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Abstract

The most widely used textbooks on Introductory Econometrics conflate three distinct
population parameters: the population regression function (PRF), the conditional ex-
pectation function (CEF), and the causal effect. They also incorrectly suggest, and
sometimes state, that the Conditional Mean Zero assumption implies causal interpre-
tation of regression coefficients. I highlight these issues and show that by incorporating
new notation these limitations can easily be overcome.

JEL codes: A22, C18
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1 Introduction

This note is a result of teaching Introductory Econometrics for several years and finding
myself intermittently frustrated when using standard textbooks on regressions. Thanks to
a surprisingly less-cited paper by Bryant Chen and Judea Pearl (Chen and Pearl, 2013)1 ti-
tled, Regression and Causation: A Critical Examination of Six Econometrics Textbooks, and
the book, Mostly Harmless Econometrics, by Joshua D. Angrist and Jorn-Steffen Pischke
(Angrist and Pischke, 2009), I am now able to articulate my discomfiture and offer a way
forward in the hope of improving the teaching of regressions in undergraduate classrooms.

Chen and Pearl (2013) examine six widely used textbooks, namely, (Greene, 2012), (Hill
et al., 2011), (Kennedy, 2008), (Ruud, 2000), (Stock and Watson, 2011), and (Wooldridge,
2009), and point to a shared shortcoming, namely, that of incomplete notation.2 Addition-
ally, in my view, there is an unreasonable expectation that readers can intuit from the context
what is being left unsaid.3 Here is what I mean. Consider the Sample (linear) Regression
Function (SRF), that most textbooks begin with when teaching regressions:

Y = β̂0 + β̂1X1 + ...+ β̂kXk + Û where Û ≡ (Y − β̂0 + β̂1X1 + ...+ β̂kXk)

Most textbooks state (and also prove) that the sample regression coefficient estimator, say
β̂1, is unbiased. What they do not state explicitly is the population parameter that β̂1 is an
unbiased estimator of. If there was only one contender for this parameter, then the omission
would be innocuous. However, when there are three, it creates confusion. The three plausible
population parameters that β̂1 could be an unbiased estimator of are:

• The derivative, with respect to X1, of the Population (linear) Regression Function
(PRF) of Y on X1, ..., Xk.

• The derivative, with respect to X1, of the Conditional Expectation Function (CEF) of
Y given X1, ..., Xk, namely E(Y |X1, ..., Xk).

• The causal effect of X1 on Y .

I shall denote these three distinct population parameters by βR
1 , β

E
1 , and βC

1 , respectively.
This new notation allows us to clearly distinguish between the parameters, resulting in
greater conceptual clarity.

The essential arguments in this note can be found scattered in different parts of the book,
Mostly Harmless Econometrics, by Joshua D. Angrist and Jörn-Steffen Pischke (Angrist and
Pischke, 2009). My contribution is to bring them together in one place in order to make a
forceful case to change how regressions are introduced and discussed in the most widely used

164 citations as per Google Scholar as of July 8, 2025.
2Chen and Pearl (2013) assert that these textbooks lack notation to capture the causal effect of X on Y

as defined by the ‘do-operator’ (see section 2.3), resulting in a conflation of causal effects with the moments
of joint probability distributions, such as with E(Y |X).

3Both Wooldridge 2025 and Stock and Watson 2019 still have these limitations. I have not checked the
latest editions of the other textbooks.
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textbooks on Introductory Econometrics.

In what follows, I define the three parameters in section 2; section 3 discusses how they may
be linked with each other; section 4, states the population parameter(s) that the sample
regression coefficient is an unbiased/consistent estimator of, paying attention to the assump-
tions needed to make these claims; section 5, provides a more complete interpretation of the
‘Unbiasedness of OLS’ as stated in Wooldridge 2025; and I conclude in section 6.

2 Defining the Population Parameters

Consider the population of random variables {X1, X2, ..., Xk, Y }. For clarity of thought, let
X1, ..., Xk be functionally independent. I begin by defining the three population parameters,
βR
1 , β

E
1 , and βC

1 , in that order, to emphasize that they are conceptually distinct.

2.1 The Derivative of the PRF

Suppose we are interested in predicting Y given information on X1, ..., Xk, and we are only
interested in predictors that are ‘linear in parameters,’ i.e., of the form b0 + b1X1 + b2X2 +
...+ bkXk where b0, b1, b2..., bk are real numbers. We define the best predictor using the least
squares criterion: the best predictor is that which minimizes the expected value of squared
prediction errors, where a prediction error is defined as the difference between the actual
value of Y and our predicted value. Our problem can be compactly written as:

minimize wrt {b0, b1, ..., bk} : E[(Y − (b0 + b1X1 + ...+ bkXk))
2]

≡ minimize wrt {b0, b1, ..., bk} :

∑N
i=1 (Yi − (b0 + b1Xi1 + ...+ bkXik))

2

N

where N is the population size. If real numbers, β0, β1, ..., βk, solve the problem, then,
β0 + β1X1 + β2X2 + ... + βkXk is defined as the Population (linear) Regression Function
(PRF), and {β0, β1, ..., βk} are the PRF coefficients. In the (k+1) dimensional population
scatter of {X1, ..., Xk, Y }, Ŷ = β0 + β1X1 + β2X2 + ... + βkXk is the unique, nonrandom,
linear surface of best fit for Y in terms of X1, X2, ..., Xk.

βR
1 is defined as follows:

βR
1 ≡ ∂PRF

∂X1

=
∂(β0 + β1X1 + β2X2 + ...+ βkXk)

∂X1

= β1 (given X1, ..., Xk are functionally independent)

Defining βR
1 entailed imposing a functional form requirement, namely, {β0, β1, ..., βk} enter

linearly in the predictor function. In this sense, βR
1 is parametric in nature.
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2.2 The Derivative of the CEF

In everyday life we frequently, and instinctively, try to guess the outcome of an uncertain
phenomenon given information on other related phenomena. For example, a student when
deciding the optimal allocation of their time might think about their expected test score
were they to devote different amounts of time towards studying. Similarly, a firm trying to
maximize sales, might think about expected sales given different money amounts spent on
advertising. In statistics, the name for these heuristic guesses is the conditional expectation.

The formal definition of the conditional expectation of Y given information on X1, ..., Xk is
as follows:

• If Y is discrete,

E(Y |X1, ..., Xk) =
∑

y ∗ fY |X1,...,Xk
(y)

• If Y is continuous,

E(Y |X1, ..., Xk) =

∫
y ∗ fY |X1,...,Xk

(y)dy

where fY |X1,...,Xk
is the conditional probability mass/density function of Y given X1, ..., Xk.

When viewed as a mapping from the space of X1, ..., Xk to the space of Y , the conditional
expectation is referred to as the Conditional Expectation Function (CEF). As it turns out,
the CEF is the solution to an important prediction exercise; perhaps this why we think about
it so much when making decisions. Next, I describe the problem that the CEF solves which
should motivate why it is the best predictor of Y given X1, ..., Xk.

Suppose, as in section 2.1, we are again interested in predicting Y using X1, ..., Xk, but unlike
section 2.1 where we had constrained our predictor to be linear in parameters, we now allow
it take any form. We continue to define the best predictor using the least squares criterion.
This problem can be compactly written as:

minimize wrt m(.) : E(Y −m(X1, ..., Xk))
2

≡ minimize wrt m(.) :

∑N
i=1 (Yi −m(Xi1, ..., Xik))

2

N

where m(X1, ..., Xk) is any function mapping X1, ..., Xk to Y . It can be shown that the
CEF, namely E(Y |X1, ..., Xk), is the solution of this unconstrained minimization problem.
If m∗(X1, ..., Xk) is used to denote the optimal m(.), then, m∗(X1, ..., Xk) = E(Y |X1, ..., Xk)
In the same (k+1) dimensional population scatter of {X1, ..., Xk, Y }, referred to in section
2.1, Ŷ = E(Y |X1, ..., Xk) is the unique, nonrandom, surface of best fit for Y in terms of
X1, X2, ..., Xk.

4

4Given that the PRF and CEF are solutions to the constrained and unconstrained versions of the same
problem, respectively, the CEF will always be at least as good as the PRF at predicting Y , and at times it
will be strictly better.
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If E(Y |X1, ..., Xk) is differentiable,
5 then, βE

1 is defined as follows:

βE
1 ≡ ∂E(Y |X1, ..., Xk)

∂X1

Defining βE
1 did not involve making any functional form assumption about E(Y |X1, ..., Xk).

In this sense, βE
1 is non-parametric in nature.

2.3 The Causal Effect

For an individual i, the causal effect of a variable, say X1, on another variable, say Y ,
is defined as the change in Yi when only X1i changes, and everything else that affects Yi

remains as is. In this ceteris paribus scenario, the different values of Yi corresponding to each
value that X1i can possibly take, are called potential outcomes. Most modern Econometrics
textbooks define a causal effect using this notion of potential outcomes (Rubin, 2005).

For individual i, the causal effect of changing X1i, from say value a to value b, on outcome Yi,
is defined as the corresponding change in their potential outcomes.6 Let Y X1i=a

i and Y X1i=b
i

be the potential outcomes at values a and b, respectively. The causal effect of change in X1

when it changes from a to b is defined as:

βCi
1 ≡ Y X1i=b

i − Y X1i=a
i

a− b

The division by a− b expresses the effect in terms of a unit change in X1. The causal effect
in the population is the average of the individual causal effects.

βC
1 ≡ E(βCi

1 )

Like βE
1 , β

C
1 is also non-parametric in nature as it does not involve making any functional

form assumption on how the potential outcomes change as X1 changes.

Pearl (1995) provides an alternative, but conceptually equivalent, definition of a causal
effect in terms of the ‘do-operator.’ He defines the causal effect of X1 on Y as the change in
E[Y |do(x1)] as X1 changes, where E[Y |do(x1)] is the average value of Y in the population
in a scenario where the researcher intervenes to assign the values of X1 as one would in a
randomized controlled experiment.

5If E(Y |X1, ..., Xk) is not differentiable, then, for any two real values a and b that X1 can take,

βE
1 ≡ E(Y |X1 = a,X2..., Xk)− E(Y |X1 = b,X2..., Xk)

a− b

where the value of βE
1 may vary depending on the values of a and b.

6For any individual, at a point in time, only one of their potential outcomes, namely the one corresponding
to the particular value that X1i takes at that time, is observed ; all other potential outcomes (those associated
with other values thatX1i could have taken but did not take) remain unobserved. These unobserved outcomes
are called called counterfactuals.
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If E[Y |do(x1)] is differentiable, then, β
C
1 is defined as follows:7

βC
1 ≡ ∂E[Y |do(x1)]

∂X1

3 Links between Population Parameters

It should now be clear that the three parameters embody conceptually different features of
the population. Next, I discuss under what circumstances would any two of them be the
same. For this section, I am assuming that E(Y |X1, ..., Xk) and E[Y |do(x1)] are differentiable
with respect to X1.

3.1 Derivative of PRF vis-à-vis Derivative of CEF

If the optimal function, m∗(.), of section 2.2 happens to be linear in parameters, i.e., m∗(.)
takes the form b0+ b1X1+ ...+ bkXk, then the CEF and the PRF are one and the same, and
βR
1 = βE

1 = β1.

Consider the PRF:

Ŷ = β0 + β1X1 + β2X2 + ...+ βkXk

⇔ Y = β0 + β1X1 + β2X2 + ...+ βkXk + U

where U ≡ Y − (β0 + β1X1 + β2X2 + ...+ βkXk)

U is called the error term, it gets its identity from the PRF.

An assumption that receives a lot of attention in textbooks is the ‘Conditional Mean Zero
(CMZ)’ assumption which states that E(U |X1, ..., Xk) = 0. Making the CMZ assumption is
equivalent to assuming that the CEF is linear in parameters. To see this, note that for the
PRF stated above,

If E(U |X1, ..., Xk) = 0

=⇒ E(Y |X1, ..., Xk) = β0 + β1X1 + β2X2 + ...+ βkXk

On the other hand,

If E(Y |X1, ..., Xk) = β0 + β1X1 + β2X2 + ...+ βkXk

=⇒ E(U |X1, ..., Xk) = 0

7If E[Y |do(x1)] is not differentiable, then, for any two real values a and b that X1 can take,

βC
1 =

E[Y |do(X1 = a)]− E[Y |do(X1 = b)]

a− b

where the value of βC
1 may vary depending on the values of a and b.

7
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Thus, making the CMZ assumption is equivalent to assuming that βR
j = βE

j ∀j ∈ 1, 2, ..., k.

It is important to note that in a fully saturated PRF,8 the CMZ assumption is true by
definition, i.e. it is no longer an assumption but follows from the definition of a fully saturated
model. This implies that in a fully saturated PRF, βR

j ≡ βE
j . In section 3.4, I give an example

of a fully saturated PRF.

3.2 Derivative of CEF vis-à-vis the Causal Effect

Whenever the derivative of the CEF, i.e. ∂E(Y |X1,...,Xk)
∂X1

, and the derivative of the ‘do-operator’

function, i.e. ∂E[Y |do(x1)]
∂X1

are identical, βE
1 = βC

1 . Ex-ante, there is no reason to believe that
E(Y |X1, ..., Xk) and E[Y |do(x1)] are the same as they are conceptually different things:
E(Y |X1, ..., Xk) is the first moment of the observed joint distribution of Y |X1, ..., Xk, while
E[Y |do(x1)] is average Y coming from an experiment where the researcher assigns the X1

values at random in the population of interest. In section 3.4, I present a plausible example
of two populations, one where real world conditions are such that βE

1 = βC
1 , and another

where because of a different reality, βE
1 ̸= βC

1 .

3.3 Derivative of PRF vis-à-vis the Causal Effect

Whenever βR
1 is picking up the ceteris paribus effect of X1 on Y , βR

1 = βC
1 . For this

to happen, the PRF must embody and implement a credible research design (Angrist and
Pischke, 2010). The most popular such designs include randomized controlled trials, selection
on observables (or matching), difference in differences, instrument variables, and regression
discontinuity designs. Crucially, the credibility of the design is rooted in causal thinking
aimed at creating the relevant counterfactual.

For example, consider the PRF, say Y = β0+β1X1+β2X2+ ...+βkXk+U that relies on the
‘selection on observables’ design to get at the causal effect of X1 on Y . In that case, whether
βR
1 = βC

1 , rests on the ‘Conditional Independence Assumption (CIA)’ being true. The CIA
states that X1 is as if randomly assigned within each sub-population of the partition defined
by the other (besides X1) explanatory variables, X2, ..., Xk. Whenever, the causal effect is
constant across individuals, the CIA holds, and the potential outcome function is linear in
X2, ..., Xk, β

R
1 = βC

1 . See Angrist and Pischke 2017 for details.

Importantly, The CMZ assumption does not result in any kind of equivalency between βR
j

and βC
j , or between βE

j and βC
j . Angrist and Pischke 2017, Chen and Pearl 2013, and Crudu

et al. 2022, all make this point. It is surprising, and unfortunate, that popular textbooks

8A fully saturated PRF is one where the explanatory variables are all discrete, and, there are as many
regression coefficients as the number of elements in the population partition defined by the explanatory
variables. For example, consider the PRF, Ŷ = β0 + β1X1 + β2X2 + β3(X1 ∗ X2) where, X1 and X2 are
binary. The partition defined by these variables is: {(1, 1), (1, 0), (0, 1), (0, 0)}. Since the PRF has four
regression coefficients, namely, {β0, β1, β2, β3}, this is a fully saturated PRF.

8
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continue to suggest/state that E(U |X1, ..., Xk) = 0 =⇒ βR
j = βC

j .
9 See section 3.4 for an

example where E(U |X1, ..., Xk) = 0, βR
j = βE

j , but β
R
j ̸= βC

j . Crudu et al. (2022) also present
data generating processes where the CMZ assumption is satisfied but the PRF identifies a
pseudo-parameter that does not have a causal interpretation.

3.4 Unifying Example

I have chosen this rather simplistic example as it allows for clarity of thought. Consider the
following PRF:

̂BirthWt = β0 + β1Male

Or equivalently,

BirthWt = β0 + β1Male+ U where U ≡ BirthWt− (β0 + β1Male)

BirthWt denotes the birth weight of a new born. Male is an indicator of whether the
newborn is male or not: Male takes the value 1 if new born i is male, and 0, otherwise. In
this example, by definition,

β1 ≡ βR
1

Moreover, this is a fully saturated model,10 and so trivially, the CMZ assumption holds, i.e.
E(U |Male) = 0. Therefore, in this example

β1 ≡ βR
1 = βE

1

In other words, the regression coefficient on Male also gives the difference between the
average birth weights of male and non-male newborns in the population.

Finally, is β1 = βC
1 in this example? The answer depends on whether or not one believes

that the CIA holds. Because in this example there are no other explnatory variables, the
CIA translates to, is being Male randomly distributed in the population of newborns. This
in turn depends on our understanding of the real world. In places like India where there is
male preference, and female maltreatment and female foeticide are prevalent, being male is
manipulable, and is therefore not as if randomly assigned in the population. Thus, in the

9Both Stock and Watson (2019) and Wooldridge (2025) make this claim. Here is a quote from Chapter
4 of Stock and Watson 2019:“The first least squares assumption for causal inference is that the error term
in the linear regression model has a conditional mean of 0 given the regressor X. This assumption holds if
X is randomly assigned in an experiment or is as-if randomly assigned in observational data. Under this
assumption, the OLS estimator is an unbiased estimator of the causal effect β1.” And, here is a quote from
Chapter 2 of Wooldridge 2025: “Section 2-5 will show that we are only able to get reliable estimators of β0

and β1 from a random sample of data when we make an assumption restricting how the unobservable u is
related to the explanatory variable x. Without such a restriction, we will not be able to estimate the ceteris
paribus effect, β1.” In this quote, the assumption restricting how u is related to x is the CMZ Assumption.

10There is one binary explanatory variable. The partition it defines is: {(1), (0)}. Since the PRF has two
regression coefficients, {β0, β1}, it thus meets the definition of a fully saturated model.

9
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Indian population, β1 ≡ βR
1 = βE

1 ̸= βC
1 .

11 However, in places such as (pre-immigration)
Sweden, being male is truly the luck of the draw (as if randomly assigned), and one can
claim that CIA holds. In such places, β1 ≡ βR

1 = βE
1 = βC

1 .

4 Sample Regression Coefficient as an Estimator

I assume we have access to a random sample of {X1, X2, ..., Xk, Y } from the population, and
there is no perfect multicollinearity among {1, X1, X2, ..., Xk}, both in the population and in
the sample. The Sample Regression Function (SRF), is obtained by mimicking in the sample
the least squares exercise that is used to obtain the PRF. Suppose the SRF is given by:

Y = β̂0 + β̂1X1 + ...+ β̂kXk + Û

where Û ≡ Y − (β̂0 + β̂1X1 + ...+ β̂kXk)

I explicitly state the conditions under which the SRF coefficient, β̂1, is a valid estimator of
each population parameter discussed above.

4.1 β̂1 as estimator of βR
1

An SRF always gives a consistent estimator of the corresponding PRF without any extra
assumptions (other than access to a random sample and no perfect multi-collinearity). This
is because the SRF is the Method of Moments (MOM) estimator of the PRF. Thus, β̂j is a

consistent estimator of βR
j for all j ∈ {0, 1, 2, ..., k}. However, β̂j is not always an unbiased

estimator of βR
j . For this we need the CMZ assumption. In other words, β̂j is an unbiased

estimator of βR
j if E(U |X1, X2, ..., Xk) = 0.

The typical context in which we are interested in knowing the PRF is that of predicting
Y . No elaborate thinking is needed to justify the inclusion (or exclusion) of particular Xs,
and operationally, the final choice of Xs gets determined by ‘out of sample prediction fit’
of various model specifications. While in the exposition above, we focused on one element
of the PRF, namely, βR

1 , typically in prediction applications one is not focused on a specific
element, and interest lies in the overall fit of the model.

4.2 β̂1 as estimator of βE
1

Recall that βE
1 ≡ ∂E(Y |X1,...,Xk)

∂X1
. If ∂E(Y |X1,...,Xk)

∂X1
is not a constant (and there is no compelling

reason why it should be), then β̂1 is neither an unbiased, nor a consistent, estimator of βE
1 .

If however, the CMZ assumption holds, i.e. E(Y |X1, ..., Xk) = 0, then βE
1 = βR

1 ≡ β1; and
β̂1 is both an unbiased and a consistent estimator of βE

1 .

As pointed by Angrist and Pischke (2009), even when the CEF is non-linear in parameters,

11Perhaps, in India, βR
1 > βC

1 as the coefficient is not only picking up the causal effect of being male, but
also the effects of better nutrition and prenatal care for mothers pregnant with a male child.

10
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the PRF is the best linear approximation of the CEF. In other words, if Ŷ = β0 + β1X1 +
β2X2+...+βkXk is the PRF, then {β0, β1, ..., βk} is also the solution to the following problem
(Angrist and Pischke, 2009):

minimize wrt {b0, b1, ..., bk} : E[(E(Y |X1, ..., Xk)− (b0 + b1X1 + ...+ bkXk))
2]

Whenever researchers are interested in predicting Y using variables X1, ..., Xk, they will get
the most accurate predictions (in terms of minimizing least squared errors), using the CEF.
Given that the PRF gives the best linear approximation of the CEF, the PRF must be valued
for prediction even when CEF is non-linear in parameters.

4.3 β̂1 as estimator of βC
1

Whether β̂1 is a credible estimator of βC
1 , depends on the credibility of the underlying research

design that the PRF implements. In a selection on observables research design, credibility
fundamentally depends on whether the CIA holds or not.

βC
1 is the causal effect of a specific variable, X1, on outcome Y . The context in which we

are interested in knowing a causal effect is very different from that of wanting to predict the
outcome, Y . When we are interested in the causal effect of X1 on Y , we are only interested
in whether the PRF coefficient on X1 gives us the causal effect of interest and we do not
care about how the PRF does in terms of predicting Y . A lot of thought must go into what
Xs to include and exclude from the model as the credibility of the research design may be
compromised when ‘bad controls’ are included as regressors (Angrist and Pischke, 2009).

5 Sample Regression Coefficient is an Unbiased Esti-

mator of What?

In this section, I closely follow the presentation in section 3.3, titled, ‘The Expected Value
of the OLS Estimators’ in Chapter 3 of Wooldridge, 2025. I restate, verbatim, Theorem 3.1
titled, ‘Unbiasedness of OLS’ along with the assumptions involved:

“Under assumptions MLR.1 through MLR.4,

E(β̂j) = βj, j = 0, 1, ..., k

for any values of the population parameter βj. In other words, the OLS estimators are
unbiased estimators of the population parameters.”

Assumptions MLR.1 through MLR.4 are stated below (also stated verbatim):

• Assumption MLR.1 Linear in Parameters: The model in the population can be written
as y = β0 + β1x1 + β2x2 + ... + βkxk + u where where β0, β1, ..., βk are the unknown
parameters (constants) of interest and u is an unobserved random error or disturbance
term.

11
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• Assumption MLR.2 Random Sampling: We have a random sample of n observations,
{(xi1, xi2, ..., xik, yi) : i = 1, 2, ..., n}, following the population model in Assumption
MLR.1.

• Assumption MLR.3 No Perfect Collinearity: In the sample (and therefore in the pop-
ulation), none of the independent variables is constant, and there are no exact linear
relationships among the independent variables.

• Assumption MLR.4 Zero Conditional Mean: The error u has an expected value of zero
given any values of the independent variables. In other words, E(u|x1, x2, ..., xk) = 0.

This is how I interpret the Theorem. Given, MLR.4, βj = βR
j = βE

j , j = 0, 1, ..., k. There
is nothing in the theorem that should lead us to conclude that βj = βC

j . For that we would
need to think about the validity of the CIA for each xj.

6 Concluding Remarks

Angrist and Pischke (2017) note the recent shift in the empirical econometrics literature
towards using a regression to estimate a causal parameter of interest, denoted as βC

1 in
this note. At the same time, a regression is also a workhorse tool for predicting variables,
with cutting-edge applications in supervised machine learning. In applications aimed at
prediction, interest lies in estimating the surface of best fit, characterized by the coefficient
set {βR

j } and {βE
j } in this note. Since economists are interested in both causal and predictive

problems, Introductory Econometrics textbooks must cover all three population parameters,
but at the same time they need to be explicit about which parameter is being referenced
in a given context. To do so, it is most important to introduce new notation to distinguish
between the three parameters, as I have done in this note. I hope the authors of textbooks
will revisit their exposition on regressions and incorporate the notation presented here. The
edits necessary are relatively minor when compared to the benefits in terms of making
Econometrics more accessible to a wider audience with varied research goals.
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