × IT+1 such that I1,i1 ⊇ . . . ⊇ IT+1,i },
where r denotes the root node, and by the set of canonical edges E ⊆ T × T, meaning that,
for example, (r , I1,i1) ∈ E and (I1,i1 , (I1,i1 , x1)) ∈ E .

The set of nodes where new information is revealed, and where the insider and the noise
trader make a move are given by

TV := {τ ∈ T : τ = r or τ = (I1,i1 , x1, z1, . . . , zt ) for t ∈ {1, . . . , T }},
TX := {τ ∈ T : τ = I1,i1 or τ = (I1,i1 , x1, z1, . . . , It,it ) for t ∈ {2, . . . , T }}, and
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TZ := {τ ∈ T : τ = (I1,i1 , x1) or τ = (I1,i1 , x1, z1, . . . , It,it , xt ) for t ∈ {2, . . . , T }},
respectively. Next, we furnish these sets of nodes with transition probabilities, starting with
the nature player. For a finite set A, the simplex �A := {p ∈ [0, 1]A : ∑

a∈A p(a) = 1} is
identified with the set of probability distributions over the points in A by p({a}) := p(a).

Definition 2 [Probability assignments] We fix ν ∈ �I with ν > 0 and ζ ∈ �EZ with
ζ > 0. The probability assignment pV assigns to every τ ∈ TV a probability distribution
over the direct successors of τ with probabilities pV (τ, I1,i1) := ∑

i∈I1,i1 ν({i}) for τ = r ,
and

pV (τ, It+1,it+1) :=
∑

i∈It+1,it+1
ν({i})

∑
j∈It,it ν({ j})

for t ∈ {1, . . . , T }, It+1,it+1 ⊆ It,it ,

τ = (I1,i1 , x1, z1, . . . , It,it , xt , zt ).

The probability assignment pZ is given by

pZ : TZ → �EZ , pZ (τ, · ) := ζ. (1)

In (1), with slight abuse of notation, we identify each direct successor of τ ∈ TZ with an
order z ∈ EZ . The insider, on the other hand, observes besides the fundamental information
about the true value also the noise trader’s past trades before making a trading decision (the
latter is a standard assumption in the Kyle model motivated by the observability of the past
prices that depend on the total demand):

Definition 3 [Behaviour strategy] A behaviour strategy ξ is a mapping from the insider’s
nodes TX to the set of probability distributions over trades EX ,

ξ : TX → �EX , τ �→ ξ(τ, · ).

With � we denote the set of behaviour strategies.

For a behaviour strategy ξ ∈ � and a node τ ∈ TX , one interprets ξ(τ, {x}) with x > 0
(x < 0) as the probability of buying (selling) |x | shares at node τ . We define the set of
terminal nodes by

� := {
τ ∈ T : τ = (I1,i1 , x1, z1, . . . , IT+1,i )

}
.

The realisation probability p is a mapping from � to ��, assigning to every strategy a
probability distribution over outcomes according to

pξ (ω) := ν({i})
T∏

s=1

ξ((I1,i1 , x1, z1, . . . , Is,is ), {xs}) ζ({zs})

for ω = (I1,i1 , x1, z1, . . . , IT+1,i ).

(2)

2.2 Kyle equilibrium

It is a defining feature of Kyle-type models that the market maker can not distinguish the
orders of the insider and the noise trader. In each trading round, he only observes the total
order flow y ∈ EY := {x + z : x ∈ EX , z ∈ EZ }. Following [23, Equation (3.3)], a price St
at time t = 1, . . . , T is a function of the total order flow (x1 + z1, . . . , xt + zt ).
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Definition 4 [Pricing system] A pricing system S := (St )t∈{1,...,T } of the market maker is a
family of functions

St : (EY )t → [vN , v1], (y1, . . . , yt ) �→ St (y1, . . . , yt ).

With S we denote the set of pricing systems.

Given a pricing system S ∈ S, the payoff of the insider is defined by

U (ω, S) :=
T∑

t=1

[
vi − St (x1 + z1, . . . , xt + zt )

]
xt for ω = (I1,i1 , x1, z1, . . . , IT+1,i ),

and her objective is to maximise the expected utility

u(ξ, S) :=
∑

ω∈�

pξ (ω) U (ω, S) −→ max
ξ∈�

! (3)

Assuming that the insider plays ξ ∈ �, the joint probability of fundamental information i
and order flow (y1, . . . , yt ) is given by

pξ
Y (i, y1, . . . , yt ) :=

∑

(I1,i1 ,x1,z1,...,IT+1,i )∈�

s.t. xs+zs=ys for all s=1,...,t

pξ (I1,i1 , x1, z1, . . . , It,it , xt , zt , . . . , IT+1,i ),

(4)
where i uniquely determines (I1,i1 , I2,i2 , . . . , IT+1,i ). Using Bayes’ rule, the market maker
can infer the conditional probability of i given (y1, . . . , yt ) assuming the insider plays ξ . If
pξ
Y (y1, . . . , yt ) := ∑N

i=1 p
ξ
Y (i, y1, . . . , yt ) > 0, it reads

pξ
Y (i | y1, . . . , yt ) := pξ

Y (i, y1, . . . , yt )

pξ
Y (y1, . . . , yt )

. (5)

Definition 5 [Rational pricing] A pricing system S ∈ S for the market maker is rational
assuming the insider plays ξ ∈ � if

St (y1, . . . , yt ) =
N∑

i=1

pξ
Y (i | y1, . . . , yt ) vi , (6)

for all (y1, . . . , yt ) ∈ (EY )t , t = 1, . . . , T , with pξ
Y (y1, . . . , yt ) > 0, i.e, the price equals

the expectation of the true value of the asset conditional on the market maker’s information.

In equilibrium, the assumption of the market maker coincides with the strategy played by
the insider. In addition, the insider’s strategy is optimal given the prices quoted by the market
maker.

Definition 6 [Kyle equilibrium] A Kyle equilibrium is a pair (ξ
, S
) ∈ � × S satisfying

1. Profit maximisation: Given S∗, the strategy ξ
 is optimal according to (3),
2. Rational pricing: Given ξ
, the pricing system S
 is rational according to (6).

The existence of an equilibrium can be shown without further probabilistic restrictions on
the true value, the insider’s dynamic information, and the noise trader’s actions. Example 1
at the end of this section shows that equilibria need not exist in pure strategies of the insider.
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Theorem 1 Every Kyle game has a Kyle equilibrium.

Proof Follows from Theorem 2 below. 	

Remark 1 [Kyle model as a dynamic social system in the sense of Debreu [17]] We can
now place the interaction of the insider and the market maker in a game theoretic context,
even though the latter does not maximise any particular objective. Rational pricing in the
sense of Definition 5 can be seen as a constraint on market maker’s allowed actions (at each
observed order flow (y1, . . . , yt )) that depends on the behaviour strategy he assumes the
insider chooses. If pξ

Y (y1, . . . , yt ) > 0, the market maker has only one choice at (y1, . . . , yt ).
In a (standard) extensive form game, an action of a player can only depend on past actions of
other players but not on their behaviour strategies, i.e., not on the probabilities of all possible
actions.

[17] extends strategic games by allowing that the choice of an action by a player can be
restricted by the (simultaneous) actions of the other players. This idea is applied to dynamic
games by Butler [8], having constraints that depend on behaviour strategies of other players.
The games are referred to as “generalised”.We refer to [8, Chapter 2] for a detailed discussion
about conceptual issues, but note that the Kyle game does not fit into this framework, since
there are infinitely many possible asset prices the market maker can set.

2.3 Sequential Kyle equilibrium

In extensive form games, Nash equilibria can be based on irrational plans of some players
that need not be realised since the plans refer to nodes that are not reached in the equilibrium
that they produce (“non-credible threat”). To rule out such equilibria, Selten introduced the
stronger criterion of a subgame perfect equilibrium (we refer to [30, Section 5]): if the game
can be restarted in a node, the equilibrium strategies have to be optimal also for the induced
subgame. There are several refinements of this concept for gameswith imperfect information.
The most popular one is that of a sequential equilibrium introduced by [22] (for a detailed
discussion we refer to [19, Section 3.5]).

In the following, we adapt this concept to Kyle games. While the insider has perfect
information the market maker has not. Up to time t , he only observes the total order
flow (y1, . . . , yt ). The union of nodes at time t such that x1 + z1 = y1, …, xt + zt = yt
is called an information set of the market maker. In information sets (y1, . . . , yt ) with
pξ
Y (y1, . . . , yt ) = 0 the conditional probability (5) is not defined. Consequently, following

[22, Section 4], the market maker has to form more subtle beliefs regarding the fundamental
information states.

Definition 7 [System of beliefs] A system of beliefs μ = (μt )t=1,...,T of the market maker is
a collection of probability distributions over I , indexed by the total order flow:

μt : (EY )t → �I , (y1, . . . , yt ) �→ μt ( · | y1, . . . , yt ).
With M we denote the set of all systems of beliefs.

Definition 8 [Pricingwith beliefs] A systemof beliefsμ ∈ M induces a pricing system Sμ ∈
S by

Sμ
t (y1, . . . , yt ) :=

N∑

i=1

μt (i | y1, . . . , yt ) vi for all (y1, . . . , yt ) ∈ (EY )t , t = 1, . . . , T .
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Definition 9 [Rational beliefs] A system of beliefs μ ∈ M is rational assuming ξ ∈ � if

μt (i | y1, . . . , yt ) = pξ
Y (i | y1, . . . , yt ) for all i ∈ I (7)

and for all (y1, . . . , yt ) ∈ (EY )t , t = 1, . . . , T , with pξ
Y (y1, . . . , yt ) > 0.

For information sets (y1, . . . , yt ) with pξ
Y (y1, . . . , yt ) > 0 the beliefs μt (i | y1, . . . , yt )

are uniquely determined by ξ according to (7). In information sets that cannot be realised,
[22, Section 5] argue that rational beliefs should be the limit of conditional probabilities
that result from an approximating sequence of strategies where every node is reached with
positive probability. For the Kyle game, this leads to the following definitions.

Definition 10 [Completely mixed behaviour strategies] The set �0 of completely mixed
behaviour strategies is given by

�0 := {ξ ∈ � : ξ(τ, {x}) > 0 for all τ ∈ TX , x ∈ EX }.
Definition 11 [Consistent beliefs] A system of beliefs μ ∈ M is consistent with ξ ∈ �

if there is an approximating sequence (ξn, μn)n∈N ⊆ � × M with (ξn, μn) → (ξ, μ) as
n → ∞ such that

1. ξn is completely mixed for all n ∈ N (see Definition 10),
2. μn is rational assuming ξn for all n ∈ N (see Definition 9).

(Elements of � × M can be identified with elements of R
d for some d , and convergence is

understood accordingly.)

The insider is the only player who appears in the game tree. Since she has perfect informa-
tion, she need not have beliefs, and at any node a subgame can be started. For notational
convenience, we only start subgames at τ ∈ TV and do this in the following way:

For τ = r , the subgame is the game itself. For τ = (I1,i1 , x1, z1, . . . , It,it , xt , zt ) ∈ TV ,
t ∈ {1, . . . , T }, we restrict the game tree to the subtree with root node τ (which leads to
a restriction of terminal nodes to those that come after τ ), and realisation probabilities pξ

τ

conditional on starting in τ , analogously to (2), are given by

pξ
τ (ω) := ν({i})

∑
j∈It,it ν({ j})

T∏

s=t+1

ξ((I1,i1 , x1, z1, . . . , Is,is ), {xs}) ζ({zs})

for ω = (I1,i1 , x1, z1, . . . , It,it , xt , zt , It+1,it+1 , xt+1, zt+1, . . . , IT+1,i ).

(8)

The expected utility for the subgame starting in τ ∈ TV becomes, analogously to (3),

uτ (ξ, S) :=
∑

ω∈�
ω after τ

pξ
τ (ω) U (ω, S).

Definition 12 [Subgame optimality] A behaviour strategy ξ
 ∈ � is subgame optimal given
S ∈ S if at every node τ ∈ TV ,

ξ
 ∈ argmaxξ∈�uτ (ξ, S). (9)

Subgame optimality corresponds to sequential rationality in [22, Section 4] (not to be con-
fused with rational pricing). Because the insider has perfect information, subgame optimality
is equivalent to the notion of subgame perfection in [30, Section 5].
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Definition 13 [Sequential Kyle equilibrium] A sequential Kyle equilibrium is a
pair (ξ
, μ
) ∈ � × M satisfying:

1. Profit maximisation: Given Sμ

, the strategy ξ
 is subgame optimal (see Definition 12),

2. Rational pricing: The system of beliefs μ
 is consistent with ξ
 (see Definition 11).

Whereas [23, Equations (3.5), (3.7)] already envisions a form of sequential equilibrium,
the novel aspect is the formal relation toKreps andWilson [22]with the consistency condition
regarding the beliefs of the market maker that generalises conditional probabilities derived
from Bayes’ rule and allows the case pξ

Y (y1, . . . , yt ) = 0 to be handled. The main result of
this section is the following.

Theorem 2 Every Kyle game has a sequential Kyle equilibrium.

2.4 Proof of Theorem 2

The proof of Theorem 2 is based on the classical ideas that certain extensive form games have
a (trembling hand) perfect equilibrium, see [30, Section 11], and every perfect equilibrium is
a sequential equilibrium, see [22, Proposition 1]. However, we have to adapt this approach to
accommodate the structure of a Kyle game. The proof we present is self-contained, without
formally introducing Selten’s agent normal form, only requiring the reader to be familiar
with Kakutani’s fixed point theorem (see, e.g., [19, Theorem 2.2.1]).

For ε > 0 small enough such that ε|EX | < 1, the ε-perturbed game is the Kyle game
with insider strategies in

�ε := {ξ ∈ � : ξ(τ, ·) ∈ �Eε
X for all τ ∈ TX },

where �Eε
X := {p ∈ �EX : p({x}) ≥ ε for all x ∈ EX }. We write ξτ := ξ(τ, · ) and

follow the usual notation that

ξ = (ξ−τ , ξτ ) where ξ−τ : TX \ {τ } → �EX , ξ−τ (τ
′) = ξτ ′ .

For a node τ := (I1,i1 , x1, z1, . . . , It,it ) ∈ TX we define, analogously to (8),

pξ
τ (ω) := ν({i})

∑
j∈It,it ν({ j})

T∏

s=t

ξ((I1,i1 , x1, z1, . . . , Is,is ), {xs}) ζ({zs})

for ω = (I1,i1 , x1, z1, . . . , It,it , xt , zt , It+1,it+1 , xt+1, zt+1, . . . , IT+1,i )

and
uτ (ξ, S) :=

∑

ω∈�
ω after τ

pξ
τ (ω) U (ω, S).

The difference of the perturbed game to the original game is that every possible trade of
the insider has to be chosen with a minimum probability ε > 0. For small ε, the effect of this
constraint on themaximiser is small. On the other hand, under ξ ∈ �ε with ε > 0, every node
in the game tree is reached with positive probability, and rational beliefs of the market maker
assuming ξ are given by Bayes’ rule for conditional probabilities. Having maximisers for the
perturbed games, we let ε tend to zero and show that there is a limiting system of beliefs,
and a limiting strategy that maximises every subproblem of the original game. By definition,
this means that the limiting system of beliefs is consistent with the limiting strategy (cf.
Definition 11).
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To work out this idea in detail, we next define the self-correspondence

Fε : �ε × M ⇒ �ε × M,

(ξ, μ) �→
∏

τ∈TX

f ε
τ (ξ, μ) × f ε

0 (ξ), where

f ε
τ (ξ, μ) := argmaxp∈�Eε

X
uτ ((ξ−τ , p), S

μ) and

f ε
0 (ξ) := {μ′ ∈ M : μ′ consistent with ξ}.

(10)

The first component of the correspondence Fε maps a pair (ξ, μ) ∈ �ε × M to the set of
“locally optimal” strategies in �ε given the pricing system Sμ and the insider’s strategy ξ

in all other nodes. The second component maps (ξ, μ) to the set of beliefs consistent with
ξ . The intuition behind the definition of Fε is that by the dynamic programming principle,
a strategy is optimal if and only if it is locally optimal at each node given the strategy at
all other nodes. This allows to reduce the ε-perturbed game to a static game with different
players at each node (called “agents”).

Lemma 3 For every ε ∈ (0, 1/|EX |), Fε has a fixed point.

Such a fixed point can be seen as an equilibrium of the ε-perturbed Kyle game when the
insider maximises her utility by choosing trades separately at each node and considering the
choices at other nodes as given.

Proof of Lemma 3 We fix ε ∈ (0, 1/|EX |). One can identify � and M with subsets of R
d

for some d , and topological properties are to be understood accordingly. In order to apply
Kakutani’s fixed point theorem, we need to verify that Fε is upper hemicontinuous, non-
empty-, closed-, and convex-valued (see, e.g., [19, Theorem 2.2.1]). It is sufficient to prove
these properties for the components f ε

τ , f
ε
0 .

Step 1. Fix τ ∈ TX and consider f ε
τ : �ε ×M ⇒ �Eε

X . Any element of�Eε
X is a convex

combination of the pure strategies δx , x ∈ EX . Since (2) is linear in the transition distribution
at a single node and by (3), the set f ε

τ (ξ, μ) consists of those convex combinations where
suboptimal pure strategies receive only the minimal weight ε, i.e.,

f ε
τ (ξ, μ) = {p ∈ �Eε

X : p({x}) = ε for all x ∈ EX \ ÊX (ξ, μ, τ)}, (11)

where

ÊX (ξ, μ, τ) := {x ∈ EX : uτ ((ξ−τ , δx ), S
μ) ≥ uτ ((ξ−τ , δx ′), Sμ) for all x ′ ∈ EX }.

Consequently, the set f ε
τ (ξ, μ) is obviously closed, convex, andnon-empty. It remains to show

upper hemicontinuity (see, e.g., [19, page 21] for a definition). The conditional probabilities
pξ
τ in (8) are continuous in ξ . As the concatenation of continuous functions, (ξ, μ) �→

uτ ((ξ−τ , δx ), Sμ) is continuous for all x ∈ EX . Thus, ÊX (ξ ′, μ′, τ ) ⊆ ÊX (ξ, μ, τ) for all
(ξ ′, μ′) in a neighborhood of (ξ, μ) since a suboptimal pure strategy remains suboptimal
under a slight perturbation of (ξ, μ) and there are only finitely many of them. In conjunction
with (11), we obtain f ε

τ (ξ ′, μ′) ⊆ f ε
τ (ξ, μ), which implies upper hemicontinuity.

Step 2. Now we turn to f ε
0 : �ε ⇒ M. Any strategy in ξ ∈ �ε is completely mixed, and

thus has exactly one system of beliefs that is consistent with ξ , namely the conditional prob-
abilities μ := pξ

Y from (5), where the denominator is strictly positive for all (y1, . . . , yt ).
The singleton {μ} is obviously non-empty, closed and convex. From (5) and strict posi-
tivity it follows that μ considered as a function of ξ is continuous, and thus f ε

0 is upper
hemicontinuous.

Applying Kakutani’s fixed point theorem to Fε one obtains a fixed point. 	
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Lemma 4 For ε > 0 let (ξ ε, με) be a fixed point of Fε . Then the strategy ξε is subgame
optimal in �ε given Sμε

.

Proof Let (ξ ε, με) be a fixed point of Fε according to Lemma 3. As such, ξε is locally
optimal given S := Sμε

, i.e.,

ξε
τ ∈ argmaxp∈�Eε

X
uτ

(
(ξ ε−τ , p), S

)
for all τ ∈ TX . (12)

We prove (9) by backward induction over the period t in which the node τ ∈ TV lies. This
means, we have to show that

uτ (ξ
ε, S) ≥ uτ (ξ, S) for all τ = (I1,i1 , x1, z1, . . . , It−1,it−1 , xt−1, zt−1), ξ ∈ �ε,

using that the assertion holds for t instead of t − 1 (the base case t − 1 = T follows by
the same arguments as below). Making use of the special structure of the Kyle game, the
proof is shorter than the original one by Selten for general extensive form games (see [30,
Lemma 6]).

Step 1. Throughout the proof, we fix a competing strategy ξ ∈ �ε . In the first step, we
consider nodes of the form τ ′ := (I1,i1 , x1, z1, . . . , It,it ) ∈ TX , i.e., nodes in which new
insider information is already revealed, and define the strategy ξ ′ := (ξ ε

−τ ′ , ξτ ′). From (12)
it follows that

uτ ′(ξ ε, S) ≥ uτ ′(ξ ′, S).

On the other hand, by definition of uτ ′ and uτ ′
k,l
, one has

uτ ′(ξ ′, S) =
K∑

k=1

L∑

l=1

ξ((I1,i1 , x1, z1, . . . , It,it ), {xk}) ζ({zl}) uτ ′
k,l

(ξ ε, S) (13)

where τ ′
k,l := (I1,i1 , x1, z1, . . . , It,it , x

k, zl) ∈ TV . From the induction hypothesis it follows
that the RHS of (13) dominates the LHS of

K∑

k=1

L∑

l=1

ξ((I1,i1 , x1, z1, . . . , It,it ), {xk}) ζ({zl}) uτ ′
k,l

(ξ, S) = uτ ′(ξ, S).

Put together, we arrive at uτ ′(ξ ε, S) ≥ uτ ′(ξ, S).
Step 2. For nodes τ := (I1,i1 , x1, z1, . . . , It−1,it−1 , xt−1, zt−1) ∈ TV , the estimate

uτ (ξ
ε, S) ≥ uτ (ξ, S) follows from Step 1 by weighting uτ ′(ξ ε, S) and uτ ′(ξ, S) by the

transition probabilities in the insider’s private information tree, which are exogenous. 	

The proof of Theorem 2 is completed by the following lemma.

Lemma 5 There exists a sequence (εn)n∈N ⊆ R+ with εn ↓ 0, a sequence (ξ εn , μεn )n∈N with
(ξ εn , μεn ) ∈ �εn × M, and (ξ∗, μ∗) ∈ � × M such that (ξ εn , μεn ) is a fixed point of Fεn

for all n ∈ N and (ξ εn , μεn ) → (ξ∗, μ∗) as n → ∞. In addition, (ξ∗, μ∗) is a sequential
Kyle equilibrium. (Elements of �×M can be identified with elements of Rd for some d, and
convergence is understood accordingly.)

Proof For every n ∈ N, let (ξ
1/n, μ

1/n) ∈ �
1/n × M be a fixed point of F 1/n provided by

Lemma 3. Since ξ
1/n(τ, {x}) ∈ [0, 1] for all τ ∈ TX and x ∈ EX , there exists a sub-

sequence (nk)k∈N such that ξ
1/nk → ξ
 as k → ∞ for some ξ
 with ξ
(τ, {xi }) ≥ 0,

i = 1, . . . , K and
∑K

i=1 ξ
(τ, {xi }) = 1. Because 1/nk > 0 for all k ∈ N, every μ
1/nk

is the unique system of beliefs that is rational assuming ξ
1/nk . There exists a further sub-

sequence (nk j ) j∈N and μ
 ∈ M such that μ
1/nk j → μ
 as j → ∞. In conclusion,
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(ξ
1/nk j , μ

1/nk j ) → (ξ
, μ
) as j → ∞, ξ 1/nk j is completely mixed, andμ
1/nk j is rational assuming

ξ
nk j , so μ
 is consistent with ξ
 (see Definition 11).
It remains to show that ξ
 is subgame optimal given Sμ


. W.l.o.g. nk j = n for all j ∈ N.
We fix a node τ ∈ TV and a competing strategy ξ̃ ∈ �. We construct an approximating
sequence (̃ξn)n∈N with ξ̃n ∈ �

1/n by ξ̃n(τ, {x}) := 1/n + ξ̃ (τ, {x})(1 − |EX |/n) for all
n > |EX |. Following Lemma 4 the strategy ξ

1/n is subgame optimal in �
1/n given Sμ

1/n
which

implies

uτ

(
ξ

1/n, Sμ
1/n ) ≥ uτ

(
ξ̃n, Sμ

1/n )
for all n > |EX |.

Because (ξ, μ) �→ uτ (ξ, Sμ) is jointly continuous, (ξ 1/n, μ
1/n) → (ξ
, μ
), and (̃ξn, μ

1/n) →
(̃ξ , μ
) as n → ∞, we can pass to the limit n → ∞ on both sides to get

uτ

(
ξ
, Sμ
) ≥ uτ

(
ξ̃ , Sμ
)

.

	

Remark 2 [Semi-explicit characterisation of the set of Kyle equilibria] The specification of
the Kyle model as a game has the benefit that equilibria can be characterised as fixed points
of a certain self-correspondence of best replies, which enables a systematic study of Kyle
equilibria. The self-correspondence we need is a variant of the self-correspondence Fε from
(10) that is used to get a sequential Kyle equilibrium. The variant acts on the set of mixed
strategies denoted by �m (that are lotteries over behaviour strategies with Dirac measures).
Analogous to (2), a mixed strategy induces realisation probabilities on the tree, which we
use to define the expected utility of a mixed strategy and rational prices assuming a mixed
strategy. Then, the new self-correspondence reads

Fm : �m × S ⇒ �m × S,

(ξ, S) �→ argmaxξ̃∈�m u(̃ξ , S) × {S̃ ∈ S : S̃ is rational assuming ξ}. (14)

Since Fm acts on the set of mixed strategies, we have to convert mixed strategies into
behaviour strategies and vice versa. First, we start with a fixed point of Fm denoted by
(ξ, S) ∈ �m × S. Because the insider has perfect information, the game has perfect recall,
and Kuhn’s theorem applies: for every mixed strategy there exists a realisation equivalent
behaviour strategy (see, e.g., [19, Theorem 3.2.1]). The pair consisting of a behaviour strategy
which is realisation equivalent to ξ and the price function S is obviously a Kyle equilibrium in
the sense ofDefinition 6. Second, startingwith aKyle equilibrium in the sense ofDefinition 6,
the insider’s behaviour strategy induces an “equivalent” mixed strategy ξ ∈ �m (see, e.g.,
[19, Definition 3.2.3]). Since the realisation probabilities on the tree are the same, the mixed
strategy and the price function have to be a fixed point of Fm . This means that by (14) we
get all Kyle equilibria.

Example 1 [� equilibrium inpure strategies]Weprovide aminimalist example of a two-period
Kyle game inwhichnoequilibriumwith apure strategyof the insider exists. There aremultiple
equilibria, but there is one node at which the insider must randomise in equilibrium. Let T =
2, EV = {0, 1}, I1 = I2 = {{0}, {1}}, i.e., the true value is completely revealed to the insider
at the very beginning, ν({0}) = ν({1}) = 1/2, EZ = {−1, 0, 1}, ζ({−1}) = ζ({1}) = ε,
ζ({0}) = 1 − 2ε, and EX = {0, 1}. The parameter ε > 0 is not yet specified, but it should
be “small”. This means that the total demand coincides with the insider’s demand with high
probability (one can show numerically that the assertion holds for any ε ∈ (0, 0.19371 . . .)).

By definition, prices have to lie between 0 and 1. Therefore, in the second period it is
always optimal for the insider to buy if v = 1 and to do nothing if v = 0. Let us show that
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no pure strategy can be part of an equilibrium: if such a strategy is assumed by the market
maker, he sets prices under which the strategy is not optimal for the insider. This is obvious
for all but one pure strategy: the only interesting strategy is

ξ(τ, {1}) = 1 for every node τ after v = 1, and ξ(τ, {0}) = 1 after v = 0, (15)

i.e., for v = 1 the insider already buys in the first period with probability 1. For all other
strategies we refrain fromwriting down that they are not optimal given the associated rational
prices (e.g., if the market maker assumes that the insider does not trade in the first period, he
sets the price constant to 1/2 in the first period, which gives the insider an incentive to buy,
and so it does not lead to an equilibrium).

Now, let S be the pricing system that is rational assuming the insider plays ξ from (15).
Let ξ̃ be the alternative pure strategy where the insider does not trade in the first period: we
set ξ̃ (1, {0}) = 1 and ξ̃ = ξ for all other nodes. We want to show that

u(̃ξ , S) > u(ξ, S) for ε small enough (thus � equilibrium in pure strategies). (16)

For this, it is sufficient to look at the asymptotic behaviour for ε ↓ 0. First, we consider
u(ξ, S). The insider mainly pays prices S1(1) = 1 − O(ε) and S2(1, 1) = 1 − O(ε) for the
asset, whereas lower prices she only gets with probability O(ε), and thus we obtain

u(ξ, S) = O(ε).

On the other hand, strategy ξ̃ buys at price S2(0, 1)with probability 1−O(ε). Assuming ξ , the
state (y1, y2) = (0, 1) is realized by two nodes with positive probability: (v, x1, z1, x2, z2) =
(0, 0, 0, 0, 1) and (v, x1, z1, x2, z2) = (1, 1,−1, 1, 0) (indicated with 
 in Fig. 2a). Both
nodes have probability (1 − 2ε)ε/2, and thus the rational price is given by S2(0, 1) = 1/2.
We arrive at u(̃ξ , S) = 1/2 + O(ε) and finally (16).

The economic interpretation is as follows. If the noise trader’s activity is small, the insider
can only make small gains by doing the expected strategy ξ . But by buying only in the second
period when v = 1 occurs, the strategy ξ̃ , she irritates the market maker and gets the same
price as if she were a noise trader.

Symbolic computations show that there exists an “essentially unique” mixed equilibrium
for any ε ∈ (0, 0.19371 . . .): Let ξα be the mixed strategy where the insider buys with
probability α in the first period when v = 1, i.e. ξα(1, {1}) = α = 1 − ξ(1, {0}) and ξα = ξ

for all other nodes, there ξ is optimal for any pricing system (an indifference case occurs at
node (v, x1, z1) = (1, 1, 1), since in equilibrium S2(2, y2) must be 1 for all y2 ∈ {0, 1, 2} if
α > 0). For fixed ε one can calculate the rational prices and associated profits as a function
of α. We have a mixed equilibrium if and only if the insider is indifferent between buying
and doing nothing in the first period after v = 1 (cf. the arguments in Step 1 of the proof
of Lemma 3, and see Fig. 2b). Computing equilibrium values of α boils down to finding the
roots of a polynomial of degree seven. E.g. for ε = 1/8, we have to solve

750000α7 − 9485000α6 + 36365625α5 − 48108800α4 − 25782575α3

+80831674α2 − 21705040α − 10602816 = 0,

and there is exactly one positive real root < 1, α
 = 0.77464 . . . Putting together, (ξα
 , S)

is a Kyle equilibrium where S is given by (6), excluding S2(2,−1) which can be chosen
arbitrarily from [0, 1]. To obtain all equilibria, one can replace ξα
((1, 1, 1), {1}) = 1 by
an arbitrary β ∈ [0, 1] (for β < 1, S2(2,−1) must be 1, and for β = 0, S2(2, 2) becomes
arbitrary).
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Fig. 2 Visualisation for the game from Example 1 that has no equilibrium with pure strategies

3 Structure of equilibria in single-periodmodels

In this section, we establish basic properties of equilibria in single-period Kyle games, i.e.,
T = 1 and I1 = {{1}, {2}, . . . , {N }}, and show that the insider’s demands are uniformly
bounded if the noise trader’s demands lie in [−1, 1] and the probabilities of {−1}, {1} are
bounded away from zero. It also becomes apparent that in discrete state Kyle games the
selection of EZ and EX is a crucial issue. We denote EV := {vN , vN−1, . . . , v1} and write
an insider strategy as ξ(v, {x}), v ∈ EV , x ∈ EX . Throughout the section, we assume that

{−1, 1} ⊆ EZ ⊆ [−1, 1], {0} ∈ EX ,

and use the notation

Eξ
X := {x ∈ EX : ∃v ∈ EV with ξ(v, {x}) > 0}.

Assumption 1 One has ((EX + EZ ) − EX ) ∩ conv(EZ ) ⊆ EZ . In other words, for every
x1, x2 ∈ EX , z1 ∈ EZ ,

x2 ∈ [x1 + z1 − 1, x1 + z1 + 1] �⇒ ∃z2 ∈ EZ such that x2 + z2 = x1 + z1.
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The assumption is satisfied, for instance, if EZ is an equidistant grid and distances between
elements of EX are multiples of the size of this grid. It rules out the effect that by the precise
knowledge of x + z the market maker can infer x , although x + z is no extreme point of
EX + EZ .

Lemma 6 Let (ξ, S) be an equilibrium in a discrete single-period Kyle game. We have that

(i) ξ(vi , {x}) > 0, vi < v j �⇒ ξ(v j , EX ∩ [x,∞)) = 1 for all vi , v j ∈ EV , x ∈ EX

ξ(vi , {x}) > 0, vi > v j �⇒ ξ(v j , EX ∩ (−∞, x]) = 1 for all vi , v j ∈ EV , x ∈ EX

(ii) x > 0, ξ(v, EX ∩ [x − 2, x)) = 0 for all v ∈ EV �⇒ ∫
S(x ′ + z)ζ(dz) = v′

for all x ∈ EX , x ′ ∈ EX ∩ [x,∞), v′ ∈ EV with ξ(v′, {x ′}) > 0 (the inverse assertion
for x < 0 holds as well)

(iii) For y1, y2 ∈ EY with pξ
Y (y1), p

ξ
Y (y2) > 0 and y2 ≥ y1 + 2, we have S(y1) ≤ S(y2).

(iv) For y1, y2 ∈ EY with pξ
Y (y1), p

ξ
Y (y2) > 0, y2 ≥ y1, and S(y1) = v1, we have S(y2) =

v1. For y1, y2 ∈ EY with pξ
Y (y1), p

ξ
Y (y2) > 0, y2 ≥ y1 and S(y2) = vN , we have

S(y1) = vN .

Property (i) says that the insider’s demand is nondecreasing in the true value she observes.
Property (ii) states that the gaps between the insider’s order sizes (that depend on the true
value) should not be larger than the range of the noise trader’s order sizes. Otherwise, the
market maker could infer the true value and profits vanish. Maybe surprisingly, the price
function S is in general not nondecreasing, see (Counter-) Example 3, but we have the
weaker properties (iii) and (iv).

Proof of Lemma 6 Ad (i). By symmetry, we only have to prove the first implication. Consider
the gain function

x �→ x(v −
∫

S(x + z)ζ(dz)). (17)

If x is a maximiser (not necessarily unique) for v = vi , it strictly dominates x ′ < x for
v = v j .

Ad (ii). Let x1 ∈ EX ∩ (0,∞) with ξ(v, EX ∩ [x1 − 2, x1)) = 0 for all v ∈ EV . Define
x2 := inf{x ∈ Eξ

X ∩ [x1,∞)}, v
 := inf{v ∈ EV : ξ(v, {x2}) > 0}, and x3 := sup{x ∈
EX : ξ(v
, {x}) > 0}. Here, the case x2 = ∞ is trivial and thus excluded. By optimality of
ξ , 0 ∈ EX , and part (i), we have that

∫
S(x + z)ζ(dz) ≤ v
 ≤ v for all x ∈ EX ∩ [x1, x3], v ∈ EV with ξ(v, {x}) > 0. (18)

On the other hand, for each x ∈ Eξ
X∩[x1, x3], z ∈ EZ , the price S(x+z) lies in the convex hull

of {v ∈ EV : ∃x ′ ∈ EX with ξ(v, {x ′}) > 0, z′ ∈ EZ such that x ′ + z′ = x + z} by rational
pricing (cf. Definition 5 and observe that the set is nonempty by x ∈ Eξ

X ). Consequently,

for each x ∈ Eξ
X ∩ [x1, x3], the average price

∫
S(x + z)ζ(dz) lies in the convex hull of

Mx := {v ∈ EV : ∃x ′ ∈ EX with ξ(v, {x ′}) > 0 ∃z, z′ ∈ EZ such that x ′ + z′ = x + z}. But
for v ∈ Mx we must have that v ≥ v
 by x ′ ≥ x − 2 ≥ x1 − 2 and again part (i). Together
with (18), we obtain that v = v
 for all x ∈ Eξ

X ∩ [x1, x3] and v ∈ Mx . This implies equality
in (18) and even more that

S(x + z) = v
 = v for all x ∈ EX ∩ [x1, x3], v ∈ EV with ξ(v, {x}) > 0, z ∈ EZ . (19)

Now, define x4 := inf{x ∈ EX : ξ(v, {x}) > 0 for some v ∈ EV ∩ (v
,∞)}. We want
to show that x4 > x3 + 2 and assume by contradiction that this does not hold. Then, by
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x4 ≥ x3 and Assumption 1, there would exist a z′ ∈ EZ such that x4 + z′ = x3 + 1 which
would imply that S(x3 + 1) > v
, a contradiction to (19). By definition of x3 and x4, the
estimate x4 > x3 + 2 yields ξ(v, EX ∩ [x4 − 2, x4)) = 0 for all v ∈ EV . This means that
x4 > x1 satisfies the properties that we required for x1. By proceeding analogously, we obtain
the assertion because of (19).

Ad (iii). Let x1 := sup{x ∈ Eξ
X : ∃z ∈ EZ such that x + z = y1} ≤ y1 + 1 ≤ y2 − 1.

Part (i) and basic properties of the conditional expectation yield that

S(y1) ≤
∑

i ν(vi )ξ(vi , {x1})vi∑
i ν(vi )ξ(vi , {x1}) ≤ S(y2).

Ad (iv). By symmetry,we only have to prove the first implication.We assume by contradiction
that there exist x2 ∈ Eξ

X with ξ(v1, {x2}) < 1 and z2 ∈ EZ such that x2 + z2 = y2. By

pξ
Y (y1) > 0, there must exist x1 ∈ Eξ

X and z1 ∈ EZ such that x1 + z1 = y1.
Case x1 ≤ x2. It follows from part (i) that ξ(v1, {x1}) < 1, a contradiction to S(y1) = v1.
Case x1 > x2.We have that x2 ∈ [y1−1, y1+1]. By Assumption 1, there exists a z′ ∈ EZ

with x2 + z′ = y1 that is a contradiction to S(y1) = v1. 	

Theorem 7 In any equilibrium (ξ, S) of a discrete single-period Kyle game, either insider’s
buy orders cannot be executed at a price below the maximal true value, i.e., S(x+z) = v1 for
all x ∈ EX ∩(0,∞), z ∈ EZ , or their sizes are bounded by 6+6/ζ({1}), i.e., Eξ

X ∩(0,∞) ⊆
(0, 6+6/ζ({1})). Analogously, either insider’s sell orders cannot be executed at a price above
the minimal true value or their sizes are bounded by 6 + 6/ζ({−1}).
Example 2 Both the true value and the demand of the noise trader are ±1 with probability
1/2. In addition, EX = {−2n,−2(n − 1), . . . , 0, 2, . . . , 2n} for some fixed n ∈ N. Then,
one equilibrium is given by ξ(v, ·) = δ2n1(v=1) +δ−2n1(v=−1) and S(y) = −1(y<0) +1(y>0)
for all y ∈ EY .

Proof of Theorem 7 Wefix aKyle game and an equilibrium (ξ, S) of this game. By symmetry,
it is sufficient to show the assertion regarding the insider’s buy orders. Let x1 := sup{x ∈
EX ∩ (0,∞) : ξ(v1, {x}) > 0 and

∫
S(x + z)ζ(dz) < v1}.

Case x1 = −∞. Let x ∈ Eξ
X∩(0,∞) (if no such x exists we are done). ByLemma 6(i), we

have that ξ(v1, EX∩[x,∞)) > 0. Thismeans that there is an order size x ′ ∈ Eξ
X∩[x,∞)with

ξ(v1, {x ′}) > 0 that is an optimizer of (17) when the true value takes the maximal value v1.
But, by x1 = −∞, the gain v1 − ∫

S(x ′ + z)ζ(dz) cannot be positive. Consequently, we
must have that

∫
S(x ′′ + z)ζ(dz) = v1 for all x ′′ ∈ EX ∩ (0,∞) since otherwise x ′ could

not be optimal given v1. It follows that S(x ′′ + z) = v1 for all z ∈ EZ . We conclude that the
insider’s buy orders are never executed at a price below v1.

Case x1 > 0. Now, we turn to the “main” case. W.l.o.g. x1 ≥ 6 since otherwise x1 <

6 + 6/ζ({1}) and the upper bound could be verified similar to the previous case. Let v
 :=
inf{v ∈ EV : ξ(v, x1) > 0}. By definition of x1 and v
, we have that

∫
S(x1 + z)ζ(dz) < v1

and
∫
S(x1 + z)ζ(dz) ≤ v
. Let us find an x2 ∈ EX with

S(x2 + 1) ≤
∫

S(x1 + z)ζ(dz) and S(x2 + 1) < v
. (20)

First, consider the case that v
 = v1. The first inequality in (20) is satisfied by any x2 ∈
Eξ
X ∩ (−∞, x1 − 4] because of Lemma 6(iii). Lemma 6(ii) guarantees that there exists an

x2 ∈ Eξ
X ∩[x1−6, x1−4) since otherwise the insider could not make a profit on average with

x1 when v1 occurs. Then, the second inequality in (20) follows from
∫
S(x1 + z)ζ(dz) < v1.
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We proceed with the case that v
 < v1. Since
∫
S(x1 + z)ζ(dz) ≤ v
, ξ(v1, {x1}) > 0

and by rational pricing (cf. Definition 5), there must exist x ∈ Eξ
X , z1, z ∈ EZ , and v ∈

EV ∩ (−∞, v
)with ξ(v, {x}) > 0 and x + z = x1 + z1. One has that x ∈ Eξ
X ∩[x1 −2,∞).

Consequently, for all x ′ ∈ Eξ
X ∩ (−∞, x1 − 4) we get S(x ′ + 1) ≤ v < v
 by Lemma 6(i)

and rational pricing. Thus, x2 from above can also be taken in the case v
 < v1 and (20) is
shown. In addition, since the total demand x1 + 1 can only occur if v ≥ v
, rational pricing
yields

S(x1 + 1) ≥ v
. (21)

Define s := S(x2 + 1) and � := x1(v
 − ∫
S(x1 + z)ζ(dz)) − x2(v
 − ∫

S(x2 + z)ζ(dz)).
We have that

� = (x1 − x2)(v

 −

∫
S(x1 + z)ζ(dz)) + x2(

∫
S(x2 + z)ζ(dz) −

∫
S(x1 + z)ζ(dz))

≤ (x1 − x2)(v

 − s) + x2(s − v
)ζ({1})

≤ (v
 − s)(6 − x2ζ({1})),
where we use (21) to estimate S(x2+z)−S(x1+z) for z = 1. Since x1 maximises (17) given
v
, we have� ≥ 0. By v
 > s, we obtain that x2 ≤ 6/ζ({1}) and arrive at x1 ≤ 6+6/ζ({1}).

	

Remark 3 We note that (21) need not hold for S(x1 + z) with z < 1 instead of S(x1 + 1).
This is the reason why the upper bound 6+ 6/ζ({1}) depends on the probability of the noise
trader’s demand at the boundary. For a sequence of discrete models, the bound could tend to
infinity if ζ({1}) → 0.

Example 3 [� nondecreasing equilibrium price function] We provide a minimalist example
of a single-period Kyle game in which the equilibrium is unique and the equilibrium price
function is strictly decreasing for some demands. The true value takes a high value v1 := 1,
a medium value v2 := 1/2, or a low value v3 := 0, with uniform distribution ν := 1/3δ0 +
1/3δ1/2 + 1/3δ1. Both insider and noise trader can buy or sell one share of the asset or not trade
at all, i.e., EX := EZ := {−1, 0, 1}, and so the market maker observes a total order flow
in EY = {−2,−1, 0, 1, 2}. The crux in our example is that the noise trader shows bearish
sentiment and is more likely to sell, namely

ζ := 6

8
δ−1 + 1

8
δ0 + 1

8
δ1.

This leads to the effect that when themarketmaker observes y = 0 he ismore likely to believe
that the insider and noise trader traded x = 1 and z = −1, respectively, than he would be,
ceteris paribus, under uniformly distributed noise trades. The conditional probability of x = 1
can be higher under the condition y = 0 than under y = 1. This is the reasonwhy the example
can work although the insider’s demand is nondecreasing in the true value (in the sense of
Lemma 6(i)) and the market maker’s price is the conditional expectation of the true value
given y.

In the following, we want to show that the Kyle equilibrium is unique, and its price
function S satisfies S(0) > S(1). For this, let (ξ, S) be an arbitrary equilibrium.

Step 1: Let us first show that ξ(1, · ) = δ1 and ξ(0, · ) = δ−1, i.e., for the extreme true
values buying/selling is the unique optimal action for the insider. Assume by contradiction
that ξ(1, · ) �= δ1, i.e., buying is at least not the only optimal action when v = 1. Because
S ≤ 1 and EX = {−1, 0, 1}, this can only be the case if the profits are zero, i.e., the average
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price
∫
S(1 + z)ζ(dz) equals 1, and this is equivalent to S(2) = S(1) = S(0) = 1. But

regardless of ξ(1/2, · ) and ξ(0, · ), the noise trader always ensures that y = 0 is reached
with positive probability when v = 1/2 or v = 0, and so S(0) < 1 by rational pricing, a
contradiction. Hence, wemust have that ξ(1, · ) = δ1. By the same arguments, ξ(0, · ) = δ−1

is the unique optimal action when v = 0.
Step 2: Now we turn to the optimal strategy when v = 1/2. Using the notation ξ(1/2, · ) =

α1δ1 + α0δ0 + α−1δ−1, with α1, α0, α−1 ≥ 0 and α1 + α0 + α−1 = 1, we can compute the
rational prices given ξ :

S(2) = 1 · 1 + α1 · 1
2

1 + α1
= 1 + 1

2α1

1 + α1
,

S(1) = 1 · 1 + (α1 + α0) · 1
2

1 + α1 + α0
= 1 + 1

2 (α1 + α0)

1 + α1 + α0
,

S(0) = 6 · 1 + (6α1 + α0 + α−1) · 1
2 + 1 · 0

6 + 6α1 + α0 + α−1 + 1
= 6 + 1

2 (6α1 + α0 + α−1)

7 + 6α1 + α0 + α−1
,

S(−1) = (6α0 + α−1) · 1
2 + 1 · 0

6α0 + α−1 + 1
=

1
2 (6α0 + α−1)

1 + 6α0 + α−1
,

S(−2) = 6α−1 · 1
2 + 6 · 0

6α−1 + 6
= α−1

2 + 2α−1
.

We observe that S(2), S(1), S(0) > 1/2 and so the average price
∫

S(1 + z)ζ(dz) >
1

2
,

which makes buying in v = 1/2 suboptimal. As a result α1 = 0. In addition, the above
formulas show immediately that S(0) < 1, S(−1) < 1/2, and S(−2) ≤ 1/4. Thus, we get the
rough estimate

∫
S(−1 + z)ζ(dz) = 1

8
S(0) + 1

8
S(−1) + 6

8
S(−2) <

6

16
<

1

2
.

Consequently, selling in v = 1/2 is not profitable either, so α−1 = 0, and α0 = 1. In other
words, the optimal strategy is ξ(1/2, · ) = δ0. In conclusion, the unique Kyle equilibrium
(ξ, S) is given by

ξ(v, · ) := δ2v−1, S(−2) = 0, S(−1) = 3

7
, S(0) = 13

16
, S(1) = 3

4
, S(2) = 1,

also depicted in Fig. 3. The price function S is decreasing between 0 and 1.

4 Continuous state game

In this section, we prove the existence of an equilibrium in the single-period Kyle game
when the true value and the noise trader’s demand are probability measures over the Borel
σ -algebra B(R) with compact but not necessarily finite support. The main challenge is
that the bounded price function of the market maker in the continuous game can only be
expected to be measurable but in general not a continuous function of the total demand. Con-
sequently, the insider’s profit need not be continuous in her demand. The set of [−1, 1]-valued
Borel-measurable functions equipped with pointwise convergence almost everywhere is not
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Fig. 3 The unique equilibrium from Example 3

sequentially compact. The standard example is a sequence of Rademacher functions (see,
e.g., Example 3.2 in [6]) that cannot have a convergent subsequence. Because of the lack of
compactness of the set of price functions, we cannot apply standard infinite-dimensional fixed
point theorems of Schauder-Tychonoff’s or Kakutani-Fan’s type (see, e.g., Theorem 10.1 and
Theorem 13.1 in [26], respectively) directly to the continuous game.

Instead, we consider equilibria of a sequence of finite Kyle games that are derived from
the continuous game by discretising the true value and the noise trader’s demand. We assume
that the noise trader’s demand is absolutely continuous w.r.t. the Lebesgue measure λ. This
tames the expected gains of the insider, and a weak limit of her discrete equilibrium strategies
(that exists along a subsequence by compactness of probability distributions on [−1, 1]) is
part of an equilibrium in the continuous model. On the other hand, after passing to forward
convex combinations, the discrete equilibrium price functions of the market maker possess a
pointwise limit λ-almost everywhere. Together with the insider strategy, it is an equilibrium
price function in the continuous model.

Let us introduce the continuous state model. Let EV := [0, 1], ν ∈ P(EV ,B(EV )),
EZ := [−1, 1], and ζ ∈ P(EZ ,B(EZ )). We assume that

ζ is absolutely continuous w.r.t. the Lebesgue measure λ, i.e., ζ � λ.

Definition 14 [Insider strategy] Let EX = [x, x] for some fixed x, x ∈ Z with x < 0 < x .
Based on (EV ,B(EV ), ν), an insider strategy is a Young measure ξ : EV ×B(EX ) → [0, 1],
i.e.,

1. ξ( ·, B) is Borel-measurable for every B ∈ B(EX ),
2. ξ(v, · ) is a probability measure for every v ∈ EV .

With � := �(EV , ν; EX ) we denote the set of insider strategies.

The interpretation is analogous to that of discrete behaviour strategies (see Definition 3).
We refer to Balder [6] and the references therein for an overview of the theory of Young
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measures and their applications in optimal control theory. The market maker observes the
total order flow y := x + z ∈ EY := EX + EZ = [x − 1, x + 1] and sets a price.
Definition 15 [Price function of market maker] A price function is a Borel-measurable
function

S : EY → EV , y �→ S(y).

With S we denote the set of price functions.

Given a price function S ∈ S, the insider’s objective is to maximise the expected utility

u(ξ, S) :=
∫∫∫

[v − S(x + z)] x ζ(dz)ξ(v, dx)ν(dv) → max
ξ∈�

! (22)

Analogous to the discrete Kyle game, a price function S is rational assuming a strategy ξ ∈ �

of the insider if for all A ∈ B(EY ):
∫∫∫

S(x + z)1A (x + z) ζ(dz)ξ(v, dx)ν(dv) =
∫∫∫

v 1A (x + z) ζ(dz)ξ(v, dx)ν(dv).

(23)
An equilibrium in the continuous state Kyle game has the familiar structure of simultaneously
requiring optimality for the insider, and rational pricing for the market maker:

Definition 16 [Continuous Kyle equilibrium] A continuous Kyle equilibrium is a pair
(ξ
, S
) ∈ � × S satisfying

1. Profit maximisation: Given S
, the strategy ξ
 maximises (22).
2. Rational pricing: Given ξ
, the price system S
 is rational according to (23),

The main result of this section is the following theorem, which we prove in the remainder
of the section.

Theorem 8 The single-period, continuous state Kyle game admits a Kyle equilibrium.

4.1 Discretisation and embedding

We construct a sequence of discrete state games acting on the refining sequence of dyadic,
equidistant grids

En
V :=

{
k

2n
: k = 0, 1, . . . , 2n

}
, En

Z :=
{
k

2n
: k = −2n, . . . , 0, . . . , 2n

}
,

and En
X :=

{
k

2n
: k = 2nx, . . . , 0, . . . , 2nx

}
, n ∈ N.

We embed the discrete strategies and price functions into the continuous model through
piecewise constant continuation between the points of the nth grid:

�n :=
{
ξ ∈ � : ξ(v, · ) = ξ

(�2nv�
2n

, ·
)

and ξ(v, EX \ En
X ) = 0 for all v ∈ EV

}
,

Sn :=
{
S ∈ S : S(y) = S

(�2n y�
2n

)
for all y ∈ EY

}
.

(24)
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It is straightforward to check that the insider’s expected utility from (3) in the nth discrete
game that is created by discretising the measures ν and ζ , can be expressed in terms of the
continuous quantities by

un(ξ, S) =
∫∫∫

x

[�2nv�
2n

− S (x + z)

]
ζ(dz)ξ(v, dx)ν(dv) for (ξ, S) ∈ �n × Sn .

(25)
Analogously, the rational pricing condition from Definition 5 for S ∈ Sn given ξ ∈ �n reads

∫∫∫
S(x + z)1A (x + z) ζ(dz)ξ(v, dx)ν(dv)

=
∫∫∫ �2nv�

2n
1A (x + z) ζ(dz)ξ(v, dx)ν(dv)

(26)

for all sets A of the form A = [k/2n, (k + 1)/2n), k ∈ {(x − 1)2n, (x − 1)2n + 1, . . . , (x +
1)2n − 1}.

4.2 Approximation and existence of a limit point

For the convenience of the reader, we repeat the following definition.

Definition 17 [Narrow convergence] A sequence of Young measures (ξn)n∈N ⊆
�(EV , ν; EX ) converges narrowly to ξ ∈ �(EV , ν; EX ) if for all A ∈ B(EV ), f ∈ Cb(EX )

∫∫
1A (v) f (x) ξn(v, dx)ν(dv) →

∫∫
1A (v) f (x) ξ(v, dx)ν(dv).

An immediate consequence of narrow convergence is that

ν ⊗ ξn → ν ⊗ ξ weakly, where

ν ⊗ ξn(A × B) :=
∫

A
ξn(v, B) ν(dv) for A × B ∈ B(EV ) × B(EX ) (27)

(to see this, one applies Fubini’s theorem for transition probabilities). For further information
regarding narrow convergence we refer to [6] and the references therein.

Lemma 9 [Convergence of utilities] Let (ξn, Sn)n∈N ⊆ �n × Sn (that are not necessarily
equilibria) such that ξn → ξ narrowly for some ξ ∈ � and

∑kn
k=0 λn,k Sn+k → S λ-a.e.

for some S ∈ S and forward convex combinations (λn,k)n∈N,k=0,1,...,kn ⊆ R+, kn ∈ N with
∑kn

k=0 λn,k = 1. Then

kn∑

k=0

λn,ku
n+k(ξn+k, Sn+k)

n→∞−−−→ u(ξ, S).

Proof We split the integrals in (25) and (22) into two parts and handle them separately. We
start with the first parts including the true value. Let ε > 0. For every m ∈ N, we get

∫∫
|∗|x �2mv�

2m
− xv ξm(v, dx)ν(dv) ≤ max(|x |, |x |) sup

v∈[0,1]
|∗| �2

mv�
2m

− v

≤ max(|x |, |x |) 1

2m
.

(28)
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By Balder [5, Theorem 2.2(b)], ξn → ξ narrowly implies that there exists n ∈ N such that

|∗|
∫∫

xv ξn+k(v, dx)ν(dv) −
∫∫

xv ξ(v, dx)ν(dv) < ε for all k ∈ N0. (29)

Combining the two estimates (28) and (29) yields that for n large enough

|∗|
kn∑

k=0

λn,k

∫∫
x
�2n+kv�
2n+k

ξn+k(v, dx)ν(dv) −
∫∫

xv ξ(v, dx)ν(dv)

≤
kn∑

k=0

λn,k |∗|
∫∫

x
�2n+kv�
2n+k

ξn+k(v, dx)ν(dv) −
∫∫

xv ξn+k(v, dx)ν(dv)

+
kn∑

k=0

λn,k |∗|
∫∫

xv ξn+k(v, dx)ν(dv) −
∫∫

xv ξ(v, dx)ν(dv)

≤
kn∑

k=0

λn,k

(
max(|x |, |x |) 1

2n+k
+ ε

)
< 2ε. (30)

Nowwe turn to the second parts of the integrals in (25) and (22) including the price functions.
This is more challenging as both integrand and integrator vary with n. The key is that the
absolute continuity of the noise trader’s demand ζ smooths the realised price

∫
Sn(x+z)ζ(dz)

per share for an order of size x . Define

f n(x) := x
∫

Sn(x + z) ζ(dz), n ∈ N. (31)

Since ζ � λ, there exists a density g ∈ L1(λ) with ζ(A) = ∫
A g dλ for all A ∈ B(R). Due

to the translation invariance of the Lebesgue measure, we can write

f n(x) = x
∫

Sn(x + z)g(z) λ(dz) = x
∫

Sn(y)g(y − x) λ(dy).

Since g ∈ L1(λ), we have that
∫ |∗|g(z − h) − g(z)λ(dz) → 0 as h → 0, see, e.g.,

[20, Lemma 2.7]. The reason is that g can be approximated in L1(λ) by (uniformly)
continuous functions, and for a uniformly continuous function g̃ we can use the estimate∫ |∗|̃g(z − h) − g̃(z)λ(dz) ≤ supz∈EZ

|∗|̃g(z − h) − g̃(z)λ(EZ ) which tends to 0 as h → 0.
As a result, we obtain

|∗| f n(x + h) − f n(x) ≤ sup
x∈EX

|∗|x sup
y∈EY

|∗|Sn(y)
∫

|∗|g(y − x − h) − g(y − x) λ(dy)
h→0−−−→ 0.

(32)
The uniform estimate |∗|Sn ≤ 1 yields that the family ( f n)n∈N is equicontinuous at every
fixed x . Consequently, we can apply Lemma 10 and (27) to obtain that

sup
m∈N

|∗|
∫∫

f m(x)ξn(v, dx)ν(dv) −
∫∫

f m(x)ξ(v, dx)ν(dv)
n→∞−−−→ 0.

It follows that for n large enough and all k ∈ N0

∣∣∣∣

∫∫
f n+k(x)ξn+k(v, dx)ν(dv) −

∫∫
f n+k(x)ξ(v, dx)ν(dv)

∣∣∣∣ < ε. (33)
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Furthermore, by ζ � λ,
∑kn

k=0 λn,k Sn+k → S λ-a.e., and dominated convergence, we obtain

kn∑

k=0

λn,k f
n+k(x) = x

∫ kn∑

k=0

λn,k S
n+k(x + z) ζ(dz) −→ x

∫
S(x + z) ζ(dz) =: f (x)

pointwise. Thus, dominated convergence yields that for n large enough

∣∣∣∣∣

∫∫ kn∑

k=0

λn,k f
n+k(x) ξ(v, dx)ν(dv) −

∫∫
f (x) ξ(v, dx)ν(dv)

∣∣∣∣∣
< ε. (34)

Combining the two estimates (33) and (34), we get that for n large enough

∣∣∣∣

kn∑

k=0

λn,k

∫∫∫
xSn+k(x + z) ζ(dz)ξn+k(v, dx)ν(dv)

−
∫∫∫

xS(x + z) ζ(dz)ξ(v, dx)ν(dv)

∣∣∣∣

= |∗|
kn∑

k=0

λn,k

∫∫
f n+k(x) ξn+k(v, dx)ν(dv) −

∫∫
f (x) ξ(v, dx)ν(dv)

≤
kn∑

k=0

λn,k |∗|
∫∫

f n+k(x) ξn+k(v, dx)ν(dv) −
∫∫

f n+k(x) ξ(v, dx)ν(dv)

+ |∗|
∫∫ kn∑

k=0

λn,k f
n+k(x) ξ(v, dx)ν(dv) −

∫∫
f (x) ξ(v, dx)ν(dv)

< 2ε.

Together with (30), the assertion follows. 	


Proof of Theorem 8 Step 1: For each n ∈ N, we choose a Kyle equilibrium (ξn
 , Sn
 ) ∈ �n ×
Sn ⊆ � × S from the embedded discrete model (24)/(25)/(26) that exists by Theorem 1.
The sequence (ξn
 )n∈N of Young measures is obviously tight in the sense of [6, Definition
3.3] since their support [x, x] is bounded. From Prohorov’s theorem for Young measures
[6, Theorem 4.10], it follows that (ξn
 )n∈N is relatively sequentially compact in the narrow
topology. That is, there exists a subsequence (n j ) j∈N and a limit point ξ
 ∈ �(EV , ν; [x, x])
such that ξ

n j

 → ξ
 narrowly as j → ∞. W.l.o.g. n j = j for all j ∈ N.

Next, we apply a version of Komlós’ theorem to obtain a limiting price function. Since
|Sn | ≤ 1 for all n ∈ N, Delbaen and Schachermayer [18, Lemma A1.1] guarantees
the existence of a measurable, EV -valued function S and forward convex combinations
(λn,k)n∈N,k=0,1,...,kn ⊆ R+, kn ∈ N with

∑kn
k=0 λn,k = 1 such that

kn∑

k=0

λn,k S
n+k

 → S
 λ − a.e. as n → ∞.

It remains to show that (ξ
, S
) is a Kyle equilibrium in the continuous model.
Step 2 (Optimality of ξ
given S
): Let ξ0 ∈ �. We have to show that

u(ξ0, S
) ≤ u(ξ
, S
). (35)
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Let us discretise ξ0 according to Lemma 11, such that ξn0 ∈ �n is a trading strategy of the
nth discrete game and ξn0 → ξ0 narrowly. But ξn
 from Step 1 is an optimal strategy (in the
nth discrete game) given Sn
 and hence un(ξn0 , Sn
 ) ≤ un(ξn
 , Sn
 ) for all n, and so

kn∑

k=0

λn,ku
n+k(ξn+k

0 , Sn+k

 ) ≤

kn∑

k=0

λn,ku
n+k(ξn+k


 , Sn+k

 ) (36)

for the forward convex combinations (λn,k)n∈N,k=0,1,...,kn from Step 1. Using that
∑kn

k=0 λn,k Sn+k

 → S
 λ-a.e., we can apply Lemma 9 to both sides of (36) to conclude

(35).
Step 3 (Rationality of S
 given ξ
): Our goal is to show that from the rational pricing

condition (26) of the discrete games for all n ∈ N, we can deduce the rational pricing
condition (23) of the continuous game. Sets of the form

A = [k/2m, (k+1)/2m), m ∈ N, k ∈ {(x−1)2m, (x−1)2m +1, . . . , (x+1)2m −1} (37)

constitute a ∩-stable generator of the σ -algebra B(EY ). Thus, by a Dynkin-argument (see,
e.g., [20, Theorem 1.1]), it is sufficient to verify (23) for A from (37). We fix a set A of this
form with m ∈ N. For n ≥ m, the rational pricing condition (26) for the nth discrete game
implies that ∫∫∫

Sn
 (x + z)1A (x + z) ζ(dz)ξn
 (v, dx)ν(dv)

=
∫∫∫ �2nv�

2n
1A (x + z) ζ(dz)ξn
 (v, dx)ν(dv).

(38)

We note that (38) only needs to hold for n ≥ m since ζ is already the limiting measure and
integrating the function 1A (x + · ) for a strict subset A of [l/2n, (l + 1)/2n) could produce
a bias.

We show the convergence of (38) to (23) for the left- and right-hand sides separately,
starting with the right-hand side. The function (v, x) �→ v

∫
1A (x + z) ζ(dz) is continuous

in x by the same reasons which lead to (32). Since it is furthermore measurable in v, it is a
suitable integrand for narrow convergence according to [5, Theorem 2.2(b)]. From the narrow
convergence of ξn
 → ξ
 it follows that

∫∫∫
v1A (x + z) ζ(dz)ξn(v, dx)ν(dv) →

∫∫∫
v1A (x + z) ζ(dz)ξ(v, dx)ν(dv).

Then, the convergence follows from (28) as in the proof of Lemma 9.
Now we turn to the left-hand side in (38). The convergence of the right-hand side already

implies the convergence of the left-hand side (without passing to convex combinations), but
it remains to verify that

∫∫∫
S(x+ z)1A (x+ z) ζ(dz)ξ(v, dx)ν(dv) is the limit. This follows

as in the proof of Lemma 9 by passing to convex combinations. The only difference is that
instead of (31) we consider the functions f̃ n(x) := ∫

Sn(x + z)1A (x + z) ζ(dz), n ∈ N. 	

Remark 4 In short, the approach is that averaging over the noise trader’s demand z1 makes
the insider’s expected gain

∫
x1(v − S1(x1 + z1))ζ(dz1) continuous in (v, x1) ∈ EV × EX ,

although the price function S1 can be discontinuous. Unfortunately, this approach does not
work in multi-period models. The reason is that, on the one hand, the price S2 in the second
period can discontinuously depend on x1 + z1. Thus, the gain in the second period,

∫
x2(v − S2(x1 + z1, x2 + z2))ζ(dz2), (39)
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is in general not continuous in (v, x1, z1, x2). On the other hand, the control variable x2 can
be conditioned on z1, and thus averaging the gain (39) over z1 while keeping x2 fixed would
not be consistent with the maximisation problem of the insider.

Appendix A

In the proof of Theorem 8 we need the following lemma, for a condensed proof see, e.g., [7,
Theorem 2.2.8].

Lemma 10 Rao [27, Theorem 3.2] Suppose that a sequence of probability measures (μn)n∈N
on (R,B(R)) converges weakly to a probability measureμ, and let F be a family of uniformly
bounded, pointwise equicontinuous functions from R to R. Then

sup
f ∈F

|∗|
∫

f (y)μn(dy) −
∫

f (y)μ(dy) → 0 as n → ∞.

Next we show how an insider strategy in the continuous Kyle game can be approxi-
mated in the narrow topology through a sequence of strategies in the discretised games (cf.
Subsection 4.1).

Lemma 11 Let ξ ∈ �(EV , ν; EX ) be an insider strategy in the continuous Kyle game. There
exists a sequence of strategies ξn ∈ �n, n ∈ N, in the discrete games such that (ξn)n∈N
converges narrowly to ξ .

Proof Let ξ ∈ �(EV , ν; EX ). To shorten formulae, we assume w.l.o.g. that ν({1}) =
ξ(v, {x}) = 0 for all v ∈ EV . We define approximating Young measures lying in �n by

ξn(v, · ) :=
2n−1∑

k=0
ν(Dn

k )>0

1
Dn
k
(v)

2n x−1∑

l=2n x

δl2−n
ν ⊗ ξ(Dn

k × Dn
l )

ν(Dn
k )

+
2n−1∑

k=0
ν(Dn

k )=0

1
Dn
k
(v) δ0,

v ∈ EV ,

n ∈ N,

where Dn
j := [ j2−n, ( j + 1)2−n). By [5, Theorem 2.2(d)], it is sufficient to show

∫∫
1A (v) f (x) ξn(v, dx)ν(dv) →

∫∫
1A (v) f (x) ξ(v, dx)ν(dv) (A1)

for all sets A = [k/2m, (k + 1)/2m), m ∈ N, k ∈ {(x − 1)2m, (x − 1)2m + 1, . . . , (x +
1)2m − 1} and f ∈ Cb(EX ). For every n ≥ m, the endpoints of A fall onto the nth grid, and
we get

∫∫
1A (v) f (x)ξn(v, dx)ν(dv)

=
∫∫

f (x)
2n−1∑

k=0
ν(Dn

k )>0, Dn
k ⊆A

2n x−1∑

l=2n x

1
Dn
k
(v)

ν ⊗ ξ(Dn
k × Dn

l )

ν(Dn
k )

δl2−n (dx)ν(dv)

=
2n−1∑

k=0
Dn
k ⊆A

2n x−1∑

l=2n x

f (l2−n)

∫

Dn
k

ξ(v, Dn
l )ν(dv)
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=
∫∫

1A (v) f

(�2nx�
2n

)
ξ(v, dx)ν(dv).

By pointwise convergence of 1A (v) f (2−n�2nx�) → 1A (v) f (x) as n → ∞, bounded
convergence leads to

∫∫
1A (v) f

(�2nx�
2n

)
ξ(v, dx)ν(dv) →

∫∫
1A (v) f (x) ξ(v, dx)ν(dv),

which shows that ξn → ξ narrowly. 	
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