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Abstract
The textile industry is a traditional industry branch that remains highly relevant in Europe. The industry is under pressure
to remain profitable in this high-wage region. As one promising approach, data-driven methods can be used for process
optimisation in order to reduce waste, increase profitability and relieve mental burden on staff members. However, approaches
from research rarely get adopted into practice. We identify the high dimensionality of textile production processes leading
to high model uncertainty as well as an incomplete problem formulation as the two main problems. We argue that some
form of an autonomous learning agent can address this challenge, when it safely explores advantageous, unknown new
settings by interacting with the process. Our main goal is to facilitate the adoption of promising research into practical
applications. The main contributions of this paper include the derivation and formulation of a probabilistic optimisation
problem for high-dimensional, stationary production processes. We also create a highly adaptable simulation of the textile
carded nonwovens production process in Python that implements the optimisation problem. Economic and technical behavior
of the process is approximated using both Gaussian Process Regression (GPR) models trained with industrial data as well as
physics-motivated explicit models. This ’simulation first’-approach makes the development of autonomous learning agents
for practical applications feasible because it allows for cheap testing and validation before physical trials. Future work will
include the comparison of the performance of different agent approaches.

Keywords Textile Production · Safe Optimisation · Process Optimisation · Simulation Environment

Introduction

The technical textiles industry remains highly relevant in
Europe, despite the general outsourcing of production to
low wage countries. As an example, the turnover of non-
wovens, which are primarily used as technical and hygiene
textiles, amounted to 9.2 bn e in 2019, with an increase of
16.3 % in produced weight from 2014 to 2019 (EDANA
, 2022). The industrial production of nonwovens is highly
complex due to a high number of intermediate process steps
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with many degrees of freedom (Brydon & Brydon, 2007).
Due to the complexity of the production process the pro-
cess setup is largely done by trial and error (He et al.,
2021). This leads to wasted material, energy and time if
the product does not conform to the specifications or if the
process setup is not optimal. As a consequence, there is a
huge potential in making the production of nonwovens more
economical and sustainable by reducing waste. Producing
companies in high-wage countries are under pressure to oper-
ate their processes close to their optimal operating points to
compensate for higher costs. This results in overhead costs
for complex production management approaches (Büscher
et al., 2014). Intelligent, cognitive production planning sys-
tems are a promising approach to reduce the tension in this
’Polylemma of Production’ (Büscher et al., 2014). The pro-
cess setup and optimisation is traditionally done by machine
operators that have tomanage several conflicting goals simul-
taneously. These goals include minimizing the cost per unit,
maximising the overall productivity and adhering to the prod-
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uct quality specifications (He et al., 2022; Vedpal, 2013).
For this task the operators have to process a lot of data and
information, which leads to an increased mental workload
that results in a feeling of being overwhelmed and inef-
fective (Ledzińska & Postek, 2017). Recent advancements
in research focused on the development of self-learning
systems, predominantly utilizing techniques fromReinforce-
ment Learning (RL) and Bayesian Optimization (BO). These
approaches seek to increase system performance by finding
an optimal Policy or an optimal set of parameters respec-
tively (Brunke et al., 2022). Intelligent agents in the context
of industrial textile production have the potential to not only
optimise economical (He et al., 2022) and sustainability
aspects of textile production processes but also to relieve
operators of the mental burden to balance several optimisa-
tion goals. RL and BO are usually tested, validated and, in
the case of RL, pre-trained using virtual simulation environ-
ments before being deployed in the real world. The reason for
this is that real world experiments are prohibitively expen-
sive while a simulation allows for cheap experiments with
millions of time steps (Scheiderer et al., 2020; Ibarz et al.,
2021).

Our contributions in this work include the following
achievements:

1. Identification of the shortcomings of current optimisation
approaches from research that hinder adoption into prac-
tice. We address both the issues of optimisation problem
formulation as well as handling high dimensionality.

2. Proposal of an approach about how to overcome the short-
comings using Autonomous Learning Agents (ALA).

3. Explicit formulation of the probabilistic constrained opti-
misation problem for a technical textile production pro-
cess.

4. Groundwork for future contributions by providing a sim-
ulation architecture including its implementation. This
simulation of a technical textile production process allows
cheap testing of promising approaches from research to
facilitate adoption into practice.

5. High adaptability and modularity facilitate transfer of our
simulation into other domains.

In this work, we identify the shortcomings of traditional
optimisation approaches from industry and research and for-
mulate steps to overcome them. We also want to encourage
adoption of suitable techniques from research into practice.
To reach this goal, we formulate the full optimisation prob-
lemwith regards to industrial requirements. Additionally, we
develop and provide a simulation of a textile nonwoven pro-
duction process for cheap and quick testing and validation of
intelligent agents.

Theoretical background

In order to establish a common understanding between both
Production Engineers as well as ML Researchers, theoret-
ical background for the process as well as the optimisation
problem at hand is given. This chapter introduces the nonwo-
vens production process, traditional process control methods
as well as the usage of RL and BO as intelligent agents for
process optimisation.

Nonwoven production process

Nonwovens are widely used in many hygiene, construction,
automotive, filtration and medical applications due to their
wide range of possible properties (Wilson, 2007). Gener-
ally, nonwovens are produced by forming fibres or filaments
directly into a surface structure without using methods like
weaving or knitting (Wilson, 2007). The process is highly
productive because there is no need for producing a yarn as
an intermediate step. There are many ways to produce non-
wovens, so we focus on the carded nonwovens production
process as one of the most widespread methods (Brydon &
Brydon, 2007). An overview of the process is presented in 1.

Theprocess beginswith opening staplefibre bales in paral-
lel to achieve the desired fibremixture. The properties of each
of the processed fibre components include material, length,
diameter, cross section geometry, crimp, tensile strength as
well as lubrication on the surface, offering many degrees
of freedom in material design. Because the fibre properties
cannot be controlled by the nonwovens producer, deviations
from the specification are an important disturbance on the
process. The fibre flakes from the bale opener are further
opened and mixed in subsequent steps to achieve a homoge-
neous material mixture. (Brydon & Brydon, 2007)

In the next step the fibres pass the carding machine,
which consists of a sequence of at least 11 rollers equipped
with toothed wires (called card clothing). There exists a
multitude of possible cylinder numbers and arrangements
(Schlichter et al., 2012). The card disentangles fibres and
forms them into a homogeneousweb that is uniform inweight
per area and thickness (Brydon & Brydon, 2007) in both
Machine/Production Direction (MD) and the perpendicular
Cross Direction (CD). The speed of each cylinder can be set,
influencing the fibre processing as well as their movement
from cylinder to cylinder. The toothed wires, which are in
direct contact with the fibres, each have a different geometry
based on their purpose. Many times, the card represents the
process bottleneck when it comes to fibre mass throughput
(Schlichter et al., 2012). Cards have many different designs:
Cloppenburg (2019) counts 12 card clothing degrees of free-
dom for each cylinder. Additionally, the position and velocity
of each cylinder can be set. This results in 154 degrees of
freedom for an 11 cylinder card for wire choice alone.
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Fig. 1 The carded nonwovens production process (Pohlmeyer et al., 2022; Brydon & Brydon, 2007)

The next process step is the Cross-lapper, which decou-
ples the card web properties (e.g. width and weight per area)
from the final product by stacking a desired amount of card
web layers on top of each other with a given product width
(Brydon & Brydon, 2007) (see figure 1). The Draw Frame
reorients the fibres inside the web from CD to MD by draft-
ing or stretching it. This is achieved by a series of cylinder
pairs. The cylinder velocities increase with each pair, so that
the fibre web is pulled apart with a constant ratio called
draft ratio. Subsequent machines also have a draft ratio. The
drafting process is an example for the complexity of pro-
cess control: Changing the draft ratio influences the tensile
strength in MD/CD, the weight per area, the fibre web even-
ness as well as the production speed (Brydon & Brydon,
2007).

During the next step, called needlepunching, the web is
punctuated by hundreds to thousands of serrated needles that
oscillate vertically inside a needleloom to entangle the fibres.
The fibre web is consolidated and receives its mechanical
strength due to the entanglement. The feed per stroke setting
changes the length the fibre web gets pushed forward per
oscillation cycle. This method presents a bottleneck on the
possible production speeds because a higher speed increases
mechanical stress on the needles, causing them to break. The
geometry of the needles as well as the arrangement of the
needles on the needle boards also have a huge effect on the
final mechanical strength of the nonwoven. The entangle-
ment of fibres contracts the fibre web, which has a stronger
effect on the edges of the textile. This leads to a higher weight
per area at the edges compared to the middle, which is the

so-called ’smile effect’. The smile effect can be counteracted
by drafting the nonwoven periodically before cross-lapping,
cancelling out the effect.

Thermoplastic nonwovens can be further strengthened in
the calender under the influence of heat and pressure. Calen-
deringmeans to guide the nonwoven between a pair of heated
cylinders while exerting a certain pressure. This causes the
fibres to partially melt and consolidate, increasing the non-
woven strength, but also possibly damaging it. Finally, the
nonwoven is finished and wound up on rolls at the winder.
(Brydon & Brydon, 2007; Schlichter et al., 2012)

The nonwoven as a product needs to conform to require-
ments as stated by the contract between customer and
producer. The requirements often include a tolerance for the
weight per unit area, a minimum tensile strength and opti-
cal requirements (Mao & Russel, 2007). Testing the product
requires costly lab measurements (like a tensile tester (ISO,
2007)) that causemanual labour and destroy the sample (Mao
& Russel, 2007). If a nonwoven is found non-conforming, it
cannot be sold, which leads to waste of material, time and
energy (Mao & Russel, 2007; Vedpal, 2013).

The production of nonwovens is considered a continuous,
stationary production process because the process proper-
ties staymostly constant while the nonwoven is continuously
produced. The process is controlled by applying setpoint val-
ues, e.g. cylinder speeds, for the lower control loops (Vedpal,
2013). In the production process many machines are chained
together. Each machine has many degrees of freedom both in
mechanical design (like card cylinder layout) and setup (like
needle and toothed wire choice) (Brydon & Brydon, 2007).
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Fig. 2 Example of a continuous Shewhart chart

Also, there is a huge choice of fibre and nonwoven proper-
ties (Wilson, 2007). This leads to the conclusion that, due to
high dimensionality, there are likely no two completely sim-
ilar nonwoven production lines regarding layout and setup
unless specifically designed like that.

Process control in textile production engineering

A very popular method of improving production processes is
called Lean Six Sigma. It aims to reduce costs, reduce defects
and improve cycle times among other goals (Pongboonchai-
Empl et al., 2023).

Process control in textile production has a more narrow
focus: It aims to ensure that the process is under control,
meaning that the process output reliably meets the desired
specifications anddoes not produce defects. This is especially
important because production environments are dynamic,
meaning that production context like customer expectations,
process and raw material properties change constantly (Ved-
pal, 2013).

The first activity in process control is sampling the process
quality in order to evaluate it. If a quality defect is found,
so-called internal failure costs are incurred: The defective
product is either scrapped, meaning the time, material and
energy for its production is lost or it is reworked so it meets
specifications (Qiu, 2013). If the defect is not found, external
failure costs result if the customer finds the defect. External
failure costs outweigh internal costs long-term (Qiu, 2013).
Sampling the quality also incurs so-called appraisal costs for
labour and equipment (Aslam et al., 2021). Our goal is not to
reduce these costs, but rather to use sampling as effectively
as possible.

The most widely used method of process control in indus-
trial textile production is called Statistical Process Control
(SPC) which is a collection of methods from both descriptive
as well as inferential statistics (Vedpal, 2013). One widely
applied method of SPC is the Shewhart Chart (Aslam et al.,
2021). An example can be seen in 2.

The top of the chart in Fig. 2 shows the mean of some
quality characteristic Y i,t of the t-th sample of m products
(Qiu, 2013) according to the following formula:

Y i,t = 1

m

m∑

j=1

Yi,t, j for t = 1, 2, . . . , n (1)

Note that we changed the notation from the original authors
for consistency within this paper. The top Y chart is used to
detect systematic changes in the statistical properties of a pro-
cess.When the control limitsUorL (which are the confidence
bounds of some form of test statistic) are crossed, measures
need to be undertaken. The bottom R chart visualises the pro-
cess variability using sample ranges (Qiu, 2013). An example
for the nonwovens process is the tensile strength,which needs
to be sampled at least five times (ISO, 2007) for one mea-
surement. Since they are the actual measure according to the
norm, we will refer to the sample means as Yt instead of Y t

from now on. The Shewhart chart is only concerned with
changes of statistical properties of a process, but not its abil-
ity to produce conforming products. For the simple case of
a univariate, normally distributed characteristic and only a
Lower Specification Limit (LSL , the compliment being the
Upper SpecificationLimitUSL) the lower process capability
ratio Cpl is defined as (Qiu, 2013):

Cpl,i = μi − LSL

3σi
, Yi ∼ N (μi , σ

2
i ) (2)

Equation 2 describes the capability of the process to produce
outputs i within specified limits. The capability describes the
distance of the process mean to the specification limits mea-
sured in three standard deviations. That means Cpl,i = 1 is
equal to a defect rate of 66.807 PPM. In order to improve
process capability for an output (like a product quality cri-
terion), we can increase its mean μi or reduce its variability
σi (Qiu, 2013). Increasing μ can be costly, for example to
increase the average weight per area in a nonwovens produc-
tion process, one has to spend more raw material, creating a
trade-off between additional material and failure costs.

SPC allows us to detect anomalies or systematic changes
in a process. However, no action recommendations can be
derived with this method as it has no predictive capabilities.
Instead, brainstorming techniques and so-called cause-and-
effect diagrams are used to derive corrective actionsmanually
(Vedpal, 2013). Such a diagram is shown in 3 using expert
interviews as data source.

To conclude, traditionalmethods for process control apply
proven statistical methods for stabilizing a process. They are
limited to operator knowledge for improvement and do not
address economical aspects.
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Fig. 3 Cause-and-effect
diagram for the tensile strength
of a nonwoven in MD and CD

ML in textile production engineering

Many works try to improve upon traditional statistical meth-
ods by training predictive ML models with lab sample data
of process quality characteristics (He et al., 2021; Weichert
et al., 2019). Additionally, better process setpoints are sug-
gested by applying an optimisation algorithm on top of the
models (Weichert et al., 2019).

Predicting the process outcome is an advantage over SPC
methods, because corrective measures can be automatically
simulated and/or optimised before being applied to the pro-
cess (He et al., 2021). ML in textile production engineering
has been addressed in research literature. He, Shu et al. con-
ducted a literature review and found a total of 5 works about
modelling the nonwovens production process as well as 32
works about other textile production processes (He et al.,
2021). Our works include the model-driven optimisation of
the pneumatic fibre transport (Möbitz, 2021). They found
that, for the spinning process, a total of 48 Fibre properties
as well as 71 process parameters were used as model inputs.
This highlights what some call the ’curse of dimensionality’
in multistage manufacturing processes (Ismail et al., 2022)
where hundreds (Weichert et al., 2019) of potentially influ-
ential process parameters exponentially increase the model
complexity and need for training data. For textile processes,
21 different process quality characteristics were modelled.
The characteristics were predicted using several ML meth-
ods, Artificial Neural Networks (ANN) being by far the most
popular one (He et al., 2021).

The general assumption of ML modeling is that the
expected production outcome Y is systematically influenced
by the process variables X. The systematic behaviour can
be predicted by a parameterised complex function f like an
ANN (Goodfellow et al., 2016):

E[Y |X = x] = f (x; θ)

where x = [sT ,dT ]T (3)

In the above equation, the process parameters X consist of
both setpoint variables s and disturbances d (like environ-
mental conditions and fibre deviations from specification).
The expectation operator indicates that the model provides

only a point estimate instead of a prediction that includes
process output uncertainties. The parameters are found by
minimising a loss function L that quantifies the error between
prediction f (xi ; θ) and sample yi (Russell & Norvig, 2016):

θ̂ = argmin
θ

1

n

n∑

t=1

L(yt , f (xi ; θ)) (4)

He et al. (2021) conclude their review by stating that current
research of ML in Textile Production Engineering has not
lead to industrial applications. This is despite being around
since at least 1993 and a steadily growing number of publi-
cations (He et al., 2021). The authors criticise that all studies
did not address the true complexity of textile production pro-
cesses (He et al., 2021). Other meta-studies of ML-enabled
Lean Six Sigma research found that many authors mention
a lack of empirical data from practical implementations of
their research (Pongboonchai-Empl et al., 2023).

We conclude by stating two central disadvantages that hin-
der practical application ofML research in textile production
engineering into practice.
Disadvantage 1: Models generalise poorly Textile pro-
duction processes are subject to what is called ’curse of
dimensionality’. With a higher number of process states X
the problem complexity and amount of data needed rises
exponentially (Sutton et al., 2018). He et al. (2021) are opti-
mistic that with the rise of the Industrial Internet of Things
(IIoT) more high quality data from the textile industry will
be available. However, the curse of dimensionality is still a
fundamental issue. Data from a lab setting will also not be
able to address this issue. Lab machines allow for systematic
variation of some setpoints and disturbances. However,many
process layout, machine design and machine setup parame-
ters are different between lab and industry settings, especially
the scale (see Section “Nonwoven Production Process”). The
difference in process setup means that models learned from
lab experiments do not generalise well to industrial settings.
It is highly unlikely that there will be a universal model that
accurately predicts the process behaviour across all dimen-
sions. That means that there needs to be a specialised model
for each combination of machine setup, process layout and
fibre mixture. What follows is that an accurate model of any
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production process needs to be learned with data that has
been sampled on that specific process. To account for dif-
ferences between different processes, we add process layout,
machine design and machine setup variables l to the process
states: x = [sT ,dT , lT ]T . Should a model disregard impor-
tant disturbances, we have high external model uncertainties.
Should a model disregard important, mostly unchangeable
process layout or machine design influences, we deal with
high constant uncertainties in our system model. Both lead
to unreliable predictions and thus possible damage to equip-
ment or economic losses.
Disadvantage 2: Unsuitable problem formulation for real-
world textile production He et al. (2021) criticise that
available literature is mainly concerned with process model-
ing of singular quality aspects, but not the full optimisation
problem at hand. It remains unclear how the model can be
used to derive corrective actions without the full production
context, not offering advantages over SPC.

AsThomassey andZeng (2018) note, there is a high uncer-
tainty in decision making in the garment industry. However,
traditional methods offer only point estimates (as seen in
3), no quantification of uncertainty. As seen in section 2.2
the quantification of process performance in SPC requires
an uncertainty estimate of the random uncertainty due to the
inherent nature of the process. Setting μ = LSB would lead
to many quality defects, highlighting the need for random
uncertainty estimates. In ML literature, inherent randomness
or unpredictability in a process is called Aleatoric Uncer-
tainty. It cannot be reduced by additional sampling. SPC
literature calls this phenomenon Process Noise (Qiu, 2013).
A suitable problem formulation for industrial process optimi-
sation needs to address the full production context (including
economic and quality aspects) instead of singular aspects as
well as random uncertainty from process noise.

Hypothesis formulation

While disadvantage 2 can be solved by a proper prob-
lem formulation and choice of ML method, disadvantage
1 poses a more fundamental problem. If one model made
in a lab or industrial setting loses its predictive power once
e.g. fibre properties change, the usefulness of such mod-
els is questionable. When there is no data for a certain set
of process variables available, the model uncertainty will
be high because it needs to extrapolate from other exam-
ples (Hüllermeier & Waegeman, 2021). A high uncertainty
leads to wrong predictions and conclusions. In ML litera-
ture, uncertainty due to unavailable data is called Epistemic
Uncertainty. The act of reducing Epistemic Uncertainty by
additional, deliberate sampling is called exploration (Hüller-
meier & Waegeman, 2021).

A possible answer to disadvantage 1 is to not try to make
a model that generalises across all process configurations. A

Fig. 4 Comparison of lab and industry based data driven learning
approaches (Based on Brunke et al. (2022))

model could be trained only for a specific process at hand,
ignoring all variables that change rarely. Generating data for
this task from a full Design of Experiments is economically
infeasible due to the high dimensionality and a high like-
lihood of incurring failure costs. There needs to be careful
exploration by interaction with the process. During explo-
ration, only economically favourable process settings are
sampled. Additionally, safety aspects need to be considered
to avoid failure costs by crashing the process or producing
products with insufficient quality. Any learning system that
employs exploration directly on a physical process needs to
automatically address safety (Brunke et al., 2022).

The agent needs to trade off between exploiting known
information about the process and exploring new solutions
that have the potential of being better than previously known
solutions. This trade-off is known as the Exploration vs.
Exploitation Dilemma (Sutton et al., 2018). A research area
that additionally considers safety is called Safe Optimisation
(Brunke et al., 2022). We will call an algorithm that exhibits
the previously stated properties an Autonomous Learning
Agent (ALA). We form the hypothesis that is the motivation
for this work:

Autonomous Learning Agents that balance Exploration
and Exploitation, while consistently prioritizing safety, are
viable concepts for optimizing industrial textile production
processes.

Our hypothesis is illustrated in figure 4, where the knowl-
edge of the data-driven approach without learning does
not expand whereas the learning-based approach is able to
expand knowledge in sensible directions.

Autonomous agents in production engineering

In this section we give a brief overview over possible ALA
implementations. (Guan et al., 2023; Stojanovic, 2023; Tao
et al., 2023; Zhuang et al., 2023)
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Reinforcement Learning Autonomous agents in produc-
tion environments have been getting much attention in the
research community recently (Panzer & Bender, 2022). We
will give a short overview, leaving an in-depth compari-
son to future works. Panzer and Bender (2022) performed
a systematic literature review of the usage of Reinforce-
ment Learning (RL) as autonomous agents in production
systems . They found that RL is being applied in many differ-
ent domains, often outperforming traditional methods. Most
research focuses on dynamic process control, scheduling and
dispatching, not on economical optimisation and quality con-
trol. They conclude that, while very promising, RL needs
more validation in practical settings as well as more focus
on finding suitable algorithms for a given problem (Panzer
& Bender, 2022).

Nian et al. (2020) also reviewed the application of RL for
industrial process control. They highlight the flexibility and
adaptability of RL for solving many different problem set-
tings. The difficulty of designing an RL agent is the need for
an accurate simulation environment. Both stability as well
as state constraints are the most difficult problems to handle
in industrial settings, according to the authors (Nian et al.,
2020). Scheiderer et al. (2020) address the need for a sim-
ulation environment for RL agents during the design phase
by developing a ’Simulation as a Service’ architecture. This
architecture allows simulation providers to offer their soft-
ware for the training and testing of RL agents through an
interface at the example of heavy plate rolling (Scheiderer et
al., 2020). This design allows cheap testing and validation of
the agents. He et al. (2022) employed RL to the textile ozona-
tion process. The authors chose the approach due to the high
dimensionality of textile production processes. The optimi-
sation goal was formulated as a stochastic Markov Game in
which multiple RL agents operate in a multi-objective opti-
misation problem (He et al., 2022). The solutionwas found to
outperform Genetic Algorithms like NSGA-II in a simulated
production environment (He et al., 2022). The paper does not
provide the code for the simulation environment, limiting
the reproducibility for other research. Also, only Deep-Q-
Networks were used without investigation into alternatives
(He et al., 2022).
Data-driven optimal control techniques Recently, much
attention has been paid to the field of data-driven optimal
control, e.g in Stojanovic (2023). Görges (2017) performed
a review of the similarities between RL and optimal con-
trol techniques such as Model Predictive Control (MPC).
Discrete Optimal Control techniques are mostly concerned
with a sequence of control inputs that minimise a quadratic
value function. The author argues that while the learning of
RL is slow, imposing structure on system dynamics models,
value function and control policy through prior knowledge
helps speed up the learning process. (Stojanovic, 2023) is
a good example of the convergence between RL and opti-

mal control as they learn unknown system dynamics and
disturbances using system feedback data. Control policy and
policy evaluation are split up into anActor-critic architecture.
Structure is imposed through a discrete-time algebraic Ric-
cati equation (DARE) that is solved using adaptive dynamic
programming. The structure of the problem also allows for
theoretical stability guarantees. Another example of adap-
tive control is Iterative Learning Control (ILC), which is
concerned with optimizing control sequences for repetitive
tasks. The approach includes learning from past errors and
updating the control sequence Zhuang et al. (2023); Guan
et al. (2023). An example for the incorporation of system
dynamics uncertainty and disturbances can be found in Tao
et al. (2023).

It is important to note that dynamics play a minor role
in mostly stationary textile production processes. We are
mostly concerned with finding optimal values for a set of
setpoints considering the current production context. Still,
optimal control theory offers a principled way of modeling
and analysis of industrial production systems.
(Safe) Bayesian optimisationAccording to Panzer and Ben-
der (2022) and Brunke et al. (2022) RL is often used
for dynamic and combinatoric problems. As explained in
“Nonwoven production process”, the nonwovens production
process is mostly stationary. Also, RL is widely criticised
for being sample inefficient, which is a problem in produc-
tion environments where samples are expensive. Another
approach for ALA can be Bayesian Optimsation (BO). BO
aims to ’allocate resources to identify optimal parameters as
efficiently as possible’ by employing Bayesian inference on
an unknown, uncertain objective function (Garnett, 2023). It
has been applied to Engineering applications in the form of
an adaptive Design of Experiments in order to only sample
regions with a high probability of improvement (Greenhill et
al., 2020). Safe BO extends the BO concept with the possi-
bility of enforcing probabilistic constraints on the decisions.
There aremany different approaches that implement this gen-
eral approach like (Berkenkamp et al., 2023; Sui et al., 2018)
and (Kirschner et al., 2019).

Optimisation problem formulation

Our second disadvantage formulated the need for a complete
problem formulation that addresses economic and quality
aspects of the textile production as well as probabilistic
effects on process performance. Thus, in this section we for-
mulate the optimisation problem to be solved by the ALA
independently of the solution approach.
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Objective function

Manufacturing companies in low-wage countries primarily
achieve their advantage through economy of scale (Brecher
et al., 2012). Companies in high-wage countries try to com-
pensate their disadvantage of higher unit costs by focusing
on synergy, fast adaptation to market needs and sophisti-
cated production planning approaches (Brecher et al., 2012).
The dilemma arises from additional overhead costs due to
focusing on planning instead of producing ?. ? argue that
autonomous systems can compensate the dilemma of high
wage countries by quickly achieving economy of scale for
smaller lot sizes by quickly increasing production volume.
This effect is shown in Fig. 5 on the left. We define the pro-
duction volume PV in [m2min−1] of a nonwovens production
process as the amount of unit areas produced over time:

PV = bPvP (5)

where bP is the production width that is multiplied with vP
as the production speed in [mmin−1].

Hax and Majluf (1982) note that economies of scale also
result in a lower price per product, meaning that the price per
product is an indicator of how effectively that company can
manage its resources. The sinking price per unit with increas-
ing total produced product volume is called the Experience
Curve (See figure 5 on the right, Hax and Majluf (1982)).
Among the five reasons the authors identify for the sinking
costs are

1. Learning: With each produced unit, the operators learn
to use resources more efficiently

2. Process improvements: Large production volumes give
more opportunity to modify and optimise the production
process.

The Experience Curve leads us to another important con-
clusion: When Supervised Learning is used in a production
environment, it can only learn from experiences already
made, not generating any improvements. According to the
experience curve, we describe the variable costs per unit area
CU in [em−2] in a nonwovens production process as the sum
of energy and material costs per unit area:

CU = CE,U + CF,U

= YpCE,kWh

PV
+ ṁCF,kg

PV

(6)

In the formula above the energy and material costs per unit
area are denoted CE,U and CF,U . The electrical power con-
sumption of the processYp ismultipliedwith the energy price
per kW to model process electricity costs. The costs per unit
area CE,U are then calculated by dividing by the production

rate PV . The material costs are defined by the product of the
total fibre mass flow into the process ṁ and the fibre price
per kg CF,kg . Again, we divide by the production rate for
conversion from process costs to unit area costs. The contri-
bution margin per unit area MU in e denotes the difference
between earnings CS,U and variable costs. It is defined as:

MU = CS,U − CU (7)

Per the formula above we seek to reduce our variable costs
to increase profitability as we assume the earnings per unit
area cannot be influenced. To optimise total profit over time
instead of over unit areas produced we reformulate equation
7 so that it reflects the process contribution margin over time
as our objective function fobj in [eh−1]:

fobj = MU PV

= CS,UbPvP − YpCE,Wh − ṁCF,kg
(8)

The above equation not only considers lowering production
costs as a factor to improve economic efficiency but also
considers increasing productivity as a factor. Including pro-
ductivity is justified because producing with low costs per
unit area and low productivity is not a feasible solution. High
fix costs due to maintenance and personnel might still cause
the process to be unprofitable if productivity is disregarded
(Cloppenburg, 2019).

We obtained an objective function to be maximised that
represents the economic efficiency of our production pro-
cess. The objective function depends on setpoint parameters
{bP , vP } ∈ s, as well as the black box process output Yp. The
important mass throughput variable ṁ is not independent of
other factors, since the process mass balance needs to be sat-
isfied. The needed mass throughput is calculated internally
by the process control system. The goal of the upcoming pro-
cess modelling chapter is to express the objective function
only as a function of xt to capture systematic influences on
process performance. For now, we express non-probabilistic
process outputs like the mass throughput ṁ as a regular func-
tion:

ṁ = fm(xt) (9)

All probabilistic process outputs are modeled as a non-
stationary stochastic process whose statistical properties can
be expressed as a function of process state xt (see also 2):

Yi,t = fμ,i (xt ) + εi,t

∀i ∈ {p, w, MD,CD}
εi,t ∼ N (0, f 2σ,i (xt ))

(10)

In the equation above, fμ,i (xt ) denotes the systematic pro-
cess behavior, whereas εi,t denotes the process noise or
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Fig. 5 Ramp-up and experience curve of a production system ? (Hax & Majluf, 1982)

aleatoric uncertainty. The process noise is assumed to be a
heteroskedastic normal distribution whose variance f 2σ,i (xt )
depends on the process state. The indices w, CD and MD
represent an incomplete list of process outputs that can be
subject to quality constraints. CD and MD represent the ten-
sile strength of the textile in MD and CD respectively. The
term w represents the product weight per area.

In the next sectionwe formulate the full optimisation prob-
lem by introducing a way to handle the constraints.

Optimisation problem

According to Brunke et al. (2022), the term safe optimisa-
tion refers to ’sampling inputs that do not violate a given
safety threshold’. There are three basic strategies to enforce
constraints that are subject to uncertainty according to the
authors Brunke et al. (2022):

1. Soft constraints: If a constraint is violated, a penalty is
given instead of the objective function value. This encour-
ages the agent to avoid violating constraints.

2. Probabilistic constraints: The agent needs to satisfy all
constraints with a certain, fixed probability.

3. Hard constraints: The agent satisfies constraints at all
times. This robust approach leads to conservative, sub-
optimal solutions and is therefore disregarded (Bertsimas
& Sim, 2004).

Therefore we focus on the problem formulation for the first
two approaches.
Probabilistic constraintsWe first formulate the optimisation
problem for the probabilistic constraints. We seek to find a
vector of setpoint variables s∗t that maximises our objective.
Weused the general approach as described byGarnett (2023).
The solution also needs to satisfy the probabilistic output
constraints as described by Li (2007). The probability of the
process output being outside of the quality bounds q needs

to be above a threshold α.

s∗t ∈ argmax
st∈S

E[ fobj |xt ]

s.t. P(qi,low,t ≤ Yi ≤ qi,high,t |xt ) ≥ αi

s.t. ṁlow ≤ ṁt ≤ ṁhigh

∀i ∈ {w, MD,CD}

(11)

Note that x = [sT ,dT , lT ]T . The fibre mass throughput is
constrained in order to avoid clogging of card cylinders and
other damage to equipment. Note that the manipulable vec-
tor needs to be an element of the safe set S that does not
violate any static actor constraints. Brunke et al. (2022) call
this approach ’safe exploration with single time step state
constraints’. The problem does not only depend on setpoint,
but also disturbance and layout variables. These variables as
well as quality constraints might change over time, therefore
the optimal solution depends on the time step t . Most qual-
ity characteristics are not measured in real-time but rather
by using lab equipment (ISO, 2007), therefore quality sam-
ples are only available sparsely and with a significant delay.
Therefore, methods that deal with objective maximisation
and constraint satisfaction separately will have a significant
advantage because they do not need quality samples to com-
plete a full optimisation step.
Soft constraints The second approach is to enforce satisfac-
tion of constraints by penalising the agent for violations. For
the penalty, we subtract the sales price from the objective
function because we assume the product cannot be sold. We
formulate an augmented objective function:

faug =

⎧
⎪⎨

⎪⎩

fobj if constr. satisfied

fobj− otherwise

CS,UbPvP

(12)

The optimisation problem now becomes:

s∗t ∈ argmax
st∈S

E[ faug|xt , qi,high/low,t ] (13)
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Note that we essentially relaxed the constraints of equation
11. The optimal solution depends on the situation, making
our problema contextual problem.The agent needs to learn to
associate the optimal solution with certain situations (Gar-
nett, 2023). The agent’s actions only affect the immediate
reward, making the problem a bandit problem (Sutton et al.,
2018).
Conclusion of problem formulation In this subsection we
formulated the optimisation problem of maximising the
economic and resource-wise efficiency of a nonwovens pro-
duction process. We formulated the problem as both a
stochastic optimisation problem well as a contextual bandit.
To conclude this section we summarise the most important
optimisation problem characteristics:

• Decision space: The problem has a continuous and high
dimensional decision space.

• Context: The optimal solution s∗t depends on current pro-
duction context, which makes the problem instationary.
Due to high dimensionality, not all context can be taken
into account by the agent, resulting in high external uncer-
tainties. If some context is not learned by the agent, the
agent needs to consider additional safety margins. Due
to wear of components, the agent performance decreases
over time due to high constant uncertainties. The agent
needs to compensate this by continuously adapting.

• Noisy sampling: The process outputs are noisy due to its
stochastic nature, resulting in random uncertainties.

• Black box problem: We lack an explicit expression,
making our process a ’black box’. Solving the prob-
lem requires a careful balance between exploitation and
exploration. (Sutton et al., 2018)

• Sparse samples: Some process outputs are continuously
sampledwith inlinemeasurement equipment (likeweight
per area and power consumption) while others are sam-
pled rarely if they require manual work (like tensile
strength).

• Safety-critical: Not only are there hard constraints on
setpoints to avoid catastrophic crashes, there also needs
to be some guarantee to produce with sufficient quality.

• No dynamics: The optimal solution does not depend on
previous system states.

Simulator architecture

In the last section we formulated the optimisation problem
and outlined its key characteristics. We outlined that testing
and validating any ALA in a simulation before implement-
ing it on the physical process is advantageous. Implementing
the ALA in a simulation first allows cheap testing and valida-
tion. Only in a simulation is the comparison of different ALA
algorithms, architectures and hyperparameters economically

feasible. The best performing agents can finally be validated
on the physical process. In this section, we derive a simula-
tion architecture that is able to implement the optimisation
problem we formulated. This allows researchers to test and
validate different approaches in a reproducible manner and
encourages practical applications.

At first we define the scope of the simulator: We aim to
optimise a single nonwovens production line according to
the current context. Hoffmann (2019) postulates that for the
control of a single manufacturing unit the agent needs to
be located on the edge between the manufacturing unit and
higher-level systems. This approach ensures low-level inter-
actionwith both sensors and actor control loops in the process
as well as communication with higher-level systems (e.g. for
setting production goals or quality requirements) (Hoffmann,
2019). The calculation of the objective function is usually
seen as part of the environment and not the agent (Sutton et
al., 2018), but it is also not part of the process. We model it
as an intermediate entity.

In the previous chapter we derived that the optimisation
is safety-critical. There are hard constraints on manipulable
variables as well as derived quantities like mass throughput
to avoid machine crashes. These constraints can be checked
a priori, in which case Brunke et al. (2022) mention several
works that implement a safety layer which transforms an
action at into a safe setpoint vector st . In our case we simply
do not execute an unsafe action and set a penalty flag for the
agent to receive:

st =
{
at if (at ∈ S) ∧ (ṁlow ≤ ṁt ≤ ṁhigh)

st−1 otherwise
(14)

We leave more sophisticated methods of guaranteeing safety
(like solving a quadratic program (Pham et al., 2018)) to the
agent. The other aspect of safety is the satisfaction of the
product quality characteristics. This is part of the objective
layer. The resulting architecture is shown in figure 6.

At the beginning of a time step, the process output as well
as the partial process state are recorded. The performance
layer then calculates the objective function (which depends
on the quality requirements) which provides all information
needed to the agent. The agent receives the information as
well as additional context from higher-level systems and cal-
culates an action. The safety layer transforms the action into
a safe action and overrides the performance function with a
penalty if it is found to be unsafe. The action is transmit-
ted to the process actors for execution. The physical process
behavior then depends on the system state as well as non-
deterministic influences. Finally, the sensors record the new
process outputs as well as the partial process state and a new
cycle begins.
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Fig. 6 Control loop architecture with agent and process

In the next step we derive the simulator architecture for
implementation using Unified Modeling Language (UML).
The simulator needs to fulfill the following requirements as
per the previous sections:

• Enable cyclic agent-environment interaction
• Simulate different contexts or scenarios
• Implement a safety layer
• Simulate the continuous black box process outputs as a
noisy stochastic process.

• Simulate dependent variables
• Implement the objective function calculation

Beside the technical aspects, usability aswell as adaptabil-
ity are also important. The simulator needs to be adaptable to
multiple agent architectures and frameworks. For example,
the stable baselines reference implementations for common
RL algorithms (Hill et al., 2018) rely on the widely used
gymnasium interface for interaction between agent and envi-
ronment (Towers et al., 2023). As previously stated, textile
production processes are highly individualised, which shows
the need for a configurable design. Newprocess outputs, con-
straints or quality requirements should be easy to integrate.
Also, to enable reproducible experiments, an experiment
tracker needs to log all relevant data points. The environ-
ment needs to be able to reset itself to allow for multiple
consecutive experiment runs. Finally,we should aim for com-
putational efficiency to decrease experiment run time.

We developed an architecture, which is shown in figure
7, that implements the requirements stated above. We chose
a highly modular structure that can easily be changed and
adapted later. All class properties are initialised with plain-
text *.yaml configuration files so that the simulator behavior
can be changed without the need for changing the source
code. Dictionaries with key-value pairs are the standard data

exchange format, minimising the risk of reading the wrong
position in an arraywhen the configuration has been changed.

The class SpecificEnvironment is the main entry point for
interaction with the simulator. It is abstract, meaning the
specific implementation depends on the agent and its require-
ments. The specific implementation only has to havemethods
for executing a new step for cyclic interaction as well as a
resetmethod for doingmultiple runswithout re-initialisation.
SpecificEnvironment needs to adapt our Environment class,
which is the central hub for all other components. Envi-
ronment coordinates the calculation of setpoints, dependent
variables and disturbances, also referred to as the environ-
ment state. Additionally, the process outputs get stored as
well as the time step. This class also manages the execution
of the step and reset methods.

We require the possibility of changing the production sce-
nario, which is implemented by the ScenarioManager class.
It can deterministically or randomly (according to a specified
uniform distribution) change disturbances or quality require-
ments at predetermined time steps. This behavior allows
domain randomization so the agent learns to adapt to dif-
ferent contexts and doesn’t overfit to one singular scenario.

The ActionManager class transforms the agent actions
into setpoints, mainly by checking them against the static
actor and dependent variable constraints and setting penalty
flags. It also coordinates the calculation of dependent vari-
ables and thus acts as a basic process control system.

The OutputManager allocates one process for each pro-
cess output. This achieves parallel processing for the execu-
tion of the ML models as they are the most computationally
expensive part of a step execution. The class receives the pro-
cess state on calling the stepmethod. It calls its call_models
method for getting a prediction on the process output dis-
tribution modeled as a normal distribution. It then samples
the predicted distribution and returns the samples as process
outputs. The ModelAdapter is meant to provide abstraction
over different ML frameworks and adapts any framework
to be compatible with the simulator. The predict_y method
uses the associated MLModel class to get a prediction of the
process output distribution.

After all quantities of Environment have been calculated,
ObjectiveManager first checks for quality constraint satis-
faction and then uses ObjectiveFunction for the calculation
of the objective value. If the penalty flag has been set, the
penalty gets returned instead. All quantities get logged by
the ExperimentTracker class so the run can be analysed after
completion. Its concrete implementation depends on the log-
ging framework being used. Lastly, the Environment returns
values as stated in observables to SpecificEnvironment to
finalise the step execution. A simplified overview of the step
execution sequence can be found in figure 8.

For the sake of clarity, logging and scenario management
are not shown in the figure.
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Fig. 7 Simulator architecture expressed in a UML class diagram

Fig. 8 UML sequence diagram of a (partial) time step execution
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Conclusion of architecture design

In this chapter we derived a highly modular and adaptable
simulator architecture. It allows the simulation of different
production scenarios with a cyclic interaction between agent
and environment.

Process modeling

In the last chapters we provided an explicit formulation of the
optimisation problem as well as the simulator architecture.
In this chapter, we provide models for the missing quan-
tities (process outputs Yi and mass throughput ṁ). These
models are also subject to the shortcomings formulated in
disadvantage 1, meaning they are only valid for a very spe-
cific production process. Since we want to test the learning
behavior of an ALA, generalisability is not an issue as long
as we capture the influence of the most important setpoints
and disturbances.

Relevant process outputs are all quality characteristics that
are demanded for a specific product by the customer. Among
these quantities can beweight per area, tensile strength inMD
and CD, flame-retardant properties, air permeability, thick-
ness or optical characteristics (Mao & Russel, 2007). We
focus on the case where the nonwoven is required to have a
minimum weight per area as well as tensile strength in MD
and CD. In equation 7 we also introduced the power con-
sumption, resulting in a total of five variables to be modeled:

• Tensile strengths YMD and YCD

• Power consumption Yp

• Weight per area Yw

• Mass throughput ṁ

Data acquisition

The challenge of modelling the process outputs is that for
most outputs there are no first principle models, therefore we
need to rely on an empirical approach using data sampling
and ML modeling. In our approach we sampled data from
an industrial nonwovens production process since we aim
to simulate an industrial production process. The data was
recorded using per-minute averages

For a description of the output values, refer to table 1.
For a description of the recorded process states or columns,
please refer to table 2

As shown in table 1, there is much less data about the
tensile strength than the power consumption. That is because
sampling the tensile strength is a manual process whereas the
otherwas done automatically using sensors. This observation
helps estimate the time steps the agent should need to learn:
If one optimisation step is only completed after a lab sample,

Table 1 Description of the process output data

Targets Acquisition time span Valid rows

Power consumption 454d 3h 293,172

Tensile Strength 374d 5h 1,091

the agent should make significant progress within hundreds
of time steps.As canbe seen in table 2, someprocess setpoints
are classified as disturbances, because many are set due to
reasons other than process optimisation, so to the agent they
become a disturbance.

Biases and causality in industrial data sets

There are important variables missing from the data set, most
importantly the actual fibre properties as opposed to the spec-
ification.Also,machine setup and condition are not recorded.
This leads to omitted-variable bias, where a statistical model
falsely attributes changes in the omitted variables to variables
that were recorded. (Kocak, 2022)

For the tensile strength, the available observations are
in the same order of magnitude as the number of observed
parameters. Because of high dimensionality with little avail-
able data, this might lead to overconfident models that
generalize poorly if they attribute small changes in the tar-
get value to random variations in the process states (Kocak,
2022). Because of this, a highly unstable feature selection
process is to be expected.

The recorded process states also include the fibre mixture.
Different fibresmight require different process settings, espe-
cially calender temperatures. Also, customer requirements
might differ between fibre groups because they are chosen
for a specific purpose. Figure 9 shows the data distribution
using the first two axes of a Principle Component Analysis
(PCA) of the data as well as as a boxplot of the calender tem-
perature broken down by fibre mixture. The figure clearly
shows that there are complex interrelations between fibre
groups and process settings. If these interrelations are not
accounted for, they might again lead to wrong conclusions
and biases.

If we aim towards data-driven optimisation of textile
production processes, we derive actions based on process
models. These actions are also called interventions in thefield
of causal inference (Peters et al., 2017). It is very important to
note the difference between prediction and causal inference.
Prediction aims to find correlations between observations
and a target to predict the target value based on hypothetical
observations (Peters et al., 2017). However, if we impose an
intervention on a system we might get significantly differ-
ent probability distributions than what can be expected from
field observations (Becker et al., 2023). This is because the
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Table 2 Description of the
recorded process states

Process states (columns) Number of columns Type

Environment conditions 16 Disturbance

Process setpoints 60 Setpoint, disturbance

Actual values 94 Dependent, disturbance

Fibre mixture 1 (54 categories) Disturbance

Fig. 9 PCA diagram and Boxplot showing data clusters depending on fibre mixture

assumption that the data is independent and identically dis-
tributed (IID) is violated if the data does not come from a
carefully designed experiment (Schölkopf, 2022). As shown
in this chapter, there are a multitude of biases in the data set
that lead to a process state not being independent of other
mechanisms.

Example: We observe the process power consumption
Yp as well as the fibre mass throughput ṁ and environment
temperature. We obtain two models with reasonably strong
predictive capabilities, one uses environment temperature
(P(Yp|Tenv)), the other fibre mass throughput (P(Yp|ṁ))
as feature. To reduce power consumption we could intervene
and install a climate control system to reduce the temperature
or reducemass throughput.Wewould find that reducingmass
throughput will reduce power consumption because process-
ing lessmass leads to less strain on themotors.Wewould find
that climate control has no effect, because the higher power
consumption caused an increase in temperature due to dissi-
pated energy. Our wrong assumption was that temperature is
an independent state.

We conclude that while industrial data has the advantages
ofmore data volume andmore practical relevance, the signif-
icant disadvantages include biases that might lead to causally
incorrect models.

Data preprocessing and feature selection

Using only observational data without additional assump-
tions, we can not distinguish between models that are robust
towards interventions and those that are not (Schölkopf,
2022). Humans on the other hand are very skilled at intuition

Fig. 10 SCM of the process outputs and observed states

about causal structure (Peters et al., 2017). If wewant to opti-
mise a production process using an intelligent agent, such an
agent should have control over or be informed about the Inde-
pendent Causal Mechanism (ICM) of the process. ICM are
defined as the ”The causal generative process of a system’s
variables [...] composed of autonomous modules that do not
inform or influence each other” (Peters et al., 2017). During
themodeling stagewe need to be careful to only include ICM
as states in order to achieve realistic process behavior. Our
current understanding about the process causal structure is
shown in Fig. 10 in the form of a Structural Causal model
(SCM) graph. An SCM is a directed graph where the nodes
represent one system variable (Peters et al., 2017). The edge
direction represents the direction of causality.

Figure 10 shows the omitted-variable bias because of
unobserved process states. Also, many states are not inde-
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pendent of fibre mixtures, operator preference or operating
standard procedures. It also shows the lags ρ j between dif-
ferent process steps that results from the nonwoven carrying
the signal has to physically travel in between machines. We
account for the lag by offsetting the timestamp of observa-
tions at one process step by τ = s j/v j , which is the time the
nonwoven takes to travel in between process steps.

We account for complexfibre group inter-dependencies by
only including comparable rows with a calender temperature
of at least 150◦ C.We also only include fibres with at least 30
available samples, leaving us with seven fibre groups (Fibre
A-G) as well as 332 samples for tensile strength. We encode
the fibre group in the data using one hot encoding, where
each fibre group has it own column with values being either
1 or 0). The states are then scaled using the RobustScaler
method of the library Scikit-Learn (Pedregosa et al., 2011).

We then select features for each output model using
Lasso Regression as the basis, which is robust against mul-
ticollinearity because it penalises high weights (Dangeti,
2017). We use Lasso Regression in conjunction with a step-
wise approach with forward feature selection. Each iteration
the state with the highest additive explanatory power is added
until the adjusted R2 value does not increase. We customise
the stepwise algorithm by having an expert agree with each
addition. The feature in question is only added to the selected
features if the expert agrees to its causal correctness.We cap-
ture expert opinion with Ishikawa diagrams as seen in Fig.
3. For additional robustness we use Lasso Regression with
10-fold cross-validation.

Regressionmodel architecture

In this section we explore the choice of suitable methods for
modeling the process outputs. We previously stated the need
for outputting both a mean as well as some form of confi-
dence bound to capture the probabilistic process behavior.
Another advantageous model property is smooth interpola-
tion between data points to achieve realistic process outputs.

We chose the non-parametric, non-linear Gaussian Pro-
cess Regression (GPR) as an ML model due to several
advantageous properties. Firstly, the exactGPRmethodmod-
els the expected value of a process as well as its confidence
intervals and an estimate of process noise. Also, GPR allows
smooth interpolation in between sparse data points. Lastly,
GPR gives much control over the shape of predicted values
and allows the integration of prior knowledge (Duvenaud,
2014). The disadvantage is that the computational com-
plexity is O(n3) with data points due to expensive matrix
inversions (Duvenaud, 2014).More scalable versions ofGPR
are available (Titsias, 2009). The popular feedforward ANN
model can also be extended to output process noise (Hüller-
meier & Waegeman, 2021). Our framework can easily be

adapted to accommodate this approach due to its modular
structure.

Given a systematic process behavior where the actual
output Yi is corrupted by additive homoskedastic noise
εi ∼ N (0, η2) we get the marginal posterior distribution
Yi (x ′) ∼ N (μ(x ′), σ 2(x ′)) (meaning the predicted distribu-
tion of the process output) for a query location x′ (Duvenaud,
2014):

μ(x ′) = k(x ′,X)�C−1y

σ 2(x ′) = k(x′, x′) + η2

− k(x′,X)�C−1k(x′,X)

(15)

Where the letter C = k(X,X) + η2 I denotes the covari-
ance matrix with the noise term. Since we are only interested
in the process noise, we modify the model prediction to only
return the noise η2. The kernel function design k has a huge
influence on the model behavior (Duvenaud, 2014). The ker-
nel function can be interpreted as a measure of similarity
between to data points. A popularKernel function is the Poly-
nomial (Poly) Kernel (Duvenaud, 2014)

k(x, x′) = (x�x′ + c)d (16)

between two locations x and x′. Another example is the
Radial Basis Function (RBF) Kernel (Duvenaud, 2014)

k(x, x′) = exp

(
−||x − x′||2

2σ 2

)
(17)

which is a non-stationaryKernel, whichmeans that similarity
of two data points ismeasured only by their distance in space.
This Kernel leads to high uncertainties when extrapolating
from known data points (Duvenaud, 2014). Low lengthscale
parameters σ lead to complex models due to low similarities,
while high values lead to smoothmodel behavior (Duvenaud,
2014). Lengthscales, noise and other parameters are fitted
using gradient-based optimisers like ADAM on the Negative
Log Likelihood (NLL) as a loss function (Gardner et al.,
2023). The influence of kernel design on the model shape is
highlighted in figure 11.

For a full introduction into GPR, please refer to Garnett
(2023) or Duvenaud (2014).

The problem at hand is characterised by high dimension-
ality with a low amount of available data. Duvenaud (2014)
provides general guidelines about how data-efficient kernels
can be designed. If permissible, non-stationary kernels like
the PolyKernel can be used because of their non-local nature.
Another technique is called Automatic Relevance Detec-
tion (ARD). With this technique, each model dimension is
assigned its own kernel. This way, the model can exhibit dif-
ferent amounts of complexity across each dimension because
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Fig. 11 Influence of kernel design on prior (meaning before consider-
ing observations) sample outputs. Top: RBF Kernel, high lengthscale;
Middle: low lengthscale; Bottom: 2nd-degree Poly kernel

each dimension has its own lengthscale.We can apply length-
scale constraints to limit complexity and enforce smooth
predictions (Duvenaud, 2014). The application of lengthscale
constraints also encourages the model to attribute influences
from missing variables to noise rather than falsely attribute
them to one of the features.

Tensile strengthMDmodel

We performed Lasso regression (α = 1) for feature selection
and compared the standard approach using all features with
our proposed stepwise approach. The results are shown in
table 3

The results show that our custommodel using expert feed-
back outperforms the baseline model as can be seen in table
3. Based on e.g. the alpha value, Lasso regression chose
different feature sets, which highlights the unstable feature
selection we expected earlier. The weight per area has a
huge influence on tensile strength because it determines the
amount of fibres in the cross-section of the nonwoven. The
baseline model preferred quantities that are a direct conse-
quence of weight per area like the cross-lapper height (which
is causally incorrect since the height is adjusted to accom-
modate different weights per area). The stepwise model with
expert opinion chose causally correct features that determine
weight per area (Cross-lapper layers count, weight per area
card floor as well as draft ratios). The feed per stroke as well
as the calender temperature setting are two additional states
that are directly linked to fibre web consolidation.

Figure 12 shows the performance of our model. There are
some outliers in the data set where the prediction is much
worse than the average. This is likely due to an error in the
manual data recording process, so we removed all data points
where the absolute residual is higher than 180 N. This dras-
tically improved our model performance as shown in 3.

For the GPR models, we normalised the data using
Scikit-Learns RobustScaler so that the lengthscale values are
comparable. We used the GPyTorch framework for the com-
putations (Gardner et al., 2023). All kernels are multiplied
with each other according to the formula k1k2..kn . All length-
scale values except for the fibre mixtures were constrained to
be above 0.5 to limit model complexity. We chose the poly-
nomial kernel for the cross-lapper layers count as well as
the weight per area card floor. The reason for our choice is
that we assume the connection to be mostly linear since both
variables determine the amount of fibres in the nonwovens
cross-section. Note that the selected fibres are different from
the Lasso model. That is because we included all fibres at
first and then removed all fibres with a lengthscale above 20.

The lengthscales were not effected by the constraints with
the exception of needleloom draft ratio,as shown in 4 . The
highest lengthscale value is calender temperature, indicat-
ing little complexity along this dimension. A comparison of
model performance with and without constraints is shown in
5. The table shows that the NLL loss is unaffected by the
constraints. The process noise η2 is 1108, which translates
to a process with a standard deviation regarding the Tensile
Strength in MD of 33 N.

Figure 13 shows the model behavior along one dimen-
sion while all other dimension values are kept constant at
their respective median. For clarity, the prediction variance
is shownwithout the noise variance. Thegreydashed lines are
the 0.05- and 0.95-quantiles of the data that we use as upper
and lower actor setpoint constraints. The constraints for the
calender temperature are missing since we classify this state
as a disturbance. The calender temperature is chosen for cri-
teria other than process optimisation. Most dimensions show
polynomial-like behavior independently of kernel choice.
Increasing the layers by a factor of two also roughly increases
the tensile strength by a factor of two. This makes sense since
double the fibres are in the cross-section of the nonwoven.
The state ’cross-lapper layers count’ determines how many
card web layers are stacked on top of each other and there-
fore can only assume positive integer values. Therefore, the
model takes continuous inputs, but rounds this dimension to
Integers. Increasing the card floor by a factor of two does
not lead to the same increase, likely because of floor defects
acting as a weak point in the textile. The feed per stroke
graph does not show a distinct peak, indicating that the tech-
nically possible maximum strength of consolidation has not
been reached in the process at hand. All draft ratios show that
high ratios decrease the tensile strength because it reduces
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Table 3 Comparison of our
tensile strength MD Lasso
models

Baseline Lasso Model Our stepwise Lasso Model Outliers removed

Adjusted R2: 0.80 Adjusted R2: 0.84 Adjusted R2: 0.89

Selected Features Selected Features Selected Features

1. Needlepunch depth 1. Cross-lapper layers count Same as stepwise

2. Cross-lapper carriage speed 2. Draw frame draft ratio Lasso model

3. Cross-lapper height front 3. Fibre C

4. Bale opener weight setpoint 4. Fibre B

5. Needleloom feed per stroke 5. Calender temperature

6. Card belt scale speed 6. Weight per area card floor

7. Feeder velocity 7. Needleloom feed per stroke

8. Cross-lapper height back 8. Fibre A

9. Needleloom scraper roll position 9. Needleloom draft ratio

Fig. 12 Prediction errors and residuals of the tensile strength MD Lasso model

Table 4 Kernel Specification
for the tensile strength MD GPR
model

Number Dimension Name Kernel Constraints Hyperparameters

– Constant scale Const - c = 0.000835

1 Cross-lapper layers count Poly d = 2 c = 4.79

2 Weight per area card floor Poly d = 2 c = 8.61

3 Needleloom feed per stroke RBF σ > 0.5 σ = 8.63

4 Needleloom draft ratio RBF σ > 0.5 σ = 0.73

5 Draw frame draft ratio RBF σ > 0.5 σ = 2.02

6 Calender temperature RBF σ > 0.5 σ = 14.65

7 Fibre A RBF σ > 0.0 σ = 1.76

8 Fibre D RBF σ > 0.0 σ = 15.97
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Table 5 Comparison our GPR
models

GPR model with constraints Without constraints

Noise Variance 1108 1111

η2 in [N2]

NLL Loss 0.106 0.106

the weight per area (↓). Fibre mixture A differs from other
mixtures mostly in a generally higher tensile strength, but it
is also more sensitive to changes in needleloom draft ratios.

Tensile strength CDmodel

The process of building the Tensile Strength CD model is
analogous to the last section. At first we perform feature
selectionwith our stepwise Lasso algorithm. The comparison
of the standard approach as well as our approach is given in
table 6. The standard approach chooses features that correlate
directly with fibre mass throughput (features 2, 3 and 5),
but do not cause the weight per area of the nonwoven. The
stepwise feature set remains the same as with theMDmodel,
but with different fibre group selections.

The GPR kernel design is the same as before, but does not
include calender temperature. We increased the lengthscale
constraints to 1.0 to enforce more smooth predictions. As
shown in table 8, this negatively affects model performance
and forces the model to explain the variance with the noise
term. This is permissible, as our goal is to achieve realistic
models over good predictive capabilities.

Figure 14 shows the model behavior for the tensile
strength in cross direction. The model behavior along the
dimensions is similar to the MDmodel. The main difference
lies in the behavior of the tensile strength when the nonwo-
ven is subjected to drafting. The slope of the tensile strength
is steeper for the draw frame draft ratio. The principle that
applies is again that high ratios decrease the tensile strength
because it reduces the weight per area (↓). The re-orientation
of fibres from CD to MD direction works in the same direc-
tion (↓). Because both effects work in the same direction, the
result is a steeper slope.

Power consumptionmodel

For the prediction of the power consumption, we followed
the same process as before. The standard Lasso model chose
features related to production speeds and the calender nip
force, which correlates to weight per area. Due to conver-
gence issues, the model performance is poor. Our model
with expert feedback chose the final production speed, fibre
mass throughput as well as the needleloom feed per stroke.
A higher mass throughput leads to higher strain on the
motors while the other two features combined determine the

motor rpm of the needleloom. The experts rejectedmany fea-
tures containing temperatures as well as ’switching states’.
Many process steps before the card process fibres discontin-
uously, resulting in on-off-switches that cannot be influenced
directly.

For theGPRmodel,we randomly sampled1,500data rows
from our data set with seven fibre mixtures in order to limit
computational complexity. We also removed the production
speed because it was almost constant with a lengthscale of
over 20 (see table 10). As can be seen in table 11 the higher
constraints for enforcing smoothness have a significant influ-
ence on model performance.

As can be seen in Fig. 15, the mass throughput leads to
a steady increase in power consumption whereas a higher
feed per stroke leads to fewer motor rpm of the needleloom
and therefore a decrease in power consumption. The changes
due to the two states are in the range of 40 kW, indicating a
high base load of approx. 290 kW that cannot be influenced
directly.

Weight per areamodel

In contrast to the previous ML models, the weight per area
is calculated using mass balance equations:

E[Yw,l ] = 2wcard webnlayers
∑

m

100
dm,l+100 (18)

The finalweight per areaYw of the product is a result of stack-
ing multiple layers of the card web inside the cross-lapper.
The factor of two before nlayers comes from the fact that the
cross-lapper always needs to return. Afterwards, the fibre
web is subject to multiple draft ratios that reduce the weight
per area. This is illustrated in Fig. 16. We used the expecta-
tion operator because the mass balance does not account for
local deviations in mass distribution.

We now consider the draft ratios of the process that appear
in equation 18. There are four draft ratios dm in total:

1. Profilingdprof iling,l that periodically drafts the nonwoven
to counteract the so-called smile-effect;

2. Drafting inside the draw frame ddraw f rame;
3. Drafting at the needleloom intake dintake;
4. Drafting inside the needleloom dneedleloom .
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Fig. 13 Predictions of the tensile strength MD GPR model

Table 6 Comparison of our
tensile strength CD Lasso
models

Baseline Lasso model Our stepwise Lasso model Outliers removed

Adjusted R2: 0.71 Adjusted R2: 0.73 Adjusted R2: 0.83

Selected features Selected features Selected features

1. Fibre F 1. Cross-lapper layers count Same as stepwise

2. Feeder velocity 2. Draw frame draft ratio Lasso model

3. Mixing chamber belt velocity 3. Needleloom draft ratio

4. Fibre C 4. Fibre A

5. Bale opener weight setpoint 5. Needleloom feed per stroke

6. Needleloom scraper roll position 6. Weight per area card floor

7. Cross-lapper layer overlap 7. Calender temperature

Table 7 Kernel Specification
for tensile strength CD GPR
model

Number Dimension Name Kernel Constraints Hyperparameters

– Constant scale Const – c = 0.001322

1 Cross-lapper layers count Poly d = 2 c = 3.45

2 Weight per area card floor Poly d = 2 c = 14.50

3 Needleloom feed per stroke RBF σ > 1.0 σ = 2.35

4 Needleloom draft ratio RBF σ > 1.0 σ = 1.003

5 Draw frame draft ratio RBF σ > 1.0 σ = 1.000

6 Fibre A RBF σ > 0.0 σ = 1.64

Table 8 Comparison of the two
GPR models

GPR model with constraints without constraints

Noise Variance 1295 1182

η2 in [N2]

NLL Loss 0.088 0.056
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Fig. 14 Predictions of the tensile strength CD GPR model

Table 9 Comparison of our
power consumption Lasso
models

Baseline Lasso model Our stepwise Lasso model

Adjusted R2: 0.57 Adjusted R2: 0.80

Selected features Selected features

1. Cross-lapper delivery speed 1. Mass throughput

2. Calender nip force 2. Production speed

3. Needleloom draft ratio 3. Needleloom feed per stroke

Table 10 Kernel Specification
for the power consumption GPR
model

Number Dimension Name Kernel Constraints Hyperparameters

– Constant scale Const – c = 0.6817

1 Cross-lapper layers count RBF σ > 2.0 c = 2.01

2 Needleloom feed per stroke RBF σ > 2.0 σ = 2.01

To explain the profiling we first have to address the smile-
effect. To model local deviations from the expected weight
per area we have to account for both systematic as well as
probabilistic deviations. During needlepunching and calen-
dering the fibre web is subject to the systematic smile effect
wsmile (Russell & Norvig, 2016). This is the phenomenon of
a higher contraction on the edges of the nonwoven, leading to
a weight distribution in the form of a smiley. We account for

this by dividing the floor into five lanes with weight per area
Ywl , lane three being themiddle lane. To get a clear picture of
systematic changes in weight per area please refer to 16. The
weight per area is increased by half of the disturbancewsmile

whereas the middle lane is decreased by the full wsmile so
the overall mass does not change. To account for probabilis-
tic deviations we added noise to each lane ε that scales with

Table 11 Comparison of the
two GPR models

GPR model with constraints without constraints

Noise Variance 13.90 6.36

η2 in [kW 2]

NLL Loss −0.097 −0.330
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Fig. 15 Predictions of the power consumption GPR model

Fig. 16 Schematic of the
nonwoven transformation along
the process

the expected weight per area.

Yw1 = E[Yw,1](1 + cwε1) + 0.5wsmile

Yw2 = E[Yw,2](1 + cwε2)

Yw3 = E[Yw,3](1 + cwε3) − wsmile

Yw4 = E[Yw,4](1 + cwε4)

Yw5 = E[Yw,5](1 + cwε5) + 0.5wsmile

(19)

We chose the constant scale cw so that the variance is equal
to 12 at 100 gm−2.

Profiling periodically drafts the nonwoven to counteract
the smile-effect. We model its influence by drafting the edge
lanes 1 and 5 by half the profiling setting while applying the
negative value to the middle lane to satisfy the mass balance:

dprofiling,l =

⎧
⎪⎨

⎪⎩

0.5dprofiling if l = 1 ∨ l = 5

−dprofiling if l = 3

0 otherwise

(20)

The discussion of the profiling concludes the probabilistic
weight per area models for each lane.

In order to calculate the dependent variablemass through-
put in [kgh−1], we need to multiply how many units are
produced over time (vPbP ) with howmuch this area weights
per area. The expected weight per area is given by E[Yw,1],
disregarding profiling. The formula we get, including con-
version factors, is:

ṁ = 6
100w0vPbP

(
kg
g

) (
min
h

)
(21)

Conclusion of model implementation

In this section we built models from first principles as well
as industrial data. We showed that for industrial data, the
IID assumption is usually violated and derived a practical
strategy to deal with this drawback. Even though we applied
many strategies to derive causally correct models, we cannot
guarantee correctness without a controlled experiment.

Test of simulation behavior

In the last chapters we discussed the motivation for the archi-
tecture as well as the components of the simulator. In this
chapter we show the overall simulator behavior using a sim-
ple pre-programmed agent. We also summarize the most
important characteristics of the simulation.

Simulator characteristics

In this subsection we summarize the degrees of freedom that
the simulator has. All degrees of freedom are listed in table
12.

According to table 12, there are seven setpoints that serve
as the degrees of freedom for the agent actions. Context
is expressed through dependent variables as well as distur-
bances. This increases the dimensionality of the system states
to 14. Additional information can optionally be provided to
the agent by returning the process output values as well
as the scenario-dependent output bounds/constraints. The
full system state dimensionality then amounts to 32 dimen-
sions. Both disturbances and process output constraints can
be changed using the ScenarioManager class. This domain
randomisation enables the agent to learn many arbitrary pro-
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Table 12 Overview of the simulator degrees of freedom

Number Variable Type Initial Value Constraints Unit

1 Card delivery weight per area Setpoint 63.0 (41.0, 77.28) gm−2

2 Cross-lapper layers count Setpoint 4 (2, 8) –

3 Needleloom draft ratio Setpoint 43.0 (34.0, 51.0) %

4 Draw frame draft ratio Setpoint 44.7 (25.9, 70.1) %

5 Cross–lapper profiling Setpoint 1.0 (0.0, 15.0) %

6 Needleloom feed per stroke Setpoint 10.5 (9.55, 12.26) mm

7 Production speed Setpoint 14.26 (7.0, 14.72) m m−1

1 Mass throughput Dependent – (300.0, 1201.0) kg m−1

1 Needleloom draft ratio intake Disturbance 10.0 – %

2 Smile effect strength Disturbance 10.0 – gm−2

Table 12 continued

Number Variable Type Initial Value Constraints Unit

3 Calender temperature Disturbance 174.0 – ◦ C

4 Fibre A Disturbance 0 – –

5 Fibre D Disturbance 0 – –

6 Product width Disturbance 5.62 – m

1 Area weight lane 1 Process output – Scenario gm−2

2 Area weight lane 2 Process output – Scenario gm−2

3 Area weight lane 3 Process output – Scenario gm−2

4 Tensile strength MD Process output – Scenario N

5 Tensile strength CD Process output – Scenario N

6 Line power consumption Process output – – kW

duction scenarios and contexts. The optimal configuration of
returned states that are available to the agent is highly depen-
dent on the Autonomous Learning Agent (ALA) approach
and its implementation and thus needs to be investigated
experimentally.

Interaction between environment and agent

We now provide insights into the simulator behavior using
a simple pre-programmed agent that runs through a test
scenario. We also tested the popular, unsafe, gradient-free
optimiser CMA-ES (Hansen, 2006) in a second run. We do
not propose any solution method for our optimisation prob-
lem as this will be part of later works. Using CMA-ES is
supposed to show the limits of unsafe optimisation methods
as well as the general simulation behavior. For simplicity,
the only output constraints during our test runs are lower
bounds of 180 gm−2 on all weight per area values. Our
pre-programmed agent will start with the initial values and
steadily increase the production speed for the first 100 time
steps. Then it will reset and steadily decrease both the cross-
lapper layers count as well as the card delivery weight per

area for another 200 time steps. The resulting objective curve
is shown in figure 17 on the left. The right part shows the per-
formance of the CMA-ES optimiser.

As shown in Fig. 17, the objective value increases at
first because of the higher productivity. At time step 75,
the objective value becomes negative because a penalty has
been triggered (pink marker). That is because the maximum
mass throughput has been reached. The unsafe actions are
not executed and the line continues to produce, even though
the penalty has been returned. After time step 100, the agent
decreases the weight per area of the product. At first, this
leads to an increase in the objective value because less fibre
material is wasted. The steps in the objective value occur
when the models round the layers count to the next inte-
ger value. After step 209, the process goes out of control,
which is indicated by singular weight per area violations.
The expected weight per area decreases until all values are
out of bounds. Note that the penalty decreases because the
actions are still executed, but less fibres are wasted on faulty
products. To reference Fig. 5: In the first 100 time steps the
production volume increases whereas afterwards the cost per
unit decreases. The test of CMA-ES shows that the optimiser
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Fig. 17 Simulator behavior during our test runs with pre-programmed agent (left) and CMA-ES agent (right)

is able to steadily increase the objective value.However, as an
unsafe algorithm it continuously violates safety constraints
and is therefore not a suitable approach. The simulator suc-
cessfully interactedwith two simple agents and shows logical
behavior, so we conclude by stating that the simulator imple-
mentation has been successful.

Conclusion and outlook

The findings and results of this paper are as follows:

1. We found thatmost research focuses onSupervisedLearn-
ing methods that do not properly address the challenge of
high dimensionality in textile production processes.

2. We also found that most research only focuses on single
process aspects without addressing process uncertainties.
This approach does not capture real-life process behavior.

3. We postulated that ALA are a promising approach to per-
form industrial-scale process optimisation in the textile
industry, more specifically the nonwovens production.

4. We formulated a probabilistic constrained optimisation
problem for stationary textile production processes that
maximises profitability while ensuring sufficient product
quality. We also formulated a relaxed version using soft
constraints.

5. We developed a highly modular and adaptable simula-
tion architecture that facilitates cheap testing of ALA for
encouraging transition of research into practical appli-
cations. The adaptability and modularity also facilitate
transfer to other domains.

6. We populated the architecture with realistic GPR models
to mimic real-world process behavior of a carded nonwo-
vens production. Our simulator approximates the realistic
behavior of a generic nonwovens process along its most
important states.

7. We outlined the challenges that arise from working with
industrial data sets that do not originate from controlled
experiments.

We hope our contributions from this work will facilitate
transfer of approaches from research into practical applica-
tions. Our simulation allows researchers to quickly assess
the performance of their algorithms in an industrial setting.
It also aids in reproducible comparisons of different ALA
approaches or sets of hyperparameters.

In our work we incorporated both classic methods like
SPC and cost curves as well as more modern ML meth-
ods based on industrial data and GPR. We bridged the gap
between classical methods and modernMLmethods, hoping
to give new perspectives on industrial use cases at the inter-
section of Production Engineering, Operations Research as
well as ML Research.

Since we seek to facilitate the transfer of data-driven
ALA approaches into practice, it is important to discuss
weaknesses and advantages of such approaches. The cen-
tral advantage of using ALA, according to our hypothesis, is
that they are a feasible alternative to using models derived
from offline Supervised Learning. While the latter fails to
generalise for the high-dimensional textile production, the
former ALA are able to learn a specific process through
interaction, ideally only sampling economically favourable
states. In Chapter 5we showed how the derivation of causally
correct models using industrial data is challenging. We
also showed how disregarding important setpoint and con-
text variables will lead to high system model uncertainties.
We conclude that any ALA approach should be carefully
designed to include the most important system states and
should only have control over the Independent Causal Mech-
anisms (ICM) of the process. The risk is that the agent
will perform ineffective or unsafe actions if it has not been
designed carefully. Another risk is that the Agent learns too
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slow to make significant contributions to the producer’s eco-
nomic success.

In the future, we will compare different ALA approaches
against each other. The best performing approach will be
tested on a physical nonwovens production line at our insti-
tute. However, a real-world agent will likely not act in a
closed loop manner, but still have a human operator act as a
safeguard. That is because not all safety criteria can be objec-
tively measured with sensors in a practical manner (e.g. card
cylinders are prone to clog with fibres, so every cylinder
would need to be optically monitored).

Our approach can be enhanced by coupling simulators
(and agents) across multiple companies within the textile
value chain because the value chain is split into many
steps with intermediate products (Kins & Gries, 2023). This
approach would lead to more collaboration along the value
chain and offer more flexibility in the optimisation.
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