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Abstract
The early detection of discontinuous change plays a decisive role in the performance 
and competitiveness of organizations. Whether and how top managers perceive 
change is mostly determined by their attention. However, research has shown that 
many top managers are often unable to allocate their attention properly and may 
therefore react with inertia or not at all to relevant changes. This raises the question 
of how managerial attention can be influenced to make top managers more receptive 
to discontinuous changes. A promising approach to this problem may come from 
the growing research field on the impact of AI on strategic decision-making. In this 
paper, I provide a conceptual framework of how the use of AI might help top man-
agers better focus their attention on discontinuous change. Based on a systematic 
literature review and an attentional model, I highlight factors that influence top man-
agers’ attention allocation and likely enhance or inhibit it through the use of AI. This 
allows me to derive propositions for the application of AI in discontinuous change 
detection that can serve as a starting point for future empirical research. My paper 
contributes to broadening the research field of AI in the area of managerial attention.

Keywords  Managerial attention · Discontinuous change · Artificial intelligence · 
Strategic management

Zusammenfassung
Das frühzeitige Erkennen von diskontinuierlichen Veränderungen spielt eine ent-
scheidende Rolle für die Leistungs- und Wettbewerbsfähigkeit von Organisationen. 
Ob und wie Topmanager Veränderungen wahrnehmen, hängt wesentlich von ihrer 
Aufmerksamkeit ab. Die Forschung hat jedoch gezeigt, dass viele Topmanager ihre 
Aufmerksamkeit oft nicht richtig zuordnen können und deshalb mit Trägheit oder gar 
nicht auf relevante Veränderungen reagieren. Dies wirft die Frage auf, wie die Auf-
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merksamkeit von Führungskräften beeinflusst werden kann, um sie für diskontinuier-
liche Veränderungen empfänglicher zu machen. Ein vielversprechender Ansatz zur 
Lösung dieses Problems könnte sich aus dem wachsenden Forschungsfeld der Aus-
wirkungen von KI auf die strategische Entscheidungsfindung ergeben. In diesem Bei-
trag stelle ich ein konzeptionelles Modell vor, wie der Einsatz von KI Topmanagern 
helfen könnte, ihre Aufmerksamkeit besser auf diskontinuierliche Veränderungen 
zu richten. Basierend auf einer systematischen Literaturrecherche und einem Auf-
merksamkeitsmodell zeige ich Faktoren auf, die die Aufmerksamkeitsallokation 
von Topmanagern beeinflussen und die wahrscheinlich durch den Einsatz von KI 
verbessert oder beeinträchtigt werden. Daraus leite ich Thesen für den Einsatz von 
KI zur Erkennung diskontinuierlicher Veränderungen ab, die als Ausgangspunkt für 
zukünftige empirische Forschung dienen können. Meine Arbeit trägt dazu bei, das 
Forschungsfeld der KI im Bereich der Aufmerksamkeit von Managern zu erweitern.

1  Introduction

For many decades, researchers tried to understand why organizations drop out of 
competition. Here, discontinuous change is seen as an important reason for organi-
zational failure. It differs from conventional change as it massively deviates from 
existing assumptions about norms, processes, and concepts (Christensen and Bower 
1996) by not only providing entirely new market information (Luger et  al. 2018; 
Teece 2014) but also by devaluing existing knowledge within organizations by radi-
cally changing the market paradigm (Posen and Levinthal 2012). Previous research 
has found organizational inertia (Eggers and Park 2018), existing divergent patterns 
of experience (Nadkarni and Barr 2008), and inattentional blindness (Mack 2003) to 
be important drivers for the insufficient recognition of discontinuous change, which 
in turn can have costly consequences for organizations (Tripsas and Gavetti 2000). 
Over the last years, research on managerial and organizational cognition (MOC) 
(Eggers and Kaplan 2013; Gerstner et  al. 2013; König et  al. 2021) has identified 
managerial attention as another central concept explaining heterogeneous percep-
tions of discontinuous environmental change (Kammerlander and Ganter 2015; 
Maula et al. 2013; Ocasio 1997). Studies have shown that managers’ attention plays 
an important role in effectively detecting and dealing with discontinuous environ-
mental change (Eggers and Kaplan 2009) by allocating attention to those stimuli 
that appear most relevant (Ocasio 1997), thereby significantly influencing the strate-
gic agenda (Ocasio and Joseph 2005). Surprisingly, however, the question of how to 
influence managers’ attention to be more receptive to discontinuous change remains 
unanswered.

A promising approach to this problem may come from research on the impact 
of artificial intelligence (AI) on strategic decision-making in organizations, which 
has gained much interest in the past (Keding 2021). Here, AI expresses “a system’s 
capability to correctly interpret external data, to learn from such data, and to use 
those learnings to achieve specific goals and tasks through flexible adaption” (A. 
Kaplan and Haenlein 2019, p. 3). While AI-based systems are already actively 
shaping decision-making in many other fields, such as healthcare (McKinney et al. 
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2020) or transportation (Grigorescu et al. 2020), applications in strategic decision-
making are still in their infancy. Only recently have management scholars begun 
to examine the impact of AI on strategic decision-making in more detail (Keding 
2021; Krogh 2018). While at the individual level, research has primarily focused 
on managerial cognition concerning AI’s potential to improve strategic decision-
making (Ghasemaghaei et al. 2018; Merendino et al. 2018) and the associated trust 
in it (Logg et  al. 2019; Schneider and Leyer 2019), research at the organizational 
level increasingly investigated the degree to which AI can independently substitute 
humans in strategic management tasks (Agrawal et  al. 2017; Jarrahi 2018). These 
recent findings on AI in a management context combined with technological devel-
opments (Agrawal et al. 2019; Intezari and Gressel 2017) give reason to believe that 
AI-based decision support systems can influence managers’ attention to discontinu-
ous changes (Mühlroth and Grottke 2020; Robinson et al. 2020) and thus contribute 
to improved strategic decisions.

Therefore, I combine results from a systematic literature review (SLR) on mana-
gerial attention with recent studies of AI in management decisions to examine how 
the use of AI might help top managers direct their attention to discontinuous change. 
I argue, based on Shepherd and colleagues’ (2017) attentional model, that AI affects 
the perception of discontinuous change by increasing the complexity of the top man-
ager’s knowledge structures, a “kind of mental template that individuals impose on 
an information environment to give it form a meaning” (Walsh 1995, p. 281), and 
reducing the situational level of task demands, i.e., the demands required to achieve 
a given level of performance (Hambrick et al. 2005). This allows manager’s atten-
tion allocation to be more bottom–up (stimulus-driven; exogenous) than top–down 
(schema-driven; endogenous) (Mcmullen and Shepherd 2006).

The paper contributes to the research in three ways. First, I contribute to research 
by connecting the Attention-based View of the Firm (ABV) with AI. Thereby, I inte-
grate AI into management research beyond the known research streams such as trust 
and acceptance (Lichtenthaler 2020; Schneider and Leyer 2019). Second, I contrib-
ute to research on discontinuous change by illustrating how technologies can help 
managers detect discontinuous change. These findings can serve as a starting point 
for future empirical studies. By providing frameworks to consider when using AI, 
this paper also contributes to practice.

2 � Discontinuous change and the attention‑based view

Discontinuous change radically challenges existing norms, processes and concepts 
(Christensen and Bower 1996; König et al. 2012) which makes it a widely-studied 
phenomenon to explain organizational failure. For example, according to an exten-
sive field study by Tripsas, (2009), organizations facing discontinuous change are 
often unable to successfully adapt to new market conditions, because their organi-
zational identity prevents them from perceiving identity-critical changes, i.e., dis-
continuous ones. Moreover, organizations often even lack the incentive to adapt to 
environmental changes (Christensen and Bower 1996), especially when their capa-
bilities and resources are aligned with the current market standard (Anand et  al. 
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2010), because they deviate from existing organizational structures and processes 
(Abernathy and Clark 1985; Gerstner et al. 2013). Therefore, they often react with 
a variety of inertial forces (Danneels 2004), such as resource dependence or incum-
bent position reinvestment (Gilbert 2005; König et al. 2021), which can result in the 
loss of competitive advantage of companies such as Polaroid, that failed to notice 
the shift from analogue to digital imaging (Tripsas and Gavetti 2000) and ultimately 
market position (Henderson and Clark 1990; Hill and Rothaermel 2003).

Some scholars have analyzed drivers for the recognition and adaptation to dis-
continuous change on the organizational level. For example Garud and Karunakaran 
(2018) find that integrating participatory experimentation into an organizational 
design can promote the internal management of change. Birkinshaw and colleagues 
(2016) find evidence that different environmental changes require different modes 
of adaptation, which are closely linked to the dynamic capabilities of an organiza-
tion. In addition, research indicates that resource commitment (Christensen 1997) 
and insufficient routine rigidity (Gilbert 2005) are drivers for divergent recognition 
of discontinuous change.

Research on the individual level has increasingly focused on the link to mana-
gerial and organizational cognition (MOC) (Eggers and Kaplan 2013; Gerstner 
et al. 2013; König et al. 2021). Gerstner and colleagues (2013), for example, show 
that narcissism leads to a more aggressive adaptation of technological discontinui-
ties, while Kammerlander and Ganter (2015) find that specific noneconomic goals 
of family firm CEOs, such as “family power and control”, foster their adaption to 
technological discontinuities. Within the MOC research field, managerial attention 
is considered one of the central concepts explaining heterogeneous perceptions of 
discontinuous environmental change (Maula et al. 2013; Ocasio 1997).

Managerial attention has received increasing research attention over the last dec-
ades (Ocasio 2011). For example, research has analyzed attention in the context of 
routines and bounded rationality (Cyert and March 1963; March and Simon 1958), 
ambiguity (March and Olsen 1976), or enactment processes (Weick 1979). Draw-
ing on these findings, Ocasio, (1997) formulates the Attention-Based View of the 
Firm (ABV), a metatheory in which he defines attention as “the noticing, encod-
ing, interpreting, and focusing of time and effort by organizational decision makers 
on both (a) issues: the available repertoire of categories for making sense of the 
environment, and (b) answers: the available repertoire of alternative actions” (Oca-
sio 1997, p. 189). The ABV states that the structuring and allocation of attention, 
together with other factors, is an important explanation for the behavior of decision-
makers and thus of their organizations, as it influences the spectrum of decision-
relevant information that can be considered (Kammerlander and Ganter 2015). 
This makes managerial attention crucial as it significantly shapes decision maker’s 
behavior (Ocasio 2011).

Building on the findings of ABV and the field of managerial cognition, research 
has highlighted the importance of attention allocation for the ability to notice envi-
ronmental changes (Cho and Hambrick 2006; Eggers and Kaplan 2009; Kiss and 
Barr 2015; Shepherd et  al. 2007). Studies have shown that managerial attention 
allocation plays an important role in effectively detecting and dealing with uncer-
tain environmental changes such as discontinuity (Eggers and Kaplan 2009) by 
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distributing attention to those stimuli that appear relevant (Ocasio 1997), thereby 
significantly influencing the strategic agenda and the use of resources (Ocasio and 
Joseph 2005).

Confronted with a highly complex and uncertain environment characterized 
by ambiguous and unstructured information (S. Kaplan and Tripsas 2008; Simon 
and Newell 1958) managers often fail to pay attention to discontinuous changes 
(Gatignon et  al. 2002), for example due to deviating patterns of experience (Nad-
karni and Barr 2008) or inattentional blindness (Mack 2003). Thus, to better under-
stand why managers often struggle to focus their attention on discontinuous changes 
and whether AI can support these processes, first the structural determinants of 
attention need to be ascertained.

This paper draws on Shepherd and colleagues’ (2017) comprehensive Attention 
Model of Top Manager’s Opportunity Beliefs as a central concept. In line with the 
current ABV literature, this model assumes that attention is not to be understood as 
a unified process, but as a series of distinct interconnected process steps that culmi-
nate in an action (Posner and Rothbart 2007). It therefore considers two aspects of 
attention: the transient attentional phase, in which decision makers actually perceive 
changes in the environment, and the sustained attentional phase, in which they form 
an opinion about the recognized changes (Shepherd et al. 2017). Research findings 
suggest that a central reason why decision makers often fail to recognize discontinu-
ous change can be found in the extent to which they engage in top–down processes 
during the transient attentional phase (Nadkarni and Narayanan 2007; Shepherd 
et al. 2017). Since I am only interested in the detection of discontinuous changes as 
such, I will only focus on the transient attention phase. The attention allocation dur-
ing the transient attention phase is mostly determined by manager’s task demands 
and knowledge structures (Shepherd et al. 2017). Despite the large body of research 
on the impact of managerial attention on environmental change detection, only few 
studies have addressed approaches to improve this situation. Here, AI with its spe-
cific capabilities might help and make a meaningful contribution to a much-studied 
problem by providing technological solutions to achieve a more balanced alloca-
tion of top–down and bottom–up processes. Most studies in ABV research focus 
exclusively on top–down approaches in the attention allocation that can be derived 
from decision makers’ action logics (Thornton and Ocasio 1999), while ignoring 
bottom–up approaches, in which attention is directed to specific environmental cues 
rather than cognitive patterns (Joseph and Wilson 2017). Shepherd and colleagues’ 
(2017) attentional model, in contrast, integrates both approaches, resulting in a more 
holistic and balanced approach when studying discontinuous change. These attrib-
utes make the model ideal as basis for an in-depth look at the influence of AI on the 
detection of discontinuous changes.

How environmental changes are perceived by top managers during the tran-
sient attention phase is largely influenced by the extent to which decision-makers 
rely on top–down (schema-driven) or bottom–up (stimulus-driven) approaches in 
their attention allocation (Joseph and Wilson 2017; Mcmullen and Shepherd 2006; 
Shepherd et al. 2007).  According to research findings, the extent of top–down pro-
cesses in attention allocation is essentially shaped by the decision maker’s goals 
(Greve 2008), identity and accountability (Hoffman and Ocasio 2001) and cognitive 
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structures (Bouquet and Birkinshaw 2008), which can be clustered under two main 
influencing variables: task demand and the complexity of knowledge structures 
(Shepherd et al. 2017).

Hambrick et al. (2005) define task demand of top managers, also called executive 
job demands, as the requirements necessary to achieve a given level of performance. 
According to them task demand is composed of (1) task challenges, (2) performance 
challenges, and (3) executive aspiration. When exposed to high task demand, man-
agers’ limited attentional capacity (Ocasio 1997) makes them incapable of detecting 
discontinuous changes at the same time, as they rely more heavily on experience-
based top–down processes in such moments of high cognitive load (Hambrick and 
Mason 1984; Shepherd et al. 2017).

Knowledge structures (also called strategic schemas or cognitive frames) are cog-
nitive structures that represent organized knowledge about individual concepts or 
domains (Daft and Weick 1984; Kiss and Barr 2015). They differ in their central-
ity (Eden et al. 1992) and complexity (Calori et al. 1994). Research on knowledge 
structures indicates that a higher complexity of knowledge structures can have a 
positive impact on the detection of discontinuous changes by helping decision mak-
ers increase their strategic flexibility (Nadkarni and Narayanan 2007) and thereby 
becoming more open to changes from the environment (Walsh 1995).

3 � Methodology

To provide a more comprehensive picture of exogenous (bottom–up) and endoge-
nous (top–down) influences in attentional research related to change, I have con-
ducted a SLR. The methodological basis of the SLR of this paper is based on Tran-
field et al. (2003). Its main objective is to present a structured and replicable state 
of research based on a three-step process—planning, conducting, and reporting and 
dissemination—on which a conceptual model can be built. In order to understand 
how attention impacts the detection of environmental changes, it’s important to 
identify both the top–down (endogenous) and bottom–up (exogenous) factors that 
affect this process. In 4 steps, relevant research articles were identified and clustered.

In the first step, topically relevant keywords were identified and used for a 
structured database search on Web of Science. Web of Science is a compre-
hensive online database of scientific publications and is widely used for lit-
erature reviews in science (Brielmaier and Friesl 2023). The keywords used 
were divided into two groups and linked with the Boolean operator "AND". 
The first group contained the keywords "attention" or "attention allocation" or 
"attention-based view" or "ABV" or "managerial attention". The second group 
contained "discontinuous change" or "environmental change" or "change" or 
"change detection" or "opportunity recognition". The search was limited to 
empirical, theoretical, and review articles from 1997, the year Ocasio’s, (1997) 
ABV theory was published, to 2023. To ensure high scientific quality of the lit-
erature search, the survey-based VHB-Jourqual 3 ranking was also used to filter 
published articles from leading journals, in line with other SLR articles (Grisar 
and Meyer 2016; Keding 2021). Only peer-reviewed journals that had both a 
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ranking of B "important and prestigious" or higher and a clear link to manage-
ment research were included. This resulted in a selection of 508 articles from 19 
journals that met the above criteria.

In a second step, following Tranfield et al. (2003), I first excluded all articles 
that did not contain either "attention" or "change" in the title, abstract, or key-
words, and that had no substantive relation to management research or ABV. Var-
iations of the keywords such as "attentional" were also considered. As a backup, 
the full texts of all excluded articles were rechecked for content matches. Articles 
that had a match to the keywords in the full text but did not have sufficient con-
tent related to the research field were removed. This resulted in a selection of 54 
articles.

In a third step, the remaining articles were subjected to an in-depth review. In 
this process, the articles were read carefully. 11 articles were excluded because, 
although they met the SLR search criteria in terms of keywords and research ori-
entation, on closer inspection they did not have content related to the research 
question. This left 43 articles (see Table 1). In the final step, the effects on atten-
tion described in the articles were categorized as either endogenous (top–down), 
internally induced processes or exogenous (bottom–up), externally induced pro-
cesses (Corbetta and Shulman 2002). This categorization was based on the tran-
sient attention phase of the attention model of top managers by Shepherd et  al. 
(2017).

4 � Results of the literature review

The results of the SLR show, that previous publications extensively studied the rela-
tionship between attention and change detection in management, considering indi-
vidual traits like future-oriented thinking (Back et al. 2020), narcissistic tendencies 
(Gerstner et  al. 2013), acquired knowledge (Grégoire et  al. 2010), and cognitive 
information processing (Gavetti and Levinthal 2000). These endogenous character-
istics affect how managers allocate their attention and thus how they perceive and 
effectively manage change. Moreover, organizational factors, including impending 
change (Bansal et al. 2018), organizational structure (Fu et al. 2020), interorganiza-
tional relationships (Maula et al. 2013), shareholder influence (Hoffman and Ocasio 
2001), and industry environmental dynamism (Ghobadian et al. 2022) show signifi-
cant effects on the relationship between attention and environmental change detec-
tion. This systematic review provides an overview of these endogenous and exoge-
nous influences that have been studied by researchers, but lacks specific guidance for 
individuals, top management teams (TMT), or organizations. While attention’s sig-
nificance in strategic decision-making is widely acknowledged (Ocasio 2011), there 
is a dearth of theoretical models addressing how to mitigate the negative effects of 
endogenous/exogenous factors on attention allocation during change detection. AI 
research in management presents a promising solution, offering valuable insights 
and strategies for effectively managing attention in change processes (Jarrahi 2018; 
Robinson et al. 2020).
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5 � Impact of AI on managerial attention

This section integrates insights from the previous theories and SLR with current 
AI research to develop a conceptual framework. This framework aims to enhance 
top managers’ ability to identify discontinuous change by contributing to a more 
balanced use of top-down and bottom-up approaches during the transient attention 
phase. As shown in Fig. 1 I build on the attention model of Shepherd et al. (2017).

5.1 � Capabilities of modern AI in management decisions

The application of AI in the context of management decisions in its current form 
is based, firstly, on the rapid advances in the computing power of data-processing 
machines and, secondly, on the availability of Big Data (Shrestha et al. 2021; Topol 
2019). Together they enable the core capability of today’s AI systems in the area of 
strategic management, the prediction making (Amodei and Hernandez 2018; Duan 
et  al. 2019). These capabilities can be beneficial for strategic decision-making by 
extracting previously unknown patterns of information from large amounts of data 
to detect discontinuous changes, e.g. emerging trends, at an early stage and hence 
make better decisions (Ghasemaghaei 2018).

5.1.1 � Computing power

Improvements in computing power are a key component of progress in today’s over-
arching use of AI. To execute algorithmic commands, conventional computers as 
well as complex AI systems require sufficient computing power to process inputs 
and deliver corresponding outputs through algorithms (George et  al. 2014). The 

Fig. 1   Proposed effects of task demand and complexity of knowledge structures (ks) on the managerial 
attention allocation
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greater the computing power, the faster complex commands can be processed using 
large amounts of data.

Unlike humans, who have limited cognitive capacity to process information 
(Turner and Makhija 2012), AI systems are mostly free from constraints in handling 
and weighing decision alternatives due to their technical scalability of computing 
power (Krogh 2018). This makes them useful in detecting discontinuous changes 
by simplifying tasks of top managers and thus contributing to a reduction of task 
demand.

5.1.2 � Data availability

From the perspective of organizational theory as well as strategy, information is con-
sidered a crucial resource for shaping organizations to reduce contextual uncertainty 
and ambiguity by processing it (Daft and Lengel 1986; Nicolas 2004). Therefore, in 
addition to high computing power, the skyrocketing availability of data, also referred 
to as Big Data (Kowalczyk and Buxmann 2014), is considered a key driver for the 
performance of today’s AI systems in management science (Gupta et al. 2018). Big 
Data differs from normal data sets in terms of data growth in its velocity, volume 
and variety (McAfee and Brynjolfsson 2012).

AI technologies, such as machine learning (ML), occupy a key position in Big 
Data analytics by being able to quickly, cheaply and independently of form identify 
patterns and relationships in the aggregated data from which valuable insights can 
be gained for more objective decision-making (Intezari and Gressel 2017; O’Leary 
2013).

This would enable top managers to improve their own decision-making behavior, 
as AI exposes previously unknown information correlations to them and thus helps 
to increase the complexity of knowledge structure to ease the detection of discon-
tinuous changes.

5.1.3 � Prediction making

The advances in computing power and data availability lead to the most important 
capability, prediction making. Prediction making describes the process of to „use 
information you do have to produce information you do not have” (Agrawal et al. 
2019, p. 1). This means that whenever predictive statements about the future are to 
be made, historical data serve as a basis of information from which to draw conclu-
sions about future developments (Jordan and Mitchell 2015).

Here, AI has an advantage over other methods, as it can recognize generaliza-
ble patterns and structures in data, without having to specify in detail beforehand 
(Mullainathan and Spiess 2017). In this way, prediction techniques such as machine 
learning help decision-makers in organizations to acquire new knowledge by also 
considering unknown knowledge domains that are suggested by the machine (Cal-
vard 2016). Extant research already shows promising results of AI in predicting gov-
ernment economic growth and recessions (Wu et al. 2020), in investment decisions 
by predicting stock returns (Avramov et al. 2019), in early identification of emerging 
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technologies (C. Lee et al. 2018) or in recognizing the strategic direction of organi-
zations (Suominen et al. 2017).

Coupled with large-scale computing power and data processing, the predictive 
capabilities of today’s AI systems make them a suitable approach for enhancing the 
strategic capabilities of decision-makers and can assist them in allocating attention 
to monitoring and detecting relevant signals of discontinuous changes.

5.2 � AI and task demand

Managers are exposed to a variety of demanding, complex tasks in their daily work, 
but their attention span (Ocasio 1997) and cognitive computational capacity is lim-
ited (Simon 1947). As a consequence, attention must be allocated to tasks individu-
ally, which can lead to limitations in attention to other tasks, such as noticing impor-
tant environmental changes (Shepherd et al. 2017).

According to Hambrick et al. (2005), task demand consists of two contextual fac-
tors—task challenges and performance challenges—and one personality-related fac-
tor—executive aspiration. Performance challenges are mainly defined by exogenous 
forces, such as higher-ranking persons, whereas executive aspiration describes the 
intrinsic motivation of top managers to pursue tasks with determination (Hambrick 
et al. 2005). I posit that the influence of AI is limited to contextual factors, specifi-
cally task challenges faced by top managers, as it cannot directly shape the behavior 
or motivation of individuals by influencing their attention.   Task challenges arise 
primarily from environmental dynamism and hostility  (Hambrick et al. 2005; Zhu 
et al. 2021).

5.2.1 � Environmental dynamism

In this context, environmental dynamism describes the frequency and extent of 
unforeseen, irregular environmental changes (Cooper et  al. 2014; Dess and Beard 
1984) and is determined in its extent, for example, by the number and size of com-
petitors in an industry or the diffusion of technologies (Jansen et  al. 2006). The 
higher the level of environmental dynamism in a market, the higher the associated 
uncertainty (Baum and Wally 2003) and instability of the top manager’s market 
information (Dess and Beard 1984).

This creates particular challenges for top managers. As extant research on envi-
ronmental dynamism shows, the inherent uncertainty of highly dynamic environ-
mental conditions brings conflicting information that lead to the splitting of atten-
tion (Ocasio 1997) and in turn less rational strategic decision-making (Hough and 
White 2003). In such moments of high cognitive demand, top managers increas-
ingly rely on selective perception of environmental stimuli (Hambrick and Mason 
1984) and heuristic, i.e. experience-driven, decision-making processes (Bingham 
and Eisenhardt 2011). This poses the risk that high environmental dynamism may 
also lead to a perception of less discontinuous environmental changes and trends 
(Bazerman and Moore 2012; Tripass and Gavetti 2000; Zhu et al. 2021), because 
it is precisely these changes that represent an innovation in themselves and cannot 
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be identified by heuristic decision-making processes in the large amount of envi-
ronmental information. 

According to an empirical study by Abebe (2012), environmental dynamism 
takes on a moderating role that negatively affects firm performance insofar as 
decision-makers in highly dynamic environments focus a disproportionate share 
of their attention on internal (input-related) rather than external (market-related) 
issues. This result also underlines an earlier finding by Eisenhardt and Martin 
(2000), that in highly dynamic environments, the creation of dynamic capabili-
ties, that are needed to achieve new strategic resource configurations (Teece et al. 
1997), depends on newly acquired market-related knowledge outside one’s own 
organization. In markets with high environmental dynamism, the distribution of 
attention thus plays a critical role in the strategy development of organizations 
(Levy 2005).

When considering task challenges, it becomes clear that environmental dyna-
mism is determined to a large extent by the uncertainty that has emerged as a 
result of missing or ambiguous market information.

In addition to the lack of sufficient information, top managers today often have 
to deal with an overload of available information. Given limited cognitive capac-
ity, too much unstructured information can lead to information overload, resulting 
in more confusion and poorer decisions (B.-K. Lee and Lee 2004). Thus, accord-
ing to Eggers and Kaplan (2009), to focus attention on discontinuous changes, 
limitations of structural or cognitive information processing must first be over-
come (Williams and Mitchell 2004), which can also affect perceived environmen-
tal dynamism.

Today’s AI systems are capable of overcoming these limitations in many areas 
of human information processing. For example, unlike human decision-makers, 
a highly dynamic environment does not necessarily lead to limitations in infor-
mation processing for modern AI systems due to their large computing power 
(Shrestha et  al. 2019). Rather, the emergence and performance of AI is even 
closely linked to the availability of vast amounts of data, especially Big Data. 
Nowadays, systems are so advanced that even unstructured data sets in a wide 
variety of media forms can be evaluated by machines (Duan et al. 2019), which 
are particularly important for strategic decisions in organizations (Merendino 
et al. 2018). This, in turn, enables advanced AI-based decision support systems to 
make accurate predictions about market developments (Agrawal et al. 2019) even 
under conditions of high environmental dynamism.

Thus, while top managers in dynamic environments are often unable to focus 
their attention on all relevant new market information due to cognitive limita-
tions, AI systems benefit in their informative power through the increasing infor-
mation density of dynamic environments. As a result, they support top managers 
in information processing and thus contribute to lower perceived environmen-
tal dynamism by systematically collecting and processing information. Conse-
quently, I propose:

Proposition 1a: The use of AI in the detection of relevant environmental 
changes reduces perceived environmental dynamism.
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5.2.2 � Environmental hostility

Furthermore, task challenges are influenced by environmental hostility, which 
describes the degree of threat posed by the environment (Dean and Sharfman 1993; 
Miller and Friesen 1983). In a hostile environment, information and resources are 
scarce and can lead to market-specific competitive advantages when owned by 
organizations (Barton and Court 2012; George et al. 2014).

This directly impacts the strategic decision-making behavior and attention alloca-
tion of top managers. Extensive empirical research demonstrates the negative effects 
of hostile environments in terms of slower decision-making processes (Baum and 
Wally 2003) and poorer judgement quality. For example, Mitchell et al. (2011) sug-
gest that high levels of environmental hostility lead to more erratic strategic deci-
sion-making. However, consistency is essential for effective strategic decision-mak-
ing (Mintzberg 1987).

Another empirical study by Kreiser and colleagues (2020) has found a negative 
relationship between environmental hostility and entrepreneurial orientation, i.e. the 
ability of organizations to innovate and change. The results indicate that organiza-
tions reduce their entrepreneurial activities, which also include information pro-
cessing, when the environmental context becomes more hostile, although it would 
make sense to strengthen them at this point. Ultimately, this may have an impact on 
the attention allocation of top managers as less attention and cognitive capacity  is 
devoted to recognizing and processing new topics but more existing ones.

The integration of AI can also be advantageous when dealing with hostile envi-
ronments of top managers. According to Jarrahi (2018), recombining existing infor-
mation using AI techniques with high computing power, such as Deep Learning, 
presents an opportunity to uncover previously unknown relationships between fac-
tors that help to predict market activities. Current empirical research findings sup-
port this thesis. For example, it has been demonstrated that AI can positively con-
tribute to a more accurate prediction of future product sales in the textile industry 
(Jian et  al. 2020) or to the early identification and strategic planning of emerging 
pharmaceutical technologies (C. Lee et al. 2018).

As the studies show, AI systems are already used today in various areas to antici-
pate market developments at an early stage despite contextual uncertainty and ambi-
guity in order to react effectively. I therefore assume that AI capabilities, such as 
high computing power, data availability and prediction making, can not only be 
applied to identify early market developments, but also to reduce the effects of per-
ceived environmental hostility on the basis of acquired information. Therefore, I 
propose:

Proposition 1b: The use of AI in the detection of relevant environmental 
changes reduces perceived environmental hostility.

Finally, reduced environmental dynamism and hostility through the use of AI 
also  might have a mitigating impact on the overall perceived task demand of top 
managers. Although, as described at the beginning, I assume that the performance 
challenges and executive aspiration remain unchanged during the use of AI, the 
reduced level of environmental dynamism and hostility will also lower the perceived 
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difficulty of task challenges. This in turn leads to a reduction of the overall task 
demand. Therefore, I propose:

Proposition 1c: The use of AI in the detection of relevant environmental 
changes reduces perceived task challenges through mitigating effects on envi-
ronmental dynamics and environmental hostility.
Proposition 1d: The use of AI in the detection of relevant environmental 
changes reduces perceived task demand through mitigating effects on task 
challenge.

5.3 � AI and complexity of knowledge structures

In addition to task demand, knowledge structures also play a significant role in man-
agerial cognition literature (Calori et al. 1994; Carley and Palmquist 1992; Kiss and 
Barr 2015; Nadkarni and Barr 2008). Their complexity represents the comprehen-
siveness (number of mental concepts) and connectedness (number of causal links 
between them) of a person’s embedded domain knowledge (Nadkarni and Naray-
anan 2005; Walsh 1995).

Knowledge  or belief structures, and especially their complexity, have a major 
influence on attention at the individual level (Kiss and Barr 2015) and ultimately 
on the strategic decision-making behavior of top managers (Bogner and Barr 2000; 
Calori et al. 1994). For instance, the results of an empirical study by Nadkarni and 
Barr (2007) suggest that higher complexity of knowledge structures, which they call 
strategic schemas, lead to higher strategic flexibility and better firm performance 
because the extensive knowledge helps to adapt effectively to rapidly changing mar-
ket conditions. According to previous research, this is mainly because more complex 
knowledge structures enable top managers to perceive more stimuli from the envi-
ronment (Weick 1995), establish more diverse relationships between the information 
they acquire (Bogner and Barr 2000), and thus provide a wider range of alternative 
solutions for the strategic decision-making process (Dollinger 1984; Levy 2005). 
People with more complex knowledge structures are also more creative, following 
a study by Rodan and Galunic (2004), and have a positive influence on the innova-
tive capacity of organizations. Moreover, complex knowledge also makes it easier 
for them to handle and process environmental signals, which makes them superior 
in information processing (Kiss and Barr 2015). It can therefore be assumed that 
top managers with more complex knowledge structures can more easily recognize 
relevant environmental changes and effectively distribute their attention accordingly 
(Shepherd et al. 2017).

Although knowledge structures enable top managers to cognitively simplify the 
perception and processing of environmental signals, they also hold potential risks for 
organizations. McNamara et al. (2002) assume that individuals with distinct knowl-
edge structures ignore supposedly irrelevant information for the purpose of simpli-
fication and thus distort a holistic interpretation of information (Schwenk 1984). 
Moreover, complex knowledge is difficult to share between actors within an organi-
zation (Pil and Cohen 2006; Rivkin 2001), which in turn can have disadvantages in 
strategic decision-making by top management teams (Srivastava et al. 2006).
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They also lead to more ineffective or local search routines (Eggers and Kaplan 
2009). In an extensive case study, Tripsas and Gavetti (2000) demonstrated that a 
major challenge for top managers in the face of discontinuous change is to distin-
guish it from incremental change because it is based on new knowledge not con-
tained in their knowledge domains. As a result, knowledge domains that are struc-
turally less complex lead to limitations in the search for and perception of especially 
new, more radical trends, since the information associated with the environmental 
signals of such discontinuities often does not overlap with the knowledge of top 
managers (S. Kaplan and Tripsas 2008).

Thus, to be more attentively receptive to discontinuous environmental changes, 
complex knowledge structures are required among top managers. These can be 
fostered through access to extensive sources of information with a high qualitative 
and heterogeneous composition (G. K. Lee 2007) and repeated training of available 
complicated, multidimensional content (Carley and Palmquist 1992).

I argue that AI’s capabilities can increase the complexity of managers’ knowl-
edge structures. Due to their high computing power and data processing capabili-
ties, many of these systems, once set up, are able to collect relevant market infor-
mation from different un/structured databases almost automatically and make it 
available to top managers for decision support (Duan et  al. 2019; Paschen et  al. 
2019), without being subject to cognitive performance limitations, unlike human 
decision makers (Jarrahi 2018). In addition, AI can focus on multiple goals simulta-
neously when seeking information with little to no performance degradation (Krogh 
2018). Combined with increasing prediction making capabilities, this results in two 
other concrete benefits of AI, according to Ferraris et al. (2019). First, the nature of 
advanced analytics and the volume and form of data analyzed can reveal previously 
unknown patterns in data that are usually hidden from humans. These could posi-
tively contribute to the creation of qualitative sources of information. Second, this 
also enables AI to make predictive statements that confront top managers with their 
own opinions and possibly lead to learning effects and the resulting increase in com-
plexity. Independently of other factors influencing learning, I assume that pure con-
frontation with AI-generated search results on environmental changes can also lead 
to either a confirmation of the intended strategic action because it corresponds to the 
knowledge structure of the top manager. Or, on the contrary, trigger thought-pro-
voking impulses because the top manager now has to question whether established 
knowledge structures are still correct. This could also reduce the effects of a pos-
sible confirmation bias, which describes the unconscious tendency of people to seek 
selective evidence in information that is consistent with their own beliefs (Nicker-
son 1998; Rollwage et al. 2020). According to Kahneman et al. (2011), questioning 
one’s own opinion by considering further alternatives, in this case generated by an 
AI, can lead to a reduction of confirmation bias. This could also contribute to more 
complex knowledge on the part of top managers in the form of regular training.

Although current research on AI for strategic decision-making is primarily con-
ceptual, there are already a few empirical studies on its application in the context 
of environmental scanning and related information gathering and processing. For 
example, Mühlroth and Grottke (2020) have shown that AI can predict the emer-
gence of new technologies in data sets years earlier and thus support organizations 
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in their strategic reorientation at an early stage. In another earlier contribution, 
Aasheim and Koehler (2006) apply AI techniques to prove that predictive signals 
can be used to successfully make statements about the development of selected 
stock returns. Both the conceptual and empirical studies indicate that AI is already 
generally capable of supporting top managers in areas where strategic decisions are 
subject to a high cognitive load.

Based on these findings, I therefore assume that AI, through its computing power, 
data availability and prediction making, is able to positively influence top manag-
ers in both information acquisition and the subsequent learning process and can 
thus lead to the enhancement of more complex knowledge structures. Therefore, I 
propose:

Proposition 2: The use of AI in the detection of relevant environmental changes 
increases the complexity of knowledge structures.

5.4 � AI and top–down/bottom–up approaches of attention allocation

According to Shepherd et al. (2017), whether the allocation of management atten-
tion in a situation is more top–down or bottom–up is also significantly influenced 
by the complexity of knowledge structures. It is assumed that top–down processes 
of attention allocation are based on knowledge structures (Bogner and Barr 2000; 
Walsh 1995), which direct the attention of top managers to environmental signals 
that are most similar to their own knowledge (S. Kaplan and Tripsas 2008), so that 
they can interact deductively with the environment. If the knowledge structures of 
a top manager are highly developed, e.g. very complex, it is easier for the person 
to discover opportunities for incremental changes in the existing structures, as the 
person directs the attention to aspects from which change is expected (Nadkarni and 
Barr 2008). In contrast, bottom–up processes describe an inductive form of allo-
cation (Shepherd et al. 2017), in which attention is determined and guided by the 
external influence of environmental stimuli (Shepherd et al. 2007). This makes top 
managers more receptive to discontinuous change, because by not seeking change 
themselves but being guided by environmental stimuli, they find it easier to discover 
novelties outside their own knowledge structures (Eggers and Kaplan 2009; Shep-
herd et al. 2007).

To increase the share of bottom–up processing in attention allocation for discon-
tinuous change detection, Shepherd et al. (2017) see task demand as an important 
influencing factor in their model. Since top managers have limited attentional capac-
ities (Ocasio 1997), they are less likely to resort to top–down processes for cogni-
tive facilitation in situations with lower task demands. However, since, as described 
above, attentional allocation processes always consist of both top–down and bot-
tom–up processes, systems that support the detection of discontinuous change must 
necessarily be capable of supporting both equally. Since the focus of this paper is 
specifically on the detection of long-term trends, i.e. discontinuous changes, an AI 
should accordingly support bottom–up processes in particular.

In my view, AI also contributes to an increase in the complexity of knowledge 
structures (see Proposition (2)) and thus to improved top–down processes through 
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the representation of extensive information via its data availability and computing 
power capabilities. However, the detection of unknown changes is not conceivable 
without a foundation of domain-specific knowledge (Mcmullen and Shepherd 2006). 
Rather, the reduction of the perceived task demand by AI (see Proposition (1d)) 
leads to more possibilities in the detection of discontinuous changes despite com-
plex knowledge structures, since more transient attention is available to be guided by 
stimuli from the environment (cf. Shepherd et al. 2017). Therefore, I propose:

Proposition 3: Using AI to detect relevant environmental changes makes top 
managers rely more on bottom–up processes of attention allocation to perceive 
discontinuous changes through mitigating effects on task demand and the com-
plexity of knowledge structures.

6 � Discussion and future research

The relationship between discontinuous change detection and managerial attention 
has become a much-studied topic in the field of MOC research. This is because, 
individual attention allocation provides an explanation why decision makers per-
ceive change differently (Kammerlander and Ganter 2015; Ocasio 1997) and based 
on this, shape the strategic agenda of organizations (Ocasio and Joseph 2005; Shep-
herd et  al. 2017). Despite growing research activities in this area, the question of 
how to consciously influence the attention allocation to better detect discontinuous 
changes remains unclear. At the same time, recent research findings on AI-based 
applications in the context of strategic decision-making call for investigating appli-
cation areas where the potential of modern technology can be applied and under-
stood (Borges et al. 2021; Krogh 2018; Shrestha et al. 2019). Consequently, in this 
paper, I focused on the research gap created therein by conceptually investigating 
the impact of AI on managers’ attention allocation when detecting discontinuous 
environmental changes. Based on an SLR, an attentional-model and a wide range 
of AI-related scientific publications from different research disciplines, I derived a 
number of propositions (see Fig. 1).

Consistent with prior research (Eggers and Kaplan 2009; Kammerlander and 
Ganter 2015; Maula et al. 2013; Shepherd et al. 2017), I argue that the causes for the 
nexus between discontinuous change detection and managers’ attention allocation 
lie in a complex array of exogenous and endogenous influencing variables. They all 
share the fundamental commonality that discontinuous change often impede deci-
sion makers in perceiving and processing  relevant environmental stimuli by chal-
lenging established mental knowledge structures and assumptions necessary for 
this purpose (Daft and Weick 1984; König et al. 2012; Walsh 1995). As a conse-
quence, decision-makers often react with inertia (Bockmühl et al. 2011), ignore or 
deny the change that obviously exists (Kammerlander et al. 2018), or simply do not 
pay attention to it (S. Kaplan et al. 2003), as it highly contradicts their own knowl-
edge structures (Kiss and Barr 2015). In this conflicting array, analogous to the 
model of Shepherd et al. (2017), I explored in more detail the interplay of AI with 
task demand as exogenous and complexity of knowledge structures as endogenous 
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factors with respect to the share  of top–down and bottom–up processes in mana-
gerial attention allocation. This step was necessary, because as highlighted in my 
study, the allocation of managerial attention is influenced by a number of exogenous 
and endogenous variables. However, despite the importance of this issue, no explicit 
measures or methods have been found to effectively address this situation. Techno-
logical advances like AI might help here.

Together, task demands and knowledge structures determine the extent of 
top–down and bottom–up processes in attention allocation, and thus the receptivity 
to perceive discontinuous change. In my view, AI-based decision support systems 
provide an appropriate tool to make decision makers more receptive to discontinu-
ous change by influencing exogenous as well as endogenous forces. This is because 
their specific capabilities, computational power, data availability, and hence  pre-
diction making, can compensate for the shortcomings of human cognition in many 
domains (Agrawal et al. 2017; Duan et al. 2019). However, these systems play only a 
supporting role in this assumption, thus augmenting human capabilities in decision-
making. Finally, intelligent decision support systems must be capable of supporting 
both top–down and bottom–up processes among decision makers, as other relevant 
types of change must be perceived in addition to discontinuous ones.

These results allow me to make two valuable contributions to the current research 
debate.

First, I add another research area to the field of applied AI in the context of 
attention allocation by linking theories of ABV to AI for the first time. In this con-
text, I present arguments on how AI can influence the extent of top–down and bot-
tom–up processes in attention allocation. Future research should address this point 
and empirically investigate whether the use of AI leads to the harmonization of both 
types of processes and thus improved attention allocation. Furthermore, it is unclear 
to what extent AI-based decision systems influence human biases during attention 
allocation. Particularly for discontinuous changes, perception is shaped by individ-
ual personality traits (Gerstner et al. 2013; Nadkarni and Narayanan 2007) and the 
organizational setting (Kammerlander and Ganter 2015; Kammerlander et al. 2018). 
However, previous research studies indicate that AI-based decisions may actually 
reinforce human biases in many cases (Shrestha et al. 2019) and therefore have neg-
ative effects on managerial attention. Here, a clear distinction as to whether this is 
also the case in the context of attention allocation is needed.

Second, I find that despite its immense importance for the strategic decision-
making process and the large number of publications in high-ranking journals (see 
SLR), there are still no technological approaches to influence managerial attention 
allocation when detecting discontinuous changes. By conceptually integrating AI 
into such situations, I was able to derive concrete propositions for improving the 
perception of discontinuous environmental changes. These propositions need to be 
investigated empirically. It is also still uncertain what other exogenous and endog-
enous factors influencing attention allocation need to be considered. For example, 
the dynamic capabilities of organizations might be of interest here, since they play 
a crucial role in determining the adaptability of organizations (Teece et al. 1997). 
Furthermore, it seems interesting to question whether and to what extent deviations 
exist concerning different types of environmental change and for which type AI is 
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particularly suitable. In this context, it is particularly important to consider psycho-
logical components of decision-makers such as trust (Glikson and Woolley 2020) or 
the willingness to delegate tasks (Schneider and Leyer 2019) in addition to technical 
issues regarding the feasibility of AI-based support systems.

7 � Limitations and concluding remarks

Despite the above-mentioned contributions, this paper is also based on a number 
of assumptions that imply limitations. First, each SLR is the result of a subjective 
selection and decision-making process, which can potentially impact the overall 
robustness of the evidence. To account for this, the SLR used established procedures 
from the literature (Tranfield et  al. 2003). Second, the final selection of literature 
is relatively small at 43 articles. However, this number is consistent with similar 
conceptual studies based on literature (Neumann 2017). Third, the propositions pre-
sented on the effects of AI on attention allocation for improved detection of discon-
tinuous changes exclusively consider task demand and the complexity of knowledge 
structures as socio-cognitive influence mechanisms. While these are undoubtedly 
highly relevant, as common in qualitative studies, a variety of other factors in the 
information processing process must be considered for a fully comprehensive under-
standing. Fourth, due to the conceptual nature of this paper, no conclusions can be 
drawn about the relative strength and relationship of task demand and the complex-
ity of knowledge structures to attention allocation and each other, as no statistical 
analyses were done. Thus, my propositions should be empirically tested in an appro-
priate context in the future to determine their generalizability. Fifth, my propositions 
build on a model of attentional allocation by Shepherd et al. (2017), whose validity 
has not yet been empirically investigated, which in turn has a limiting effect on my 
results.

In conclusion, this paper represents a first attempt to connect the research fields 
of MOC and AI in management decision-making with respect to discontinuous 
change. My framework offers new perspectives on dealing with discontinuous 
change, emphasizing the role of human cognition and attention in the application 
of AI-based solution approaches. My results are intended to serve as a starting point 
for future research in this field, to provide a clear picture of the opportunities and 
risks of AI in management decisions through empirical testing.
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