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Abstract
Several studies have demonstrated the high prediction accuracy of clustered credit 
risk modeling. In clustered modeling, borrowers are segmented based on their 
similarities through cluster analysis, and a separate predictive model is developed 
for each cluster, resulting in increased predictive accuracy. Unambiguously, its 
effectiveness depends on the quality of the segmentation, which in turn depends 
primarily on the choice of variables used in the cluster analysis. However, 
appropriate variable selection for clustering is a major challenge, particularly for 
high-dimensional data. In the present study, we propose a machine learning-based 
variable selection method based on theoretical and regulatory considerations. 
Formally, the most influential risk drivers from a best-in-class machine learning 
model are identified using Shapley values and employed as clustering variables. 
Thus, the information of the explanatory variables crucial for the prediction of 
the dependent variable is already processed during data segmentation, making 
each individual predictive model more effective. Through a comparative analysis 
using two real-world credit default datasets, we show that our proposed approach 
to clustered modeling leads to the highest prediction accuracy among various 
clustering models.
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1 Introduction

Credit risk modeling is an important risk management task in financial institutions. 
In this context, banks develop a statistical model based on historical default data 
to predict borrowers’ credit risk and derive targeted risk management strategies, 
such as adjusting lending policies. However, given the varying nature of borrowers 
and regulatory requirements for a meaningful differentiation of risk, a single 
statistical model is usually not sufficient to capture the risk characteristics of various 
individuals. Clustered1 modeling can be used to overcome this problem. In this 
approach, borrowers are clustered based on their similarities through cluster analysis 
and for each resulting cluster a separate predictive model is developed. Because 
the borrowers in each cluster have similar risk characteristics, the models can be 
individually developed and fitted to each cluster, resulting in higher predictive 
accuracy [see, for instance, Bakoben et al. (2020)].2 The effectiveness of clustered 
modeling depends on the quality of borrower segmentation, which in turn is 
primarily influenced by the choice of explanatory variables used for clustering. It 
has long been known that not every variable is useful for cluster structure detection, 
and the inclusion of irrelevant variables may impair the ability of clustering 
procedures to effectively detect meaningful structures [e.g., De Soete et al. (1985), 
Milligan (1989), Green et al. (1990)]. Precisely, the use of inappropriate variables 
that possess no discriminative information for clustering may result in overlapping, 
indistinguishable, and uninformative clusters [cf. Fop and Murphy (2018)], which 
negatively affects the predictive performance in separate modeling. Therefore, the 
selection of appropriate variables used in cluster analysis is particularly challenging, 
especially for high-dimensional data. The difficulty also arises from the fact 
that high-dimensional data can be meaningfully clustered in a variety of ways. 
More specifically, it is not necessary to identify the variables that lead to the best 
clustering but rather those that enable the best prediction of the dependent variable 
in separate modeling.

To address the variable selection challenge in clustering, we propose a novel 
variable selection process on the basis of machine learning and Shapley values.3 
More formally, our approach is to calibrate a best-in-class4 machine learning model 
and then use the Shapley values of Shapley (1953) as an importance measure to 

1 Grouping a set of objects so that the objects in the same group are more similar than the objects in 
other groups is a well-known procedure in the literature. For instance, see Cajias et al. (2020) and Gürtler 
and Zöllner (2023a).
2 Refer to Sects. 3.1 and 3.2 for the theoretical background and the requirements to increase the predic-
tive accuracy through clustered modeling.
3 Machine learning algorithms are also increasingly being used in other areas of business economics. 
For instance, Schneider and Brühl (2023) investigate the predictive power of CEO characteristics on 
accounting fraud utilizing a machine learning approach. Götze et al. (2023) compare different machine 
learning approaches for predicting CAT bond premia in the secondary market.
4 We rely on the literature to choose a “best-in-class” machine learning model. In particular, Lessmann 
et al. (2015) and Gürtler and Zöllner (2023a) show the superiority of gradient-boosted trees and random 
forest in credit risk modeling. Consequently, we consider these models the best in the class of methods 
that are extensively covered in the credit risk literature.
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determine the risk drivers that most strongly affect the estimations. In the next step, 
the number of considered variables is determined and the most important variables 
are used in the cluster analysis. In this way, we use exactly those variables in clus-
tering that are most important in the machine learning model and thus make the 
greatest contribution to the explanation of the dependent variable. Consequently, 
we obtain an appropriate set of variables that contains the essential information for 
predicting the dependent variable. Based on this variable set, cluster analysis leads 
to highly informative clusters, which, in turn, improve the performance of predic-
tive models in separate modeling. Hereafter, we refer to this procedure as “Shapley-
based clustering”. From the set of machine learning algorithms, we choose the best-
in-class method to determine the Shapley values. For the main sample using US 
data, this is gradient-boosted trees by Friedman (2001).5 For the robustness check 
using EU data, this is random forest by Breiman (2001).

This study focuses on modeling loss given default (LGD), which is one of 
the main drivers of credit risk associated with credit products. High predictive 
accuracy is essential in LGD modeling for several reasons. First, by predicting LGD 
accurately, banks can identify high-risk borrowers and adjust lending policies to 
minimize the risk of loss from borrower defaults. Second, accurate LGD prediction 
is crucial for loan pricing. Incorrect LGD predictions can lead to incorrect pricing, 
resulting in greater losses or lower profitability. Third, regulatory authorities 
require banks to implement robust credit risk management practices. Accurate 
LGD predictions are essential to comply with these requirements and demonstrate 
that banks have adequate capital to cover potential losses. In summary, banks use 
LGD to make risk-based decisions and accurate predictions can result in significant 
competitive advantage, whereas weak predictions can lead to adverse selection.

To investigate the effectiveness of our Shapley-based clustering approach, we 
conduct an intensive benchmark study. Specifically, we apply the Shapley-based 
clustering approach and competing approaches (including a standard (non-clustered) 
approach and clustered approaches with baseline techniques for variable selection in 
clustering) to a dataset of defaulted loans from US enterprises. We find that clustered 
approaches generally lead to higher predictive accuracies than the standard (non-
clustered) approach. Most importantly, we show that our Shapley-based clustering 
approach considerably outperforms competing approaches. In this context, we find 
that clustering based on the three most important risk drivers for LGD leads to 
the best clustering on the US data, which significantly improves the out-of-sample 
performance of the predictive models in separate modeling. Moreover, the Shapley-
based clustering approach creates economically meaningful and comprehensible 
clusters, as required by the regulators. These results are robust to various indicators 
of predictive accuracy and are confirmed by a robustness check. In the robustness 
check, we use a European credit portfolio, that is, European empirical data with 
different loan characteristics compared to the US data, to ensure that the superiority 
of the Shapley-based clustering approach does not depend on the choice of a 
particular dataset.

5 Gürtler and Zöllner (2023a) show that the best estimation method depends on the LGD distribution 
and consequently on the geographical region.
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This study contributes to the literature on clustered credit risk modeling by 
proposing a novel variable selection method for clustering using machine learning. 
In literature, the challenge of variable selection has been addressed in three ways. 
The simplest selection is no selection; that is, all available variables are often used 
for clustering [e.g., Harris (2015) and Caruso et al. (2021)]. However, this approach 
may be suitable for low-dimensional data. Nevertheless, considering all the variables 
in many cases unnecessarily increases the complexity of the clustering process. In 
addition, some variables may not have any relevant information for predicting the 
dependent variable, and consequently, should not be used for clustering. Rather, 
they can adversely affect the quality of clustering by increasing the likelihood of 
overlapping clusters, thereby reducing the accuracy of predictive models in separate 
modeling. Second, the literature proposes the use of baseline techniques for variable 
selection, with most studies using principal component analysis (PCA) [e.g., 
Yoshino and Taghizadeh-Hesary (2019) and Le et al. (2021)]. PCA selects variables 
by reducing the dimensionality of the data; that is, it creates new informative 
variables as linear combinations or mixtures of the original variables, which are 
referred to as components. Thus, variables are automatically selected for clustering 
but at the cost of a lower understanding of meaning. However, regulators generally 
require explainability in credit risk modeling6, which actually limits the practical 
applicability of PCA as a variable selection technique. The third way to select 
variables for clustered modeling is to use linear regression with stepwise variable 
elimination [e.g., Yuan et al. (2022)]. In this procedure, the variables to be used for 
clustering are selected from a set of candidate variables using a linear regression 
model through a series of automated steps. Specifically, at each step, the candidate 
variables are iteratively used in linear regression and in-sample evaluated, typically 
using the t-statistics for the coefficients of the considered variables. Finally, variables 
with the highest statistical significance in the linear regression model are used for 
clustering. However, a fundamental problem with this procedure is that through 
iterative testing, some explanatory variables that actually have causal effects on the 
dependent variable may not be statistically significant, while irrelevant variables 
may be significant by chance [cf. Smith (2018)]. As a result, an implausible and 
inefficient set of variables may be identified, which negatively affects the quality of 
clustering and thus reduces the accuracy of predictive models in separate modeling.

Against this background, we present an approach that enables appropriate variable 
selection for clustered modeling and has several advantages. First, using machine 
learning algorithms, the appropriate variables for clustering are automatically and 
effectively identified, considerably reducing the risk of creating uninformative 
clusters. Second, unlike other variable selection techniques, our approach uses 
original variables for clustering, ensuring the transparency and interpretability of the 
cluster results, as recommended by regulators. Third, the approach is agnostic; that 
is, it is applicable to any model for variable selection, and there are no restrictions 
on the use of specific data (i.e., in terms of size or dimensionality), making the 

6 The regulatory background is explained in Sect. 3.3. In credit risk modeling, explainability is gener-
ally required in Article 179(1)(a) of the Capital Requirements Regulation (CRR) [see European Banking 
Authority (2013)].
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approach suitable for a wide range of applications, such as the estimation of PDs, 
EADs or LGDs.

The remainder of this paper is organized as follows. In Sect.  2, we introduce 
our Shapley-based clustering approach based on a best-in-class machine learning 
algorithm for variable selection. In Sect. 3, we explain the proposed approach on the 
basis of theoretical and regulatory considerations. Section 4 presents the empirical 
data and settings used for the comparative analyses and describes the competitive 
modeling approaches. In Sect.  5, we compare the out-of-sample performance of 
all the modeling approaches using various evaluation criteria. Section 6 presents a 
robustness check. Finally, Sect. 7 concludes the paper.

2  Shapley‑based clustering

In this section, we describe the Shapley-based clustering approach, which is 
schematically illustrated in Fig. 1. The approach is motivated on a theoretical and 
regulatory basis in Sect. 3 and empirically validated in Sects. 4, 5 and 6 using US 
and EU credit data. It consists of four steps, described in detail below.

In the first step, we divide the entire dataset into a subsample for training 
(in-sample calibration) and a subsample for testing (out-of-sample prediction), as 
is common in LGD studies [e.g., Hartmann-Wendels et al. (2014) and Hurlin et al. 
(2018)]

Next, we calibrate a best-in-class machine learning model (in our case, gradient-
boosted trees or random forest) using a set M of all available explanatory variables 
z1 , z2,..., z|M| based on the training dataset. Calibration of machine learning mod-
els involves many parameters (such as the number of regression trees in gradient-
boosted trees) that must be determined. We optimize and choose these parameters 
by a process known as hyperparameter tuning.7 In this context, we determine the 
parameter values using a five-fold cross-validation [e.g., Nazemi et al. (2017) and 
Hurlin et al. (2018)] and a grid search algorithm: The in-sample dataset is divided 
into five subsets, four parts of which serve as training data and the remaining part 
as test data. This procedure is repeated five times using different test datasets. In 
this process, the grid search algorithm trains the machine learning model based on 
all possible hyperparameter settings, where the hyperparameters are selected from a 
predefined hyperparameter set. Finally, the parameter values with the highest esti-
mation accuracy (for example, the smallest mean squared error on the test set) are 
selected.8 After calibrating the machine learning model, we calculate the Shapley 
value, originally introduced by Shapley (1953), for each explanatory variable. The 
concept of Shapley values comes from cooperative game theory and has an intuitive 
interpretation. The underlying problem that Shapley values solve is that a group of 

7 For a detailed description of the tree-based models and parameters to be determined, see, e.g., (Hastie 
et al. 2017, pp. 305–313).
8 The hyperparameters necessary for gradient-boosted trees and random forest, the corresponding sets of 
considered parameter values, and the final choice of hyperparameter values used in the empirical analysis 
are listed in Table OA.3.
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N players achieve a joint payoff v({1,… , |S|}) that must be distributed fairly among 
the players on the basis of a function �(v) . The payout for each subset of players 
S ⊆ N is given by v(S). For a fair distribution �(v) some properties are specified: 
efficiency, symmetry, linearity and the null player property. It guarantees that the 
payout is distributed in full, that two players (j, k) with v(S ∪ {j}) = v(S ∪ {k}) for 
every S ⊆ N get the same payout, the linearity of the payout function and that a 
player who never contributes to v gets no payout. The Shapley value is the only pay-
out function that fulfils all the properties. For each player i the Shapley value �i(v) is 
defined as the sum over all player subsets without player i weighted by the marginal 
gain in the payout when player i is involved ( v(S ∪ {i}) ) compared to when player i 
is not involved (v(S)):

The concept can be employed as a variable importance measure. Here, the players 
are the variables in the machine learning model and the payout is the relevant per-
formance metric. In this way, a Shapley value can be viewed as the average con-
tribution of a variable to the prediction of a machine learning model. We employ 
Shapley values to select the most important variables and utilize them for clustering 
the data. Because the determination of the Shapley value is highly computationally 
intensive for high-dimensional data, we use the Tree SHAP algorithm by Lundberg 
and Lee (2017), which approximates Shapley values with relatively low computa-
tional intensity.9

The third step involves selecting the optimal number of clusters. In this context, 
we first standardize10 the training data and perform clustering using the k-prototypes 
algorithm by Huang (1998), which is an improvement of the k-means and k-mode 
algorithms to handle clustering with mixed data types.11 The distance d between the 
numeric variables xi, xj is evaluated based on the Euclidean distance (xi − xj)

2 and 
the similarity between the categorical variables zk, zl are evaluated on the ground of 
an indicator function:

(1)𝜑
i
(v) =

∑

S⊆N{i}

|S| ⋅ (n − |S| − 1)!

n!
(v(S ∪ {i}) − v(S)).

(2)�(zk, zl) =

{
0 for zk = zl,

1 for zk ≠ zl.

9 For more details on variable importance with Shapley values, see Gürtler and Zöllner (2023b).
10 To standardize the data is recommended; otherwise, the range of values of each variable may serve as 
a weight in determining the clustering of data, which is usually undesirable.
11 We want to use a distance-based rather than a model-based clustering algorithm to ensure the inter-
pretability of the resulting clusters. Several studies provide evidence that k-prototype is the best distance-
based cluster method. For example, Preud’homme et al. (2021) find based on various real-life datasets 
that “in most of the tested scenarios, model-based methods and K-prototype typically performed best 
in the setting of heterogeneous data”. Additionally, the authors performed a simulation study which 
“revealed the dominance of K-prototypes, Kamila and LCM models over all other methods”. K-prototype 
is the only distance-based measure among the mentioned algorithms. The results obtained by Özlem and 
Yüksel (2021) and Jain et al. (2021) support these findings.
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For mixed data m(1),m(2) , where the first n variables are numeric and the last h vari-
ables are categorical, the k-prototype algorithm combines both distance measures:

(3)d(m(1),m(2)) =

n∑

i=1

(m
(1)

i
− m

(2)

i
)2 + �

n+h+1∑

j=n+1

�(m(1)

j
,m

(2)

j
).
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Fig. 1  Schematic diagram of the Shapley-based clustering approach
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 Huang (1998) suggests to use for � the average standard deviation of the numeric 
attributes.12 The algorithm aims to partition the dataset into k clusters (with ran-
domly selected k observations as initial cluster centers) such that the distances 
between observations, characterized by a given set of explanatory variables, are min-
imized within a cluster, and the distances between different clusters are maximized. 
The similarity measure is a combination of the Euclidean distance for numeric vari-
ables and a simple matching approach for categorical variables. The contribution of 
this study is to improve clustering such that the resulting clusters enable the highest 
prediction accuracy in separate modeling. This is achieved by performing Shapley-
based variable selection, which is the basis for clustering. The clustering process 
(Step 3) can be described as follows:

• Step 3.1: Sort explanatory variables in descending order of their mean Shap-
ley values. Without loss of generality, let the resulting rank order be given by 
z1, z2, ..., zM.

• Step 3.2: Loop the number k of clusters from kmin to kmax13 and iteratively parti-
tion the data based on an increasing set of the most important variables in each 
loop. That is, the k-prototypes clustering is first based on z1 , then on z1 and z2 , 
then on z1 , z2 , and z3 , et cetera.

• Step 3.3: Calculate the silhouette value14 by Rousseeuw (1987) for every combi-
nation (k; ( z1,..., zi )) of the number of clusters and variable sets, to evaluate the 
quality of the resulting clusters.

• Step 3.4: Repeat steps 3.1–3.3 (e.g., 10,000 times) with the initial cluster centers 
changed. This is because clustering algorithms are sensitive to the initial cluster 
centers.

• Step 3.5: Average the silhouette values (hereafter referred to as “global silhouette 
value”) of each combination of number of clusters and variable set. The combi-
nation with the highest global silhouette value determines the final number k∗ of 
clusters and the appropriate variable set ( z1,..., z∗i ).

• Step 3.6: Choose the k∗ optimal clusters c1, c2, ..., ck∗ , based on the chosen vari-
able set.

In the final step, we perform separate modeling. This involves back-standardizing 
the data and calibrating a separate predictive model based on all available explana-
tory variables z1 , z2,..., z|M| for each resulting cluster, resulting in k∗ different mod-
els being used for prediction. For prediction, individual out-of-sample loans are 

13 In the empirical analysis we set k
min

= 2 and k
max

= 10.
14 This coefficient is calculated as (b − a)∕max(a, b) using the mean within-cluster distance (a) and the 
mean next nearest-cluster distance (b). The highest (and most preferred) value is 1 and the lowest value 
is −1.

12 This is to our knowledge the default configuration in all standard libraries that implement the k-proto-
type algorithm.
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assigned to the respective (cluster) subsamples based on the same similarity meas-
ure used in the k-prototype algorithm.15

For reasons of clarity and comprehensibility, we specify some important terms. 
In the following we consider the entire “clustered modeling approach” (Fig.  1) 
as combination of a “clustering model” and a “prediction model.” The cluster-
ing model consists of a clustering method (k-prototypes) and a variable selection 
method (in this case, the measurement of the importance of the variables of a best-
in-class machine learning method based on Shapley values). The prediction model 
consists of a prediction method (e.g., random forest or linear regression) and model 
parameter choice (calibration); that is, each prediction method is calibrated based on 
k clusters, resulting in k (cluster-specific) prediction models.

3  Theoretical and regulatory background

After describing our Shapley-based clustered modeling approach in Sect.  2, we 
motivate and explain the details of our approach. In particular, we explain why a 
clustering step can be advantageous and why it is important to perform the clustering 
only on the most important variables.

From an empirical standpoint, we observe that clustering steps are commonly 
employed in various research areas, such as credit risk modeling (Bakoben et  al. 
2020) and image recognition (Ates and Gorguluarslan 2021), to increase the pre-
dictive accuracy of machine learning models. But surprisingly, from a theoretical 
standpoint, it is not trivial to argue why clustering can increase the prediction accu-
racy of a machine learning method. On the one hand, clustering reduces the required 
complexity16 of the machine learning methods to appropriately model the relation-
ships in the data segments compared to the relationships in the non-clustered data 
(and consequently reduces the risk of overfitting subsamples of data). But on the 
other hand, the clusters contain less observations than the full sample (consequently, 
the risk of overfitting in the clusters increases compared to the full sample). There-
fore, it is important to get a theoretical understanding of the interplay between the 
(required) sample size in the clusters, a method’s complexity and the out-of-sample 
error. To this end, we first introduce some concepts from the field of statistical learn-
ing theory in Sect. 3.1 that are commonly employed to provide a theoretical basis for 
a machine learning approach.17 We then apply these results to clustered risk mod-
eling in Sect. 3.2. Finally, we discuss the influence of regulatory requirements on the 
empirical model design in Sect. 3.3.

15 Additionally, we tested other measures to validate the consistency of the cluster results and used dif-
ferent methods to initialize the cluster centers. However, these changes did not affect our results.
16 We introduce a definition of a model’s complexity, the VC dimension, in Sect. 3.1. It basically meas-
ures how deep a decision tree is or how many layers and nodes an artifical neural network contains.
17 For example, support vector machines minimize the VC dimension among all binary classification 
methods with linear hyperplanes.



626 J. Bosker et al.

3.1  Statistical learning theory

First, we introduce some terms and apply them to LGD modeling. We assume 
that an unknown true LGD distribution DLGD exists that (only) depends on bor-
rower, security, bank and macroeconomic characteristics X  . Therefore, a function 
f ∶ X ↦ ℝ exists that maps the credit characteristics X  to the correct LGD value. 
The relationship between X  and LGD that is given by f can only be estimated on a 
subsample. This is the credit portfolio P = ((x1, lgd1),… , (xn, lgdn)) ⊂ X ×ℝ that is 
a sample of size n drawn randomly and independently from DLGD . A machine learn-
ing algorithm A(P) aims to find a function h from a set of functions H by minimiz-
ing the empirical error (or in-sample error) LP(h)18:

However, generally we are not interested in the empirical error, but in the true error 
or out-of-sample error. The true (expected) error is defined with respect to the true 
LGD values f(x):

The true error can be decomposed into two error terms: The approximation error 
�app and the estimation error �est . The approximation error is the minimal error that 
can be achieved based on H:

The estimation error is the difference between the approximation error and the error 
that is achieved by minimizing the empirical error LP(h) . The error terms are influ-
enced in opposite ways by the complexity of H . A more complex function set H 
leads to a lower approximation error, but a higher estimation error. This is referred 
to as the bias-complexity trade-off.

For an artificial neural net, we can guarantee the existence of a net configuration 
that leads to an approximation error of zero (Ismailov 2023).19 Consequently, vari-
ous machine learning methods are able to replicate segmentation steps and achieve 
an approximation error of zero, but for a fixed number of observations this is only 
possible in-sample. Therefore, we might not be able to further reduce the approxi-
mation error of a machine learning method through clustering, but we can influence 
the estimation error by adjusting the complexity of the method. However, specifi-
cally for clustering we have to consider the sample size. While it is obvious that a 
clustering step decreases the required complexity of the machine learning method in 

(4)LP(h) ∶=

∑n

i=1
�h(xi) − lgdi�

n
.

(5)LDLGD,f
(h) ∶= E(|h(x) − f (x)|).

(6)�app = min
h∈H

LDLGD,f
(h).

18 For tree-based models, the set of functions H would include all tree-based functions that are repre-
sentable with the chosen hyperparameter set. For instance, the machine learning algorithm A could mini-
mize the mean absolute error in the sample.
19 The underlying results is the general approximation theorem. But the theorem is non-constructive can 
not guarantee any bound on the out-of-sample performance.
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each cluster, the sample size in the clusters is reduced compared to the full sample. 
This is a trade-off that needs to be evaluated.

To this end, two additional concepts have to be introduced: A measure for the 
complexity, the VC-dimension, and a measure for the required sample size, the 
sample complexity. We start with the sample complexity and the probably, approxi-
mately correct (PAC) learnability. The idea is that we need a minimum amount 
of observations in a sample to train a machine learning method with a high cer-
tainty that achieves a high (out-of-sample) accuracy. A method that achieves a high 
accuracy with a high probability is referred to as a PAC learner. Specifically, an 
algorithm A is a PAC learner if a function nH(�, �) exists that leads to a true error 
below � with a probability larger than 1 − � as long as the sample size is larger than 
nH(�, �) . The function nH(�, �) is referred to as the sample complexity and is essen-
tially the required sample size to get a true error below �.

Next, we connect the sample complexity with a measure for the complexity of a 
model. We utilize the VC dimension as a measure for the complexity of a machine 
learning method (Vapnik and Chervonenkis (1971)). In its original form, it is only 
applicable to binary classification tasks, but the concept can be extended to real 
value functions with Pollard’s pseudo dimension.20 The VC dimension refers to 
the maximum number of clusters that an algorithm can segment the data in. As an 
example, assume that we have an algorithm that places a hyperplane in the ℝ2 space 
to split the data into two classes. The algorithm has a VC dimension of two since it 
can cluster the data into two segments (above and below the hyperplane). It can be 
shown that the VC dimension is closely related to the sample complexity (Hanneke 
2016; Ehrenfeucht et al. 1989)21:

Therefore, a lower and an upper bound of the sample complexity depends linearly 
on the VC dimension. Consequently, when the complexity VC(H) is reduced by a 
factor, the sample size n can be reduced by nearly the same factor without violating 
condition (7) as long as the sample size does not fall below the second lower bound 
1−�

�
ln
(

1

�

)
.

(7)

max
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32𝜖
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𝛿

)}
≤ nH(𝜖, 𝛿) ≤ c

VC(H) + log
(

1

𝛿

)

𝜖
(c > 0).

20 Pollard’s pseudo dimension is beyond the scope of this article. Therefore, we focus on the more intui-
tive VC dimension.
21 There are more precise characterizations of the dependence between nH and VC(H) , which can be rep-
resented using Landau’s symbols. The rough representation chosen here should suffice for the basic idea.
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3.2  Application of statistical learning theory to clustered risk modeling

To apply the theoretical results to clustered risk modeling, we take the example of a 
binary decision tree algorithm (DT).22 For the following considerations, we want to 
repeat two results from Sect. 3.1. First, according to (7), a reduction of VC leads to 
a smaller lower bound on the sample complexity. Therefore, the true error � can be 
reduced without violating condition (7). Consequently, a reduction in the VC dimen-
sion generally leads to a reduced �.23 Second, we stated that when VC is reduced by 
a factor, the sample size n can be reduced by nearly the same factor without violat-
ing condition (7). This implies the obvious result that for fixed VC and reduced n 
the error � tends to increase. To explain the further relationships in more detail, we 
use DT0 for a decision tree trained on the non-clustered data and DTk for a decision 
tree trained on cluster k. Furthermore, CA is the clustering approach, CA+DT is the 
combination of clustering and the use of a decision tree in each cluster and CA+DTk 
is the segmentation performed by CA in combination with a specific DTk.

We first observe that both the CA and a DT split the data: A k-means algorithm 
splits the data based on the euclidian distance to each cluster centrum and DT splits 
the data based on iteratively defining thresholds on individual variable values based 
on an information gain criterium. DT ends to split a node if not enough observa-
tions (defined by a hyperparameter) remain in the node or if the maximum tree size 
(again, defined by a hyperparameter) is reached. The number of resulting clusters 
from the splits corresponds to the VC dimension. Precisely, the VC dimension of DT 
is the number of leaf notes and the VC dimension of CA is the number of clusters.

We introduce two simplifications to present the following in a concise manner. 
We assume that the dependent variable LGD is always either zero or one and that 
both CA+DT and DT0 can and will split the training data so that only LGD = 0 or 
LGD = 1 remain in each cluster. Essentially, we are assuming that CA+DT and DT0 
both have an approximation error of zero for a fair comparison.

To assess whether CA+DT can achieve a lower VC dimension than DT0 , the 
resulting numbers of clusters must be compared that are required to fully sepa-
rate the data based on LGD. Precisely, the number of the resulting clusters from 
the splits performed by DT0 have to be compared with the combined number of the 
resulting clusters from the splits performed by each CA+DTk . Since closed formulas 
are generally not derivable, we will look at two extreme cases and give an insight 
into the reasons for the different results.

The first example is depicted in Fig. 2. The two variables X1 and X2 can perfectly 
be separated into the cases Y = 0 and Y = 1 by a diagonal hyperplane. A k-means 
algorithm can easily achieve this separation based on two clusters. DT0 requires 
more than four clusters to separate the data into Y = 0 and Y = 1 . Additionally, 

23 Of course, we have to assume a constant approximation error. But this is the case since we never 
change H.

22 The use of a binary tree is only to simplify the notation. The same logic can also be applied to other 
machine learning methods. Essentially, only the number of leaf nodes are relevant and this number 
depends on the number of splits per node.
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depending on the chosen hyperparameters (in particular the minimum number of 
observations in each leaf node), DT0 may not be able to fully separate the data.

Therefore, the VC dimension of CA+DT is two and the VC dimension of DT0 is 
more than four. Since the higher number of clusters in DT0 results in smaller clus-
ters with less data, this method in turn is more exposed to possible overfitting than 
CA+DT. We conclude from the example that there are cases where the VC dimen-
sion can be reduced by employing CA+DT compared to DT0 . Here, CA+DT is pre-
ferred since CA can better model the diagonal hyperplane than DT0.

In the second example, we randomly assign contracts to k clusters with at most 
⌈n∕k⌉ observations. In each cluster, the observations are drawn from the same dis-
tribution DLGD . Each DTk generally has to employ the same splits as DT0 to achieve 
the same error (without proof, this is at least true for n → ∞ ). Therefore, the VC 
dimension and sample complexity for each DTk are approximately equal to the VC 
dimension and sample complexity of DT0 , but the number of observations in each 
cluster is reduced by approximately a factor of 1/k. Consequently, the risk of overfit-
ting increases in the clusters and � is increased.

Against this background, we can conclude that CA+DT can be beneficial com-
pared to DT0 , but it strongly depends on the clustering approach and the structure 
of the underlying data. To summarize, we can highlight some general aspects: First, 
clustering should only be performed for the most important variables. It is not ben-
eficial to cluster data that are not correlated with LGD. This can be achieved with 
our Shapley-based clustering approach. Second, CA+DT tends to be better than DT0 
when the data are "diagonally" split and there are distinct clusters. Third, CA+DT 
may be favorable compared to DT0 , but this needs to be confirmed empirically for 
the specific data.

3.3  Regulatory background

Approaches in credit risk modeling can not solely be based on theoretical considera-
tion, but have to incorporate regulatory requirements. Therefore, some peculiarities 
of the regulatory background and the approval process by central banks have to be 
discussed. Central banks base the approval process of a banks credit risk calcula-
tion and reporting on the Basel Framework and guidelines by local banking authori-
ties. The Basel Framework specifies credit risk calculation, disclosure requirements 
and the supervisory review process. Generally, three approaches are available for a 
bank’s risk reporting (depending on the asset class): the standardised approach (SA), 
the foundation internal ratings-based approach (F-IRB) and the advanced internal 
ratings-based approach (A-IRB).24 With the F-IRB and A-IRB approaches, the 
banks must (partially) calculate the LGDs themselves. While the F-IRB approach 
provides different supervisory specified LGDs for various clusters of data,25 the 
A-IRB approach only provides LGD parameter floors and fully relies on the banks 

24 See p.5 in bis. org/ bcbs/ publ/ d424_ hlsum mary. pdf.
25 See CRE32.6, CRE32.7 and CRE32.11 in https:// www. bis. org/ basel_ frame work/ chapt er/ CRE/ 32. htm.

https://www.bis.org/bcbs/publ/d424_hlsummary.pdf
https://www.bis.org/basel_framework/chapter/CRE/32.htm
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internal models.26 The requirements to adopt an IRB approach are defined in CRE36 
of the Basel Framework. Generally, LGDs have to be reported separately for differ-
ent asset classes.27 Banks have to ensure that calculated LGDs are not lower than 
the long-term default-weighted average loss rates for all asset classes.28 To enable 
banks to appropriately estimate risk measures for each asset class, banks have to 
assign contracts to homogenous pools and demonstrate that the approach “provides 
for a meaningful differentiation of risk... and allows for accurate and consistent esti-
mation of loss characteristics at pool level”.29 On pool level, banks are allowed to 
employ different rating systems and methodologies.30 They must state and document 
the rationale for allocating the contracts to the individual rating systems.

Additionally, the European Banking Authority states in Article 179 of its Capital 
Requirements Regulation that estimates shall be plausible and intuitive (i.e, inter-
pretable) and that the estimates have to reflect technical advances.31 Therefore, clus-
tered credit modeling has to be based on intuitive risk drivers and interpretable clus-
ters. Consequently, clustering has to be performed on a subset of interpretable risk 
drivers. The present Shapley-based clustering approach relies (in contrast to, e.g., 
clustering on all available information) on only the most important risk drivers and 
produces distinct and interpretable clusters. Additionally, no manual and subjective 
process is required to cluster the data.

From a regulatory perspective, the approach appears to be in line with regulatory 
requirements and we are convinced that it can be approved in its entirety as consist-
ent clustering plays an important role in the regulatory approval process. From a 
practical perspective, banks have to evaluate whether the increase in overhead justi-
fies better predictions. The overhead to maintain different clusters of data is for most 
banks likely in place to ensure regulatory compliance. Nevertheless, the implemen-
tation of our approach requires a significant effort to setup the system. In addition, 
it is necessary to monitor the cluster results over time and explain when the model’s 
determined clusters change. But an enhanced approach to cluster the data is ben-
eficial for banks. The European Banking Authority requires that the less informa-
tion a bank can utilize, the more conservative the estimations have to be,32 which in 
turn leads to higher capital requirements. Additionally, the effect of biased LGDs are 
non-symmetric since rating floors are provided. Therefore, biased LGDs are likely 
to a bank’s disadvantage. Finally, accurate estimations are important for internal risk 
models and provide a clear competitive advantage.

27 E.g., in the yearly stress testing by the European Central Bank. The template can be retrieved from 
here: lnk. tu- bs. de/ B4D9yc.
28 See CRE36.83 in bis. org/ basel_ frame work/ chapt er/ CRE/ 36. htm.
29 See CRE36.16 in bis. org/ basel_ frame work/ chapt er/ CRE/ 36. htm.
30 See CRE36.10 in bis. org/ basel_ frame work/ chapt er/ CRE/ 36. htm.
31 See European Banking Authority (2013).
32 See European Banking Authority (2013).

26 See CRE32.16 in https:// www. bis. org/ basel_ frame work/ chapt er/ CRE/ 32. htm.

http://www.lnk.tu-bs.de/B4D9yc
http://www.bis.org/basel_framework/chapter/CRE/36.htm
http://www.bis.org/basel_framework/chapter/CRE/36.htm
http://www.bis.org/basel_framework/chapter/CRE/36.htm
https://www.bis.org/basel_framework/chapter/CRE/32.htm
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4  Empirical framework

To demonstrate the effectiveness of our Shapley-based clustering approach, we 
conduct an intensive benchmark study. For this purpose, we use the Global Credit 
Data33 database, which contains detailed information on the credit defaults of 55 
banks, including many systemically important banks. It is internationally recog-
nized as the standard for collecting LGD data because it is officially approved to be 
in line with regulatory guidelines. In the following section, we first introduce the 
data and provide descriptive statistics. Next, we describe the competitive modeling 
approaches used in the benchmark study and explain the procedure and measures for 
comparing their out-of-sample performance.

4.1  Data

We use a dataset of resolved defaulted loans from small- and medium-sized enter-
prises (SMEs) and large corporations (LCs) in the US. We use these two asset 
classes because they are categorized as general corporate exposures under the regu-
latory guidelines. To calculate LGD, we use workout recovery rates, which are given 
as the difference between all discounted post-default incoming cash flows ( F+ ) and 
all discounted post-default costs ( C− ), divided by the exposure at default (EAD).

That is,

Incoming cash flows comprise principal and interest payments, recorded book value 
of collateral, received fees, and commissions. Costs include legal expenses, admin-
istrator and receiver fees, liquidation expenses, and other external workout costs. All 
cash flows are discounted using the three-month LIBOR of the respective default 
date.

Below, we briefly describe the restrictions we apply to the raw dataset, which 
includes 10,516 defaulted loans, to ensure consistency and plausibility. All restric-
tions are based on recommendations from the LGD literature [cf. European Banking 
Authority (2016), Betz et  al. (2018) and Gürtler and Zöllner (2023a)]. First, 572 
observations are excluded due to time span restrictions. Specifically, we restrict the 
sample to all defaults since 2000 to ensure a consistent default definition of Basel II 
and exclude defaults after 2019. This upper bound is selected for two reasons. First, 
workout processes of recent defaults are not necessarily completed. Additionally, in 
the subsample of recently defaulted loans (with uncompleted workout processes), 
short workout periods are obviously overrepresented. As loans with shorter workout 
periods tend to be associated with lower LGDs, this subsample can lead to a sam-
ple selection bias, which may result in unreliable estimation results. Second, in the 
Global Credit Data database, the default amounts range from zero (e.g., for uncalled 
contingent facilities) to several hundred million euros. To meet the materiality 

(8)LGD = 1 −

∑
F
+ −

∑
C
−

EAD
.

33 See https:// www. globa lcred itdata. org.

https://www.globalcreditdata.org


632 J. Bosker et al.

threshold required by regulators, we remove loans with an EAD of less than $500, 
which leads to the exclusion of 211 observations. Third, we exclude 52 observa-
tions by correcting for minor input errors. That is, we eliminate loans with an abnor-
mally low or high LGD; that is, smaller than −100% and higher than 200%, respec-
tively. Finally, loans with incomplete observations are excluded, thus we remove 224 
observations. Overall, a dataset of 9,457 loans remains.

Table 1 presents the descriptive statistics. Specifically, we report the means and 
several quantiles of the metric variables. For each level of categorical variables, we 
show the means and category-specific quantiles of the respective LGD as well as the 
number of observations per group. The table provides an indicator of the plausibility 
of the dataset. For example, the existence of guarantees or securities reduces LGDs. 
Conversely, non-senior and medium-term loans lead to higher LGDs. We also dis-
tinguish between other loan categories, such as facility asset classes, syndication, 
lender limits, types of borrowers, and firms’ industry affiliation.

In addition to the loan-specific characteristics, we also consider various macro-
economics control variables to improve the prediction of the LGD, as suggested in 
the literature.34 Stock exchange performances are identified as general LGD risk 
drivers, for instance, by Qi and Zhao (2011) and Chava et al. (2011). To consider 
the overall real and financial environment in the US, we use the relative year-on-year 

X

X

X

X

LGD = 1

LGD = 0

X Splits performed by decision tree

Split achieved by

2-means clustering

Cluster centrum

Cluster centrum
X1

X2

Fig. 2  CA+DT requires two clusters (round framed areas) to completely separate the data based on Y. 
DT0 is not able to completely separate the data with four clusters (separated by the drawn horizontal and 
vertical line)

34 See, for instance, Nazemi et al. (2017). New technical standards emphasize the importance of using 
economic factors (European Banking Authority (2017)).
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growth of the S &P 500, the absolute spread of the three-month and 10-years treas-
ury rates, the absolute term and TED spread, and the Cboe volatility index. We also 
use the annual percentage growth rate of gross domestic product to measure the 
market value of all final goods and services produced in the considered period [cf. 
Yao et al. (2015)]. Moreover, we consider other popular macroeconomic variables, 
such as the inflation rate, unemployment rate, consumer confidence index, producer 
price index, and consumer price index. A detailed description of the variables is pro-
vided in Table OA.2 in the online appendix. Specific macroeconomic information 
corresponds to the default time of each loan. All macroeconomic data is provided by 
Refinitiv Eikon.35

Figure 3 shows the LGD frequency and approximated density distribution. Most 
LGDs represent (nearly) total losses or recoveries, yielding strong bimodality and 
skewness of the distribution. These properties explain why gradient-boosted trees 
are the best-in-class estimation method that is consequently appropriate for our 
selection model for clustering.36

4.2  Competitive modeling approaches

Based on the regulatory requirements stated in Sect. 3.3, a bank likely clusters data 
based on natural segmentations in the data (e.g., different asset classes).37 Therefore, 
for a fair comparison, we must evaluate the effectiveness of our Shapley-based 
clustering approach with various clustered approaches using different clustering 
models.38 In each modeling approach, different models (calibrated prediction 
methods) are used for prediction. This leads to an investigation of different 
combinations of clustering and prediction models with the aim of identifying the 
best combination with the highest prediction accuracy. In the following section, we 
first describe the competing modeling approaches and then introduce the prediction 
models considered.

To demonstrate the superiority of the clustered modeling approaches, we first 
apply a standard modeling approach. Precisely, after splitting the entire dataset 
into training and test data, one predictive model is calibrated based on the (non-
clustered) training data and applied to the test data for out-of-sample prediction. 
However, this standard approach to credit risk modeling should be improved by 
clustered modeling [cf. Bakoben et al. (2020)].

Additionally, we use clustered modeling approaches that follow the same scheme 
as in Fig.  1 (see Sect.  2) but differ in the selection of variables for clustering. In 

35 See https:// www. refin itiv. com for further information.
36 The link between the distribution type and the best estimation method has been shown by Gürtler and 
Zöllner (2023a). Gradient-boosted trees best capture the bimodality and the specific skewness.
37 We observe in Sect. 5.2 that the competitive modeling approaches consider different natural clusters 
and are therefore a realistic comparison. For the example of SME’s and LC’s, most models either cluster 
based on the exposure or directly on the facility asset class.
38 We note that all competing clustered approaches use the k-prototypes algorithm as the clustering 
method but differ in the method of variable selection for clustering. We already argued in Sect. 2 that 
the k-prototype algorithm is appropriate for mixed data and the preferred approach compared to other 
distance-based clustering methods (Preud’homme et al. 2021).

https://www.refinitiv.com
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total, we consider five different clustering models based on recommendations from 
the literature39 First, we consider the most basic clustering model that uses all avail-
able explanatory variables z1 , z2,..., z|M| to cluster the training data [e.g., Caruso et al. 
(2021)]. Second, we use a clustering model with a silhouette decomposition algo-
rithm for variable selection. The algorithm partitions the training data based on the 
explanatory variables that provide the best clustering without considering the vari-
ables’ ability to predict the dependent variable in separate modeling [cf. Dessureault 
and Massicotte (2021)]. Third, we use a clustering model that employs linear regres-
sion with the k-best algorithm and F scores to select the variables for clustering. 
We calculate the correlations between each variable and the LGD and convert the 
correlations to F scores. We add the variables with the k highest F scores to a linear 
regression model. Then, we perform a grid search with a 5-fold cross-validation to 
determine the optimal number k of variables in the linear regression model that leads 
to the best cross-validation performance. These variables are then used for cluster-
ing. Fourth, we use a clustering model similar to the previous one; however, instead 
of using the k-best algorithm, we use a stepwise elimination algorithm to select the 
variables for clustering. This algorithm is a hybrid version of forward selection and 
backward elimination. It begins with a linear regression model that contains no vari-
ables, and the variables are then selected as in forward selection; that is, the vari-
ables that contribute the most to the model fit in terms of the p-value are iteratively 
added to the model.40 After each step, the variables are checked for elimination 
according to backward elimination; that is, the variables with the smallest contribu-
tion to the model fit are eliminated. The idea behind this is that, with the addition of 
new variables, the variables already considered in the model could become redun-
dant and should therefore be removed [e.g., Loterman et al. (2012)]. The variables 
remaining in the linear regression model are used for clustering. Fifth, we use a 
clustering model that employs factor analysis for mixed data (FAMD) to select vari-
ables for clustering. FAMD generalize PCA to categorical and numerical data and 
is used to reduce the dimensionality of training data while preserving as much as 
possible of the information contained in the original data. As previously mentioned, 
this aim is achieved by creating new variables, referred to as components, as linear 
combinations or mixtures of the initial variables [cf. Le et al. (2021)]. To determine 
the number of components to be used for clustering, the training data is iteratively 
partitioned based on an increasing number of components, and the set with the best 
clustering (i.e., highest global silhouette value) is selected.

In the following, we briefly introduce the models (calibrated prediction methods) 
used in competing approaches for prediction. Because there is a wide range of pre-
dictive models used in the LGD literature, we apply the most established models. 

39 We note that in each clustering model, the number k of clusters are iteratively varied between k = 2 
and k = 10 and this is repeated 10,000 times with changing initial cluster centers.
40 It is important that the variables show both statistical and economic significance to conclude that they 
are important. The effects of statistically significant variables can be generalized to the whole statistical 
population. And economic significance ensures that the correlations are large given that the variables are 
statistically significant. In our case, our chosen variables show both significances. The variables have 
clear economic interpretations and are highly correlated with the LGD.
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The best hyperparameter values for the machine learning models are determined in 
the same manner as described in Sect. 2.41

First, we use linear regression because it is typically used as a reference model 
in other LGD studies. For instance, the linear regression has been implemented in a 
comparative context by Loterman et al. (2012) and Krüger and Rösch (2017). How-
ever, from a statistical perspective, linear regression has certain restrictions that may 
render it unsuitable for LGD estimation. Therefore, we also include machine learn-
ing models that address these restrictions.

As the first machine learning models, we use various tree-based models because 
they allow nonparametric representations of the relationships between the dependent 
and explanatory variables. The most basic model in this class is the regression tree, 
which was popularized by Breiman (1984). Briefly, it recursively splits the data into 
groups and uses the group averages of the dependent variable as its mean prediction. 
This model has been applied to LGD estimation by, for instance, Matuszyk et  al. 
(2010) and Hurlin et  al. (2018). In addition, we use random forest by Breiman 
(2001) and gradient-boosted trees by Friedman (2001) as extensions of the simple 
regression tree. The former is a bootstrap aggregation model of decorrelated 
regression trees built independently using random subsets of variables and trained 
on different parts of the same training set. In contrast, in boosting, trees are built 
sequentially, and each tree is constructed based on the residual errors made by the 
previous tree, leading to a nonrandom model that generates fewer prediction errors 
as more trees are added. The use of random forest and gradient-boosted trees for 
LGD prediction is proposed by, for example, Bastos (2014) and Tanoue and 
Yamashita (2019).

In addition to tree-based models, we also consider a multilayer perceptron model 
proposed by, for instance, Bishop (1995) and support vector regression introduced 
by Vapnik (1995). The former is a fully connected class of feedforward artificial 
neural network that consists of several highly interconnected processing elements 
that process information by their dynamic state response to external inputs. To cal-
culate the network, we use a resilient backpropagation algorithm that guarantees an 
approximation of the estimation value through iterative model updates. Support vec-
tor regression extends the linear regression by considering nonlinear relationships 
in the coefficients. The main idea is to map the data into a higher-dimensional space 
using a mapping function (in our case, the radial-basis function kernel) before per-
forming linear regression.42

4.3  Empirical setup

In this section, we describe the empirical setup used to compare the predictive per-
formance of competitive modeling approaches. The dataset is divided into a sub-
sample for training and a subsample for testing. For the training dataset, we use data 

42 We refer interested readers to Hastie et al. (2017) for a more detailed description of neural network 
and support vector regression.

41 The hyperparameters necessary for each predictive model, the corresponding sets of considered 
parameter values, and the final choice of hyperparameter values are available upon request.
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Table 1  Descriptive statistics

Variable Level Quantiles Mean Obs.

0.05 0.25 0.50 0.75 0.95

LGD
overall

−5.21 −0.05 5.01 44.32 99.78 24.31 9457
log(EAD) 9.23 11.41 12.86 14.49 16.75 12.92 9457
Number of collaterals 0.00 0.00 1.00 2.00 5.00 1.39 9457
Number of guarantors 0.00 0.00 0.00 1.00 2.00 0.42 9457
LGD conditional to loan 

categories
Guarantee indicator No guarantee −4.94 −0.02 5.99 47.10 100.00 25.21 6607

Guarantee −5.83 −0.19 3.32 39.78 98.70 22.23 2850
Collateral indicator No collateral −2.35 3.77 14.64 53.28 100.00 30.97 1076

Collateral −5.36 −0.17 3.84 42.71 99.21 23.46 8381
Facility type Medium term −5.28 −0.03 6.99 44.39 99.78 25.33 8768

Short term −4.38 −0.47 4.45 42.23 99.54 24.05 689
Seniority type Pari-passu −1.69 2.69 14.25 47.79 99.42 28.19 3113

Super senior −5.99 −1.01 1.36 40.64 99.76 22.14 6218
Non senior −0.94 0.38 14.84 79.95 100.00 35.80 126

Facility asset class Small/medium −5.86 −0.69 2.74 42.41 100.00 23.26 6829
Large −1.62 1.74 13.04 47.39 97.29 27.06 2628

Syndication indicator No syndication −5.41 −0.15 4.24 43.60 99.93 23.90 8751
Syndication −0.24 4.09 16.89 50.20 94.84 29.47 706

Lender limit No limit −1.60 1.99 11.72 49.39 100.00 28.14 3564
Limit −6.12 −1.15 1.31 39.91 99.49 22.00 5893

Borrower type Public −1.70 1.70 14.64 49.70 96.97 28.02 1202
SPV 0.41 8.85 9.63 18.65 53.19 18.29 57
Private −5.47 −0.22 3.95 43.07 99.93 23.79 8204

Industry type
Finance, insurance, real 

estate
(FIRE) −6.23 −1.07 2.66 29.89 96.84 18.83 1397

Agriculture, forestry, 
fishing, hunting

(AFFH) −7.05 −0.19 0.55 6.41 92.99 12.87 190

Mining (MIN) −0.59 −0.14 1.40 30.39 93.17 19.70 263
Construction (CON) −5.45 −0.74 2.58 45.06 98.71 23.10 1324
Manufacturing (MAN) −3.68 0.24 8.24 45.15 97.68 25.17 1190
Transp., commu.,elec., gas, 

sani. serv.
(TCEGS) −5.18 0.24 11.78 51.39 96.48 27.40 778

Wholesale and retail trade (WRT) −4.88 0.23 11.43 52.61 100.00 29.14 871
Services (SERV) −5.88 −0.57 3.83 49.64 100.00 25.72 2340
Other (Other) −2.72 1.09 9.57 40.23 100.00 25.88 1104
S &P 500 (rel. change) −38.49 −12.91 6.16 14.51 30.40 1.55 9457
3-month LIBOR (abs. 

spread in p. p.)
0.23 0.29 0.60 2.20 5.37 1.55 9457

Term spread (abs. spread 
in p. p.)

−0.18 1.62 2.43 3.15 3.55 2.21 9457
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from 2000 to 2013, which correspond to approximately 70% of the entire dataset. 
Subsequently, we randomly draw 10,000 times a subsample from the remaining data 
from 2014 to 2019. Each step consists of 500 defaulted loans, which is approxi-
mately the average number of defaults per year for the entire dataset. In this pro-
cess, we apply the calibrated models (of each modeling approach) to each testing 

Table 1  (continued)

Variable Level Quantiles Mean Obs.

0.05 0.25 0.50 0.75 0.95

TED spread (abs. spread 
in p. p.)

0.15 0.20 0.30 0.54 1.44 0.49 9457

10-year bond yield (abs. 
spread in p. p.)

1.72 2.52 3.40 4.10 5.16 3.37 9457

Cboe volatility index (abs. 
spread in p. p.)

12.09 15.89 20.70 26.35 44.14 22.94 9457

GDP growth rate (annual 
%)

−3.29 0.50 1.72 2.61 3.87 1.21 9457

Inflation rate (annual %) −0.36 1.26 1.64 3.16 3.84 1.90 9457
Unemployment rate (annual 

%)
4.40 5.10 6.80 9.00 9.90 7.04 9457

Consumer confidence index 57.30 69.50 76.40 84.50 95.70 77.64 9457
Producer price index 131.20 167.90 181.90 196.90 204.00 176.85 9457
Consumer price index −0.47 −0.10 0.17 0.44 0.84 0.14 9457

This table shows the means and quantiles of the loan characteristics, macroeconomic factors, and 
empirical LGDs (in %) for various loan categories
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Fig. 3  LGD frequency and approximated density distribution



638 J. Bosker et al.

subsample and evaluate their predictive accuracy out-of-sample (and out-of-time). 
To measure the predictive performance, we use four popular criteria: mean squared 
error (MSE), mean absolute error (MAE), median absolute error (MedAE), and coef-
ficient of determination ( R2 ), which are defined as follows:

where n corresponds to the number of observations in the respective dataset, LGDi 
denotes the true LGD value of the ith credit, L̂GDi,m denotes the corresponding LGD 
estimation using method m, and LGD corresponds to the arithmetic mean of the true 
LGD values. Because the MedAE is more resistant to outliers, we use it in combina-
tion with the MAE. A high absolute difference between the MAE and MedAE indi-
cates that there are outliers among the estimation errors. Finally, the mean of each 
criterion calculated over all 10,000 steps denotes the predictive accuracy (precisely, 
the mean squared error) of the respective modeling approach.

Based on the out-of-sample criteria, the modeling approaches can be ranked 
from worst to best. To exclude the possibility that some superiority may have 
occurred by chance, we complement the standard performance measures with the 
model confidence set (MCS) procedure of Hansen et  al. (2011). This procedure 
involves statistical tests that allow a set of modeling approaches to be identified 
that are “superior” with a given probability (i.e., confidence level �).43 Thereby, 
sequential hypothesis testing on the null hypothesis of equal predictive abil-
ity (EPA) between competing modeling approaches is utilized. The MCS pro-
cedure is as follows. We start with an initial set of approaches of dimension d. 
In the next step, we test the EPA null hypothesis. If this hypothesis is rejected, 
the approach with the lowest performance is removed from the set of potentially 
superior approaches, and the algorithm repeats this step with the reduced set of 
approaches. If the null hypothesis is not rejected, the algorithm terminates, and 
the remaining d∗ approaches define the superior set D̂∗

1−�
 . The superior set does 

not have to be single-element, that is, besides d∗ = 1 , 1 < d∗ ≤ d is possible. We 
use the MCS procedure to individually compare competitive approaches based on 
the test MSEs and test MAEs, respectively.

(9)MSE ∶=
1

n

n∑

i=1

(LGD
i
− L̂GD

i,m)
2
,

(10)MAE ∶=
1

n

n∑

i=1

|LGD
i
− L̂GD

i,m|,

(11)MedAE ∶= median(|LGD1 − L̂GD1,m|, ..., |LGDn
− L̂GD

n,m|),

(12)R
2 = 1 −

∑n

i=1
(LGD

i
− L̂GD

i,m)
2

∑n

i=1
(LGD

i
− LGD)2

,

43 For the confidence level, we set � = 0.1%.
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5  Empirical results

As already mentioned, we use gradient-boosted trees as the variable selection 
method within the Shapley-based clustering model because they are particularly 
suitable for capturing the properties of the LGD distribution of US data 
(bimodality and skewness). In this section, we first present the results of 
determining the variable importance in gradient-boosted trees using Shapley 
values. Next, the clustering results of all the competitive clustering models are 
presented, and those of our Shapley-based clustering model is described in more 
detail. Finally, we state and evaluate the results of the comparative out-of-sample 
analyses.

5.1  Variable importance measure

After calibrating the gradient-boosted trees within the Shapley-based clustering 
model, we identify the most influential variables for estimating the LGD. Figure 4 
shows the ranking of the global variables importance, resulting from the determi-
nation of the mean absolute contributions of all variables. The results confirm 
the findings from the literature on key LGD risk drivers [e.g., Dermine and de 
Carvalho (2006), Grunert and Weber (2009), Krüger and Rösch (2017) and Betz 
et al. (2018)] and can be summarized as follows:

First, log(EAD) most strongly affects the estimates of the gradient-boosted 
trees. Second, collateral-related variables, such as the number of collaterals, sen-
iority, or limit have the next largest affect on the estimates of gradient-boosted 
trees. Third, collateral is more relevant than guarantees for estimating the LGD. 
Fourth, the company’s industry affiliation does not seem to have a relevant effect 
on LGD. Fifth, while the macroeconomic variables GDP, term, and LIBOR are 
considered relatively important, the other macroeconomic variables seem to play 
only a minor role in estimating LGD. In summary, we conclude that both macro-
economic and loan-specific variables matter; however, EAD and collateral-related 
variables are especially crucial for LGD estimation in gradient-boosted trees.

5.2  Cluster analysis

Figure 5 shows the clustering results of the Shapley-based clustering model. The 
key findings are as follows: First, if the number i∗ of important variables used for 
clustering is too large ( i∗ ≥ 10 ), the quality of the clustering (in terms of global 
silhouette value) decreases significantly. Second, a similar result is obtained for 
the number k of clusters. For most number i∗ of important variables, an increasing 
number k of clusters leads to a reduction in the global silhouette value, indicating 
that the more complex the clustering process (in terms of i∗ and k), the worse the 
final clustering result. Third, the crucial result is that using the i∗ = 3 most impor-
tant variables (log(EAD), no. collaterals, and seniority) in clustering leads to the 
best result for three clusters, with a global silhouette value of approximately 0.50.
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Figure 6 compares the clustering results of all the competing clustering mod-
els. It becomes clear that the model which uses i∗ = 24 variables for clustering, 
that is, without specific variable selection, leads to lower quality of the resulting 
clusters compared to the clustering models with variable selection. More specifi-
cally, clustering using all available variables leads to the worst overall result, with 
a global silhouette value of less than 0.2. In addition, for each clustering model, 
the quality of the resulting clusters is strongly related to the number k of clusters. 
For instance, for the model with the k-best variable selection, the global silhou-
ette value is reduced from initially around 0.35 for three clusters to approximately 
0.25 for ten clusters. Unsurprisingly, the clustering model that uses the silhouette 
decomposition algorithm for variable selection has the highest global silhouette 
value, with a value greater than 0.6 for two clusters. However, this algorithm aims 
to generate the best homogeneously separated clusters without considering the 
relevance of individual variables in the prediction of LGD. Although this leads to 
the best clustering with respect to all variables, it neglects the fact that only a few 
variables are relevant for prediction, and clustering should, therefore, only take 
place on the basis of these variables. This also explains why the set of variables 
used in this clustering model (asset class, industry, and borrower) is completely 
different from those used in the Shapley-based clustering model. In summary, all 
other clustering models using the baseline methods for variable selection achieve 
a lower cluster quality than the Shapley-based clustering model.

To characterize the resulting clusters, we list the employed variables in the clus-
tering models below Fig. 6. We observe that most clusters are based on only a few 
variables with a distinct economic interpretation. To go more depth into the result-
ing clusters based on the Shapley-based clustering model, the mean values of the 
numeric variables and modal values of the categorical variables are listed for each 
cluster in Table 2. The results can be summarized as follows. The first cluster com-
prises predominantly medium-term loans from small/medium-sized enterprises 
characterized by a low average LGD and log(EAD), a high average number of col-
laterals, and a super senior status. The second cluster included loans of the same 
asset class, maturity, and seniority, with significantly increased average LGD and 
log(EAD) and a reduced number of collaterals. The third cluster consists mainly 
of medium-term loans with pari-passu status from large corporations, which are 
characterized by a particularly high average LGD and log(EAD), as well as a low 
number of collaterals. These clusters can all be interpreted economically and most 
contracts can clearly be assigned to one cluster. This can be deduced from the high 
global silhouette score. But small groups of contracts that do not fit any cluster well 
still have to be assigned to an ill-fitting cluster since a machine learning method 
can only reliably be learned on enough observations. This problem of forced clus-
ter assignments and the possibility of a bad LGD estimate for these small groups 
of contracts is partly mitigated from a regulatory perspective: The reported LGDs 
cannot be under a predetermined LGD floor and the bank has to show that long-
running historical realized LGDs are below the reported LGDs (see Sect. 3.3). But 
still, a bank should consider conservative LGD estimates for ill-fitting contracts to 
ensure regulatory compliance. But this is not limited to our clustering approach, but 
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to every clustered and non-clustered model: If the number of observations is too low 
to reliably estimate the LGD, some form of conservatism is likely required.

In summary, the loans in the training dataset are clustered into three segments 
characterized by low, medium, and high average LGD. This segmentation is 
plausible because the three modal values (close to zero, 0.5, and close to one) are 
already evident in the LGD distribution of the entire dataset (Fig.  3). Therefore, 
we can confirm that the Shapley-based clustering model leads to economically 
meaningful and comprehensible clusters, as required by regulators.

5.3  Comparative analysis

In this subsection, we present the results of the comparative out-of-sample analysis. 
Table  3 lists the performances of competing modeling approaches. As mentioned 
earlier, each modeling approach is a combination of a clustering model and 
prediction model.

First, we find that each clustered approach performs better than the standard 
approach without clustering. For example, the MSE and MAE of the prediction 
models within the standard approach vary between 0.1099 (gradient-boosted trees) 
and 0.1245 (linear regression) and 0.2745 and 0.3032, respectively. In contrast, the 
MSEs and MAEs are substantially reduced, even for the prediction models within 
the simplest clustered approach (with the worst clustering quality) using all variables 
in clustering, varying between 0.1042 and 0.1202 and between 0.2686 and 0.2957, 
respectively. Therefore, we confirm the results in the literature, indicating the 
higher accuracy of clustered approaches compared to the standard (non-clustered) 
modeling approach.

Second, we can conclude that the clustered approach with the “best” (i.e., highest 
global silhouette value) partitioning of the training dataset using variable selection 
based on silhouette decomposition does not have the best prediction performance at 
the same time. Although it performs better than the non-clustered approach and the 
simplest clustered approach, it is considerably outperformed by other clustered 
approaches using clustering models with baseline methods for variable selection. For 
example, the coefficient of determination of the prediction models in the clustered 
approach using stepwise variable selection is approximately 3–6% higher. Moreover, 
the prediction models within the clustered approach using variable selection based 
on silhouette decomposition seem to be more influenced by outliers, as shown by the 
larger differences between the MAE and MedAE.

Third, using variable selection for clustering leads to a better performance of the 
prediction models. For example, while the MSEs of the prediction models within the 
clustered approach using all variables in clustering vary between 0.1042 and 0.1202, 
they vary between 0.0952 and 0.1114 for prediction models within the clustered 
approach with factor analysis, and between 0.0949 and 0.1102 for prediction models 
within the clustered approach with stepwise selection. This result is consistent for all 
evaluation criteria.

Fourth, in each modeling approach (i.e., regardless of the choice of the clustering 
model), the gradient-boosted trees are superior to the other models in predicting the 
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LGD for each evaluation criterion. To exclude the possibility that this superiority 
occurred by chance, we perform the MCS procedure across all prediction models 
within each modeling approach. We find that the gradient-boosted trees are always 
identified as the significantly superior set of models when compared based on each 
evaluation criterion. This result reinforces our decision to use gradient-boosted trees as 
an intelligent variable selection method in our Shapley-based clustering approach.

Fifth, the most important result of the comparative analysis is that the Shapley-
based clustering approach has a higher prediction accuracy than the other clustered 
approaches, regardless of the specific choice of the predictive model used in the sepa-
rate modeling. For example, for gradient-boosted trees, we observe significant improve-
ments in the MSE, MAE, and R 2 of approximately 20%, 9%, and 48%, respectively. 
Owing to the small differences between MAEs and MedAEs, the prediction models 
within the Shapley-based clustering approach are also robust against outliers in the 
prediction errors. Additionally, even the performance of the simple linear regression is 
remarkably improved in the Shapley-based clustering approach.

To determine the overall best combination of clustering model and prediction 
model, we perform the MCS procedure across all possible combinations. We find that 
the Shapley-based clustering model, together with gradient-boosted trees, are identified 
as the superior combination and lead to the highest prediction accuracy. Overall, we 
confirm the superiority of our clustered modeling approach based on machine learning 
and Shapley values. Additionally, we find that clustering on a sub-sample of the 
variables, leads to the best out-of-sample predictive performance.

6  Robustness check

To ensure that the superiority of the Shapley-based clustering approach does not 
depend on the choice of specific data, we use a European credit portfolio with 
other loan characteristics in this robustness check. Using 3137 defaulted loans by 
small, medium, and large enterprises, provided by Global Credit Data, we rerun our 
comparative analysis. Precisely, based on the same empirical setup, the prediction 
models used within the competitive modeling approaches are re-calibrated, optimal 
hyperparameter values are re-determined, and cluster analysis, out-of-sample model 
comparisons, and significance tests are re-performed. The restrictions applied to the 
data are the same as those applied to the US data. The descriptive statistics and LGD 
distribution of the European dataset are shown in Table OA.1 and Figure OA.2 in 
the online appendix. We observe a (nearly) symmetric bimodal LGD distribution 
with total losses and total recoveries being equally likely. Because Gürtler and Zöll-
ner (2023a) have recently shown that random forest provides the best out-of-sam-
ple predictions for data with this distribution type, we use it as a variable selection 
method in the Shapley-based clustering approach.

Figure 7 shows the ranking of the global variables importance in the random for-
est for the European data. Similar to the US data, we find that log(EAD) and col-
lateral-related variables are crucial for LGD estimation, with asset class and limit 
becoming more important. The crucial difference, however, is that for the European 
data random forest assigns little importance to all macroeconomic variables.
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The comparison of the clustering results of the competitive clustering models is 
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Fig. 4  Variable importance measure in gradient-boosted trees used within the Shapley-based clustering 
model
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shown in Fig. 8.44 The conclusions we draw for the US data can also be confirmed 
for European data. First, the more complex the clustering process (in terms of i∗ and 
k), the lower the quality of the resulting clusters. Second, all clustered approaches 
using clustering models with baseline methods for variable selection achieve a 
lower cluster quality than the Shapley-based clustering approach. Third, using three 
clusters and the i∗ = 4 (instead of i∗ = 3 for the US data) most important variables 
(log(EAD), no. collaterals, asset class, and limit) leads to the best cluster result for 
the Shapley-based clustering approach.

Table 4 presents the mean values of the numerical variables and modal values of 
the categorical variables for each cluster created using the Shapley-based clustering 
approach. Similar to the analysis of the US data, the loans in the training dataset are 
clustered into three segments characterized by low, medium, and high average LGD, 
corresponding to the three identifiable modal values in the LGD distribution of the 
entire data (cf. Figure OA.2).

The out-of-sample performances of the competing modeling approaches (i.e., a 
combination of clustering and prediction models) are shown in Table 5. We confirm 
the superiority of the clustered approaches over the standard approach without clus-
tering. In addition, the clustered approach with the “best” partitioning of the training 
dataset using variable selection based on silhouette decomposition does not have the 
highest prediction accuracy. In addition, for European data, modeling approaches 
using variable selection for clustering have better performances than the simplest 
clustered approach using all variables in clustering. Moreover, each prediction 
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Fig. 6  Comparison of the clustering results of the competing clustering models. The variable selection 
methods used in the clustering models are indicated in parentheses. Additionally, the variables used in 
clustering are specified for each model. Clustering model (all variables): All variables Clustering model 
(silhouette decomposition): Asset class, Industry, Borrower Clustering model (factor analysis mixed 
data): Four components Clustering model (k-best selection): No. collaterals, No. guarantors, Coll.Ind., 
Facility, Borrower, Industry, PPI Clustering model (stepwise selection): log(EAD), No. guarantors, Coll.
Ind., Limit, Borrower, Industry, VIX, UNEMP. Clustering model (Shapley-based selection): log(EAD), 
No. collaterals, Seniority

44 The clustering results of the Shapley-based clustering approach and clustered approach with factor 
analysis are shown in detail in Figures QA.3 and QA.4 in the online appendix.
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model within the Shapley-based clustering approach show higher predictive accu-
racy than the prediction models within the other clustered approaches. Overall, the 
two basic conclusions of the analyses—the superiority of the Shapley-based cluster-
ing approach and the need for clustering on a sub-sample of variables—can also be 
drawn for European data.

7  Conclusion

Banks typically use statistical models to predict borrowers’ credit risks. However, 
many academic studies have shown that a single (non-clustered) model may not be 
sufficient to capture the risk characteristics of various individual borrowers, and 

Table 2  Interpretation of the 
resulting clusters of the Shapley-
based clustering model

This table shows the means of the numerical variables and modal 
values of the categorical variables for each cluster

Variable Cluster 1 Cluster 2 Cluster 3

LGD 0.06 0.41 0.78
log(EAD) 10.57 12.27 14.64
No. collaterals 8.30 3.21 0.62
No. guarantors 0.81 0.44 0.14
Gua.Ind Yes No No
Coll.Ind Yes Yes Yes
Facility Medium Medium Medium
Seniority Super senior Super senior Pari-Passu
Asset class Small/Medium Small/Medium Large
Syndication No No No
Limit Yes Yes No
Borrower Private Private Private
Industry SERV SERV SERV
S &P500 7.44 3.38 −1.85
LIBOR 1.00 1.32 2.05
Term 2.44 2.27 2.04
TED 0.48 0.50 0.47
US10Y 2.97 3.16 3.81
VIX 22.68 22.76 23.12
GDP 1.21 1.15 1.38
Inflation 1.83 1.97 2.07
UNEMP 6.4 7.26 7.83
CCI 73.216 75.91 81.3
PPI 189.06 182.53 165.17
CPI 0.11 0.13 0.17
Total observations 3382 1453 1784
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Table 3  Results of the comparative out-of-sample analysis

Each modeling approach is a combination of a clustering model and prediction model. The prediction 
models are linear regression (LR), regression trees (RT), random forest (RF), gradient-boosted trees 
(GBT), support vector regression (SVR) and multilayer perceptron (MLP). The employed variable 
selection method for the clustering is given in the first column. The final assessment of the prediction 
models is based on the average of each criterion calculated for all 10,000 samples. The models marked 
with ( ⋆ ) are identified in the MCS procedure as the superior set within the same modeling approach. 
Models marked with ( ‡ ) are identified as the superior set across all competitive modeling approaches

Variable selection (clustering) LR RT RF GBT SVR MLP

Panel A: Mean squared error (MSE)
No clustering 0.1245 0.1230 0.1122⋆ 0.1099⋆ 0.1162 0.1193
All variables 0.1202 0.1195 0.1077 0.1042⋆ 0.1113 0.1092
Silhouette decomposition 0.1197 0.1186 0.1058 0.1038⋆ 0.1092 0.1094
K-best selection 0.1132 0.1121 0.0984 0.0971⋆ 0.1019 0.0998
Stepwise selection 0.1102 0.1094 0.0962⋆ 0.0949⋆ 0.0979 0.0974
Factor analysis 0.1114 0.1102 0.0961⋆ 0.0952⋆ 0.0994 0.0972
Shapley-based selection 0.1085 0.1004 0.0921 0.0887⋆‡ 0.0933 0.0914
Panel B: Mean absolute error (MAE)
Variable selection (clustering) LR RT RF GBT SVR MLP
No clustering 0.3032 0.2899 0.2750⋆ 0.2745⋆ 0.2784 0.2863
All variables 0.2957 0.2823 0.2711 0.2686⋆ 0.2735 0.2728
Silhouette decomposition 0.2876 0.2782 0.2678 0.2622⋆ 0.2692 0.2732
K-best selection 0.2759 0.2655 0.2648 0.2614⋆ 0.2655 0.2649
Stepwise selection 0.2727 0.2625 0.2615⋆ 0.2582⋆ 0.2613 0.2631
Factor analysis 0.2734 0.2631 0.2611⋆ 0.2589⋆ 0.2623 0.2625
Shapley-based selection 0.2661 0.2615 0.2553 0.2501⋆‡ 0.2587 0.2538
Panel C: |MAE −MedAE|
Variable selection (clustering) LR RT RF GBT SVR MLP
No clustering 0.0650 0.0313⋆ 0.0341 0.0312⋆ 0.0367 0.0567
All variables 0.0633 0.0212⋆ 0.0290 0.0244 0.0312 0.0255
Silhouette decomposition 0.0538 0.0159 0.0246 0.0125⋆ 0.0255 0.0262
K-best selection 0.0387 0.0154 0.0124⋆ 0.0115⋆ 0.0186 0.0168
Stepwise selection 0.0328 0.0109 0.0093⋆ 0.0089⋆ 0.0131 0.0143
Factor analysis 0.0345 0.0120 0.0080⋆ 0.0088⋆ 0.0145 0.0132
Shapley-based selection 0.0219 0.0150 0.0020⋆ 0.0017⋆‡ 0.0074 0.0031

Panel D: Coefficient of determination R2

Variable selection (clustering) LR RT RF GBT SVR MLP
No clustering 0.1217 0.1499 0.1867 0.1883⋆ 0.1782 0.1723
All variables 0.1423 0.1727 0.2123 0.2292⋆ 0.1989 0.2134
Silhouette decomposition 0.1689 0.1791 0.2286 0.2311⋆ 0.2121 0.2110
K-best selection 0.1816 0.1843 0.2424⋆ 0.2463⋆ 0.2388 0.2373
Stepwise selection 0.2048 0.2072 0.2492 0.2555⋆ 0.2477 0.2482
Factor analysis 0.1982 0.2036 0.2487 0.2544⋆ 0.2381 0.2458
Shapley-based selection 0.2187 0.2389 0.2736 0.2798⋆‡ 0.2715 0.2744
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therefore propose the use of clustered modeling. In this approach, borrowers are seg-
mented based on their similarities through cluster analysis, and a separate predictive 
model is developed for each cluster, resulting in high predictive performance.

The main challenge with clustered approaches is selecting the appropriate vari-
ables used in the cluster analysis, especially for high-dimensional data. An incor-
rect choice can result in overlapping, indistinguishable, and uninformative clusters, 
which negatively affect the predictive performance in the separate modeling. Moreo-
ver, high-dimensional data can be meaningfully clustered in many ways; that is, it is 
not necessary to identify the variables that lead to the best clustering, but those that 
enable the best prediction of the dependent variable in separate modeling.

Against this background, we propose a clustered approach with a variable selec-
tion process using machine learning models. As part of this approach, we automati-
cally and effectively identify variables that contain relevant information for pre-
dicting credit risk and use these variables in a cluster analysis, which considerably 
reduces the risk of creating uninformative clusters. Moreover, a particular advantage 
of our approach is that it is independent of the machine learning model used for 
variable selection, and thus has a high degree of flexibility in its application.
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Fig. 7  EU data: variable importance measure in random forest used within the Shapley-based clustering 
model
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data): Three components Clustering model (k-best selection): Industry, No. guarantors, STOXX600, Sen-
iority, Borrower, UNEMP., Syndication Clustering model (stepwise selection): No. collaterals, Coll.Ind., 
Facility, Borrower, Industry, EURIBOR(6  M), UNEMP. Clustering model (Shapley-based selection): 
Log(EAD), No. collaterals, Asset class, Limit

Table 4  EU data: interpretation 
of the resulting clusters of the 
Shapley-based clustering model

This table shows the means of the numerical variables and modal 
values of the categorical variables for each cluster

Variable Cluster 1 Cluster 2 Cluster 3

LGD 0.11 0.45 0.82
log(EAD) 11.94 12.33 13.62
No. collaterals 1.5 1.01 0.53
No. guarantors 0.21 0.13 0.02
Gua.Ind No No No
Coll.Ind Yes Yes No
Facility Medium Medium Medium
Seniority Super senior Super senior Pari-Passu
Asset class Small/Medium Small/Medium Large
Syndication No No No
Limit Yes No No
Borrower Private Private Private
Industry WRT WRT AFFH
STOXX600 −0.54 −0.58 −8.78
STOXX50 −3.00 −3.16 −12.14
EURIBOR(6 M) 2.01 2.20 2.50
EURIBOR(12 M) 2.21 2.35 2.61
EU10Y 4.23 3.88 4.00
GDP 0.02 0.01 0.01
UNEMP 9.30 9.4 9.62
ESI 94.36 93.28 95.02
Total observations 700 947 548
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Table 5  EU data: results of the comparative out-of-sample analysis

Each modeling approach is a combination of a clustering model and prediction model. The prediction 
models are linear regression (LR), regression trees (RT), random forest (RF), gradient-boosted trees 
(GBT), support vector regression (SVR) and multilayer perceptron (MLP). The employed variable 
selection method for the clustering is given in the first column. The final assessment of the prediction 
models is based on the average of each criterion calculated for all 10,000 samples. The models marked 
with ( ⋆ ) are identified in the MCS procedure as the superior set within the same modeling approach. 
Models marked with ( ‡ ) are identified as the superior set across all competitive modeling approaches

Variable selection (clustering) LR RT RF GBT SVR MLP

Panel A: Mean squared error (MSE)
No clustering 0.1239 0.1211 0.1089⋆ 0.1152 0.1151 0.1197
All variables 0.1212 0.1189 0.1063⋆ 0.1112 0.1112 0.1134
Silhouette decomposition 0.1207 0.1186 0.1062⋆ 0.1102 0.1097 0.1112
K-best selection 0.1185 0.1172 0.1048⋆ 0.1051⋆ 0.1061 0.1055⋆

Stepwise selection 0.1182 0.1155 0.1029⋆ 0.1049 0.1032⋆ 0.1089
Factor analysis 0.1153 0.1121 0.0982⋆ 0.1021 0.0999 0.1064
Shapley-based selection 0.1093 0.1065 0.0892⋆‡ 0.0931 0.0922 0.0987
Panel B: Mean absolute error (MAE)
Variable selection (clustering) LR RT RF GBT SVR MLP
No clustering 0.3112 0.2954 0.2858⋆ 0.2913 0.2908 0.2931
All variables 0.2946 0.2873 0.2771⋆ 0.2807 0.2795 0.2841
Silhouette decomposition 0.2942 0.2870 0.2766⋆ 0.2801 0.2796 0.2832
K-best selection 0.2931 0.2844 0.2710⋆ 0.2753 0.2767 0.2749
Stepwise selection 0.2915 0.2826 0.2687⋆ 0.2789 0.2727⋆ 0.2812
Factor analysis 0.2883 0.2797 0.2653⋆ 0.2744 0.2697 0.2789
Shapley-based selection 0.2793 0.2783 0.2592⋆‡ 0.2633 0.2627 0.2692
Panel C: |MAE −MedAE|
Variable selection (clustering) LR RT RF GBT SVR MLP
No clustering 0.0679 0.0442 0.0402⋆ 0.0316⋆ 0.0411 0.0423
All variables 0.0465 0.0332 0.0180⋆ 0.0209 0.0217 0.0320
Silhouette decomposition 0.0463 0.0321 0.0165⋆ 0.0194 0.0214 0.0302
K-best selection 0.0402 0.0278 0.0116⋆ 0.0165 0.0189 0.0167
Stepwise selection 0.0444 0.0288 0.0105⋆ 0.0145 0.0085⋆ 0.0184
Factor analysis 0.0372 0.0199 0.0041⋆ 0.0131 0.0088 0.0191
Shapley-based selection 0.0184 0.0165 0.0011⋆‡ 0.0026 0.0019 0.0058

Panel D: Coefficient of determination R2

Variable selection (clustering) LR RT RF GBT SVR MLP
No clustering 0.1221 0.1512 0.1926⋆ 0.1844 0.1828 0.1711
All variables 0.1506 0.1765 0.2244⋆ 0.1992 0.1995 0.1892
Silhouette decomposition 0.1473 0.1785 0.2249⋆ 0.2049 0.2110 0.2098
K-best selection 0.1762 0.1793 0.2282⋆ 0.2272⋆ 0.2388 0.2268
Stepwise selection 0.1771 0.1805 0.2303⋆ 0.2280 0.2294⋆ 0.1928
Factor analysis 0.1811 0.1873 0.2421⋆ 0.2381 0.2404 0.2362
Shapley-based selection 0.2112 0.2374 0.2755⋆‡ 0.2694 0.2711 0.2564
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The superiority of our Shapley-based clustering approach is investigated through 
an empirical analysis using two real-life LGD datasets. We demonstrate that the 
Shapley-based clustering approach outperforms non-clustered modeling and clus-
tered approaches using baseline methods for variable selection. This conclusion 
is robust to several indicators of predictive accuracy. Moreover, we show that our 
Shapley-based clustering approach creates economically meaningful and compre-
hensible clusters as required by regulators and provides interesting insights into the 
influence of explanatory variables on LGD. In particular, we find that exposure at 
default and collateral-related variables are crucial in LGD modeling.
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