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Abstract

Models derived from random utility theory represent the workhorse methods to learn
about consumer preferences from discrete choice data. However, a large body of
literature documents various behavioral patterns that cannot be captured by basic ran-
dom utility models and require different non-unified adjustments to accommodate
these patterns. In this article, we discuss strategies how to apply rational inattention
theory—which explains a large variety of such departures—to the analysis of dis-
crete choice among multiple alternatives described along multiple attributes. We first
review existing applications that make restrictive belief assumptions to obtain choice
probabilities in closed multinomial logit form. We then propose a model that allows
for general consumer beliefs and demonstrate its empirical identification. Further, we
illustrate how this model naturally motivates stylized empirical results that are hard
to reconcile from a random utility perspective.
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1 Introduction

Discrete choice models based on rational inattention (RI) theory are becoming popu-
lar in economics and marketing for studying consumer choices and preferences when
information processing is limited but adaptive. This article demonstrates how to apply
these models in various multi-attribute, multi-alternative (MAMA) contexts. Unlike
the traditional random utility model (RUM), RI-based choice models provide a uni-
fied framework to explain phenomena like consideration sets, stake sensitivity, and
brand-specific price responses, which previously required ad-hoc adjustments to the
RUM. This article aims to support applied researchers by: first, raising awareness of
the potential of discrete choice models under RI; second, outlining the steps for imple-
menting RI for empirical research; and third, clarifying the strengths and limitations
of different implementations.

Based on foundational ideas from psychology (e.g., Simon & Newell, 1971), ratio-
nal inattention theory, introduced by Sims (2003) in macroeconomics, suggests that
decision-makers (DMs) face cognitive limitations and, therefore, do not take in all
available information when making choices. DMs recognize their cognitive limitations
and strategically decide how much and what type of costly information to process in
each decision scenario. RI suggests that DMs adjust their processing efforts based
on prominent, accessible aspects of a choice task, which shape their prior beliefs
about unknown factors affecting utility. The adaptive and partial information process-
ing implied by RI motivates a rich set of behaviors, even with standard additively
separable utility.

Under RI, probabilistic choice follows from costly and thus imperfect processing
of information, i.e., from DMs’ residual uncertainty about what the utility maximiz-
ing choice alternative is. In contrast, the RUM by McFadden (1974) derives choice
probabilities by assuming that the DM acts on a larger information set than observed
by the analyst. Unlike RUMs, RI choice models can explain choices from MAMA sets
without assuming that only the decision-maker observes certain utility factors. This
aligns with earlier research that explained randomness in choice through cognitive
processes (e.g., Thurstone, 1927; Quandt, 1956; Louviere et al., 1999). RI adds to this
literature by offering a micro-foundation for probabilistic choice based on economic
optimization.

The general discrete choice problem under RI lacks a closed form solution. To
utilize standard estimation methods, current empirical RI discrete choice models (RI-
DCMs) make particular—and potentially unrealistic—assumptions about consumers’
prior beliefs, resulting in choice probabilities that follow a closed-form multinomial
logit (MNL) function of the underlying utility index. While these models can motivate
some deviations from the full information RUM, they face similar conceptual issues
as logit models, such as unrealistic substitution patters and exogenous consideration
sets.

To address these limitations, we demonstrate how to estimate a RI-DCM under
general prior belief assumptions, including rational expectations, and consumer het-
erogeneity. In this model, alternatives’ payoffs are represented by linear utility indices
based on preferences and attributes, which may be simple or complex. DMs can process
simple attributes at no cost, whereas processing or integrating utility from complex
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attributes requires costly effort. DMs have prior beliefs about the complex attributes,
assuming rational expectations. In choice experiments, these expectations are shaped
by the experimental design. We show that both preference parameters and the dis-
tinction between simple and complex attributes can be likelihood identified in this
model. The primary advantages of this model over existing empirical RI-DCMs are
that 1) it can explain a broader range of phenomena that deviate from the RUM-DCM
framework and ii) it enables more flexible counterfactual analysis. The drawback of
this approach is that it requires a numerical solution to the formal RI problem. Table 1
provides a comparison of existing methods for applying RI to MAMA data.

Using the RI-DCM with general beliefs, we demonstrate how different phenomena
contradicting the microeconomic foundation of RUMs in MAMA settings endoge-
nously follow from the optimal deployment of limited cognitive resources. Examples
include brand-specific price coefficients (e.g., Carmone & Green, 1981; Sawtooth
Software, 1996; Kalra & Goodstein, 1998), separate coefficients for different aspects
of price such as, e.g., a coefficient for regular price and one for a price discount or a
tax (Guadagni & Little, 1983; Blattberg & Neslin, 1989; Chetty et al., 2009), as well
as consideration sets and attribute non-attendance.

Table 1 Comparison of different empirical RI-DCMs

Strategy Paper Prior beliefs Implied choice Comments
probabilities
RI-DCM with Brown and Beliefs over index of Equivalent to multino- Assumed belief dis-
choice in closed Jeon (2024) unknown attributes  mial logit (additive tribution has full sup-
MNL form follows Cardell separability over alter- port on the real line
distribution native characteristics, ~which may be
fully compensatory)  unreasonable, e.g.,
with prices; does not
reproduce certain RI
features like conside-
ration sets
Joo (2023) Beliefs over all Equivalent to multino- Approach motivates
utility components  mial logit (additive the inclusion of non-
are a function of separability over alter- utility attributes in the
non-utility native characteristics, logit index; implied
components, fully compensatory)  prior distribution is
implicitly defined not accessible by the
such that resulting analyst; counterfactuals
choice probabilities with respect to beliefs
are equivalent to are available only in a
multinomial logit restricted fashion; does
in closed form not reproduce certain
RI features like
consideration sets
RI-DCM with This paper Any prior belief non-compensatory, Resulting model repro-
general beliefs distribution over a  not additively duces all qualitative
discrete state space, separable features of discrete

e.g., rational expecta-
tions over choice
tasks in a DCE

choice under RI, e.g.,
consideration sets or
attribute interactions
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48 S.Turlo etal.

In the RI-DCM with general beliefs, predictions of, e.g., consideration sets and
attribute non-attendance become implicit functions of the composition of a choice
set, reflecting adaptations to prominent features of the set. This flexibility is absent in
current empirical RI-DCMs which invoke very specific assumptions about consumer
beliefs (e.g., Joo, 2023; Brown & Jeon, 2024). Similarly, this RI-DCM predicts effects
of attribute range, number of attribute levels, and the size of choice sets on choice
behavior. RUMs typically do not account for these common properties of choice data,
at least not comprehensively in one unified model.

Different from extant models of consumer search and learning,! RI does not restrict
the structure of informative signals that the DM uses. This feature makes RI distinct
and more generally applicable than models where all uncertainty is resolved upon
search. For example, in the context of discrete choice experiments (DCEs) all rele-
vant pieces of information, i.e., attribute information for all alternatives, are readily
presented to DMs. Thus, the distinction between more and less processing of the
available information is qualitatively different from the distinction between knowing
or not knowing certain product attribute values as typical of search models. This idea
resembles the distinction between evaluation costs and search costs in Guo (2021)
and Gu and Wang (2022). Consequently, RI-DCMs are particularly important and
useful departures from extant models when evaluating and integrating information for
an updated overall understanding of a choice situation is decisive and effortful. In
contrast, search models are arguably more adequate when knowing or not knowing a
particular attribute makes the difference.

Finally, search models that allow for partial learning about the value of available
alternatives are more closely related to RI (e.g., Ursu et al., 2020). However, sequen-
tial search/learning models applied to MAMA choice likely will be computationally
intractable without observing the search/learning sequence. Alas, this sequence that
involves mental operations beyond reading attribute information may well be funda-
mentally unobservable. In addition, the standard assumption of normally distributed
prior beliefs and signals in these models does not correspond with the empirical dis-
tribution of attributes and their bounded support, especially in DCEs.

In this article, we provide an accessible presentation of the RI theory for studying
discrete choice in MAMA settings common in economics and marketing. Our contri-
butions are threefold. First, we outline two general strategies for applying RI to discrete
choice MAMA data and discuss their respective advantages and disadvantages. The
first strategy, typical for existing RI-DCMs, invokes specific assumptions about con-
sumer beliefs (continuous with full support following a Cardell distribution) that yield
choice probabilities in closed MNL form. The full support assumption contradicts
observable distributions of attributes. The second strategy can accommodate general
consumer beliefs and requires a numerical solver. A researcher choosing between
these strategies faces a trade-off between conceptual realism and computational bur-
den. Our second contribution is that this article is, to our knowledge, the first to detail
the necessary steps for implementing the second empirical strategy (“RI-DCM with
general prior beliefs") while accounting for consumer heterogeneity. Third, we demon-
strate that a RI-DCM with general beliefs can effectively reproduce various behavioral

! For a recent overview, see Honka et al. (2019).
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Discrete choice in marketing through... 49

patterns inconsistent with standard RUM models in MAMA settings parsimoniously.
In contrast, existing RI-DCMs that yield choice probabilities in closed MNL form
imply the same constraints as MNL derived from RU theory, such as independence of
irrelevant alternatives and strictly positive choice probabilities for all alternatives in a
set.?

The remainder of this paper is organized as follows. Section 2 derives discrete
choice among multiple alternatives described along multiple attributes under the RI
framework. Section 3 illustrates estimation and empirical identification of the model.
Section 4 discusses key features of the RI model and provides illustrative simulations.
Section 5 concludes with a discussion and an agenda for future research.

2 A rational inattention model of discrete choice

The basic idea behind RI theory is that DMs face an abundant amount of information
and cannot process all of it. However, they are aware of this limitation and decide
how to process the available information optimally, trading off costs and benefits of
being better informed. This idea was suggested by Sims (2003) to provide a unifying
framework for different frictions in macroeconomics. While the original model was
developed for continuous action spaces, Matéjka and McKay (2015) extend this theory
to discrete choices.

Our presentation builds on the discrete choice version of the RI model (Matéjka
& McKay, 2015; Caplin et al., 2019) and tailors it to the typical MAMA setting.
Introducing the model, we first present the RI choice problem and discuss how its
various components translate into the MAMA setting. Then, we turn to the problem’s
solution and cover how the various primitives affect the resulting choice behavior. In
particular, this will illustrate the impact of the complexity of a choice task and of the
incentives to process information.

To ease the exposition of the various components of the RI framework, we will
refer as an example to a DCE where a DM has to choose between a car and an outside
option. In this example, the final price paid by the DM consists of two components:
i) a list price that is easily evaluated by the DM, and ii) a discount that applies only to
specific cars (thus encouraging the purchase of such vehicles). While both components
have the same impact on final utility, we assume it is more effortful to find out if and
what discount applies to a particular car.

This simple example may align well with existing traditional search models if
determining the eligibility of a specific car is a simple search task, e.g., checking
whether the discount in monetary terms applies to a specific car model. However, we
posit a scenario wherein the eligibility of a specific car hinges upon (a combination
of) diverse characteristics. In such a situation, judging the applicability of the discount
requires the consumer to collect information from various sources and integrate it to

2 Matéjka and McKay (2015) already pointed out that a random utility model cannot generally capture
behavior implied by RI agents.
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50 S.Turlo et al.

determine the overall value of the discount. Consequently, it is possible that the DM
processes only some parts of the information and, therefore, may arrive at a faulty
evaluation of the final price, which in turn leads to choice errors.>

2.1 Formal problem and its translation into MAMA settings

We closely follow Caplin et al. (2019) in defining the problem faced by the rationally
inattentive DM. There is a finite number of states € the DM can learn about.* An
action a is a mapping from states to utilities. .A denotes the set of all possible actions.
The mapping u : A x @ — R describes the utility from any action in each state.
The problem faced by the DM is non-trivial because, typically, different actions are
optimal in different states, and the DM is uncertain about the true state. However, as
we will explain later, the DM can costly learn about the true state.

The general nature of RI theory provides room for different translations of the frame-
work into the typical MAMA setting in marketing. We naturally impose that actions
correspond to different alternatives from which the DM chooses and define states as
representing different choice sets characterized by the specific attribute compositions
of alternatives available to the DM. Accordingly, in this setting, €2 corresponds to the
set of all attainable choice sets in a given choice environment.

Payoffs Similar to the distinction between directly observable attributes and attributes
that need to be searched in search models (e.g., Honka et al., 2019; Gardete & Hunter,
2020) or the distinction between attributes that guide consideration and attributes that
are only processed upon consideration in two-stage models of choice (e.g., Aribarg et
al., 2018), we assume that the subjective value of alternatives is derived from attributes
that fall into two categories. The first category consists of simple attributes x; whose
joint valuation is immediate to the DM. The second category comprises complex
attributes x, whose joint valuation and integration with simple attributes requires
cognitive effort and time.’
We assume additive separability such that the subjective utility of an alternative is
given by
u(a, ) = X, (), + X, .()B,. 1)

3 There are many more things about a car that are likely payoff relevant to a DM, and it may or may not
be effortful to evaluate and integrate them into an overall evaluation. However, this minimal example will
help develop basic principles.

4 An alternative formulation with a continuous state space is given in Matéjka and McKay (2015).

5 Studies that explore the choice process using eye traces have documented an “orientation phase” where
the DM acquires partial information about the products, which guide her subsequent information acquisition
(e.g., Russo & Leclerc, 1994; Musalem et al., 2021). This orientation phase and subsequent behavior involves
both bottom-up and top-down processing (see Corbetta & Shulman, 2002 for a review).
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Discrete choice in marketing through... 51

where B, and B, are the respective part-worths of simple and complex attributes.
The dependence of X, s and X, . on w above highlights that attributes of alternatives
change from choice set to choice set.’

Before learning, the DM has some beliefs about the value of complex attributes
Xq,c, Which become more precise as the DM processes information. Note that any
uncertainty is due to complex attributes. We refer to the portion of utility derived from
simple attributes as the “simple utility component” while the portion derived from
complex attributes is termed the “complex utility component”.

In our example, the list price of a car is a simple attribute, and the discount is
a complex attribute that requires time and cognitive effort to process and integrate
with the simple list price to arrive at a final price and an assessment of utility. To
further illustrate the challenges associated with integrating information, consider the
following examples involving two price components: (i) prices are given in currency
units and discount values in percentages given as numbers, e.g., 9.90 Euro and a
16% discount, (ii) discount values in currency units, e.g., 9.90 Euro and a 1.58 Euro
discount, (iii) discount values mentioned in some way together with the final price of,
in this example, 8.32 Euro. Cases (i) and (ii) require the DM to integrate the discount
information with the price. However, this exercise arguably is more involved in case
(i) than in case (ii) because the DM has to calculate the discount value as part of
the integration exercise. The main point, however, is that case (ii)—where both the
price and the discount are presented in currency units—is harder than case (iii), where
the final price is displayed. This added difficulty stems from the need to integrate
two pieces of information by subtracting the discount from the price to determine the
overall value.

Prior beliefs The DM’s problem is given by a pair (, A). Here, © € A() is her
prior belief over the states of the world, with A(2) being the set of distributions over
@, and A C A is the set of actions she can choose from. In our illustrative example, a
state w corresponds to a specific choice set characterized by a particular combination
of attribute realizations. Since simple attributes are processed at no cost by the DM,
each combination of simple attribute realizations X, induces a different prior belief
distribution ;s € A(2) over possible choice sets w € Q2. In general, these prior beliefs,
conditional on costless information, will differ from the unconditional distribution
over choice sets. In particular, the DM obtains prior beliefs ug by conditioning the
distribution over all choice sets on the simple attribute realizations faced in a specific
choice set @. Formally, prior beliefs are given by

us(w) = Pr (CUH(Xa,s (a}))}aeA)

where the distribution over choice sets, Pr(w), is determined by the choice environ-
ment.

6 Additive separability is by no means a necessary but often a natural assumption when, e.g., different price
components add up to a total price.

7 With the present notation, any state or choice set is defined by the configuration of the alternatives:
w = {(Xa,s (w), Xa,c(w))}ueA~
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52 S.Turlo et al.

Table 2 Set of choice sets with respective payoffs and prior beliefs

Choice set w] w) w3 w4

Probability of w; yp(1 = va) Ypvd A =yp)d = va) (A —yp)va

Payoffs:

Inside alternative u; Br — pL Bp—pL+D By — PH Bp—pHu +D

Outside alternative u o 0 0 0 0

Information set pP=DpL, p=DpL, P = PH, P = PH>
d € {0, D} d € {0, D} d € {0, D} d € {0, D}

Prior beliefs g :

Pr(ur = Bp — pL) L=y I=vq 0 0

Pr(u; = Bp — pr + D) vd Yd 0 0

Pr(uy = Bp — pn) 0 0 l—va 1—vyq

Pr(u; = Bp — pu + D) 0 0 vd Yd

Each column represents a different choice set w; . In addition to the payoffs, the objective probability of each
choice set, the information set of the DM before any learning takes place, as well as the resulting prior beliefs
are displayed. Note that this fully characterizes the DM’s prior since for all choice sets Pr(u o = Olw;) =1

Intuitively, one can think of a sequentially updating DM who is aware of the choice
environment (e.g., an experimental design) and the implied distribution of attributes
over all possible choice sets. Once she observes the realized simple attribute values
(x5) in a specific choice set, she forms conditional prior beliefs p, which in turn
determine how she processes complex attributes X..

Returning to our exemplary DCE, suppose the DM chooses only between a single
car brand and an outside option of not buying. The utility of the inside alternative, i.e.,
the car, is givenby u; = B, — p+d with B, being the brand coefficient, p being a simple
price, and d being a complex discount. For the sake of a minimal example, we assume
that brand is a simple attribute as well and that whatever (complex) criteria qualify the
car for the discount only contribute to utility through the discount, such that cars with
and without the discount have the same brand coefficient ;.8 We further assume that
the DM has to commit to purchasing the car at a price p, i.e., pay p and only after is
reimbursed d, depending on the eligibility of the car. The utility of the outside option
is normalized to up = 0. Further, the experimental design is such that p € {pr, pu}
with Pr(p = p.) = ypandd € {0, D}, D > 0 with Pr(d = D) = y4 > 0. In
Table 2, the columns represent the possible choice sets of this design. The DM can
face four different choice sets as there are two attributes with two levels each, so
|2] = 4.

The objective probabilities of each choice set w (prior to the realization of the simple
attributes) are displayed in Table 2. Since there are only two possible realizations of
simple attributes, characterized by the two levels of the simple price py and py, there

8 In the notation of Eq. 1, we have the following decomposition into simple and complex contributions to
utility: [1, pls[Bp, —11 + d¢ - 1 with a shared price coefficient equal to 1.

9 Inour example, the conditional distribution of the complex attribute equals the marginal distribution due
to the orthogonal design. In designs with built-in correlations, e.g., with conditional pricing, the realized
values of simple attributes will predict the distribution of complex attributes values.
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are two different conditional prior beliefs 1ty by design. Each combination of simple
attributes results in different prior beliefs. In our example, choice sets w; and w; give
rise to the same prior beliefs, as do choice sets w3 and w4, although the beliefs differ
between these two groups (see the last four rows in Table 2).

Information processing Under RI, the DM first chooses what and how much to learn.
This process is formally modeled by allowing the DM to choose the distribution of
an unrestricted stochastic signal. The signal (usually imperfectly) indicates the true
“state of the world”. The distribution of the stochastic signal results from the DM’s
information processing strategy. The DM controls the quality of the signal through
her processing effort. More costly effort results in more precise signal distributions.

After observing the realized signal (drawn from the chosen distribution), the DM
forms a posterior belief. Given this posterior belief, the DM chooses the alternative
a that maximizes her payoff. Consequently, the DM’s posterior belief about the true
complex attribute(s) levels in a choice set translates into a belief about the optimal
action a that then determines the DM’s choice.

We follow the established RI literature in using an information cost function that is
based on Shannon mutual information. Then, the optimal signal is such that different
signal realizations deterministically map into different choice actions a, so that a pro-
cessing strategy is equivalently characterized by (state) conditional signal distributions
or (state) conditional choice probabilities P (a|w). This probability thus corresponds
to the probability that the DM’s processing effort translates into a signal that points to
choice a in the true state w, which is then chosen deterministically. Consequently, the
DM chooses (and subsequently acts upon) the conditional choice probabilities P (a|w)
that maximize expression Eq. 2.

D (@) (Z P(alo)u(a, w)) -2 [Z 5 (@) (Z P(alw)In P<a|w>) — Y P@np (a)}

e acA weQ acA acA
(2)

The first term in expression Eq. 2 captures the expected utility from choosing con-
ditional choice probabilities P(a|w). The sum )_,_, P(alw)u(a, w) is the expected
utility from a particular state w given P (a|w). The sum of all state-specific expected
utilities (w € ) weighted by the prior probabilities, according to ug, yields the
expected utility over all possible choice sets, given the realized values of simple
attributes in the current choice set. The more weight P(a|w) puts on the optimal
actions in the respective states, i.e., the higher the quality of the signals, the higher the
expected payoffs of the DM.

The second term of expression Eq. 2 formalizes the information processing costs.
The term in brackets is known as mutual information that is multiplied by A > O,
the unit costs of information. Mutual information measures the expected reduction
in choice uncertainty due to information processing. The stronger P (a|w) deviates
from the endogenous unconditional choice probability Ps(a) = Y, cq ts(w) P(alw),
putting more weight on the optimal action in a choice set w, the higher the costs of infor-
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54 S.Turlo etal.

mation processing. Mutual information is based on the concept of Shannon entropy,
an uncertainty measure rooted in information theory.!? It is the difference between
the entropy of unconditional choice probabilities Ps(a) (in a choice set characterized
by specific realizations of simple attributes), and the expected entropy of conditional
choice probabilities, P(a|w). The expectation is again formed over the prior distri-
bution of complex attributes, conditioned on realized simple attributes in a particular
choice set (iLy).

Unconditional choice probabilities P(a) correspond to the probability of choosing
alternative a from a choice set w, given a processing strategy, but before actually
processing the costly information about the complex attributes in a specific choice
set in line with this strategy. Therefore, unconditional probabilities are not arbitrary,
subjective functions of simple attributes. Instead, they are defined as prior expectations
over how choice probabilities would change through costly processing of possible
realizations of complex attributes and are thus constrained by the equality Ps(a) =
Y weq Ms(w) P(alw). Constraining the prior to be equal to the expected posterior
beliefs makes the RI-DM coherent in a Bayesian sense and guarantees that processing
complex information will be associated with positive costs (as mutual information
cannot be negative when P (a) = Zweg s (w) P(a|w)).

Turning back to the exemplary DCE, a DM will form, based on the simple brand
and price that she processes at no cost, beliefs over possible payoffs. Depending on
the observed simple attributes, she has different prior beliefs over possible payofts
(see, e.g., columns 2 and 3 in Table 2). This prior belief will affect how she processes
the information about the discount, that is, how much time and effort she spends on
reading product descriptions, checking discount criteria, or contemplating the eco-
nomic consequences of her purchase. This, in turn, translates into an expectation of
how likely she is to purchase the car (Ps(a)) taking into account that the discount may
or may not apply as by her conditional prior.'!

To clarify the difference between conditional and unconditional choice probabili-
ties, P(alw) and Ps(a), suppose it is optimal to choose the car when the discount is
high and the outside option when it is low. If processing information is free (A = 0), she
would optimally perfectly identify the true state and choose the best state-contingent
option. Accordingly, the conditional choice probabilities of buying the car will equal
one if the discount applies and zero otherwise. Thus, the DM will always choose the
utility-maximizing alternative and make no choice errors if A = 0. In this case, the
unconditional choice probability of buying the car will be equal to the conditional
prior belief: Pr(d = D) = y,.

10 The entropy of a distribution g on € is formally given by — 3" .o ¢(®) Ing(w).

1" In the RI framework, this expectation is the result of the aforementioned formal optimization, in reality
this may be either the result of determining an optimal decision rule that is applied repeatedly to different
choice tasks or it may be learned over time through experience (Mackowiak et al., 2023). DCEs are an
example of the former case because there is no feedback or learning from individual choices in such
experiments.
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The RI framework is agnostic about whether processing information is hard because
it is cognitively difficult to determine the actual value of complex attributes or due to
the integration of different attribute realizations into a single value through cognitive
processing, e.g., calculations. Moreover, A may vary across individuals, e.g., due to
differences in cognitive ability or prior experience, and across qualitatively different
choice environments. In the case of a complex discount, processing the eligibility
requirements will be affected by the number of criteria that must be checked, the
font size used to describe the discount, and the characteristics of the DM, e.g., prior
experience or (intellectual) ability.

2.2 Solution, endogenous consideration sets, and stochastic choice

The solution to the maximization problem of the DM in expression Eq. 2 with respect
to P (a|w) gives us the state-contingent choice probabilities for all actions as a function
of unconditional choice probabilities (Matéjka & McKay, 2015):

Py(a) explu(a, )/}
ZbeA Py () exp{u(b, w)/A} '

P(alw) = 3

By rewriting Pg(a) exp{u(a, w)/1} as exp{(u(a, w) + Aln Ps(a)) /A}, Eq. 3 reveals
that state-contingent choice probabilities P (a|w) are determined by a modified logit
formula. In this formula, the payoffs from an action a in a state w are adjusted by
X In Pg(a) and divided by the information processing costs A. The adjustment depends
on the unconditional choice probability of a that is a function of prior beliefs condi-
tional on simple attributes (1) and the information processing costs. While choice
probabilities depend on the payoffs in a particular state, similar to a RU logit model,
they are shifted towards those actions that appear to be more attractive based on prior
information. The extent of this shift depends on the magnitude of the processing costs
A. The lower these costs, the stronger the state-contingent choice probabilities will
deviate from their unconditional counterparts towards the action that is optimal in a
given state w.

Equation 3 also points to the qualitatively different impact of simple and complex
attributes on choice in this model, tailored to a MAMA setting. Because realizations of
simple attributes affect both prior beliefs w; and choice specific payoffs u(a, w), both
the unconditional choice probability Ps(a) and the term exp{u(a, w)/A} are affected.
In contrast, realized values of complex attributes, which require cognitive processing,
will affect only the latter component. This reflects that realizations of simple attributes,
together with the (conditional) distribution of complex attributes, determine the opti-
mal processing strategy.

Returning to our sample DCE, in choice sets where the simple price is either very
large or very small, the costs of making a choice error when choosing based on prior
beliefs are small, and so the DM may choose not to process any information about the
discount. However, when the difference between prior expected payoffs of available
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alternatives is small, so that the DM is a priori indifferent between the car and her
outside option, the costs of a choice error are rather large. Consequently, obtaining a
(more) precise signal over the true value of the discount becomes valuable to the DM.

Sufficient conditions and endogenous consideration sets Caplin et al. (2019)
characterize the set of actions chosen with strictly positive probability—the DM’s
consideration set. They show that choice probabilities P (a|w) that fulfill Eq. 3 are
optimal in the sense of RI if and only if

s (w) exp{u(a, w)/\}
> bea Ps(b) explu(b, w)/2} —

“)

we

for all @ € A. This condition holds with equality when Pg(a) > 0. The set of alterna-
tives with Pg(a) > 0 is interpreted as a consideration set.

The reason for the endogenous formation of consideration sets is as follows. Con-
sider the DM’s objective in expression Eq. 2, and recall that it is costly to choose
state-contingent choice probabilities that deviate from unconditional choice probabil-
ities. By setting Py(a’) = 0 for some a’, such that in all states P (a’|w) = 0, the DM
incurs lower processing costs since these actions’ state-contingent choice probabilities
always equal the unconditional choice probabilities.

Intuitively, consideration sets simplify the information processing (and thus save
cognitive costs) by reducing the dimensionality of the DM’s problem. In typical mar-
keting settings, the endogenous consideration set will be a function of realized simple
attributes in a choice set, the (conditional) distribution of complex attributes, and cog-
nitive costs. In our example, the DM may find it optimal to choose on the basis of
the simple price alone if the expected gains from processing information about the
complex discount is not worth the associated costs of processing.

Endogenous stochastic choice As discussed above, the rationally inattentive DM will
typically make choice errors because information processing is costly (and perfectly
identifying the state is not optimal due to the convex information cost function). So,
there are cases where the signal indicates d = D, such that the DM chooses to buy the
car in our simplistic example, but where—in hindsight—it would have been optimal
not to buy the car as the discount does not apply. Thus, such choice errors are the
result of optimal but constrained behavior. They do not appeal to aspects of utility
only observed by the DM but rather to the DM’s imperfect observations or processing.
Hence, the probabilistic nature of choice under RI simply reflects the DM’s information
processing, which is imperfect because of processing costs.

Note that the larger the information processing costs, the more (or more conse-
quential) choice errors the DM will make, everything else equal. Also, the strategy
implied by maximizing the expression in Eq. 2 is adaptive in the sense that the optimal
amount of costly information processing, as provided by complex attributes, differs
as a function of the values of simple attributes in a choice set. We provide numerical
illustrations in Section 4.
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3 Empirical identification strategies

In the RI framework, three primitives determine the likelihood of data given the RI
model:

e preferences or payoffs,
e information processing costs, and
e prior beliefs.

In general, empirical applications fix two out of these three and learn from data about
the remaining one. Therefore, an analyst interested in inferring preferences has to
make assumptions about what a state is, what DMs may costly learn, and what they
believe about those costly to learn aspects. Since the likelihood in the RI framework
is homogeneous of degree zero with respect to payoffs and costs, only their ratio is
directly identifiable from the choice data. This follows from the fact that the DM’s
objective function is homogenous of degree one.

Existing applications make strong, and arguably often unrealistic, assumptions
about DMs’ prior beliefs to obtain choice probabilities in closed MNL form. However,
these approaches, which we present in detail next, a priori rule out many qualitatively
distinguishing features of discrete choice under RI, such as endogenous considera-
tion sets. For this reason, we lay out the estimation and identification of an RI-DCM
capable of incorporating general prior beliefs—thereby preserving such features—in
Section 3.2.

This is followed by an illustration of the empirical identification and Bayesian
estimation of the RI-DCM with general beliefs in a hierarchical setting with hetero-
geneity (Section 3.3). We discuss how the hierarchical structure facilitates inference
about heterogeneity of both preferences and information processing costs. Finally, we
demonstrate likelihood identification of simple and complex attributes.

3.1 RI-DCMs with choice probabilities in closed MNL form

The key difficulty in solving the RI choice problem is to determine the unconditional
choice probabilities P (a) for the individual alternatives a. Typically, the solution is
determined by a set of non-linear equations. Once these probabilities are known, the
conditional choice probabilities follow immediately from Eq. 3 both for continuous
and discrete prior beliefs.

To circumvent this issue, existing approaches with observational data typically
choose, sometimes only implicitly, prior beliefs such that the resulting conditional
choice probabilities have a closed multinomial logit form. The resulting choice prob-
abilities depend on an additively separable index of observable characteristics of
alternatives,

_ explx,B)
Pl = s e B1’

where x/, encode observable characteristics of alternatives and B are coefficients esti-
mated from data. Observable characteristics may include non-price attributes and
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various price components. This expression for choice probabilities is identical to the
RU logit with type 1 extreme value (T1-EV) distributed error terms.

The advantage of this strategy is that it translates the RI framework into a tractable
logit form, which facilitates estimation. Moreover, it provides a micro-foundation for
DCMs that include non-utility components (Joo, 2023). However, a crucial implica-
tion of constraining RI in this way is that documented behavioral patterns, such as
interactive contributions of attributes or endogenous consideration sets, are ruled out
a priori (see Bertoli et al., 2020, and Joo, 2023, for applications under these assump-
tions). Moreover, assumptions about beliefs implied by this formulation often, if not
always, conflict with their rational counterparts, as discussed in more detail below.

Furthermore, existing contributions differ in their assumptions on the nature of sim-
ple information. One group of papers such as Brown and Jeon (2024) assume, similar
to the proposed operationalization in Section 2, that certain components of utility are
simple and thus do not require any processing. They analyze choices for insurance
plans and assume that utility from choice options can be linearly decomposed into
simple (insurance premiums) and complex payments (out-of-pocket-costs).!> Other
papers, including Joo (2023) and Natan (2021), build on the assumption that there are
consideration shifters such as advertising or prior product purchases, that shift prior
beliefs but have no impact on consumption utility.'?

Cardell prior beliefs If prior beliefs over the uncertain utility components ({x;’ Belaea)
follow independently and identically distributed Cardell distributions, the solution
to the RI problem yields logit choice probabilities with indices that are additively
separable in simple (directly observed and processed) and complex (costly processed)
components, see Brown and Jeon (2024), Bertoli et al. (2020), and Porcher (2019).

Brown and Jeon (2024) as well as Bertoli et al. (2020) show that the DM then always
considers all alternatives, i.e., P(a) > 0 for all alternatives ¢ € A, and unconditional
choice probabilities are given in closed-form by

exp{Cx; B/}

P(a) =
@ >_»exp{Cx, B, /M}

where C is a function of the variance of complex component x;, .8, and informa-
tion processing costs A.!* This together with Eq. 3 implies that choice probabilities

12 A nice feature of the strategy proposed by Brown and Jeon (2024) is that the authors are able to
differentiate choices under full information and under the existence of information frictions essentially
directly. Since simple and complex utility components both affect costs of insurance, DMs acting under
full information will react equally to changes in simple and complex components. However, if DMs react
differently to changes in the two utility sources, one can conclude that imperfect information about the
component associated with the smaller reaction prevails.

13 Contrary to what the term “consideration shifters” may suggest, the models in Joo (2023) and Natan
(2021) rule out the existence of consideration sets a priori.

14 Formally, this is related to the following observation. Conditional choice probabilities derived under RI
in Eq. 3 resemble choice probabilities obtained from RUM with alternative’s utilities given by

ula, w) = Xéz,sﬂs + Xﬁz,c/gc +log P(a) + eq
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conditional on a specific choice set for an alternative a read

exp{(x; ,(CBy + By) + X B.)/A}
Y pexpl(x, (CBs+ By) +x), B)/*}

P(alw) =

Defining [~3S = Cf, + B, one can see how this derivation can motivate different coef-
ficients for, e.g., a simple and a complex component of price. However, the resulting
model otherwise is indistinguishable from a standard logit RUM.

Prior beliefs consistent with RI choice probabilities in closed MNL form In the
application by Joo (2023), each alternative a € A is characterized by a set of observable
consideration shifters d,, e.g., advertising or shelf placing, that solely affect prior
beliefs but not consumption utility.!> All product attributes are assumed to be complex
sothatu(a, w) = x.. ,B.. Given prior beliefs 1, that depend solely on the informational
shifters {d,}4c4, and information costs A the DM learns and chooses following the RI
framework. Joo (2023) shows that for any combination of alternative specific payoffs
{u(a, w)},, information costs A, and strictly positive unconditional choice probabilities
P (a), there are prior beliefs u that are consistent with choice behavior of a rationally
inattentive DM.

However, the actual parameterization Joo (2023) brings to the data, i.e., a logit
form with an additively separable index of alternative specific attributes x. , and
information shifters d,, requires very specific beliefs about the index from alternative
specific attributes X, ,. These beliefs are not derived from the objective distribution of
this index in the marketplace and are substantially different from this distribution, as
already implied by the full support assumption.'® This limits the formulation proposed
in Joo (2023) as a model of rationally inattentive DMs that acquire knowledge about
the distribution of alternative specific attributes X, , in the marketplace over longer
time horizons.

3.2 RI-DCM with general prior beliefs

The RI-DCM with general prior beliefs does not have a closed-form solution, and
we need to solve for choice probabilities numerically to compute the likelihood in
this model. However, over and above incorporating more realistic assumptions about
beliefs, this generalization yields the qualitatively distinctive features of RI discrete
choice we previewed in Section 1 and will elaborate on in Section 4. In applica-
tions, prior beliefs can be determined, for instance, by assuming rational expectations

where ¢, are identically and independently T1-EV distributed. The Cardell distributed prior beliefs over
complex utility components X, ¢, together with &4, follow the T1-EV distribution. This feature is key for
obtaining unconditional choice probabilities in closed form. For a detailed derivation, see Supplemental
Appendix A-1 of Brown and Jeon (2024) and Appendices A.1 and A.2 in Bertoli et al. (2020).

15 Natan (2021) employs a similar identification strategy. In this paper, however, information processing
costs A explicitly depend on the size of the choice set.

16 While Cardell beliefs result in additive separability as demonstrated by Brown and Jeon (2024), the
model in Joo (2023) is not immediately consistent with Cardell beliefs because of the assumption that the
outside good payoff is known with certainty.
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Use
Use Pf(a) to compute Use Pf*1(alw) to .
% (a) to comp s al) DPL,PY) < £2 P (ala) = PH*1(ale)
AT ale) compute P () as likelihood
Sett=t+1

Fig. 1 Flowchart of the Blahut-Arimoto algorithm to compute the likelihood in RI-DCM

about the experimental design (in case of DCE data) or the empirical distribution of
attributes (with observational data). However, the model could readily accommodate
directly elicited, potentially heterogeneous beliefs about the (conditional) distributions
of complex attributes and implied choice sets.

Likelihood computation Conditional on 8, and B, the utility of the DM, u(a, w),
is given by Eq. 1. Given u(a, w), us(w), and A, the likelihood can be obtained by
computing the optimal conditional choice probabilities, P(a|w), in Eq. 3. As P (a|w)
is a function of the endogenous unconditional choice probabilities Ps(a) in Eq. 3,
we solve for both P (a|w) and Pg(a) using the Blahut-Arimoto algorithm (Cover and
Thomas, 2006).

The algorithm starts by initializing the P(a) and iterates between updating P (a|w)
and Pg(a) until convergence. The first step of each iteration ¢ uses the optimality
condition in Eq. 3 to compute P! *l(a|w) given P!(a) obtained in the past iteration.
The second step computes P! *1(a) by integrating P! +1(a|w) over the (conditional)
prior belief distribution:

s (@) exp{u(a, w)/A}
> bea P{ (D) explu(b, w)/r}

P a) =) us@ P @lw) = Pl(@) ) ®

weR we

We calculate the distance between unconditional distributions obtained in subse-
quent steps, P/*! and P!, via the Bhattacharyya (1946) distance D(P!*!, P!). The
algorithm stops when D(P!T!, P!) < £ or when the maximum number of iterations
iteryqy is reached. The converged conditional choice probabilities give us the indi-
vidual level likelihood L(us (w), By, Be, ) = P (a|w).!” Note that parameters £ and
iteryqy govern the precision of the numerical solution, and care must be taken in
setting their value. Figure 1 shows the flowchart of the algorithm. Inference based on
solutions from the Blahut-Arimoto algorithm, and specifically Markov Chain Monte
Carlo (MCMC) estimation, is computationally costly as we need solutions for every
unique combination of a choice set indexed by simple attribute realizations with model
parameters visited by the MCMC.

To speed up computations, without giving up on required precision, we employ
two optimization strategies. First, we optimize the initialization of the starting val-
ues (Pj,i¢(a) in Fig. 1) by leveraging (saved) solutions from the current state of the
MCMC. At each MCMC draw r, we set Piyi(a) = (1 — y)Pf(a)l—1 + y/|Al

17 Convergence of the algorithm has been proven by Csiszar (1974).
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where P;(a)|,—1 denotes the converged unconditional choice probabilities from the
last MCMC draw, y € (0, 1] is a weight parameter, and |A| is the number of alter-
natives in the choice set.!® For » = 1 we use uniform choice probabilities as initial
values. Second, we implement a parallelized version of the Blahut-Arimoto algorithm,
which simultaneously computes likelihoods for multiple choice observations.

Identification As only the ratio of costs and preferences can be identified from choice
data, preferences B, and B, can be identified by fixing A and leveraging variations
in simple and complex attributes across alternatives and choice sets presented to the
DM.!° However, there may be situations without variation in simple attributes. For
example, one could think of “brand” as the only simple attribute. The RI model is still
identified in this case, subject to variation in a complex attribute, e.g., total price, in the
same way as a simple RUM with alternative specific constants. However, with only
one configuration of simple attributes, there is only one optimal processing strategy
(see expression 2). If this strategy results in a full consideration set, the model is
empirically indistinguishable from a standard RUM. However, note that depending on
unobserved heterogeneous preferences, consumers may have different consideration
sets that are endogenous to their brand preferences and price sensitivity. However, if
the environment is such that not all the brands are available all the time, there will be
variation in the conditioning argument to the optimal processing strategy under RI.

Finally, it is important to note that point identification of preferences may not
be achieved, since deterministic choice is a possible endogenous outcome under RI.
This occurs, for instance, at extreme values of A. Intuitively, a DM with a very high
information acquisition cost does not react to variations in the complex attributes,
and one with very low information acquisition costs fully processes the complex
attributes, leading to deterministic choices (see Section 4). Both of these cases result
in set-identification of preference parameters.2” In this context, our Bayesian inference
framework, illustrated next, will be useful, as the likelihood surface then exhibits flat
regions, complicating maximum likelihood estimation.

3.3 Empirical identification with DCE data under preference heterogeneity

We now illustrate the Bayesian estimation and empirical identification of the RI-
DCM with general beliefs proposed in Section 3.2, using simulated data, in a “small
T,large N" setting, typical of DCEs in marketing. We use standard weakly informative
subjective prior settings for the parameters indexing hierarchical prior distributions
(see Appendix A.2 for details).

18 The transition kernel of our MCMC naturally results in unconditional distributions (implied by a proposal
for a new parameter value) that often are close to those at the current state. The initialization guarantees
non-degenerate starting values, i.e., a vector of probabilities with all entries larger than zero and smaller
than one. In our simulations, we found y = 0.2 to work well.

19 Appendix A.1 illustrates how a difference in processing costs AA can be empirically identified if a DM
with invariant preferences makes decisions in different environments.

20 We illustrate set-identification of preferences in Appendix A.3.
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Table 3 Posterior means of preference distributions for different model specifications

Model Brand Price Discount 1Bp/Bal [Bp/Bpl LMD

Data generation 2.50 -1.00 =—Bp 1.00 0.40

RI-DCM 2.50 -1.00 =-pBp 1.00 0.40 -2,530.29
(0.05) (0.02)

RU logit separate 27.61 -9.16 4.44 2.06 0.34 -2,620.36
(0.69) (0.22) (0.13)

RU logit joint 9.81 -3.95 =-Bp 1.00 0.40 -4,558.35

(0.19) (0.07)

We report data generating parameters as well as the estimated posterior means of the RI-DCM and the
benchmark logit models with and without the constraint 8, = f;. Standard errors are in parentheses.
|Bp/Bal and |Bp/Bp| are the ratios of mean coefficients

We simulate data from the following hierarchical setup. A sample of rationally
inattentive DMs (N = 1, 000) face T = 20 choices between an inside and an outside
good each. The utility of the inside good to DM j in choice task 7 is given by u; ;, =
Bb,j + Bp,j(pr — d;) where B, ; is the brand coefficient, 8, ; the price coefficient,
p: 1s the price, and d; is the discount. The utility of the outside option is normalized
to zero: up = 0. In our simulation, brand and price are simple attributes and thus
perceived and processed, i.e., integrated to an overall utility, immediately and at no
cost, while the discount requires costly processing.

We first illustrate the case without heterogeneity in processing costs. Here, all indi-
viduals have the same processing costs of A = 0.25. DMs differ in their structural
utility parameters. Preference coefficients are generated from the following distribu-
tions: B, ~ N(2.5,0.25), B, ~ N(—1,0.04). Prices p and discounts d are drawn
uniformly and independently from the following sets: p € {2.5,3,3.5,4, 4.5} and
d € {0,0.5, 1, 1.5, 2} such that the resulting design is orthogonal. Individuals know
the value of the price p, and for all prices and for any discount level d’ the prior beliefs
are given by Pr(d = d'|p) = 1/5.

With the simulated data, we fit the RI-DCM and two RU logit specifications: one
that allows for separate price and discount coefficients (“RU logit separate”) and one
with only one coefficient measuring the utility of money (“RU logit joint™), as in the
data-generating process. We rely on Rossi’s bayesm-package for the estimation of the
hierarchical RU logit (Rossi et al., 2005). The estimation of the hierarchical RI-DCM
employs Metropolis-Hastings steps to update individual-level preference parameters
and relies on standard results for updating parameters indexing the hierarchical prior
distributions (e.g., Rossi et al., 2005). We obtain the likelihood by solving the prob-
lem Eq. 2 for given parameters numerically with the Blahut-Arimoto algorithm, as
described in Section 3.2. Without loss of generality, we fix the value of X to be equal
to its true value in estimation. We will revisit this point below.

Table 3 summarizes posterior means and Table 4 reports posterior variances. We
see that the estimated RI-DCM nicely recovers data-generating parameters. We use
log marginal density (LMD) estimates throughout the paper to compare model fits
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Table 4 Posterior variances of

preference distributions for Model Brand Price Discount
different model specifications Data generation 0.25 0.04 = Var(8,)
RI-DCM 0.33 0.09 = Var(8p)
(0.05) 0.01)
RU logit separate 16.00 1.71 1.93
(4.02) 0.39) 0.31)
RU logit joint 4.03 0.71 = Var(8p)
0.71) 0.11)

We report data generating parameters as well as the estimated posterior
variances of the RI-DCM and the benchmark logit models with and
without the constraint 8, = . Standard errors are in parentheses

(see Rossi et al., 2005). The inferior fits of the RU logit models, the (still) current
benchmark, testify to the empirical identifiability of the RI-DCM (see the last column
in Table 3). The RU logit with separate parameters for price and discount fits the
data much better than the RU logit with only one price coefficient, i.e., suggesting
that different “sources of money” are valued differently. However, here the larger
magnitude of the price coefficient, relative to the discount coefficient, simply reflects
that rationally inattentive DMs react to the realized discount value adaptively, both as
a function of the realized (simple) price that varies across choice sets and as a function
of heterogeneous preference coefficients that vary across DMs.

As a consequence, the RU logit also struggles with measuring heterogeneity in
preference parameters. For example, the RU logit dramatically overestimates the het-
erogeneity in the price coefficient (and the discount coefficient, where separately
specified). This observation is important given that existing applications of RI to
discrete choice with observational data present reinterpretations of RU logit choice
conditioned on additively separable indices.

Finally, Table 5 reports elasticities for all models given changes in different dis-
count and price levels. Elasticities are calculated using posterior expected (changes in)
choice probabilities and, therefore, incorporate all posterior uncertainty. The columns
Discount A and Price A report elasticities resulting from a discount decrease from
d = 1tod = 0.5, and a price increase from p = 4 to p = 4.5, respectively. Similarly,
columns Discount B and Price B denote scenarios where discounts decrease from

Table 5 Elasticities for different price and discount levels

Model Discount A Price A Discount B Price B
RI-DCM 0.28 0.52 0.21 0.52
RU logit separate 0.25 0.53 0.29 0.58
RU logit joint 0.38 0.38 0.38 0.38

Columns report elasticities from changes in discount (Discount A and Discount B) and changes in price
(Price A and Price B). The elasticities in the first two columns are calculated for an inside good with p = 4
and d = 1 and in the last two columns for an inside good with p = Sand d =2
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d =2tod = 1.5, and prices rise from p = 5 to p = 5.5. In all instances, absolute
and relative changes in total price are the same.

Under RI, price elasticities depend both on the source of the price variation and on
the composition of the inside good. The RI-DCM yields that the price elasticity is much
smaller (larger) when the change in total price comes through the complex discount
(the simple price). The RI-DCM also yields that price elasticity from changing the
discount further decreases at the higher simple price (compare columns Discount A
and Discount B in Table 5). The reasons are the information friction associated with
processing and integrating the complex discount and the stronger prior against the
inside alternative when the simple price is larger.

The RU logit separate correctly picks up that price changes from the complex
discount result in smaller elasticities than simple price changes. However, this model
wrongly suggests that the elasticity from changing the price through the discount
increases at the higher simple price. Finally, the RU logit that does not differentiate
between price changes through the simple price and the complex discount necessarily
overestimates (underestimates) elasticities from changing the discount (changing the
simple price).

3.4 Heterogeneous preferences, heterogeneous information processing costs

In general, both processing costs and preferences likely vary across DMs. Hence,
it may be theoretically appealing and efficient in a hierarchical model to structure
heterogeneity in 8 as residual heterogeneity after considering heterogeneity in 1. Such
a decomposition in the context of a hierarchical RI-DCM can be viewed as a micro-
founded version of the idea behind Fiebig et al. (2010)’s generalized multinomial logit
model that, in addition to preference heterogeneity, captures the heterogeneity in the
scale of the error term in a hierarchical RU logit.

As already mentioned, the objective function in the RI framework is homogeneous
of degree one with respect to payoffs and costs, and only their ratio is directly identi-
fiable from choice data. However, from a statistical point of view, the combination of
continuous heterogeneity in preferences with continuous heterogeneity in information

Table 6 Posterior means of preference distributions for the RI-DCM with and without scale mixture com-
ponent

Model Brand Price Discount ‘71%; 2() LMD

Data generation 2.50 -1.00 =—pBp 0.09

RI-DCM 2.40 -0.95 =-pp 0 -2,984.55
(0.04) (0.02)

RI-DCM scale mixture 2.48 -0.99 =-pp 0.08 -2,884.90
(0.06) (0.02) (0.01)

We report data generating parameters as well as the estimated posterior means of the RI-DCM with homoge-
nous and heterogeneous information processing costs. Standard errors are in parentheses. Ul%)g( 2 is the

variance of log information processing costs in the population
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Table 7 Posterior variances of

. o . Model Brand Price Discount
preference distributions for the
RI'—DCM with and without scale . generation 0.25 0.04 = Var(8,)
mixture component
RI-DCM 0.41 0.07 = Var(8p)
(0.05) (0.01)
RI-DCM scale mixture 0.31 0.05 = Var(8p)
(0.06) (0.01)

We report data generating parameters as well as the estimated poste-
rior variances of the RI-DCM with homogenous and heterogeneous
information processing costs. Standard errors are in parentheses

costs gives rise to a scale mixture distribution. For a well-known example, the Student
t-distribution can be derived as a scale mixture of normal distributions.

Because scale mixtures can be identified and distinguished from their non-mixed
counterparts (see, e.g., Choy & Smith, 1997), one can identify heterogeneity in the unit
information costs and preferences, as long as one is willing to assume a continuous
distribution of preferences that is not a scale mixture. For example, popular semi-
parametric distributions such as a mixture of normals are strictly continuous and
not scale mixtures. However, again because the objective function defining the RI
problem is homogeneous of degree one, the joint distribution of preferences and unit
information costs is only identified up to the first moment of the latter distribution.

For illustration, we extend the simulation from Section 3.3 to include heterogeneity
in information processing costs with log(4 ;) ~ N(,ulog(x) =—-14, Ul%)g(k) =0.09) in
the data generating mechanism. As noted previously, the mean of this distribution is not
jointly identified with the mean of the distribution of preference parameters. Hence, we
fix p10g(n) to the data generating value in estimation and without loss of generality.?!
Tables 6 and 7 document that we recover the joint distribution of preference parameters
and information costs subject to fixing the first moment of the latter. Moreover, we
see that by not accounting for heterogeneity in information processing costs, one
overestimates the preference heterogeneity, here reflected in brand and price variance
estimates in the RI-DCM with homogeneous information costs.

Complementing the illustrative simulations here, we conduct a simulation study that
varies the number of inside goods (one versus two), simulates data with and without
heterogeneity in processing costs (in addition to preferences heterogeneity), and adds
a two-stage choice model with consideration sets from screening on price (see, e.g.,
Gilbride & Allenby, 2004; Pachali et al., 2023) to the model comparison. We simulate
50 data sets in the four data-generating settings. The benchmark models are estimated
once with a single price parameter and once with separate parameters for the (simple)
price and the (complex) discounts. We summarize results in Tables 15, 16, 17, and 18
and discuss additional details in Appendix A.2.

Not surprisingly, we find that only the RI-DCM recovers data-generating parame-
ters. We also find that (i) we can reliably distinguish the data generating RI-DCMs from
the benchmark models, (ii) the benchmark models fare relatively much worse in the

21 Normalization of the information processing costs is analogous to that of the error variance in RU logit
models in that it does not affect market share or welfare computations.
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larger choice set because of the corresponding increase in number of optimal RI infor-
mation strategies, and (iii), slightly worse when processing costs are heterogeneous
(in addition to preferences heterogeneity).

3.5 On the distinction between simple and complex aspects of a choice task

Different from extant search models, RI motivates information frictions even in situa-
tions in which all attribute information is essentially equally accessible, and the DM’s
challenge is not to resolve values of unknown attributes but to integrate accessible infor-
mation to overall utility. Hence, another practical challenge of the proposed framework
is the identification of simple and complex attributes. In some cases, prior knowledge
may be sufficient to classify attributes, possibly as a function of the specifics of a
product category under study or the experimental design. In other cases, we envision
that the distinction between simple and complex attributes must be empirical.

This distinction is greatly facilitated whenever theory constrains coefficients in the
utility function to be equal, such as in the example of different price components. In
this case, descriptive models, or even just marginal summaries of the data, can reveal
that choice probabilities react more strongly to changes, say, in price component A
than in price component B. It follows that price component A is simple relative to
price component B, and price component B is complex relative to component A (e.g.,
Brown & Jeon, 2024).

Obviously, this argument fails when theory allows for different utility coefficients
for different attributes. Next, we illustrate by simulation that the distinction between
simple and complex attributes is likelihood identified, even in this case. Whereas
theoretical results imply that any combination of rationally inattentive behavior and
information processing costs can be rationalized with some state-contingent payofts
(Lipnowski and Ravid, 2022), we illustrate that additive linear separability in util-
ity contributions can suffice to distinguish between simple and complex attributes
empirically, given Shannon costs and a non-degenerate distribution over states.>”

One inside good We simulate 2,000 choice tasks, each involving a DM choosing
between an inside and an outside good. The inside good is characterized by two linear
attributes, x; and x., that additively combine into overall utility. Attribute x; is simple,
and the attribute x. is complex. Each of the two linear attributes is represented by three
levels in the experimental design: x; € {2,2.25, 5} and x. € {1, 1.5, 3}. Preferences
are given by By = —f. = —1 and information processing cost is set to A = 0.5.
In this design, the generated data comprises probabilistic and deterministic choices.
Attribute combinations defining inside goods are drawn from independent uniform
distributions over the discrete attribute support. With the simulated data, we estimate
different structural RI-DCMs.

In the first specification, the distinction between simple and complex attributes fol-
lows that of the data-generating process. In the second model, we (falsely) reverse what

22 In the context of search, Abaluck et al. (2022) propose how to identify limited information about an
attribute under the assumptions that another attribute is known to be fully processed and all-or-nothing
learning.
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Table 8 Identification of simple and complex attributes in a design with one inside alternative and one
outside alternative

Model min 25% 50% 75% max ML
Correct - Linear -380.52 -371.39 -370.68 -370.25 -369.94 -369.93
Misspecified - Linear -1076.47  -1067.22  -1066.28  -1065.71 -1065.11 -1039.15

Misspecified - Linear Out -417.41 -412.02 -411.30 -410.95 -410.78 -410.70
Misspecified - Categorical ~ -382.63 -375.21 -374.04 -373.13 -370.54 -369.23

Quartiles as well as the minimum and the maximum of the log-likelihood MCMC draws are reported for
the correct linear, the misspecified linear, the misspecified linear with an additional outside parameter, and
the misspecified categorical model, respectively. The last column reports the maximum of the likelihood
(ML) under an improper prior, i.e., the “frequentist maximum”

is simple and complex in estimation. The third model adds a coefficient for the outside
good (equal to zero in the data-generating process). This model isolates the linearity
of utility differences between inside goods in attributes as a source of identification.
Finally, we estimate a model with completely flexible utility within attributes by cod-
ing the two attributes as categorical while misspecifying which attribute is simple and
which is complex in estimation. As subjective prior distribution for preference param-
eters we use B ~ N(0, 100I). We also report the maximum of the log-likelihood
under an improper prior, to safeguard against an undue influence of this subjective
prior setting.

Table 8 presents quantiles of the log-likelihoods from Markov-Chain-Monte-Carlo
(MCMC) estimation and the numerical maxima of the likelihoods implied by the
different models. We find that, subject to constraints on the utility function, there
is scope for empirical identification of what is simple and complex in a choice task
(comparing the first three lines of Table §). However, once we give up on linearity in
attributes (see the last line in Table 8), we can no longer distinguish between simple
and complex in this minimal example.?3

Two inside goods A basic constraint from utility theory, namely that of no cross-
effects between alternatives in a model of perfect substitution, does not come into play
when there is only one outside good. To showcase identification from this constraint,
we extend the simulation described above and include a second inside alternative.
The DM chooses between two inside goods and an outside good. The inside goods
have two attributes, one simple and one complex with three levels each. The major
difference to the one inside good case is that simple attribute realizations of two inside
goods now effectively interact in determining the optimal processing strategy. For
example, particular realizations of simple attributes may lead to considering both,

2 In Appendix A.3, we additionally show that we can no longer distinguish between simple and complex
attributes based on model fit once processing costs are either small enough or large enough such that (essen-
tially) deterministic choices ensue. When A becomes sufficiently small, all information is fully processed,
and the conceptual and empirical distinction between simple and complex vanishes. When 1 becomes
sufficiently large, the information in complex attributes is never integrated into the overall evaluation of
alternatives, and a model with extreme coefficients for the simple attribute (misspecified as complex) will
approach a perfect fit to the data.
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Table 9 Identification of simple and complex attributes in a design with two inside and one outside alter-
native

Model min 25% 50% 75% max ML
Correct - Linear -715.7 -709.2 -708.6 -707.6 -707.3 -707.1
Misspecified - Categorical -1589 -1585 -1583 -1582 -1581 -1580.3

Quartiles as well as the minimum and the maximum of the log-likelihood MCMC draws are reported for the
correct linear and the misspecified categorical model, respectively. The last column reports the maximum
of the likelihood (ML) under an improper prior, i.e., the “frequentist maximum”

only one, or none of the two inside alternatives. Misspecifying the simple attribute
that drives the DM’s choice of information strategy as complex fails to capture these
possibilities, even if we drop the linearity constraint and code all attributes categorically
(see Table 9).

4 Features of discrete choice in MAMA contexts under RI

In this section, we illustrate the implications of RI theory for discrete choice in MAMA
settings, as common in marketing. We use the RI-DCM with general beliefs and
show through simulations how several well-documented phenomena in the discrete
choice literature that are difficult to justify in a RU framework naturally follow from
RI. We further demonstrate that estimating a standard RU logit can yield misleading
conclusions about the behavior of RT agents. This approach follows a common research
strategy in that literature. Often, various logit models are estimated and compared in
different contexts, e.g., with varying numbers of inside alternatives. This comparison
then allows us to identify the moderating effect of context, thereby revealing deviations
from the standard RU logit model.

While certain implications have been discussed in prior (theoretical) RI literature,
we add to this body of work by exploring additional implications due to the MAMA
structure. In general, the presented implications arise from how RI agents translate
the MAMA choice environment into the unconditional choice probabilities outlined
above. Existing RI-DCMs impose simplifying assumptions on this very process to
facilitate estimation at the expense of not capturing the features presented here. In our
illustrations, we distinguish between 1) endogenous features of RI (Section 4.1) and
ii) context effects (Section 4.2).

Endogenous features arise as a result of the optimal allocation of limited cognitive
resources in the RI-DCM. These features can explain empirical phenomena in MAMA
settings that cannot be captured by basic RUMs. Previously, researchers have applied
diverse, non-unified adjustments to RUMs to address these phenomena. Table 10 out-
lines important endogenous features of RI and includes examples from studies that
have made non-unified modifications to RUMs to accommodate the related phenom-
ena. In Section 4.1, we discuss the following endogenous features of discrete choice
under RI:
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Table 10 Endogenous characteristics of RI and examples of extant related literature

Feature Related literature

Stochastic choice due to limited attention Difficulty of comparison (e.g, Shugan, 1980),

imperfect perception (Thurstone, 1927)

Inattention to attributes Shrinkage estimation (Gilbride et al., 2006; Yego-

ryan et al., 2020)

Attribute interactions Information integration theory studies how the

formation of overall judgments may depend on
attributes in a non-additive way (Anderson, 1981,
1982), brand specific price coefficients (Blattberg
etal., 1995)

Inattention to alternatives Descriptive models studying the impact of adver-

tising (e.g, Terui et al.,, 2011; Goeree, 2008;
Ching et al., 2009; Ching, 2010), brand and shelf
space (e.g, Bronnenberg & Vanhonacker, 1996),
and price (e.g, Andrews & Srinivasan, 1995);
consumer search (Hauser & Wernerfelt, 1990;
Roberts & Lattin, 1991) with price uncertainty
(e.g, Mehta et al., 2003; Honka, 2014; De los
Santos et al., 2012; Honka & Chintagunta, 2017),
match value uncertainty (e.g, Kim et al., 2010;
Kim et al., 2017; Moraga-Gonzélez et al., 2023),
or multidimensional uncertainty (e.g, Chen &
Yao, 2017; Yao et al., 2017)

1.

2.

Stochastic Choice due to Limited Attention: This feature allows explaining stochas-
tic choice without invoking unobservable utility shifters.

Inattention to Attributes: Under RI, complex attributes will not receive full atten-
tion and their effect on choice is dampened. We show that simple attributes
moderate the impact of complex attributes, and we show that this, in turn, explains
attribute interactions as well as brand specific price coefficients. Moreover, this
implies non-standard substitution patterns at the attribute level both within an
individual alternative and across alternatives relative to a RUM with an additively
separable utility index.

Inattention to Alternatives: Under RI, consideration sets are an endogenous out-
come. We show how simple attributes drive their formation. Moreover, we illustrate
how the choice set itself affects the consideration of individual alternatives.

Relatedly, the discussed context effects demonstrate how variations in the choice

environment affect choice behavior under the assumption of RI. In Table 11 we sum-
marize different context effects that have been studied in the literature. In Section 4.2,
we illustrate how the following context effects can be reproduced within the RI frame-
work:

1.

Impact of Information Costs and Incentives: High processing costs decrease the
impact of complex attributes on choice, whereas high incentives increase their
impact. We show that such variations may result in choice reversals and affect the
formation consideration sets, yielding deterministic choice in extreme cases.
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Moreover, we illustrate that the proposed RI-DCM may be useful for bridging
from laboratory settings (with low incentives) to real-world markets (where stakes
and thus incentives to process information are high).

2. Atntribute Range/Dispersion and Levels Effects: Under RI, the impact of complex
attributes is affected by their distribution. A higher dispersion, for instance, typi-
cally results in more information processing and therefore a stronger impact. We
illustrate that this feature explains empirically documented variations in choice
consistency due to variations in the DCE design.

3. Price Image and Attribute Correlation: We demonstrate that both correlations
between simple and complex attributes as well as correlations between complex
attributes can be accounted for in the proposed model and that these correlations
affect choice.

4. Choice Set Expansions: In contrast to RUMs, the implied error variance may
depend on the choice set size under the proposed RI-DCM. We show that RI
choice data looks less consistent, i.e., has a higher error term variance, through the
lens of logit when the choice set expands.

Throughout this section, our illustrations build on the example introduced earlier,
i.e., a DCE where the DM has to decide whether to purchase a specific car, potentially
out of a set of different alternatives including an outside option, with a simple price
and a complex discount. We generate data from a utility function where the simple
price and the complex discount have the same absolute impact on utility, that is,
Bp = —Ba. For illustration purposes, we vary data-generating coefficients or the
design of the choice task across the following simulations. The payoff of the outside
alternative is normalized to zero, Up = 0, throughout. Unless stated otherwise, we
simulate 7 = 1, 000 choices in each illustration for statistically reliable inference
from singular simulated data samples, and we assume information processing costs of
A =0.5.

4.1 Implications of Rl for choice in MAMA settings
4.1.1 Stochastic choice due to limited attention

As already mentioned, a major difference between the RUM and the RI-DCM lies in
the interpretation of the error term. In RUM, the error term represents utility shifters
that are known to the DM but not to the analyst. In contrast, the stochasticity of
choice in RI is due to the DM’s cognitive constraints. While the RU interpretation
may fit applications to observational data in which the data only sparsely reflect the
actual choice environment, it lacks appeal in situations where cognitive constraints
significantly influence individual decisions. RI-DCM helps link the randomness in
choices to the decision-making environment in these situations. In the typical DCE,
the analyst fully controls the amount of information provided to the DM, making the
RU interpretation unappealing and the RI-DCM potentially very useful.>*

24 Some extant research, including the original interpretation of the probit model in Thurstone (1927),
proposes that choice errors in DCEs result from cognitive processes (e.g., Louviere et al., 1999). However,
unlike RI, this research does not build on an integrated solution to a constrained optimization problem.
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4.1.2 Attribute interactions and inattention to attributes

Observed simple attributes shift prior beliefs, influencing the DM’s processing of
complex attributes. As a result, the impact of observed complex attribute levels on
choice depends on the levels of simple attributes in the set, even when the utility
function is linearly and additively separable. Existing (statistical) models for attribute
inattention, e.g., Gilbride et al. (2006) and Yegoryan et al. (2020), rely on shrinkage
estimation and implicitly assume that (in-)attention is constant across different choice
sets, in contrast.

For an intuitive example, imagine you are considering buying a car listed at $25,000.
If you already know you can buy the same (up to an unknown complex discount
level) car for $20,000 elsewhere, you are unlikely to put in the effort to find out
the size of the discount at the higher-priced dealer. However, if the car is listed at
$20,500, you might invest the effort to determine and account for the discount size,
as a significant reduction could make it cheaper than the $20,000 option. For a more
formal illustration, consider the effect of the discount on choice for different simple
price levels. The complex discount d is either d = 0 or d = 2 with equal probability,
and the simple brand coefficient is always 8, = 2. In Fig. 2, the left panel displays the
choice probabilities of the inside good for the two possible discount levels. The right
panel shows the impact of a discount increase from O to 2 in this example.

Under Rl realized values of simple attributes determine the optimal processing level
of complex attributes. If realized simple attribute values indicate that an alternative is
either very attractive or unattractive, e.g., due to a very low or very high simple price
(relative to the known distribution of complex attributes), then processing the complex
attributes is less beneficial. The potential losses from a wrong decision based on prior
beliefs are rather small. In the limit, the impact of the realized discount is zero at both
very low and very high prices, while it is highest at a price where ex ante the DM is
indifferent between the inside and the outside good (p = 3).

Choice Prob. of Inside Alternative Choice Prob. Difference
1.00- 1.00
= d=0 2

8
>0.75- =—d=2  0.75- i
= * 3 N\
a - el \
3 > \
<} = \
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O.25- . 80.25-
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(@]
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Price Price

Fig.2 Hump-shaped impact of a constant discount increase for different (simple) price levels. The left
panel displays conditional choice probabilities as a function of the simple price for the possible discount
levels. In the right panel, differences in the choice probability of the inside good are displayed when the
realized discount increases from d = 0 to d = 2 for different simple prices p. Notably, the discount effect
is zero for extreme prices p and it is highest at p = 3 where the DM is indifferent between alternatives
given prior beliefs
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Table 12 Logit approximation with linear and quadratic interaction terms of simple price and complex
discount

Model Brand Price Discount Discount x Price Discount x Price?
Main Effect 15.82 -6.01 2.21

(0.47) (0.18) (0.08)
With Interactions 15.20 -5.76 -10.72 8.34 -1.34

(0.63) (0.24) (2.12) (1.53) (0.22)

First and third row show coefficient estimates for approximations without and with interaction terms and
standard errors are indicated in parentheses below. In the simulated data, price p is drawn uniformly from
the interval [2, 4], and d follows Pr(d = 0) = Pr(d =2) = 0.5

Note that because of processing costs, there are cases where realized values of the
complex discount cease to matter even when neither of the available alternatives is
dominant. For example, at a price of p = 2.25 the outside (inside) option is the better
choice in the absence (presence) of a discount, but the DM optimally chooses not to
process the complex discount given the associated costs.

Next, we highlight how fitting a RU logit model to data generated from the RI-DCM
may (mis-)lead an analyst into questioning a theory-based utility function. Table 12
illustrates that a main-effects logit model fitted to observations generated from the
RI-DCM with T = 5, 000 choices infers a discount coefficient that is much smaller
in absolute value than the price coefficient. A logit model that allows for interactions
infers that discount and price do not independently contribute to choice. A researcher
pursuing a RU interpretation of these estimates will be left puzzling about the lack
of a microeconomic justification. Similarly, RI as a data generating mechanism can
motivate brand-specific coefficients in a logit model fitted to RI data. Interestingly,
industry researchers generally include brand-specific price coefficients in models fitted
to data from DCEs, despite the pushback from academic researchers who call out the
lack of an economic rationale for such interactions (see, e.g., Sawtooth Software,
1996).

The interaction effects illustrated in the previous example imply marginal rates
of substitution that are fundamentally different from those implied by the RUM. To
see this, consider our next example that asks the DM to choose between an inside
alternative and an outside good, however, with the modification that the complex
discount d is uniformly distributed now on the set {0, 0.5, ..., 3.5, 4} and the simple
brand coefficient equals B, = 6.2 Fig. 3 displays iso-choice-probability sets, that is,
combinations of the discount and the price that result in the same conditional choice
probabilities for the RI-DCM (left panel) and the RU logit (right panel) based on the
same utility function.

Higher discounts require higher prices in order to keep choice probabilities constant.
However, under RI this relationship is non-linear whereas under the RU logit model
this relationship is linear with a slope of one. In the RU logit model, choice probabilities
are fully determined by the utility indices of the alternatives in the choice set. Under

25 We increase the number of discount levels and adjust the brand coefficient accordingly for illustration
purposes and without loss of generality.
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Fig.3 Iso-choice-probability sets for the RI-DCM and the RU logit. This Figure displays sets of price-
discount combinations of the inside good that result in the same conditional choice probabilities for the
RI-DCM (left panel) and the RU logit (right panel). The thin solid line is the 45° line. Under the RU logit,
the iso-choice probability sets are linear and individual sets are parallel to each other. In contrast, under the
RI-DCM, the substitution rate varies depending on the composition of the inside good so that it is non-linear
and the individual sets are not parallel. The dots in the left panel indicate actual attribute combinations of
the inside good

RI, it matters whether the source of utility is a simple or a complex attribute. As
shown in the left panel of Fig. 3, the ratio of changes in the discount and price that
keep choice probabilities constant is smaller than one, i.e., an increase of the discount
by one unit offsets an increase in the price that is strictly smaller than one under RI
even though both price and discount have the same impact on utility. This is explained
by the information friction present in the RI-DCM, which makes choice probabilities
a function not only of an alternative’s utility value but also of the source of that utility.

Under the RI-DCM, there will be prices that are sufficiently low (high) so that the
DM chooses deterministically (given a simple price) in the limit. Consequently, with
a fixed discount distribution, the iso-choice sets become lower (upper) contour sets
with a boundary that is flat in the discount. In contrast, under the RU logit, there are no
combinations of finite discounts and prices so that the DM chooses deterministically.

For a final illustration, Fig. 4 displays the conditional choice probability of the
inside good for different combinations of the price and the discount for a fixed utility.
All points displayed are associated with the same net utility equal to one, u; = 1
where u; = By — Bpp + Bad with B, = 6 and B, = —B4s = —1. However, going
from left to right, we increase the discount and the price simultaneously by the same
amount so that p —5 = d within the same experimental design. Under the RU logit, the
choice probability of the inside good remains constant. In contrast, choice probabilities
decrease weakly as the price increases under the RI-DCM. Even though the discount is
just a negative price in utility terms, the distinction matters under RI if price is simple
and the discount is more complex to process and integrate.
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Fig.4 Conditional choice probabilities for different compositions of the inside alternative under RI-
DCM and RU logit. This Figure depicts the conditional choice probability for the inside good in the
discount under the constraint that the price increase equals the discount increase with p — 5 = d so that
the net utility of the inside good is constant. While choice probability is constant under the RU logit, it
is weakly decreasing when both the price and the discount are increasing in the considered variation of
the inside good composition. The dots are the conditional choice probabilities of the specific inside good
compositions

4.1.3 Inattention to alternatives

A central feature of discrete choice under RI is that consideration sets form endoge-
nously. These sets include only the alternatives that have a strictly positive probability
of being chosen. Consideration sets arise as a result of the DM’s optimal informa-
tion strategy. Here, we demonstrate how attributes—specifically the configuration of
simple attributes—determine which alternatives are considered.?®

Figure 5 depicts choice probabilities in a choice set with four inside alternatives
i =1, ..., 4 that provide utilities of u; = f,; — pi +d; with B, ; € {2, 1.75, 1.5, 1},
pi = 2 and a discount d; with Pr(d; = 0) = Pr(d; = 2) = 0.5. The specific
values for B, ; are chosen for illustration purposes. While 8, 4 represents the least
preferred brand alternative, we demonstrate how the DM reacts qualitatively differently
to this brand as the composition of the choice set changes. The top-left panel of Fig. 5

26 For related illustrative examples of endogenous consideration set formation that do not differentiate
between attributes, see Caplin et al. (2019).
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Fig.5 Consideration set formation. The above panels present choice probabilities of a rationally inatten-
tive DM facing up to four alternatives {ay, ap, a3, a4} ordered from highest to lowest simple brand g, ;
with identical prices p; and identically distributed complex discounts d;. The top-left panel shows the
unconditional choice probabilities. The top-right depicts conditional choice probabilities given a choice set
where alternative a4 provides the highest utility. Due to information frictions, even in such a case, alterna-
tive a4 is never chosen. The bottom-left panel exhibits the updated unconditional choice probabilities in a
reduced choice set that drops alternative aj. Finally, the bottom-right panel shows that, as a consequence
of updating unconditional choice probabilities to the smaller set, alternative a4 has the highest conditional
choice probability in the state where it delivers the highest payoff

illustrates unconditional choice probabilities that represent the DM’s beliefs about
how she will choose before any processing of the complex discount has taken place.
The top-right panel shows the choice probabilities conditioned on a specific choice
set, i.e., realized values of the complex discount (from the analyst’s perspective, as
the DM will not necessarily learn the exact choice set because of processing costs).
The complex discounts in the specific choice set are dj = dp = d3 = 0 and dy = 2,
implying that a4 provides the highest utility in the specific choice set (ug =1 > u;
for j # 4). Yet, as apparent from the figures, the DM does not consider a4 because
excluding a4 from her endogenous consideration set was (a priori) optimal for the DM
given her processing costs and the small prior probability that a4 is, in fact, optimal.
However, in contrast to extant two-stage models (e.g., Gilbride & Allenby 2004;
Goeree, 2008; Terui et al., 2011), RI predicts that a4 will be considered once a; is no
longer available to the DM (see the unconditional choice probabilities in the bottom-
left panel of Fig. 5). Due to updating unconditional choice probabilities to the smaller
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set, alternative a4 has the highest conditional choice probability in the state where it
delivers the highest pay-off (bottom-right panel).

Accordingly, RI implies deterministic consideration sets conditional on A, prior
beliefs g and a utility function, while choice conditional on such a consideration
set is stochastic. However, because prior beliefs . are a function of realized simple
attribute values, consideration sets will generally change from choice set to choice
set in ways that cannot be captured by an alternative specific index or decision rule.
If the simple information in a choice set does not vary, RI still implies consideration
sets that are endogenous to consumers’ preferences, priors over complex attributes,
and information processing costs. An attractive feature of characterizing consideration
sets this way is that the exclusion of, e.g., a brand from consideration in a particular
choice set, does not have to be motivated by persistent extreme tastes or screening
rules. The latter may not generalize to changes in the set of available brands or the
priors over complex attributes.

4.2 Effects of choice environment variations under RI
4.2.1 Impact of information processing costs and incentives

A large body of experimental evidence documents that the complexity of choice tasks
and incentives affect choice behavior (e.g., Swait & Adamowicz, 2001; Ding et al.,
2005). In RI, both aspects influence attention allocation and, thus, observable choice.

Recall that the costs of information processing in RI are the product of mutual
information and the strictly positive unit information cost A > 0, see expression Eq. 2.
Structurally, characteristics of the (expected) choice task as well as characteristics of
the DM relate to A (e.g., Regier etal., 2014). To continue with our example of a complex
discount, processing the eligibility requirements will be affected by the number of
criteria that must be checked, or even the font size used to describe the discount.
Intuitively, more criteria that need checking or a smaller font size will increase A.
Similarly, a less constrained DM, or more experience with the product or the eligibility
criteria, will be reflected in a relatively smaller A.

Finally, it is possible to cast A as a function of the incentives offered in a DCE.?’
For example, if an incentivized DCE instructs participants facing N choice tasks that
one of the N choices will become an actual transaction, the realization probability of
a specific choice is p = 1/N. With probability 1 — p the DM’s choice is hypothetical,
i.e., she does not actually obtain the chosen alternative.”® From the perspective of the

27 The implicit assumption here is that a change in incentives does not affect the payoff function or the
(subjective) prior distribution over states .

28 Recall that in an incentive-aligned DCE, the DM is endowed with a budget. When the DM chooses the
outside option, she retains the endowed budget.
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DM, the resulting RI objective function for each choice task is given by

A
p [Z s (@) (Z P(alw)u(a, w)) - {Z s (@) (Z P(alw)In P(a|w))

weR acA weR acA
— Z P(a)ln P(a)i|j| )
acA

This formulation reveals that a higher realization probability has the same impact
on choice behavior as a decrease in the information processing costs. For example, a
1% increase in information processing costs A will be offset by a 1% increase in the
realization probability p. Thus, one way of interpreting the patterns we illustrate next
is through the lens of changing incentives in a DCE.

Consider the case when the DM chooses between an inside alternative, characterized
by a simple brand valued at 8, = 1.2 at a simple price p = 2 and a complex discount
d with Pr(d = 0) = Pr(d = 2) = 0.5. Based on expected utility, the DM thus
prefers the inside good. Figure 6 illustrates how A affects attention and choice in this
example. The top left panel shows that when A increases, the processing of complex
attributes decreases until the DM learns nothing beyond the known distribution of the
complex discount attribute (at A = A”), i.e., conditional choice probabilities equal
the unconditional choice probabilities. At A > 1", the DM deterministically chooses
the inside option based on prior expectations (bottom left and right panel), which of
course implies that choice probabilities no longer change as a function of the complex
discount (top right panel). At A = A’ = 0, the DM perfectly learns the complex
discount and deterministically chooses the alternative with the highest utility, and
hence maximally reacts to changes in the complex discount value.

Note that changes in A can impact what is revealed about the DM’s preferences.
The bottom-left panel of Fig. 6 shows that as A increases, there is a choice reversal as
the DM switches from choosing the outside good (based on learning that the complex
discount does not apply) to choosing the inside good (based on prior expectations and
without learning the true choice set w). Finally, the bottom-right panel of Fig. 6 shows
that choice probabilities, and here specifically the probability of making a choice
error (from the point of view of the analyst who has all information about alternative
specific payoffs), can be non-monotonic in the amount of cognitive processing (top-
left panel). The non-monotonic relationship here derives from the prior pointing to the
payoff maximizing choice in the absence of processing complex information.

To showcase what an analyst taking a RU perspective when analyzing RI choice
data may find in this example, we fit logit models to RI choices conditional on different
values of A. Figure 7 summarizes point estimates of logit coefficients for brand, price,
and discount, across different simulated RI choice data sets with varying X.

We see that absolute values of the brand and price coefficients, i.e., the coeffi-
cients associated with the simple attributes, first decrease and then increase, while that
of the complex discount decreases in A. The latter effect is immediate, since higher
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Fig.6 Impact of information processing costs on attention, discount effect, and choice. The upper left
panel shows mutual information as a function of information costs. The upper right panel displays the impact
of a fixed increase of the complex discount (from 0O to 2) on conditional choice probability for different
levels of A. The panels in the bottom row show conditional choice probabilities of the inside alternative
in choice sets where the discount is O (left) and 2 (right). Thus, the inside good provides a lower (higher)
payoff in the left (right) panel than the outside option. Note that choice is deterministic for information
costs A equal to zero and larger than A"

processing costs dampen the effect of the discount, as discussed previously. The ratio-
nale for the former pattern is that at small values of A, the DM processes in most
choice sets all available information, and choice becomes nearly deterministic. For
intermediate levels of A, some choice sets (characterized by different simple prices)
will motivate more, and some less information processing, causing a higher level of
overall stochasticity in the data that is reflected in absolutely smaller brand and price
coefficients (from the viewpoint of a RU logit).
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Fig.7 Logit approximation for different levels of information processing costs. Each panel shows logit
estimates of the respective coefficients for varying levels of information processing costs A. Note that each
point is the result of an estimation from simulated data with 7 = 1,000 choice tasks each. The data

generating parameters are 8, = —fq = —1, f; = 2, p is uniformly drawn from [2, 4], and d is distributed
with Pr(d =0) = Pr(d =2) =0.5
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Fig.8 Choice consistency is non-monotonic in the information processing costs A. Choice consistency
is measured by McFadden’s pseudo R-squared. For details, see Domencich and McFadden (1975)

Eventually, as A increases, realized discount values are ignored, as it becomes too
costly to process the corresponding complex eligibility requirements and the discount
coefficient approaches zero in the logit fit. However, as the amount of processing of
complex information decreases beyond some level, so does the level of stochasticity
in the data. Eventually, RI choices are based on prior information only, conditioned
on the simple attributes brand and price here, and deterministic. This is reflected
in absolutely increasing brand and price coefficients in the logit fits, summarized in
Fig. 7. It is common in the choice modeling literature to report the estimated error term
variance as a measure of choice consistency (e.g., DeShazo & Fermo, 2002. Figure 8
plots McFadden’s pseudo R-squared in relation to A. It illustrates that RI choices are
more deterministic at very low and very high values of A, and less deterministic at
intermediate values.

Figure 9 extends the illustration of RI choice as a function of A to the case of three
alternatives.?’ Alternative a;,i = 1, ..., 3, yields utility u; = By ; — p; +d; with B | =
3.5, B2 = 3.25, Bp,3 = 3, pi = 4, and d; are independently distributed according
to Pr(d; = 0) = Pr(d; = 2) = 0.5. Based on prior information, alternative a; is
the best and ay is the second best. Figure 9 displays conditional choice probabilities
for a choice set w where alternative a3 provides the highest payoff based on realized
values of the complex discount attribute, illustrating how information costs A impact
the formation of consideration sets.

As A increases, the number of alternatives chosen with strictly positive uncondi-
tional probability first decreases from three to two (at A”), and eventually results in
deterministic choice of aj based on prior considerations only (to the right of A”’). As
the information costs increase, the costs of resolving uncertainty about a priori less
attractive alternatives outweigh the (expected) benefits. As a consequence, it becomes
optimal to ignore such alternatives even if there exist choice sets w in which the ignored

29 For ease of exposition and without loss of generality, there is no outside option in this example.
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Fig. 9 Impact of information costs on consideration set size. Conditional choice probabilities for three
alternatives are displayed as a function of information processing costs A in the choice set where a3 is
the best alternative. As information costs increase, the DM rationally chooses to ignore alternatives in the
choice set. A’, A", and """ indicate threshold values for which the consideration set size changes. For costs
A/ = 0 choice is deterministic, and the best alternative a3 is always chosen, however, after considering all
alternatives. For costs larger than A", choice becomes deterministic again, however now because the DM
ignores alternatives ap and a3, regardless of realized complex discount levels

alternatives provide the highest payoff (as depicted in Fig. 9).>* Together, the illustra-
tions in this section suggest that RI provides a useful basis for bridging across choices
under different incentive or difficulty levels.

4.2.2 Attribute range/dispersion and levels effects

Next, we show how the attribute range, typically measured as the difference between
the highest and the lowest level of an attribute, or more generally, the dispersion
of complex attributes, moderates the impact of a one-unit increase in that attribute
on choice. The underlying mechanism is that as the range of the complex attribute
increases, the expected gain from identifying its realized value also increases, making
processing information more valuable. This ultimately increases the impact of the
complex attribute on choice and in contrast to what one would expect when taking a

RU perspective.
Figure 10 illustrates this mechanism in our leading car example. We set 8, = 6
and recall that 8, = —B4 = —1. Here, we study the impact of an increase in the

discount from 2 to 3 on conditional choice probabilities for different discount ranges.
Both lines in Fig. 10 depict how conditional choice probabilities change when the
complex discount increases by one unit for different values of the simple price. The
dashed blue line represents the case where the complex discount is drawn from the
set {1, 2, 3, 4}, while in the second case (solid red line) the discount takes values in

30 This way, RI can motivate a positive probability of choosing an alternative that is dominated a posteriori,
i.e., after processing (some) complex information (cf. Ruan et al., 2008 who propose a sequential sampling
model to model dominance as a form of similarity).
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Fig. 10 Range effects of complex attributes. This Figure displays conditional choice probability differ-
ences of the inside alternative in reaction to an increase of the discount from 2 to 3 given a large range (solid
red) and a small range (dashed blue) of the complex discount as a function of the simple price. Specifically,
complex attribute levels are {1, 2, 3, 4} when the range is small, and they are {0, 2, 3, 5} when the range is
large

{0, 2, 3, 5}. In both cases, the DM’s beliefs are uniform over the respective support.
Figure 10 shows that as the range of the complex discount attribute increases, the
impact of a one-unit increase of the discount also increases. Technically, an increase
in the attribute range spreads the range of possible payoffs from choosing the inside
good further, motivating larger (costly) departures of conditional choice probabilities
from their unconditional counterparts as a result of the optimal processing strategy.

To showcase what an analyst taking a RU perspective when analyzing RI choice
data may find in this example, we fit logit models to simulated RI choices conditional
on different ranges of the complex discount in the experimental design. We generate
data sets as follows: B, =5, B, = —B4 = —1, p € [8, 10], and d is drawn with equal
probability from the binary set {4 — x, 4 + x} with x € [0.25, 4]. Figures 11 and 12
summarize the logit estimates as well as McFadden’s pseudo R-squared values as a
function of the range of the complex discount in a particular experimental design. When
the range of the complex discount is small, the estimated brand and price coefficients
are absolutely large, and the discount coefficient is, relatively, much smaller. As the
range increases, brand and price coefficients become smaller in absolute value, and
the inferred discount coefficients tend to increase.
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Fig. 11 Logit estimates for different levels of the discount range. This Figure displays estimated coeffi-
cients of brand, price, and discount for different ranges of the complex attribute. Each point is the result of
fitting a logit model with simulated data from 7 = 1, 000 choices with data generating parameters 1 = 0.5,
Bb =5, Bp = —Ba = —1, and p being uniformly drawn from [8, 10]. The discount range, given as the
difference between the two discount levels, is varied from 0.5 to 8

Figure 12 exhibits a U-shaped relationship between choice consistency and the
range of the complex discount. When the range is very small, the DM makes less costly
mistakes when choosing based on prior beliefs, conditioned on the simple attributes
brand and price in this example. As a consequence, the DM pays little attention to the
realized discount levels and chooses rather consistently based on simple attributes as
well as the expected discount level only. As the range increases, the mistakes when
choosing based on prior beliefs can become rather costly. However, there still are
prices at which learning the realized complex discount in addition does not add much
value. In the RU logit approximation, the relative importance of the discount increases,
however, choice consistency decreases.

Finally, when the discount range becomes so large that fewer and fewer simple prices
within the support of the design translate into a good enough choice (in expectation)
without knowing the realized discount level, the DM will process the complex discount
consistently. This again results in less stochastic data.
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Fig. 12 Non-monotonic effect of the discount range on choice consistency. Choice consistency is mea-
sured as McFadden’s pseudo R-squared. For details, see Domencich and McFadden (1975)
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Attribute levels effects Finally, we note that the RI-DCM can explain both positive
and negative effects of increasing the number of attribute levels on choice probabilities,
as documented in, e.g., Liu et al. (2009) and Hensher (2006), in addition to range
effects. The intuition is that “in-between" levels of ordered attributes may increase
or decrease the (conditional on realized simple attributes) ex ante uncertainty about
relative payoff advantages motivating more or less processing of complex attributes.
This intuition applies equally to adding in-between levels to simple and complex
attributes.

4.2.3 Price image and attribute correlation

Price images can be modeled as brand-specific prior beliefs about complex price com-
ponents under RI. Similarly, the expectation that higher simple prices are associated
with better (complex) quality aspects (e.g., Erickson & Johansson, 1985) can be mod-
eled via prior beliefs. Here, we provide two examples. First, we vary the correlation
between the inside alternative’s brand and the discount d. Second, we investigate the
case of two complex attributes and vary the correlation between these. Both variations
affect the DM’s prior beliefs.

In our first example, the DM chooses between an outside good and an inside good
thatyieldsu; = 1 — p+d with p = 2 and d being distributed over the binary set {0, 2}.
As a function of the correlation 6 between the discount and the brand of the inside
good, the DM’s prior beliefs become Pr(d = 2) = (14-60)/2. Thus, alarger correlation
coefficient 6 increases the prior probability of a positive discount, and hence the ex ante
valuation of the inside good. At the same time, absolutely larger correlations reduce
the variance in realized discounts levels and consequently the DM’s uncertainty about
the payoff from the inside good.

Figure 13 depicts conditional choice probabilities implied by RI as a function of
6. The choice probability of the inside good increases in the correlation parameter 6.
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Fig. 13 Impact of brand-specific discount beliefs on choice. Conditional choice probabilities are dis-
played as a function of the correlation coefficient 6 for choice sets with discount levels d = 0 (left) and
d = 2 (right). As 6 varies, the prior belief structure of the DM changes, which directly affects optimal choice
probabilities. Note that in both choice sets the DM chooses the inside (outside) good deterministically once
the correlation 6 becomes sufficiently large (small) even while it is still interior
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Notably, absolutely large correlations between the complex discount and the inside
brand translate into deterministic choice behavior that ignores the actual choice set @
(atd < 0’ or6 > 0"), well before the choice set becomes deterministic itself (at§ = —1
or 6 = 1). Specifically, when 6 is small (large) enough, i.e., the prior likelihood of the
discount is small (large) enough, the DM will rationally decide not to costly learn the
actually realized discount level, but always choose the outside (inside) good.

In our second example, the inside good has two correlated complex discounts d;
and d; that can be learned separately by the DM. The payoff from the inside good is
now givenby uy = 1 — p+ (d1 +do) with p = 2.75 and dy. € {0, 2}. The correlation
between discounts d; and d5 is 6 so that the resulting prior beliefs are

1
Pr(di = 0.dy =0) =Pr(dy = 1.dy = 1) = (1 +6) and

1
Pr(di =1,dp =0)=Pr(d1 =0,dr =1) = 4_1(1 —0).

Figure 14 displays the conditional probability of choosing the inside good as a
function of the correlation between d; and d» in all four possible choice sets w. Overall,
as the correlation 6 increases, the DM is less likely to choose the inside option. There
exist beliefs where the decision maker always chooses deterministically. Specifically,
for smaller values of 6, the prior probability of one of the discounts applying increases
such that eventually, the inside good will always be chosen (one discount is sufficient
to make the inside good utility maximizing given the parameters from above). As 6
increases to larger positive values, the discounts are more likely to apply jointly or not
at all, so it becomes rational to guard against the loss from choosing inside without
any discount. Costly finding that any one of the two discounts is zero, i.e., does not
apply, is predictive of no discount applying under this prior. Hence, the DM becomes
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Fig. 14 Impact of correlations between complex discounts on choice. Conditional choice probabilities
of the inside good with different complex discount levels are displayed as a function of the correlation
parameter 6. The panels differ in the realized values of the discounts d| and d>. Note that in all choice sets
the DM chooses the inside good deterministically once the correlations become sufficiently low while still
being interior
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Table 13 Logit approximations for different choice set sizes

Choice Set Size Brand 1 Brand 2 Price Discount McFadden R?
2 27.92 -7.71 2.32 0.67

(2.75) (0.76) (0.28)
3 16.60 16.55 -3.83 1.85 0.60

(1.12) (1.12) (0.26) (0.13)

Columns two to four show logit estimates for the corresponding attributes, with standard errors in parentheses
for choice sets with two (first row) and three (third row) alternatives. The final column reports corresponding
McFadden R-squared (Domencich & McFadden, 1975) as a measure for choice consistency. Note that the
added alternative is identical to the already existing inside alternative

less likely to choose the utility-maximizing inside option when only one discount
applies under this prior. Our two examples are simple for expositional reasons, but
they suggest how the RI framework can account for belief dependencies both within
and across choice alternatives. We revisit this point in Section 5.

4.2.4 Choice Set Expansions

Standard RUMs assume that the utility index, as well as the error term variance, are
independent of the choice set size. However, there is empirical evidence contradicting
both assumptions, e.g., DeShazo and Fermo (2002) or Meifiner et al. (2020). An
increasing error term variance has been interpreted as the result of a latent cognitive
process that captures a DM’s struggle with increasing complexity due to a higher
information load.

We show that when RI choice data is analyzed from the perspective of a RU logit
model, choice behavior appears to become less consistent as the choice set expands in
the number of choice alternatives. The reason for this is that as the simple information
varies from choice set to choice set, the impact of the complex attributes also varies.
As the choice set grows, under fixed (conditional) distributions of complex attributes,
the number of implied interactions between simple and complex attributes increases.
A standard RUM does not account for such interactions.>! Therefore, the RU error
term variance increases as the number of alternatives in the choice set grows.

Consider the following illustrative simulation. There are choice sets with an outside
alternative ag that yields a payoff of zero and inside alternatives a;, i = 1,2 with a
payoff of u; = 3 — p; + d;. We simulate choice data from a DM who faces choice
sets with either one inside alternative, A; = {ag, a1}, or two inside alternatives, A, =
{ao, a1, az}. For any choice task, prices are drawn uniformly from the interval [2, 4]
and discounts are independently distributed with Pr(d; = 0) = Pr(d; = 2) = 0.5.
Then, we fit descriptive logit models to the two data sets to illustrate what a researcher
bringing an RU perspective to these data may find. Table 13 summarizes the logit fits.

31 Even though we use the term interaction here, there is no way of knowing what finite dimensional
logit index will reasonably approximate RI choice behavior locally. Obviously, even a reasonable local
approximation will be insufficient to answer counterfactual queries that involve DMs’ beliefs.
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There are two noteworthy observations from this analysis. First, as the choice set
expands from A; to A, all estimated coefficients decrease in absolute value. The
intuition is, as discussed above, that in a larger choice set, there are more implied
interactions in the data-generating model. In the small choice set, the impact of the
complex discount of alternative a; is very small for extreme values of the simple
price pj. For instance, when the price p; is very small, the DM will always choose a;
regardless of the discount. However, with a second inside good, the price of the second
alternative p, will also determine the impact of d; on choice. The logit approximation,
however, ignores these interactions, and thus the error term variance increases, which
is reflected in the shrinking coefficient estimates.

Second, observe that the decrease is stronger in the coefficient of the simple price
than in the coefficient of the complex attribute. The reason for this is that as the number
of alternatives increases, choice sets in which the complex discount attribute can be
rationally ignored for all alternatives become less likely.

Lastly, note that while the logit approximation results in a larger error term variance
as a consequence of a choice set expansion, this does not imply that the DM becomes
worse-off. In contrast, in expectation the DM under RI benefits from any choice set
expansion as long as the DM’s prior beliefs coincide with the objective distribution
over choice sets. Still, it may be the case that for one particular choice set, characterized
by specific attribute realizations, an expansion may lead to a worse welfare outcome.>?
Intuitively, the decision maker can choose to optimally ignore alternatives in a choice
set without any additional costs.>® As such, the RI framework allows the analyst to take
a stance on the impact of choice set expansion on welfare, as it relates the observed
error to optimal decision-making under cognitive constraints.

5 Conclusion and outlook

In this paper, we have reviewed two strategies for bringing discrete choice under RI to
multi-attribute, multi-alternative settings typical of marketing applications. The first
strategy relies on specific assumptions about prior beliefs that yield choice proba-
bilities that have a closed MNL form. While this approach allows estimation with
established methods, it cannot reproduce a variety of key qualitative features. There-
fore, we characterize a RI-DCM that can incorporate general beliefs. We illustrate that
a hierarchical version of this model can be calibrated from “small 7', large N" data, as
typical of marketing applications. Our illustration suggests that such data generated
from the proposed RI-DCM will reliably distinguish the data-generating model from
a standard hierarchical logit model.

Moreover, we have shown how a series of behavioral patterns—each individu-
ally requiring qualitatively different modifications of the standard RU logit—can be

32 For instance, an added alternative may dominate existing alternatives in most choice sets so that it is
much better in expectation. Then it becomes optimal for a DM not to process information about some
alternatives in its presence. However, in general, there will still be specific choice sets where some of these
alternatives provide a higher payoff than the newly added. In such a choice set, the DM will be worse off
(in terms of realized payoffs) after a choice set expansion.

33 Implicitly, the RI model assumes free disposal (or ignorance) of available information.

@ Springer



Discrete choice in marketing through... 89

jointly nested within a discrete choice model rooted in RI. Consequently, the RI-DCM
with general prior beliefs may have the potential to become a new workhorse model
for applied researchers. We conclude this article by outlining the open challenges in
achieving this as well as promising avenues for future research.

5.1 Open empirical challenges: large state spaces

The RI-DCM with general beliefs for MAMA choice is consistent with the origi-
nal RI idea. It motivates choice stochasticity from imperfect information processing
only. We view this as a decisive advantage over assuming additively separable utility
components only observed by the DM, particularly in the context of DCEs where the
researcher fully controls the (maximum) information set available to DMs.

Similar to the conditional choice probabilities in Matéjka and McKay (2015)’s
formulation, the likelihood in the RI-DCM with general beliefs does not have a closed-
form solution. We rely on the Blahut-Arimoto algorithm for numerical solutions to
the RI choice problem. This algorithm solves a fixed point problem, which makes
the estimation procedure computationally costly for datasets with large numbers of
respondents or repeated choices per respondent. We discussed how we speed up the
computation of the likelihood given by solutions to the RI choice problem in Sec-
tion 3.2.

However, the number of possible states grows exponentially in the dimensionality
of the complex information in a choice set. In high-dimensional problems, solving
the RI choice problem using the Blahut-Arimoto algorithm is no longer practically
feasible. The theoretical and computational challenges posed by this problem are an
active field of research (see e.g., Li et al., 2006; Sutton & Barto, 2018; Gershman &
Lai, 2020; Miao & Xing, 2023; Armenter et al., 2024).

5.2 Unobserved attributes - endogeneity

RI motivates stochastic choice behavior from imperfect information processing.
Hence, RI rationalizes stochastic choices in environments controlled by the researcher,
such as in DCEs without invoking exogenous error terms. In settings outside the lab,
e.g., in scanner panel data, it may well be that the researcher has to rely on an incom-
plete description of the choice environment facing the DM. Hence, there may be two
sources of stochasticity in the data: i) incomplete processing of information known
to the analyst by the DM and ii) (non-constant) aspects of the choice environment
unobserved by the analyst. Conceptually, the latter motivates additional error terms in
the model that may represent simple or complex information (to the DM) unobserved
by the analyst. Furthermore, these additional error terms will likely be endogenous
to observed conditioning arguments in observational data. Methods to account for
endogeneity (from the supply side) in models of adaptive information processing by
the DM will have to be developed.>*

34 In the context of consumer search, Moraga-Gonzdlez et al. (2023) propose a method for dealing with
endogeneity based on the generalized method of moments (Nevo, 2000). In the context of discrete choice,
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5.3 Use of auxiliary data

RIis usefully agnostic about the exact process by which DMs process complex infor-
mation. However, within the framework proposed in this paper, RI makes predictions
that could be corroborated using so-called process measures (that, of course, pertain
to observable aspects of decision making). This is similar to how process measures
are used to test, inform, and calibrate cognitive models of choice in psychology (e.g.,
Krajbich et al., 2010).

As per the proposed model, simple attributes should have priority in processing.
Consequently, measuring eye fixations (and their order) could support the role of
simple attributes in forming conditional priors or even help identify what is, in fact,
simple about a particular choice task in a particular design. Along the same lines, eye
traces could corroborate the existence of consideration sets implied by unconditional
choice probabilities. Complex attributes of alternatives outside the consideration set
are expected to get no eye fixations. Finally, one could consider eliciting responses to
questions like “Which alternatives did you reject based on a first inspection, if any?”
or “Which alternatives did you inspect more closely before making a choice?” in every
choice set to provide a set of fallible consideration indicators as part of a DCE.

Moreover, RI implies that the amount of processing of complex information can be
measured by the amount of entropy resolved, the mutual information in a particular
choice set. If processing more complex information takes more time, the model predicts
longer (shorter) decision times in choice sets where conditional choice probabilities
are further away (closer) to their unconditional counterparts. It follows that choice sets
that give rise to smaller endogenous consideration sets should require less time than
choice sets with larger such sets, on average.

5.4 Consumer belief elicitation and its role in market simulations

Prior beliefs are important for information processing and subsequent choices of DMs
under RI. We illustrated this feature previously by showing how changes in beliefs
can even result in choice reversals while keeping every other aspect of the choice
task fixed. A growing theoretical literature, in particular from industrial organization,
demonstrates the significance of prior beliefs for consumer choices and market out-
comes under RI. This includes Matéjka and McKay (2012), who study the effects of
differences in prior beliefs on market equilibria; Boyaci and Akcay (2017), who focus
on implications for the optimal pricing of monopolistic firms; and Janssen and Kasinger
(2024) who examine the role of consumers’ prior beliefs for equilibrium pricing and
obfuscation behavior of profit-maximizing firms in a duopoly. Thus, counterfactual
analyses under RI require an understanding of beliefs held by the DMs whose behavior
is modeled.

In DCEzs, researchers have some control over prior beliefs as conveyed to DMs
by the experimental design. However, for counterfactuals, e.g., market simulations, a

Petrin and Train (2010) describe a control function approach. However, their method is not immediately
applicable, as they assume that the utility index contains an additively separable error term; and the RI-DCM
with general beliefs will in general have an implied error term that depends on the simple attributes.
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key question is thus how to assess and simulate (likely) beliefs in the market setting.
Choosing belief distributions based on tractability in a closed-form logit framework
with additively separable indices, as currently standard in empirical applications (see
Section 3.1), does not seem to be a satisfactory solution.

In light of a growing empirical RI literature that relies on belief assumptions moti-
vated by analytical convenience, we feel that research into the sensitivity with respect
to different assumptions about beliefs will be useful, as well as an integration of
methods to study potentially heterogeneous market beliefs empirically. The charac-
terization of an RI-DCM that allows for general prior beliefs in this paper paves the
way for this line of research. Other frameworks modeling limited information, such
as consumer search models or learning models, face a similar challenge of dealing
with typically unobservable (consumer) beliefs as a key building block to empirical
analysis and counterfactual computations and are often quite sensitive with respect to
assumptions about beliefs (Chintagunta & Nair, 2011).

Notably, some of these contributions have explored the added benefit of eliciting
beliefs through auxiliary information rather than relying on purely theoretical assump-
tions, such as rational expectations. Successful approaches that have been employed
in other areas to learn about beliefs use survey-based belief elicitation methods (e.g.,
Cavallo et al., 2017; Coibion et al., 2018; Armona et al., 2019) or observational data
such as clickstream data (e.g., Hu et al., 2019), or eye-tracking data (e.g., Ursu et
al., 2024). For a recent overview in marketing, see the literature section in Jindal and
Aribarg (2021).

5.5 Alternative information cost functions

There is an ongoing discussion in the economics literature on the question of which
attention cost function is appropriate for which choice circumstances. Most of the
experimental studies, either explicitly or implicitly, estimate the cost function, which
is then used in subsequent analyses. Consequently, much of the experimental literature
dealing with RI (implicitly) tests the applicability of different cost functions in a variety
of stylized settings. As in the present paper, many results in RI theory have been derived
under the assumption of costs that are linear in Shannon mutual information.3>

For instance, experimental evidence suggests that non-linearities of information
costs exist, where subjects pay too little attention to high rewards compared to low
rewards (Caplin & Dean, 2013; Dean & Neligh, 2019). Perhaps more important for
analyzing MAMA choice, a linear Shannon entropy cost function precludes the con-
cept of perceptual distance, where some states are harder to distinguish than others
(Dean & Neligh, 2019; Hébert & Woodford, 2021). As a result of this critique, some
papers generalize the linear Shannon cost function or apply different cost functions.
For instance, Hébert and Woodford (2021) introduce a neighborhood cost function to

35 Mackowiak et al. (2023) discuss what features of RI are robust with respect to the functional form of
information processing costs.
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address the problem that some states are harder to distinguish than others.3® A detailed
discussion of this mostly theoretical literature is beyond the scope of this paper.’

We believe that the choice of cost function could become important for the appli-
cations envisioned in this paper as well. For instance, the model formulation based on
Shannon costs implies that any two possible choice sets (states w) within an exper-
imental design are equally hard to distinguish. However, it is not unlikely that the
distinction between two choice sets that pose many complex trade-offs may be harder
than that between two choice sets that pose fewer trade-offs each. We thus conjecture
that neighborhood-based costs that allow to impose that certain sets of choice sets
are harder to distinguish than others may eventually become useful. We note that this
is related to a finer distinction of levels of processing difficulty than the distinction
between simple and complex attributes proposed in this paper.

5.6 Conceptualization of free information

The history of research on choice in marketing, economics, and psychology is rich in
empirical and theoretical results about what may be simple and more complex about
a particular choice task or set of such tasks. For example, it may be worthwhile to
reconsider the literature on heuristics in choice as information (for the analyst) about
simple aspects of choice tasks that, in the context of a RI-DCM, may give rise to
prior beliefs that guide the amount of processing of more complex aspects of a choice
task.®

In our suggested specification of the RI-DCM, some attributes are considered simple
so that processing them does not require (significant) cognitive effort. Thus, it is these
attributes X, that determine (conditional) prior beliefs us, which then form a key
ingredient to how much processing of complex attributes should occur (see Section 2).
This formulation imposes a specific mapping from choice sets into prior beliefs that is
not given by RI theory but assumed by the analyst (even if, as we showed, an empirical
distinction between simple and complex attributes is possible, in general).

In principle, any aspect of a choice set and the attribute configuration presented
therein could be simple information and thus determine prior beliefs. Consider, for
example, a DCE design where the discount has values d € {50, ..., 90, 100}. A DM
may easily recognize that the discount equals 100 due to the substantially different
visual stimulus (two vs. three digits). In this case, the DM may assign a positive belief
to all choice sets where d = 100 and zero to all other.

This raises the conceptual question of which pieces of information in any choice
task can be considered free and, consequently, how to map choice sets into (condi-
tional) prior beliefs. Our discussion regarding the empirical identification of simple
vs. complex attributes in Section 3.5 should be viewed as a special case of this broader

36 A related generalization of Shannon costs that allows for alternatives to have different information costs
is suggested by Huettner et al. (2019).
37 For an overview of different information cost functions applied in the behavioral inattention literature,

see Gabaix (2019); for a more detailed discussion on entropy-based cost functions, see Dean and Neligh
(2019) as well as Mackowiak et al. (2023).

38 See also Mackowiak et al. (2023) who propose the idea that RI provides a model for the formation of
heuristics.
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consideration. Due to the high dimensionality of this question, it will typically not be
viable to give purely empirical answers, and an appeal to theory and previous empirical
results is required.

While this is beyond the scope of this paper, it suggests that the RI framework
may be able to fruitfully integrate conjectured and empirically demonstrated choice
simplification strategies with fully rational behavior that is guided by priors formed
on the basis of whatever a DM may easily and immediately process about a choice
task. With an eye towards industry-grade applications with many attributes and many
alternatives, this is an important part of future research.

A Appendix
A.1 Identification of AA across decision environments under stable preferences

Next, we present estimation results to show that a relative change in information
processing costs under stable preferences can be identified (see Table 14). We sim-
ulate 2,000 choices for one individual, with one inside and one outside option. The
first half of the 2,000 choices are made in an “easy” environment with lower infor-
mation processing costs Ajoy, and the second half in a more difficult environment
subject to higher information processing costs Aj;g,. The inside good consists of three
attributes: two simple and one complex. One simple attribute is a brand intercept, and
the remaining attributes have the following levels: simple price p € {2.5, 3, 3.5, 4, 4.5}
and complex discount d € {0,0.5,1, 1.5,2}. The preference vector is given by
B = (Bp, Bp, Ba) = (2.5, —1, 1) and information processing costs are Aoy = 0.1
and Apjgp = 0.3. In estimation, we fix Aj;g, to the data generating value and jointly
estimate A;yy and B. The third row in Table 14 shows that we can recover the data-
generating parameters, and the fifth row illustrates the bias from ignoring the difference
in processing costs, as well as the poorer fit from doing so.

A.2 Simulation study

The simulation study builds on the set-up used for illustrative simulations in Sec-
tion 3.3 of the paper. We vary the number of inside goods (one versus two), simulate

Table 14 Posterior means of preferences and information processing costs

Model Brand Price Discount Mow Mhigh LMD

Data generation 2.50 -1.00 =—Bp 0.10 0.30

RI-DCM 2.59 -1.03 =-pp 0.10 0.30 -253.38
(0.10) (0.04) 0.01)

RI-DCM with fixed A 2.28 -0.91 =-Bp 0.20 0.20 -298.98
0.11) (0.04)

In the first model, Ap; g, is fixed to data generating value in estimation. For the second model, the information
processing costs are fixed to 0.2
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Table 15 Means of posterior means and variances of preference distributions for different model speci-
fications using 50 simulations with one inside and one outside good each and homogenous information
processing costs

Posterior Means Model Fits
Model Brand Price Discount LMD A LMD
Data generation 2.50 -1.00 =—pp
RI-DCM 2.51 -1.00 =-Bp -2,465.49
(0.02) (0.01) (63.88)
RU logit separate 26.41 -8.71 441 -2,630.29 162.17
(0.84) (0.32) (0.19) (75.46) (26.47)
RU logit joint 9.94 -4.01 =-pp -4,602.05 2018.19
(0.14) (0.09) (236.44) (50.34)
BC separate 27.43 -9.08 4.51 -2,608.36 136.66
(0.89) (0.51) (0.25) (73.41) (25.72)
BC joint 11.48 -4.13 =-pp -3,160.25 685.37
(0.99) (0.16) (82.37) (49.87)

Posterior Variances

Model Brand Price Discount

Data generation 0.25 0.04 = Var(8p)

RI-DCM 0.29 0.05 = Var(8p)
(0.04) (0.01)

RU logit separate 14.01 1.82 1.12
(0.84) (0.32) (0.19)

RU logit joint 5.31 0.70 = Var(8p)
(1.01) (0.30)

BC separate 20.11 1.73 1.57
(1.06) (0.57) (0.45)

BC joint 9.73 0.44 = Var(Bp)
(0.83) (0.20)

Standard deviations are in parentheses. For the BC separate and BC joint model, the means of posterior
means for the price threshold are 10.91 and 4.67 with standard deviations of 5.02 and 0.81, respectively.
The means of the posterior variances for the price screening thresholds are 8.41 for the BC separate and
1.01 for the BC joint model

data with and without heterogeneity in processing costs (in addition to preferences het-
erogeneity), and add a two-stage choice model with consideration sets from screening
on price (see e.g., Gilbride & Allenby, 2004; Pachali et al., 2023) to the model compar-
ison. We use the following (standard) weakly informative subjective prior parameter
settings for the one and the two-inside good cases, respectively: {8 ~ N (0, 100I),
Vg ~ IW(4,1.5D} and {/_3 ~ N(0, 100I), Vg ~ IW(5,2D)}. The slightly more
informative subjective prior for the hierarchical prior variance of {8;}, Vg is owed
to the increased dimensionality of the estimation problem. When we estimate the
hierarchical prior variance of {log(4;)}, we use Ul%)g(k) ~1G(@3,1).
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We simulate 50 data sets in the four data-generating settings and estimate five mod-
els for each: the RI-DCM, two RU logit models, and two models with price-based
consideration sets (BC separate and BC joint). The benchmark models are estimated
once with a single price parameter and once with separate parameters for the (sim-
ple) price and the (complex) discount. Each data replication in this simulation study
resamples N x T choice sets from the design base defined by prices p and discounts d,
drawn uniformly and independently from the following sets: p € {2.5, 3, 3.5, 4, 4.5}
and d € {0,0.5,1, 1.5, 2} and re-samples preferences (and processing costs when

Table 16 Means of posterior means and variances of preference distributions for different model specifica-
tions over 50 simulations with two inside goods and one outside good each and homogenous information
processing costs

Posterior Means Model Fits
Model Brand 1 Brand 2 Price Discount LMD A LMD
Data generation 2.50 2.50 -1.00 =—fp
RI-DCM 2.54 2.53 -1.03 =-pp -3,807.55
(0.05) (0.05) (0.03) (56.43)
RU logit separate 24.89 24.55 -8.06 4.33 -4,160.46 272.48
(0.76) (0.69) (0.31) (0.19) (102.34) (54.03)
RU logit joint 10.01 9.97 -3.99 =-fp -6,838.41 2940.38
(0.25) (0.24) (0.05) (107.61) (60.37)
BC separate 25.19 2491 -8.41 4.44 -4,196.47 228.54
(0.69) (0.62) (0.33) (0.10) (94.31) (48.01)
BC joint 11.15 11.67 -4.01 =-pp -5,431.81 1549.33
(0.29) (0.37) (0.09) (81.69) (50.67)

Posterior Variances

Model Brand 1 Brand 2 Price Discount

Data generation 0.25 0.25 0.04 = Var(Bp)

RI-DCM 0.28 0.30 0.05 = Var(8p)
(0.05) (0.06) (0.01)

RU logit separate 12.01 11.19 1.97 1.22
(0.84) (0.72) (0.21) (0.11)

RU logit joint 6.31 6.23 0.60 = Var(8p)
0.41) (0.44) (0.17)

BC separate 17.41 16.33 1.70 1.27
(3.16) (3.55) (0.39) (0.21)

BC joint 8.73 8.56 1.04 = Var(8p)
(0.83) (0.81) (0.20)

Standard deviations are in parentheses. For the BC separate and BC joint model, the means of posterior
means for the price threshold are 12.01 and 4.26 with standard deviations 5.04 and 0.71, respectively. The
means of the posterior variances for the price screening thresholds are 10.39 for the BC separate and 0.91
for the BC joint model
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Table 17 Means of posterior means and variances of preference distributions for different model speci-
fications over 50 simulations with one inside and one outside good each and heterogeneous information
processing costs

Posterior Means Model Fits
Model Brand Price Discount LMD A LMD
Data generation 2.50 -1.00 =—fp
RI-DCM scale mixture 2.51 -1.01 =—fp -2,444.54
(0.04) (0.03) (53.41)
RU logit separate 26.97 -8.92 443 -2,616.04 185.58
(1.51) (0.47) (0.10) (62.66) (17.39)
RU logit joint 10.07 -4.02 =-pp -4,530.19 2083.55
(0.69) (0.21) (95.38) (61.37)
BC separate 27.50 -8.84 4.23 -2,603.48 156.47
(2.31) (1.04) (0.68) (74.31) (21.71)
BC joint 11.31 -4.40 =-pp -3,171.05 663.49
(1.62) (0.60) (67.46) (82.94)
Posterior Variances
Model Brand Price Discount 0120 ()
Data generation 0.25 0.04 = Var(Bp) 0.09
RI-DCM scale mixture 0.30 0.05 = Var(Bp) 0.08
(0.05) (0.01) (0.02)
RU logit separate 15.11 1.62 1.73
(0.94) (0.32) (0.29)
RU logit joint 6.21 0.73 = Var(Bp)
(1.54) (0.14)
BC separate 14.41 1.84 1.90
(2.13) (0.41) (0.45)
BC joint 10.15 0.39 = Var(Bp)
(1.23) (0.13)

Standard deviations are in parentheses. For the BC separate and BC joint model, the means of posterior
means for the price threshold are 10.38 and 4.13 with standard deviations 5.26 and 0.80 respectively. The
means of the posterior variances for the price screening thresholds are 13.94 for the BC separate and 0.89

for the BC joint model. n]%)g()h) is the variance of log information processing costs in the population

heterogeneous) from population parameters. In each replication, a (fresh) sample of
rationally inattentive DMs (N = 1, 000) face " = 20 choices sets.

The utility of inside good i to DM j in choice task ¢ is given by u;; ;, = Bp,ji +
Bp,j(pj,i—dji ) whereBy ; ;isthebrand coefficient, 8, ; the price coefficient, p; ; ;
is the price, and d; ; ; is the discount. The utility of the outside option is normalized
to zero: up = 0. As in the illustrative simulations in Section 3.3, brand and price are
simple attributes, while the discount requires costly processing. When processing costs
are homogenous, they are set to A = 0.25. When heterogeneous, they are generated
from log(x ;) ~ N (—1.4,0.09). Preference coefficients are independently generated
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Table 18 Means of posterior means of preference distributions for different model specifications over 50
simulations with two inside goods and one outside good each and heterogeneous information processing
costs

Posterior Means Model Fits
Model Brand 1 Brand 2 Price Discount LMD ALMD
Data generation 2.50 2.50 -1.00 =—fp
RI-DCM scale mixture 2.52 2.52 -1.02 =-Bp -3,800.39
(0.04) (0.04) (0.02) (56.51)
RU logit separate 27.33 27.19 -7.34 4.71 -4,172.86 363.87
(4.56) (5.31) (0.97) (0.53) (75.37) (44.63)
RU logit joint 10.94 10.88 -5.63 =—pp -6,873.34 3,014.79
(1.34) (1.57) (0.81) (79.31) (84.28)
BC separate 26.39 26.01 -8.11 5.01 -4,114.34 305.67
(5.11) (4.89) (1.02) (0.64) (69.37) (50.31)
BC joint 10.70 10.17 -5.21 =—fp -5,404.29 1,603.48
(1.31) (1.29) (0.93) (79.14) (85.34)
Posterior Variances
Model Brand 1 Brand 2 Price Discount 01% .
Data generation 0.25 0.25 0.04 = Var(8p) 0.09
RI-DCM scale mixture 0.29 0.28 0.05 = Var(Bp) 0.09
(0.06) (0.06) (0.01) (0.01)
RU logit separate 13.11 9.59 1.62 1.17
(0.83) (0.68) (0.25) (0.12)
RU logit joint 6.95 6.77 0.68 = Var(Bp)
(0.48) (0.48) (0.19)
BC separate 16.44 15.98 1.65 1.31
(3.50) (3.31) (0.40) (0.25)
BC joint 9.02 8.74 0.64 = Var(8p)
(0.88) (0.80) (0.23)

Standard deviations are in parentheses. For the BC separate and BC joint model, the means of posterior
means for the price threshold are 13.31 and 4.43 with standard deviations 6.84 and 0.83 respectively. The
means of the posterior variances for the price screening thresholds are 16.73 for the BC separate and 0.96
for the BC joint model. Ul%)g(k) is the variance of log information processing costs in the population

from the following distributions: By ;; ~ N(2.5,0.25) and B, ; ~ N(—1,0.04),
i.e., the two brands are symmetric in the population in the case of two inside brands.

Tables 15, 16, 17, and 18 report distributions of preference estimates and model
fit across data replications in our four data generating settings for each of the five
models fit. The last column in the upper tables, ALMD, shows log-marginal density
differences relative to the RI-DCM across simulations. Positive values indicate that
the RI-DCM achieves better model fit.

Not surprisingly, we find that only the RI-DCM recovers data-generating parame-
ters. We also find that (i) we can reliably distinguish the data generating RI-DCMs from
all the benchmark models (see columns LMD and ALMD in the respective tables), (ii)
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Table 19 Quartiles as well as the minimum and the maximum of the log-likelihood MCMC draws for
different A levels for the correct and wrong specification respectively

Model min 25% 50% 75% max
1 =0.01

Correct - Linear -1.42 0.00 0.00 0.00 0.00
Misspecified - Linear -1.86 0.00 0.00 0.00 0.00
r=5

Correct - Linear -4.85 -3.83x1077 -9.82x107° -1.71x10~10 0.00
Wrong - Linear -1.45 -3.73%x1077 -1.07x10~8 -2.36x10710 0.00

the approximating benchmark models fare relatively much worse in the larger choice
set because of the corresponding increase in the number of optimal RI information
strategies>® (comparing ALMD in Tables 15 and 17 to that in Tables 16 and 18, respec-
tively), and (iii), slightly worse when processing costs are heterogeneous, in addition
to preferences heterogeneity (comparing ALMD in Tables 15 and 16 to that in Table
17 and 18, respectively).

Finally, we can see that benchmark models substantially benefit from including
separate coefficients for price and discount and that modeling screening based on
price further improves the fit of benchmark models. However, even the combination
of separate coefficients for price and discount with price screening fits reliably worse
than the RI-DCM. In the case of one inside good only, what is missing from this
approximation is the complex interaction between price and discount implied by opti-
mal processing under RI. In the case of two inside goods, consideration of one inside
good also depends on simple features of the other inside good. Similarly, the processed
contribution of one brand’s discount depends on the simple attributes of this brand
and that of the other brand.

A.3 Identification in the case of extreme information processing costs

Distinction of simple and complex utility aspects of a choice task Table 19 illustrates
that the distinction between simple and complex attributes becomes mute once the data
become (essentially) deterministic at very low or very high processing costs 1. We
again simulate 2,000 choice tasks with the same design as outlined in Section 3.5
but now with information processing costs A = 0.01, making processing complex
information essentially free, and A = 5, making information processing infeasible.
When A is sufficiently small, all information is fully processed, and the conceptual and

39 Recall from expression Eq. 2 that optimal information strategies are conditional on realized levels of
simple attributes. With one inside brand and five levels of simple price, there are five different optimal
processing strategies, depending on the realized simple price in a choice set. With two inside brands and
five levels of simple price, there already are 52 = 25 different configurations of simple attributes, giving
rise to different optimal processing strategies.
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Fig. 15 Histogram of MCMC draws of the complex attribute parameter under different informa-
tion processing costs 1. This Figure shows histograms of the posterior distribution of complex attribute
coefficient based on 100,000 draws from the implied marginal posterior for correctly specified simple and
complex attributes. The solid vertical line indicates the data-generating value

empirical distinction between simple and complex vanishes. When A is sufficiently
large, the information in complex attributes is not integrated into the overall evaluation
of alternatives. If, in this case, the analyst falsely specifies complex attributes as simple
and simple attributes as complex, the estimator will infer extreme utility parameters
for the latter relative to the former such that deterministic choice based on simple
attributes (falsely assumed to be complex) ensues.

Set identification of preferences Figure 15 illustrates that utility coefficients are
only set-identified once choices become (essentially) deterministic, using the example
of the complex attribute coefficient in the correctly specified model.
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