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Preface

Almost a century ago, Wesley Mitchell (1927) justified the scarce com-

prehension of trends with the rather unusual combination or “fusion”

of knowledge on several distinct subjects that the topic required to be

grasped: “statistical technique with historical learning and theoretical

finess” (p. 232). At the time, Mitchell also considered that the trend

topic was little understood and even “obscure”.

About 90 years ago, Edwin Frickey (1934) further clarified the com-

plexity that the topic involved stating that it was a problem i) “ in math-

ematical curve fitting”, ii) “in statistical description”, iii) “in historical

description”, iv) “in the analysis of causation” and v) “in economic the-

ory” (see more on this in section 2.5).

Although much progress has been made, the subject still remains

somewhat “obscure”, so that the situation described by Peter Phillips

(2005) about 20 years ago — “no one understands trends but everyone

sees them in the data” — remains largely valid. Nevertheless, the days

when trends were equated with deterministic polynomial time trends and

hence these were almost the only adopted models to represent trends

belong to a distant past.

The purpose of this book is to contribute to improve this state of af-

fairs, surveying and systematizing most of the literature on the subject.

Despite the recommendation by Frickey (1934, F) and by Halbert White

and Clive Granger (2011 WG), not to study each series “in isolation”

(WG), but rather “looking at the whole picture” (F), this contribution is

limited to the univariate approach. This constraint was realistically im-

posed by the vast amount of literature that has been published mainly in
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8 PREFACE

the last 40 years but it also logically stems from a basic principle estab-

lished by the “unit root and cointegration revolution”: sound univariate

analysis is a necessary first step on which multivariate analysis must be

grounded to be valid.

Despite this limitation, this work is not an exhaustive, all-encompassing

univariate approach to trends. Several topics are not even addressed, as

Markov chain models, fractional integration or the Bayesian approach to

trends. Nonparametric methods are also barely mentioned. The reader

aiming to grasp the subject of stochastic trends/unit roots in detail must

look elsewhere, as my approach here is merely introductory. Fortunately,

there are several excellent alternatives available.

As it requires somewhat advanced knowledge in statistics, economet-

rics and time series analysis, this book is aimed for graduate students

and for practitioners and researchers in several fields where trends are

present. It may be useful as a reference, not as a textbook designed for

a particular course, though some of its chapters may be used in courses

at the master and PhD levels.

I wish to express my gratitude mostly to neurologist doctors Anabela

Valadas and Ana Rita Simões. I wish to thank also neurosurgeon Begoña

Cattoni and neurologist doctors Ana Raquel Barbosa, Duarte Salgado

and Miguel Coelho. My thanks go as well to physiotherapists Gabriela

Fonseca, Rita Gama, Iara Almeida, Laura Antunes, Francisco Martins,

Beatriz Santos, Maria Inês Preto, Beatriz Alves and Catarina Silva.

I have not used any tool of generative artificial intelligence in writing

this book. I would be grateful for any constructive comment about this

text and I thank in advance.

Artur Silva Lopes, independent researcher

(arturslopes@proton.me), November 2024



Chapter 1

Introduction

This introductory chapter contains preliminary material about the sub-

ject of this book, addressing such basics as the (non-existent) concept of

trend, the main characteristics and types of trends, as well as their eco-

nomic drivers. Some of the issues of the following chapters are introduced

and hence this chapter serves as a basic framework for the remainder of

the book.

1.1 What is a trend?

Hopefully, the title of this section has a clear message: I consider that

there is no single definition of trend that could be simultaneously general

and precise to be widely accepted. Choosing “a trend” rather than “the

trend” means that I am allowing from the outset that several definitions

might coexist. But I also think that some limits must be put forward.

For a long period of time, not long ago, trend was synonymous of a

linear deterministic process in the time variable t, given by

yt = α + βt+ ut, t = 1, 2, . . . , T,

where yt denotes the series of interest (that may be logarithmized) and ut
represents a zero mean stationary process. The parameter β is often as-

9



10 CHAPTER 1. INTRODUCTION

sumed to be positive to reflect the most usual case of variables which tend

to grow with time. Despite its simplicity, even naivety, this “definition”

was somewhat successful: it worked reasonably well with short samples,

it was very easy to estimate and, above all, it made the measurement of

business cycles extremely easy, as these were represented with the OLS

residuals, ût. Increasing sample sizes and, mostly, its use as a forecasting

device made clear that this definition could not be taken seriously for

many purposes: the growth rate of the series should be approximately

constant for rather long periods of time and, worse still, it promised that

perfect forecasts could be made for time horizons arbitrarily far into the

future.

While the first problem can be patched with a few modeled structural

breaks, the second cannot. Rather, the identification of trend breaks in

the past makes future predictability even more doubtful1.

Augmenting the order of the deterministic polynomial in time simply

increases the peril of the trap: a more sophisticated function appears less

naive, fits the data better, and its twists may even dispense structural

breaks; but it may also give rise to even more disastrous forecasts.

Although it ceased to correspond to the only notion of trend, the lin-

ear trend model still provides one of the two dominant ideas of trend and

of trending behaviour, usually associated with deterministic and mono-

tonically increasing functions of time. Even today, “trending behaviour”

is commonly understood as meaning that the variable tends to exhibit a

systematic upward or downward evolution with time, though not neces-

sarily in a linear way. I call this notion the traditional one.

The alternative notion is that of a long-run evolution characterized

by wandering behaviour, with long, erratic and asymmetric cycles of

upswings and downswings, separated by shorter periods where the series

seems to hesitate and may change direction. This type of trend usually

contains several segments exhibiting trending behaviour in the traditional

1Altough the broken trend model is often associated with Perron (1989), already
in 1954 Burns mentioned it as a commonly adopted model for trends: “.... the series
are split into subperiods, and a trend line fitted separately to the logarithms of the
data in each subperiod” (o. cit., p. 291).
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sense, either monotonically increasing or decreasing, which appear to

contradict each other, and which are sometimes called “local trends” to

mean that a change in direction will occur sooner or later2.

While the first type of trend is typical of macroeconomic variables

such as national income and its components, the second often appears

associated with variables that are measured as rates: the inflation rate

and interest rates are two prominent examples.

Although it is not widely adopted, this second notion was explicitly

mentioned about 20 years ago in Phillips (2005), and it finds its source

in the random walk model and more generally in first order integrated

processes (I(1)) and in the trend component of unobserved component

(UC) models (see section 3.8). The perils of simply extrapolating the

recent past appear more clearly with this type of trend: since in the past

the trend has already changed direction, sometimes several times, why

not will that occur again in the future?

A somewhat similar distinction must be made between two types of

definitions or notions of cycles (or “business cycles”), as these will be

frequently mentioned. Very often the concept of trend appears immersed

in the framework of the decomposition of any time series into compo-

nents with rather different characteristics. And indeed this appears to

be its origin (see section 2.2). In its most general form, this traditional

decomposition is

yt = τt + ct + st + it,

where τt denotes the trend, ct the cycle, st the seasonal component and

it the irregular (unexplainable) component, with the order of the compo-

nents inversely related with the frequency of their variation3. To be clear,

when I mention a trend in this context I am referring to this component,

and the cycles that are associated with it are called “growth cycles” in

Zarnowitz (1992) and “output-gap cycles” in Morley and Piger (2012).

2Local trends “are trends only for some finite time interval”, White and Granger
(2011), where the meaning of trend is inequivocally associated with what I call the
traditional notion.

3And directly related with the periodicity of its variations, though no claim is
made that they are strictly periodic.
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The famous Beveridge-Nelson (1981) decomposition is associated with

these notions (see section 4.2).

There is, however, an alternative notion of cycles, which was the

one adopted by Arthur Burns and Wesley Mitchell, which is simply de-

fined in terms of alternation of expansions and recessions in the level

of economic activity. These are often called the “classical cycles”, cor-

responding to the “alternating-phases definition”, as labeled by Morley

and Piger (2012). In this case, the trend is not separated from the cycle,

it is embedded in it. It this view that dominates the traditional NBER

approach to business cycles, where seasonality is removed but data are

not detrended.

The “output-gap” notion of business cycles is also closely related to

another notion of trend, that of potential output. I rule out this notion

here because the view that I hold for the trend, although acknowledging

that it is unobservable, is that of a real variable, of something that really

exists, not of some level that is imagined as achievable only under certain

conditions. Moreover, as far I am aware, there are at least two rather

different notions of potential output: one as that output that will be

achieved when the resources of the economy are fully employed, and the

other as the “maximum level of durable sustainable production without

tensions in the economy, and more precisely without acceleration of infla-

tion” (Ladiray, Mazzi and Sartori, 2003), for short, the non-accelerating

inflation level of output.

A notion that Burns (1934, p. 32) mentions only to rule out im-

mediately is that of trends as “equilibria paths which variables tend to

approach”. This type of notion very seldom appears in the literature and

it will be ruled out here as well.

1.2 Characterizing trends

In this section I will discuss the major characteristics of trends, those

that may be considered as common to most cases and that sometimes

are even considered as indispensable to identify a trend. Therefore this
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Figure 1.1: An illustration of the traditional type of trend: the logarithm
of Denmark’s per capita GDP, from 1820 to 2018

section is empirically based. The discussion about the economic forces

that underlie trends is postponed to section (1.4).

Visually, trends are often the dominant feature of economic time se-

ries. This is the case particularly for traditional trends, mostly when they

are positive. An illustration of this type of trend is provided in figure

1.1 where the time series for the logarithm of per capita GDP of Den-

mark, from 1820 to 2018 is represented (taken from Maddison’s database

updated by Bolt and van Zanden, 2020)

However, this characteristic is almost absent for the random-walk type

trend as characterizing the whole sample. In this case, it may be visible

in certain stretches only, which however are often contradicted by others

with opposing direction. What is common to both cases is the regularity

of the increasing or decreasing movement for several contiguous periods,

but usually not for the whole sample. In the case of traditional trends,

however, this type of movement may characterize all or almost all the

sample (depending on the sample size).

Therefore, the requirement that trends should have a direction is valid

only in the case of traditional trends. It is not a general condition for
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all trends. A similar remark can be made about the requirement that

a trend needs to be monotonic throughout, i. e., over the entire sample.

Even traditional growing trends often display large downward level shifts,

usually associated with major negative events (e.g., wars, pandemics,

large crisis, etc.). Considering both types of trends, it is true that they

both exhibit monotonic behaviour, but sometimes the periods when they

display such behaviour is not very long.

Also, strict continuity is not an attribute of all trends, as their breaks

are often abrupt. What remains in many cases is only piecewise con-

tinuity. Moreover, a continuous first derivative is often but not always

observed. On the other hand, even random walk type trends often have

first derivatives with only a few changes in sign over the whole sample.

What is valid in general is a feature that characterizes trends for

its absence: trends do not display cyclical, oscillatory-type movement

which is relatively regular and which is typical of both cyclical and sea-

sonal fluctuations (though with different periodicities). Sometimes, as

previously mentioned, random-walk type trends exhibit somewhat cycli-

cal behaviour, but this is usually far from regular or symmetric, as the

adjacent cycles typically vary much in length and in amplitude. A real

example of this type of trend is presented in figure 1.2 for the series of

the long-run interest rate for Portugal, from 1870 to 2020 (taken from

the database associated with Jordà, Schularick and Taylor, 2017).

Rather, trends are slowly varying processes, very rarely showing any

jaggedness or any oscillatory behaviour. Therefore, it should be no sur-

prise that the most often nominated characteristic of trends is their

smoothness4, and this more fully characterizes traditional trends than

random walk type ones, but it is a dominant characteristic of them as

well, at least when compared with stationary series.

This is another way to say that trends correspond to low frequency

phenomena, to low frequency variation, those with really long, imper-

ceptible cycles, or without any cycle at all (corresponding to the zero

4Quast and Wolters (2022) provide several explanations for the reason why poten-
tial output should be smooth; recall, however, that I have ruled out this notion of
trend.
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Figure 1.2: An illustration of the random-walk type trend: the long-run
interest rate for Portugal, from 1870 to 2020

frequency). For, e.g. Müller and Watson (2008), these low frequencies

are those that correspond to periodicities that are greater than those of

business cycles, i.e., greater than 8 years, but this is a non-demanding

lower limit.

This type of behaviour makes trends also the best representatives of

persistent forces, not of those variables that tend to change their course

frequently. In other words, trends are viewed as reflecting effects that are

highly persistent, that tend to be permanently or almost permanently

present. For this reason, trends are often called the permanent, non-

perishing component of economic time series.

Finally, only mathematical convenience justifies two major features

usually but incorrectly pointed out to trends: deterministic functions of

time, making them perfectly predictable. The epitome of this double in-

adequacy is the linear (deterministic) time trend, which may sometimes

serve as a useful approximation but which cannot continue to reign alone.

Instead, it is only a rather simple and pedagogical example. Determin-

istic functions of time are useful, but nonlinear functions may be better

approximations.
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1.3 The forecasting approach

A common or popular notion of trend is that it says something about the

future. Not necessarily about the long term future but about the near

future. Something that simply extrapolates the past and the present,

possibly only the recent past. This intuitive notion of trend makes the

question “what is the trend?” when it really wishes to ask “what is the

forecast?”, “how will things develop?”. Moreover, an accurate, precise

forecast is not usually required. Not even a quantitative one. Rather,

a general direction, a sign of the possible change, a simple qualitative

forecast will do.

This notion has also been adopted in the literature, more formally and

rigorously of course. It even has already some history, as Ball and Woods

(1996, p. 145) stated that “many modern protagonists of detrending

methods argue that the prime function of a trend is predictive rather

than smoothing ... The trend is the best predictor of data at points

beyond time t”. This was particularly the view held by Harvey (1989, p.

284), who extended the forecast horizon:

What then is a trend? Viewed in terms of prediction, the

estimated trend is that part of the series which when extrap-

olated gives the clearest indication of the future long-term

movements in the series (italics as in the original).

Actually, although perhaps not dominant, the forecasting approach

is very clearly present in two of the most important methods for the

decomposition of economic time series, those of Beveridge and Nelson

(1981) and Hamilton (2018), see sections 4.2 and 4.6, respectively. In the

first case the trend is the level of a forecast function for a far way future

horizon of an I(1) process and in the second it is a linear projection of a

future value of the series on a constant and its four most recent values.

A more recent example is that of the definition of trend inflation in

Nakajima (2023):

We define trend inflation as the expected infinite-horizon fore-

cast of πt (the inflation rate), given the information set in t,
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i.e., formally as µt = limj→∞ E(πt+j|Ωt), Ωt denoting the information

set at time t. Incidentally, as the variable involved is the inflation rate,

this is also an example of the non-traditional notion of trend.

1.4 Economic drivers

What are the economic drivers of trends? Which forces cause economic

variables to display trends? Are they different and independent from the

ones that are responsible for temporary fluctuations? This is the terrain

of the last two items in Frickey’s (1934) research agenda and important

gaps still remain in the literature. Phillips (2005, 2010b) summarizes

the situation complaining that economic theory has been offering “little

guidance” about the origin and the nature of trend behaviour.

Apparently, there is a large consensus in the literature about these

forces, at least when it is the level of output in an economy that is

concerned. Three major forces figure prominently in this consensus:

a) population growth;

b) technological progress and

c) capital accumulation.

However, this list can be easily improved after some reflection: a) demo-

graphic forces in general extend beyond the number of people pointed

in a) to include as well its age composition or structure; b) scientific

progress must be added to b), and c) human capital must be added to

c) above which typically refers to physical capital only. To these, one

might even add some other, intangible and institutional as, e.g., changes

in tastes and the rule of law as contributing to the trends that have been

observed in western countries since the end of the 18th century. All these

are usually seen as forces that cause little or no change in the short and

medium terms, and hence the separation from other components of time

series would become completely justified. Further still, from a differ-

ent perspective, while transitory fluctuations could be associated with
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demand-side forces, trends could be seen as the outcome of supply-side

ones5.

However, the consensus is only apparent and there are still many

issues that are far from settled. Even the pioneers of business cycle anal-

ysis were very careful stating clearly that they were not claiming that

the causes of these fluctuations were independent of those that lie be-

hind long-run growth. In particular, citing Frickey (1942), Burns (1944)

clearly states:

nor can we assume that secular trends and cyclical varia-

tions are due to independent causes. “We should think here,

not in terms of distinct sets of causal forces, but in terms of

lines of causal influence”.

That is, the forces that explain trends do not need to be different

from those that lie behind business cycles. It is their long-run effects,

not necessarily their source, that explains trends.

Rather than independent of those causing business cycles, the forces

behind trends may be exactly the same. Fernald, Inklaar and Ruzic

(2024) provide a brief survey of endogenous growth models where busi-

ness cycle fluctuations, and particularly deep recessions, significantly af-

fect long-run GDP growth. The channels through which these effects are

produced are mostly labour markets and productivity.

In economics, highly persistent effects are sometimes known as “hys-

teresis” or, to use an even more updated terminology, “scarring”, for

negative effects (since recessions leave “scars” that do not tend to disap-

pear with time). Cerra, Fatás and Saxena (2023) provide an extensive

survey of recent macroeconomic models containing these types of hys-

teresis effects, which defy the traditional trend-cycle decomposition by

questioning the independence or the orthogonality of their origins. While

conventional drivers are not questioned, several other sources of trends,

including the once considered inadmissible demand shocks, are consid-

ered as potential sources of long-run effects.

5For a critical vision of this see, e. g., section 3.8.
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1.5 How many observations?

The question is now: how many observations are needed to identify trends

in data? What is the minimum sample size for this purpose? And a

common and sensible answer is: there is no simple answer. It depends.

For instance, when “analysing 70 years of post-WWII quarterly data,

decadal variation is low-frequency”(Müller and Watson 2024, MW24), i.

e., since the relation between frequencies and periodicities is inverse, 10

years of quarterly data of a 70-year sample may be considered already

as representing the long-run (although not really a very long one). Or as

another example, “when studying a decade of daily return data, yearly

variation is low-frequency” (MW24 again), i.e., only one year of daily

data of a 10-year sample is also considered as representing the long-run.

Hence, the answer depends at least on the total sample size and on the

frequency of the data.

Notice that in the first example the above “rule” supersedes another

one that considers that periods greater than 8 years are sufficient to

represent the long-run because these correspond to frequencies that are

inferior to those of business cycles. An even more demanding and in-

tuitive but common one consists of doubling the maximum periodicity

allowed for business cycles: this requires that at least 16 years of quar-

terly observations are needed to identify a trend in economic data, for a

sample that contains a minimum of say 40 to 50 years of observations.

Nevertheless, the main general rule stated above still holds: it depends

on the total sample size and on the frequency of the data.

It also depends on the variability of the data, which sometimes is men-

tioned as randomness. It is easy to understand the reason: more volatile

data requires larger samples to control for the increased uncertainty and

hence, to become more confident that a certain (upward, downward or

simply smooth) sequence of movements represents a segment of a trend,

we require more data. Some authors sometimes also mention the type

of model as another factor determining the answer but I will not pursue

this topic here.

What is of utmost importance is the nature of the phenomenon un-
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der study as well as the purpose of the study. The problem that most

practitioners wish to avoid when they make the question is to be fooled

by, e.g., an upward drift for several observations that later reveals to be

only a part of a cycle with a longer period. This problem of paucity

of sample information about the long-run is particularly acute when the

traditional notion of trend is the one being considered, but a smooth be-

haviour for some periods in a row may occur also by chance, leading to an

erroneous inference for a random walk type trend. The first case can be

simply illustrated with the situation reported in Seater (1993) about the

possibility of an increase in average annual world temperatures (possibly

originated by greenhouse gases emissions).

Using two samples with “only” about 100 annual observations ending

in the late 1980s, Seater (1993) finds evidence for a significant upward

trend in temperatures. However, using a much longer sample starting

in 500 and ending in 1980 (inferred from tree-ring data), the statisti-

cal significance of the trend vanishes6. Hence, the rising trend appeared

not to be a true feature of the data generation process but only a local

upswing, “an artifact of small sample periods (...), too short to capture

the true behaviour of the process” (Seater, 1993). In summary, the an-

swer is context-dependent, samples of “only a century” duration can be

insufficient to make correct inferences for certain phenomena.

1.6 Detrending

Detrending appears to be a beneficial business for both economists and

statisticians (econometricians). The first become acquitted of explana-

tions about the long-run behaviour of economic variables and about the

interactions between several types of economic forces, and the second

become also acquitted of explaining the non-stationary behaviour of eco-

6Regardless of the adequate inference, notice that, so far as I am aware, global
warming concerns were at their infancy at the time, initially appearing in the 1990s,
with the first assessment report by the IPFC (Intergovernmental Panel of Climate
Change) in 1990 and the first COP only in 1995.
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nomic time series, as they are trained mostly to deal with stationary

data. Indeed, detrending allows:

a) economists to focus on the most tangible and (apparently at least)

most easily manageable economic forces and

b) econometricians to employ their usual toolkit mostly designed for

stationary time series but often invalid for non-stationary ones.

Detrending is not confined to macroeconomics. Other areas where the

technique is investigated are, e.g. climatology7, infectiology and agricul-

tural economics8. But most demand is originated in macroeconomics,

where detrending is sometimes used rather mechanically and routinely,

resembling the calculation of, e.g., a sample average, but neglecting the

way the procedures really work as well as their properties, and hence

their potential drawbacks.

The major pitfall of detrending methods is not that their diversity

produces a wide variety of stylized business cycle facts, in particular rad-

ically different second moments of the cyclical component, as shown in

Canova (1998). This dispersion may be even more beneficial than detri-

mental, as the different methods play the role of alternative windows that

may provide different perspectives on macroeconomic subjects (Burnside,

1998, as well as Canova, 1998, albeit to a lesser extent; see also section

4.3).

Rather, the major peril consists of relying on a single method —

typically the “Hodrick-Prescott (HP) filter” — to derive the properties

of business cycles (and implicitly that of trends). This is one of the

lessons to draw from Burnside (1998). However, whereas Burnside prefers

to focus on the consequences that any filtering method implies for the

testing properties of economic models, my concern is different. Although

I leave the details to chapter 4, the main issue I wish to stress here lies

7See, e.g., Dakos, Scheffer, van Nes, Brovkin, Petoukhov and Held (2008) and
Lenton, Livina, Dakos, van Nes and Scheffer (2012).

8See, e.g., respectively, Dessavre, Southall, Tildesley and Dyson (2019), and Lu,
Carbone and Gao (2017).
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in the distorting features of the HP filter, which may often lead to find

misleading traits in economic data, even to the point of spurious cyclical

properties.

1.7 A definition of trend?

One reason why there are so many diverse detrending methods is the

absence of a unique, widely accepted and precise definition of trend. Not

that it is hard to find a definition in the literature, quite the contrary.

The following are some examples:

i) “the secular trend of an industry’s production may be considered

as the persistent, underlying movement of its output over a pe-

riod which is ’long’ in relation to the changes associated with the

’business cycle’ ” (Burns, 1934, p. 31).

ii) “Trend (...) may be loosely defined as ‘long-term change in mean

level’ ” (Chatfield, 2004, p. 12).

iii) “A trend is a persistent long-term movement of a variable over

time” (Stock and Watson, 2015, p. 597).

iv) “By trend we mean the low-frequency variability evident in a time

series after forming moving averages such as low-pass (cf. Baxter

and King, 1999) or Hodrick and Prescott (1997) filters” (Müller

and Watson, 2017, p. 53).

A common trait of these definitions is their vagueness. Moreover,

while containing a flavour of the forecasting approach, definition ii) seems

to imply that a trend necessarily requires some differencing of the data

to obtain their “change”. On the other hand, definition iv) easily lends

itself to a question begging type critique. Actually, it even inverts the

problem, subordinating the definition of trend to the operation of a few

questionable detrending filters. That is, in the ironic words of White and

Granger (2011), trends are defined as “that which trend filters remove”.
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Given the difficulties that have already been mentioned in this in-

troduction, this absence is hardly surprising. But these difficulties arise

also themselves from the absence of a sufficiently precise and commonly

accepted definition: “is it possible to measure and discuss with clarity

any quantity that is undefined?” (Phillips, 2010b). That is, causality

runs in both directions.

A further type of circularity lies behind this indeterminacy. Part of

the problem appears to be originated in the ownership of the concept.

The concept of trend belongs to both economics and statistics and a clear

agreement between the two areas appears ever more distant. Econometri-

cians complain that they were not provided with enough guidelines, that

economics has not proposed a sufficiently tight theoretical framework of

what a trend is, and economists claim that they need more statistical

evidence about the phenomenon to be able to do just that (see, e.g.,

Canova, 1998).

It is also likely that the common perception of trend has changed

through time and continues to change. For instance, it is rather implau-

sible that trends that were observed in living conditions for many coun-

tries in certain periods of the 20th century are similar to those trends

that were first mentioned in economics, by the end of the 19th century.

Even the economic variables to which most trends are referred to are

likely to be very different. The absence of a tight definition thus allows

that similar, though far from exactly equal phenomena, carries the same

qualification, which is a positive feature. Perhaps this absence is more

beneficial than negative.

Meanwhile, I believe that the following informal, intuitive and graph-

ical description is the best that one can find about what a trend is (or

should be):

A trend line summarizes these primitive requirements. It

summarizes where we have been, shows where we are now in

relation to the past, and most of all, reveals a hint of where

we are going (Phillips, 2010b).
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1.8 Outline of the remaining chapters

Frickey’s (1934) list, briefly presented in the preface, is also useful as a

brief guide to the remaining chapters of this book.

Adopting a clearly dominant statistical perspective, this book is not

concerned with the last two items of that list: causality analysis and

economic theory. And as regards “historical description”, Frickey is ob-

viously referring to the case of each specific trend and to the work of

historians in helping economists and statisticians in the explanation and

statistical specification of trends. Related to this perspective, the next

chapter provides a historical account covering the pioneering work on

trends and the progression that followed until the 1960s. More recent

developments are presented with more detail in the following chapters,

albeit usually not using a historical perspective.

The first item of Frickey’s list, that of “mathematical curve fitting”,

is addressed in chapter 3, which I consider the most important of the

book. In the absence of a clear and tight economic concept of trend, the

statistical specifications try to fill the void offering a variety of different

ways to think about trends, though some of them might be seriously

flawed in some cases. This chapter provides a view to those statistical

windows. Notice that some of the models for the trend are presented

only in chapter 4, as they are often used as detrending methods.

Chapter 4 addresses “the problem in statistical description” which

is the second item of Frickey’s list, resuming the issue of detrending

previously introduced. The framework is that of decomposition methods

and the second equation of the book is the basic departure point for

these methods, which aim to isolate or segregate the trend in order to

remove it from the data, thereby providing an indirect method for its

estimation. The famous Hodrick-Prescott and the recent Hamilton filter

are presented and discussed in this chapter, as well as the Beveridge-

Nelson decomposition and the unobserved component models.

Chapter 5 contains a different approach to the “problem in statistical

description”, that of statistical testing. Assessing whether a trend is

really present in the data is often the first problem that practitioners face
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but it will be the last to be considered here. Since I do not address tests

for stochastic trends here, the statistical approach is centered around two

major themes, those of testing for linear and nonlinear trends. Linear

segmented trend models serve as the most simple version of nonlinear

ones. There is some intersection with the literature on structural breaks

that is kept limited.

In a separate appendix I provide a small introduction to frequency

analysis destined to help readers understanding some of the filters of

chapter 4.
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Chapter 2

Historical Perspective

It is not my intention to describe in detail, thoroughly, all the histori-

cal evolution of the notion of trend and of its practical implementation.

Readers interested in such details should consult, e.g., Morgan (1990)

and Klein (1997), as well as Shook (2020). Instead, in this chapter I will

focus almost exclusively on the initial stages of the historical process.

Later, in chapters 3 and 4, most of the models that have been proposed

more recently will be presented in some detail, allowing the reader to fill

some gaps of the picture of the historical process.

This historical digression may be also useful to understand current

debates and to shed some light on the (un)desirable features of trends in

macroeconomic time series. It is expected that it will be useful as well to

understand the difficulties with the adoption of a single notion of trend

and hence the imprecision of the its most common meaning.

2.1 Secular trend

Even today the word trend is often preceded with the adjective secular.

Does this means that it is a non-religious or even an anti-religious trend?

Obviously not, although this is the common meaning of secular. The

meaning of secular in this context has nothing to do with this usual

meaning, of worldly, of mundane or ordinary as opposed to religious or

27
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spiritual; it is not in any way connected with religion1.

Rather, the meaning is associated with the latin word saeculum2,

which means century, originated in the “Ludi Saeculares”, the games per-

formed in ancient Rome to celebrate the advent of a new century (whose

length could be 110, not 100 years). Starting with astronomy, science

appropriated the term to refer to some phenomenon slowly evolving in

time, requiring a long period of time to be observed.

Shook (2020) provides an interesting and somewhat detailed descrip-

tion of this research in astronomy, the term secular being used to denote

some very slow change or variation (sometimes also mentioned as “in-

equality”) in the position of celestial bodies. According to Shook, the

first tables with the position of the sun appear to have been published

by Erasmus Reinhold (1511-1553), a german astronomer. Although he

did not use the term, his tables for the equinoxes from 20 AD to 5000

AD contained a column for the century. Later, in his Rudolphine Tables

(1627), Johannes Kepler referred to a correction that was necessary to

introduce in the previous estimates of the position of the sun and the

moon from 4000 BC to 2100 AD as a “saecular equation” (æquationibus

secularibus).

2.2 First references in economics

Before arriving to economics, the idea about the possibility of secular

changes was adopted in the natural sciences and, in particular, in geology

(Shook, 2020).

1According to Shook (2020), this common meaning of the term was borrowed from
medieval christians to mention those clergy with duties outside the monastery: “... in
the history of the Christian church, some clergy such as the local priest, were called
secular because they served parishioners out in the world while others remained clois-
tered”(Stackhouse, J. G., Religious Diversity, Secularization, and Postmodernity”, in
the Oxford Handbook of Religious Diversity, cited by Shook (2020)).

2Although also derived from latin, the word century derives from centuria, not
from saeculum; but siglo (spanish), secolo (italian), secol (romanian), siécle (french)
and século (portuguese) are.
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In economics the notion of trend is closely connected with the idea

of the decomposition of economic time series into separate components

according to the type of movement. Hence, to search for the notion of

trend is to search for the origin of this idea, as in Nerlove, Grether and

Carvalho (1995). And similarly with the secular qualification, it emerges

that economics borrowed this idea of decomposition from the astronomers

of the 17th and 18th centuries, who had applied it to calculate the orbits

of planets. In other words, decomposing economic time series into sepa-

rate components is an idea that is rooted in the work of such scientists

as Euler, Lagrange and Laplace.

Although he did not mentioned explicitly the trend component, Au-

gustin Cournot is credited as the first adopter of this idea in economics.

Actually, when discussing the price of wheat he says (Cournot, 1838, p.

25):

Here, as in astronomy, it is necessary to recognize secular

variations, which are independent of periodic variations.

Cournot clearly embraces not only the existence of different types

of variations in economic variables observed through time but also the

independence between those different variations.

The work of Cournot is supposed to have been read by William

Jevons. But according to Shook (2020), Jevons must have been influ-

enced as well by Henry McLeod and by Dionysius Lardner, two political

economists who pioneered the application of the astronomy approach to

economic time series. In particular, McLeod likens the change in the

value of money through time with the slow and persistent movement of

distant celestial objects:

Just as in astronomy the changes of the position of the heav-

enly bodies, which are at a very great distance from us, are

barely perceptible after long continued observation ... and

(...) are termed “fixed”. So for short periods, the value of

money may be considered as fixed ...; and changes in the

value of money may be compared to the secular variations
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of the heavenly bodies (McLeod, H., 1858, The Elements of

Political Economy, cited by Shook, 2020, pp.5-6).

Although mostly known for his theory explaining economic cycles

with cyclical sunspots3, Jevons is credited as “the first to study the prob-

lem (of economic fluctuations) seriously in a variety of contexts” (Nerlove

et al., 1995, p.9). Sometimes, not often, he refers to secular variations

(Jevons, 1878, p. 61):

the variation is called secular because it proceeds during ages

in a similar manner, and suffers no πϵρioδoς or going round.

His methods, derived from astronomy and meteorology, were carefully

designed to estimate the periodic variations in economic and “commer-

cial” fluctuations. But he did not considered these the most important,

quite on the contrary:

Every kind of periodic fluctuation, whether daily, weekly,

monthly, quarterly, or yearly, must be detected and exhibited,

not only as a subject of study in itself, but because we must

ascertain and eliminate such periodic variations before we can

correctly exhibit those which are irregular or non-periodic,

and probably of more interest and importance (Jevons, W.,

1862, On the Study of Periodic Commercial Fluctuations,

cited by Shook, 2020, p. 5).

Contrarily to such classical predecessors as Malthus, Ricardo and

Marx, inter alia, Jevons did not considered long-run tendencies as par-

ticularly relevant. He was mainly interested in irregular variations.

2.3 First measurements

Reginald Hooker (1901) did not only coined the term trend but he was

also the first to propose a measurement of a trend, i.e., an empirical

3Morgan (1990) provides a rather interesting description in pages 18-26.
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estimate of a trend in a particular case. Inaugurating a much followed

route, he used the estimated trend not to analyse it but to detrend the

raw data to uncover the real relation between two variables represented

by their “oscillations”, i.e., their deviations from the trend.

The problem at stake was that of examining a possible relationship

between the “marriage rate” and economic prosperity (represented by

external trade) which, according to Klein (1997), was conjectured by

Thomas Malthus in 1798. Hooker’s (1901) suggestion was of

an elementary method of eliminating the general movement

in the particular case — which is of frequent occurrence —

of phenomena exhibiting similar regular periodic movements,

so as to enable us to correlate the oscillations.

Apparently inspired by a simple (moving average, MA) method pre-

viously used by the Bank of England to obfuscate the public divulgation

of its cash and bullion holdings after 1832,4 Hooker (1901, p. 486) pro-

ceeded to subtract from each observation its “instantaneous average at

the moment”:

The curve or line representing the successive instantaneous

averages I propose to call the trend. Any point on the trend

will be represented by the average of all the observations in

the period of which that moment is the central point; e.g., if a

curve shows a period of p years, the instantaneous average in

any year is the average of the p years of which that particular

year is the middle. By working out this instantaneous average

for consecutive observations, we obtain the trend of the curve;

i.e., the directions in which the variable is really moving when

the oscillations are disregarded.

It is better to consider that Hooker’s method is mostly a smoothing

algorithm designed to remove periodic variations rather than really one

4See chapter 4 in Klein (1997) for a detailed description. Calculating moving
averages had also been previously introduced in statistics by John H. Poynting (1884)
to “free” the data “from accidental irregularities” (p. 35).
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for estimating a long-run or secular trend. Hooker argued that the aver-

age length of British’s exports cycle was of nine years and therefore he

calculated simple nine year moving averages. But his method could not

be applied to series with no periodic variations and in 1905 he proposed

an alternative method to that case.

The case at hand was now that of measuring the strength of the

relation between the prices of corn at different markets and Hooker’s

concern was to avoid “erroneous” correlations arising from the presence

of trends, that is, of what he now called “secular” changes due to “world

influence” (Hooker, 1905, p. 698). As Jevons, he was mostly interested

in the irregular components, that he called the “smaller rapid changes”,

and according to him (p. 696),

the “secular”, in fact, may entirely mask the other changes...

Although the concept of stationarity did not even existed yet, he pro-

posed to difference the series to remove their trends before calculating

the correlation coefficient. At least apparently independently and al-

though his motivations were not so clear, Lucien March (1905) proposed

the same method. He is also credited for being the first to refer explicitly

to the term “decomposition”. Moreover, he clearly justified the lack of

interest in the secular trend (March, 1905, p. 270):

La plupart des statistiques sont de date trop récent pour que

l’on ait à s’occuper des changements séculaires ...

A method close to Hooker’s (1901) was proposed by John Norton

(1902). Instead of moving averages, Norton proposed to use graphical

interpolations, that he called “growth axis”, for three banking series (re-

serves, deposits and loans). He never mentions neither the word trend

nor even the more common secular change, but his growth axis, “three

steadily ascending smooth curves”, performed the role of trends, serving

the detrending purpose.

Norton does not also mention the term decomposition but the idea

clearly surfaces in his (o. cit., p. 23) “three elements at work or elements

of the polygons” (the plots of the time series):
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a) “the growth element”;

b) “periodic elements”, which is what he calls to the seasonal fluctu-

ations, and

c) a “dynamic element”, including “a cycle”, “a catastrophe, i. e. a

crisis with violent change”, and “minor dynamic changes”.

2.4 The rise of business cycles

After the appearance of the first ideas, the period that followed was not

one of any significant advancement concerning trend analysis. Instead,

business cycles became the main and almost exclusive focus of study and

research. Some technical advancement in estimating trends was made

but, as summarized in, e.g., Mills (2009), although sometimes consid-

ered as “fundamental”, trends were estimated with the only purpose of

isolating them, so that they could be removed.

Several reasons might explain this. First, statistical analysis of eco-

nomic time series were much inspired in the methods used in meteorol-

ogy; but since at the time trending climate time series were very rare,

the help from meteorology was unavailable (Klein, 1997, pp. 228-9). Sec-

ond, because during this period the U.S. faced a deep economic crisis,

much deeper than in Europe or Canada, “the problem (of business cycles)

was especially intriguing to Americans” (Wesley Mitchell, 1927, p. 201).

Moreover, Mitchell (1927) also points out that in the U.S. available data

for business cycles analysis was accumulating and became abundant. Fi-

nally, still according to Mitchell (1927), theoretical advancements needed

to explain and interpret trends was missing.

At the time, this detrend and forget approach was based on a(n im-

plicit or explicit) view that there was no relation between the forces of

trend growth and those lying behind the shorter run fluctuations. For in-

stance, Kitchin (1923) claims that trends “are doubtless dependent upon

the changing amount of the world’s total money”, while “business and

price cycles are due to cyclical recurrences in mass psychology reacting
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through capitalistic production”. As Mills (2009) emphasizes, “instability

in the trend component and/or the use of an incorrect procedure for de-

trending will complicate the separation of trend from cycle”. This would

become clear only much later and, even today, it has not became common

or popular knowledge.

I consider that this period roughly corresponds to the first 30 years

of the twentieth century. The famous clear enunciation on the decompo-

sition of (macro)economic time series dates from this period, and I find

the version by Warren Persons (1919, p. 8) the most revealing5:

... each series is a composite consisting of four types of fluc-

tuations. The four types are:

1. A long-time tendency or secular trend; in many series, such

as bank clearing or production of commodities, this may be

termed the growth element;

2. A wave-like or cyclical movement superimposed upon the

secular trend; these waves appear to reach their crests during

periods of industrial prosperity and their troughs during pe-

riods of industrial depression, their rise and fall constituting

the business cycle;

3. A seasonal movement within the year with a characteristic

shape for each series;

4. Residual variations due to developments which affect indi-

vidual series, or to momentous occurrences, such as wars or

national catastrophes, which affect a number of series simul-

taneously.

Mitchell (1927, p. 213) lists five methods usually employed in this

period to detrend data from which I select three:

1. “fitting a mathematical curve” (for example a straight line or a

third-degree parabola) to the data, or to the logarithms of the data

by the method of least squares or of moments”;

5Alternative but similar formulations may be found in, e.g., Moore (1914, p. 106),
Yule (1921) and Kitchin (1923).
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2. computing moving averages with the number of data points seeming

“to give satisfactory results”, and

3. “drawing a free-hand curve trough the data representing the inves-

tigator’s impression”.

Therefore, the still very popular linear deterministic trend model fitted

to the yt series,

yt = α + βt+ ut, t = 1, 2, . . . , T,

ut usually representing a zero mean stationary process, dates from this

period and it is the simplest example of the methods in 1.

Although this model is certainly naive, some of its limitations were

acknowledged at the time. In particular, Persons (1919) made extensive

comments about the possibility that a “trend satisfactorily determined

for a past period does not always warrant us in extending the same trend

into the present and the future” (p. 9). In other words, he emphasized the

period-dependency of fitted trends and warned about the possibility of

their non-homogeneity, particularly for extended periods, with a sentence

that shows that the analysis of structural breaks in time series is likely

to be much older than we could think:

If it is so long as to include heterogeneous subperiods of widely

different fundamental conditions, the problem of determining

the secular trend is greatly complicated and its solution of

questionable value.

The theory of correlation has been also introduced not many years

before this period, where a much debated issue was that of the “time-

correlation problem”, as it was designated by Udney Yule (1921). Simply

put, the problem was of large correlation coefficients between series whose

only common characteristic was the presence of a trend. Yule (1921)

summarizes the problem but, contrarily to what is nowadays the popular

perception about his work:
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a) denied that the problem was one of a spurious or misleading corre-

lation, and

b) criticized the differencing practice recommended by “Student” and

Anderson and instead used the issue to further strengthen the case

to apply detrending methods.

Again it must be stressed that the concept of stationarity was not even

yet formulated. Instead, Yule (1921, 1926) preferred to attack the prob-

lem with the harmonic analysis approach. On the other hand, it is easy

to recognize in b) the origin of the recent debate between difference sta-

tionarity and trend stationarity.

The original version of a famous article by Eugene Slutsky (1937)

dates also from this period6. It represents an extreme but representative

example of the issues considered relevant at the time: while there is no

reference to economic trends, much attention is devoted to the demon-

stration that the accumulation of random shocks may produce cyclical

processes.

The procedure of graduation, that will reappear later in the context

of the popular Hodrick-Prescott filter, dates also from this period. It was

introduced in 1904 by John Spencer7 as a procedure to obtain smoothed

estimates of mortality rates and it consists of an iterated application of

several moving averages. Denoting with ut the original series, Spencer’s

21-term graduate, or smoothed of filtered series is

vt = 0.148ut + 0.138(ut−1 + ut+1) + 0.122(ut−2 + ut+2) + 0.097(ut−3 + ut+3)

+0.068(ut−4 + ut+4) + 0.039(ut−5 + ut+5) + 0.013(ut−6 + ut+6)

−0.005(ut−7 + ut+7)− 0.015(ut−8 + ut+8)− 0.016(ut−9 + ut+9)

−0.011(ut−10 + ut+10)− 0.004(ut−11 + ut+11),

6The original version, in russian, dates from 1927. Although page 127, on section
6, contains a brief description of a covariance stationary process, according to Morgan
(1990) all the sections that followed section 5 were rewritten for the english version.

7On the graduation of the rates of sickness and mortality presented by the expe-
rience of the Manchester Unity of Oddfellows during the period 1893-–97, Journal of
the Institute of Actuaries, 38, pp. 334–343.
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which can be represented more elegantly resorting to a specific notation,

where, for instance, [2k + 1]ut represents the sum of 2k + 1 observations

of ut centered on ut. Another well known filter is the Henderson’s 23-

term MA, designed to minimize the variance of the third difference of

the filtered series; see, e.g., Mills and Patterson (2015).

2.5 Maturity at 30

A significant change concerning the analysis of trends appears to have

occurred around 1930. Both the concept of trend and its measurement

became a subject of interest in themselves, a more thoughtful business

cycle analysis emerged, the detrend and forget approach of business cycle

statisticians began facing some criticism and gaps in economic theory re-

lating to trends and to business cycles were identified and became clearly

visible.

Obviously, this partition is not completely precise. On the one hand,

the book by Simon Kuznets (1930), already in this period, is mostly

an extensive sample of the practices of the previous period, containing

a much disaggregated analysis of many economic time series (for many

sectors and for several countries)8. On the other hand, although still

dated from 1927, the second of Mitchell’s books contains some important

reflections and criticisms about those practices.

Indeed the change is already perceptible in this book, differing from

the first one, from 1913, in many respects. Even the change in the word-

ing and in the meaning of expressions concerning the trend is clear: while

in the first book trend is used with no qualification, with its most usual

or common meaning and it is often preceded by “general” — e.g., “the

general trend of the market” (p. 171) —, in the second the meaning is of-

ten statistical and in this case trend is preceded by secular, an expression

that was never used in his 1913 book. In the second book, recognizing the

8Perhaps my observation is overly demanding because, according to Mitchell (1927,
p. 213, ft. 1), “so far as I know, the only one working upon secular trends as a problem
in its own right is Dr. Simon Kuznets...“.
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scope and complexity of the subject, Mitchell (1927) summons economic

theorists, economic historians and statisticians to address the problem of

trends. His criticism to the prevailing approach is clear (Mitchell, 1927,

p. 212):

secular trends of time series have been computed mainly by

men who where concerned to get rid of them.

This change towards trends appears to attain its zenith in Arthur

Burns’ (1934) book, where a method to decycle data, i.e., to estimate,

isolate and remove cyclical fluctuations is described with the purpose of

analysing the trend.

Nevertheless, the change was neither revolutionary nor completely

widespread. For instance, despite several attempts or approximations the

concept of trend remained rather imprecise. Burns (1934, p. 30) admits

that “there is probably no concept in the whole field of contemporary

’quantitative’ economics that is vaguer than that of secular trend”. One

of the best definitions appears to be the one by Mitchell (1927, p. 230)

precisely because it admits some ignorance:

... lines of secular trend show the effects of causes which,

though subject to change at any moment, have influenced

an economic process in some regular, or regularly changing,

way through periods of time long in comparison with business

cycles. What these causes have been, and whether they are

still in operation, are matters for further inquiry.

Despite its negative character, Burns (1934) would identify with its

essence defining trends as “non-cyclical movements”. He made, however,

several comments attempting to improve its precision, e.g., rejecting the

idea that trends might represent “equilibrium paths”, and stating that

they “measure growth”9.

9The difficulty and complexity of the problem explains this comment by Burns
(1934, p. 32), important but contradictory with Mitchell’s words and with some of
its own: “this concept is free from the question-begging notion that secular trends are
measures of the effects of causes independent of those generating the cyclical, seasonal,
and random variations in production series”.
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One of the most important contributions of the time is the one by

Edwin Frickey (1934), which I believe is worthy of detailed attention.

Frickey begins by listing the “various points of view” concerning “the

meaning of secular trend”, classifying them as “problems”: 1) “in math-

ematical curve fitting”; 2) “in statistical description”; 3) “in historical

description”; 4) “in the analysis of causation” and 5) “in economic the-

ory”.

The first problem partially derives from the absence of a precise def-

inition of trend; its notion is reduced to the idea that a trend is some-

thing that should evolve slowly and smoothly with time10. Therefore, one

should not aim that the trend line fits closely the observed data. Instead,

“we must “choose a curve which reproduces the underlying movement of

the data without bending or twisting itself so as to conform to the extreme

sinuosities, and which at the same time gives a good fit as judged by some

arbitrary criterion ...” (Frickey, 1934, p. 199, citing Henry Schultz, 1928,

Statistical Laws of Demand and Supply, Chicago).

As Frickey notes, however, these requirements are contradictory and

some “arbitrary judgment is required in effecting a compromise between

them” (p. 199). That is, to what line should the fitted trend adjust?

How much bending is allowed? How can the closeness of the estimated

trend to the “true” one be assessed? Which criteria should be used?

The problem in statistical description is also closely related to the

definition of trend, which is essentially statistical, performing the role of

“describing a general tendency”. But this requires that non-homogeneous

periods are not combined and that the cyclical movements at the begin-

ning and end of the sample period should not be allowed to distort the

calculations. Moreover,

such a statistical description can have little or no value unless

the calculations are preceded by an extensive casual analysis

of the forces behind the movements of the series — such anal-

ysis to be obtained through a theoretical examination of the

causal forces in question, or through historical investigation,

10Even these requirements are somewhat subjective and arbitrary.
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or both; and still further, that in the absence of an exhaustive

analysis of this sort, the determination and representation of

secular movements should not be undertaken” (p. 199).

However, Frickey himself offers an alternative to such a radical deci-

sion: in case that causal knowledge is missing, “there is still room which

starts with the statistical summarization and perhaps works back from

that summarization”. And Frickey finds admissible an even less ambi-

tious purpose: “there is nevertheless justification for the employment of

a procedure which will yield the answer to some significant question”.

One of these purposes may be only the calculation of the average rate of

growth. Or it can be to fit a series with a “declining percentage rate”,

or a bit further in this case, to measure the “average rate of retardation

per time unit over the period covered”. For each of these cases Frickey

recommends a particular functional form of the trend function.

The third problem is that of historical description, which represents

another perspective of the trend problem. Here it consists in writing, in

the form of “lines or curves”, the “best description possible of the funda-

mental tendencies” represented by “historical materials”, these consisting

of economic time series “suplemented by certain non-statistical informa-

tion” (p. 201).

A fundamental question then arises at this point:

“What part of the fluctuation of the series is secular and what

portion is cyclical?” This question cannot be evaded, for our

computed representations of secular and cyclical movements

are palpably interdependent (p. 201).

An obvious statement clearly presented but often neglected, which orig-

inates another difficult question:

... every set of lines and curves labeled “secular trend” and

“cyclical fluctuations” represents the use of someone’s discre-

tionary judgment. This poses the question: “On what basis

should this discretionary judgment be made?” (p.201)
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To demonstrate empirically these points Frickey provides two illus-

trations, both using the series for pig iron production in the U.S. . In

the first he collects 23 published studies with different time periods and

with the trends fitted with several methods — the linear being the most

frequent but including also, e.g., the logistic and various parabolas — to

derive the corresponding cycles. As expected, the average length of the

estimated cycles presents a very wide diversity, ranging from 3.3 to 40-45

years. Since, as also expected, the results also vary a lot with the sample

period, Frickey fixes this period to 1877 to 1914 and repeats the exercise.

The dependence on the method becomes more clear: again the average

length of the cycles exhibits a wide diversity, ranging from 3.6 to 40-45

years.

In the second exercise Frickey presents his own calculations using

trends estimated with several centered moving averages, ranging from 3

to 20 years periods. Again the estimated cycles exhibit great variation,

with their averages ranging from 3.5 to 10.1 years when the sample is fixed

in the 1854–1933 period. Obviously, the dependence is not confined to

the average lengths. As Frickey (p. 205) notes, “the whole form of the

supposed cyclical picture” may vary a lot as well, “depending upon the

kind of secular trend which was previously been fitted.”

The fourth problem, that of “the analysis of causation” consists of the

rationalization of the statistical decomposition which is made through

the correspondence established between the empirical components and

particular economic causes or forces. More precisely,

in computing lines of secular trends and curves of cyclical

variation we are trying to separate, by statistical devices, the

effects of two sets of causal influences — one set operating

in general gradually and over comparatively longs periods of

time; the other set operating in a more oscillatory manner

and producing fluctuations of shorter length (p. 201).

While this transfer to a causation problem could be helpful to solve the

general problem, in practice it faces several objections and criticisms that

Frickey himself provides. One of the simplest is that “the rate of change
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exhibited by the secular trend is in part a result of cyclical variations”(p.

201). A mild one is that this “attempted separation of causal influences

into two types (...) very much oversimplifies a problem which is in fact

highly complex”(p. 202). Nevertheless, Frickey maintains that this point

of view should not be discarded.

The fifth and last problem, in economic theory, resembles the previous

one but Frickey rejects that they are identical on the basis of a “lack of

unanimous agreement among economists” on the causal analysis. From

my understanding it is far more general, and for clarification Frickey

resorts to Schumpeter11, whom he cites (p. 203):

“if trend-analysis is to have any meaning, it can derive it

only from previous theoretical considerations, which must not

only guide us in interpreting results, but also in choosing the

method. Failing this, a trend is no more than a descriptive

device summing up past history with which nothing can be

done. It lacks economic connotation. It is in fact merely

formal”.

Indeed, in the absence of a sound economic interpretation, an estimated

trend will resemble a body with its skeleton and skin but no flesh and

blood to fill in.

Although dated from the same year as Frickey’s important paper, an

article by Working (1934) is also related with the trend topic, albeit much

more tenuously. Working was a forerunner of processes integrated of

order one (I(1)) or more simply of martingale processes, that he labels as

“random-difference series”, and which are “cumulations of purely random

changes”. He notes the resemblance of these series with price series and,

although he never arrives to mention that they contain stochastic trends,

he emphasizes that “in these series conspicuous trends will be found”. His

intention appears to be to note that such processes give rise to several

easily observed local trends, not to global trends.

11Schumpeter, J. (1930), Mitchell’s business cycles, Quarterly Journal of Eco-
nomics, 55, pp. 166-67.
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2.6 Some Further Developments

This is a miscellaneous section, without any pretence of unity or com-

pleteness. I will briefly review two important works on business cycle

analysis, those of Frickey (1942) and Burns and Mitchell (1946), the no-

tion of the “great ratios of economics” of Kaldor (1957, 1961) and Klein

and Kosobud (1961), and the important but not well known contribution

of Leser (1961) to filtering (graduation) methods.

Two books on business cycles in the 1940s

The books by Frickey (1942) and Burns and Mitchell (1946) provided a

new but somewhat skeptical impulse to business cycle research. Although

unsurprisingly the book by Frickey is more inclined towards studying the

trend, the ultimate purpose is the same and there are several common

aspects in both books. As expected, particularly in Frickey’s book, in

what concerns detrending both diverge from the “traditional method” 12.

This was made much more carefully, much less mechanically, then was

current practice particularly in the 1920s.

In the case of Burns and Mitchell, this was not due to any significant

increase in interest in the trend. Instead, it became ever more obvious

that detrending could affect dramatically business cycle analysis. Indeed,

Burns and Mitchell (1942, p. 270) acknowledge that

cyclical fluctuations are so clearly interwoven with these sec-

ular changes in economic life that important clues to the un-

derstanding of the former may be lost by mechanically elim-

inating the latter.

Frickey (1942, p. 256, and later also Burns, 1944) is (are) particularly

vigorous attacking the underpinning argument of (different and) inde-

pendent causes: “we should think here, not in terms of distinct sets of

causal forces, but in terms of lines of causal influence”. This is not to say

12“Curve fitting”, mostly with the linear or the exponential trend model, and using
moving averages were considered the two traditional methods.
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that these lines cannot be treated separately. Rather, as Benjamin Hig-

gins (1955, p. 595) would later emphasize: “the essential causal factors

of fluctuations and growth can, and should, be analysed separately”.

Burns and Mitchell are particularly cautious with detrending13, using

previous knowledge about the cycles and only then choosing a conforming

trend, i.e., “making the trend depend upon the cycles”. Moreover, they

make no attempt to remove that portion of the trend lying “within the

limits of a single cycle”., i.e., they detrend each series eliminating the

inter-cycle portions of the trend, but not the intra-cycle ones, so that

cyclical properties are the least distorted by detrending.

Frickey (1942) goes even further and devises a rather elaborate, com-

plex and iterative process, with successive approximations to the trend

and cyclical components, marked from the outset with an inversion in

the traditional orders of detrending and “decycling”: cyclical variation

is removed first and the trend is obtained as a residual. Moreover, as he

had recommended in his 1934 paper, he attacks “the problem as a unified

whole”. This means that after selecting 13 important series he searches

for “consistencies and uniformities of behavior” (p. 53), allowing him

to arrive at a “standard pattern” representing the cycle. Only then the

trend is obtained in a first stage of an iterative process where, for each

series, both the standard pattern and the trend are recalculated at each

step. The process stops when the revision in the standard pattern is

insignificant.

After a few more transformations, trends are fitted to the series but

for only two a “simple mathematical curve” provides reasonable results.

For the remaining, there are “few, if any, for which the secular variations

are capable of satisfactory representation by a single simple mathematical

curve” (p. 292). That is, it is necessary to split the sample period (1866–

1914) into subperiods and fit a separate trend to the (logarithms) of the

data for each subperiod. Some series require only two different trend

functions, which may differ even in the functional form, but others require

13And caustic to many others as well: “a least squares trend line (...) may move
majestically on a chart, but the analytic significance of the trend line is obscure”(p.
38).
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three or even four subperiods. In summary, rather than the exception,

broken trends are the most frequent outcome of trend modeling.

As is well known, with a celebrated paper Tjalling Koopmans (1947)

initiated a debate that came to be known by its title: “measurement

without theory”. In a few words, Koopmans criticized the empiricism

of business cycle researchers, and particularly the work by Burns and

Mitchell. The following is only one of the many examples (p. 161):

The various choices as to what to ’look for’, what economic

phenomena to observe, and what measures to define and com-

pute, are made with a minimum of assistance from theoret-

ical conceptions or hypotheses regarding the nature of the

economic processes by which the variables studied are gener-

ated.

Although there is some truth in this, Koopmans considered that Burns

and Mitchell should base their work on “structural equations” modeling

the economic behaviour of individual units. That is, for Koopmans the

only valid approach was the one of the Cowles Comission.

Without entering in much detail, what appears to pass unnoticed was

that Koopmans’ eagerness to criticize led him to adopt the empiricist

views he so violently attacked. This is the case when he accused Burns

and Mitchell of analysing the change in the cyclical behaviour of pig iron

production and freight car orders “without prior elimination of secular

trend” (p. 168). That is, he invoked an empirical, poorly defined concept,

and an even less theoretically based practice to support his criticism.

Later, Vining (1949) would present several counter-arguments “in

defense of empiricism as a fundamental part of scientific procedures”

(p. 79), as well of, e.g., the aggregate or macroeconomic perspective

that “Commissar Koopmans” (p. 85) so violently rejected. According to

Kydland and Prescott (1990), however, in the 1950s and 1960s the change

of focus to the modeling of structural systems of equations advocated by

Koopmans led to the abandonment of research on business cycles.
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“The great ratios of economics”

This is only a brief and momentary incursion in multivariate analysis and

its motivation has nothing to do with the linear trend model which, inci-

dentally, will appear below. Instead, it arises from the growth modeling,

long-run perspective that is involved here, therefore closely related with

the purpose of this investigation. Moreover, this research is also con-

sidered as a forerunner of the important topic of decomposition, i.e., of

long-run equilibrium relationships between (macroeconomic) variables.

In this case, it is confined to pairs of variables only.

The “great ratios of economics” were mentioned firstly by Nicholas

Kaldor (1957) as “remarkable historical constancies” and later in Kaldor

(1961) again, as “stylized facts”. The title adopted here is due to Lawrence

Klein and Richard Kosobud (1961, KK61), who also label them as the

“celebrated ratios of economics”, and use them to build a growth model.

Following KK61 these ratios are:

a) the savings-income ratio;

b) the capital-output ratio;

c) labour’s share of income;

d) income velocity of circulation, and

e) the capital-labour ratio.

Considering, for instance, the first one, a decomposition interpretation

may be readily available provided that the two variables are integrated

of order one (I(1))14.

KK analyse the stability of the ratios for the 1900–1953 period run-

ning regressions of the logarithmized ratios on a deterministic linear trend

14A recent survey on the empirical evidence about this perspective is provided by
Chudik, Pesaran and Smith (2022).
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and focusing on the (in)significance of the trend terms. For instance, con-

sidering the first two, they get

̂
log

(
Ct

Yt

)
= −0.039 + 0.00054 t, and

̂
log

(
Kt

Yt

)
= 0.547− 0.0015 t,

where Ct denotes consumption, Yt national income and Kt the capital

stock.

Although Kaldor (1961) denies that these ratios can “be plausibly ex-

plained by the theoretical construction of neo-classical theory”, according

to Smith (2019) there is some confusion about them in the literature.

Often it is not clear whether they should be regarded as empirical facts

that growth models should match or as theoretical conditions for steady

state growth. The empirical evidence gathered by KK does not lend

much support to the first possibility because most ratios appear to be

trending. In their “numerical model”, estimated equation-by-equation

and containing trends, the rate of growth of income varies (declines) over

time.

Leser and the “Hodrick-Prescott filter”

Mills (2009) considers that 1961 was an “annus mirabilis for the modelling

of trends and cycles”. Besides the paper by Klein and Kosobud, three

more papers published in 1961 address these issues: one on exponential

smoothing by David Cox, one on Kalman filtering by Rudolph Kalman

and Richard Bucy, and the paper by Leser (1961), on trend extraction

or smoothing15.

The decomposition model of Leser is very simple because the series

15To locate this work on the topic of graduation methods see, e.g., Phillips and Jin
(2021).
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yt is decomposed only in the sum of a trend ft and a disturbance ct,

yt = ft + ct,

the first component capturing the low frequency or long-run growth of

the series and the second the business cycle component. Leser proposes

that the trend is estimated solving

f̂t = argmin
ft

{
T∑
t=1

(yt − ft)
2 + λ

T−1∑
t=2

∆2ft+1

}
,

that is, using a penalised least squares principle. The first term of the

minimand aims to maximize the goodness of fit while the second penalizes

departures from smoothness, λ denoting the smoothing parameter. The

estimate of the cycle is obtained residually: ĉt = yt − f̂t. This is a

filter that is very close to the one by Whittaker, proposed in 1923 as a

refinement of those of Spencer and Henderson mentioned previously, but

in Whittaker’s case the penalising term is made of third differences of

the trend.

Leser called the resulting estimated trends as a family of “quasi-

linear” trends” because the linear trend case emerges when ∆2ft = 0.

He also presents rather laborious solutions for some particular cases with

very small sample sizes and proposes an approximate solution for T ≥ 8

but this should not concern us here. What must be emphasized is that

Leser’s method is precisely the method that 20 years later would be called

the Hodrick-Prescott (filtering) method (see section 4.3).



Chapter 3

Modeling the Trend

This is perhaps the most important chapter of the book: in the presence

of a trending time series, the primary purpose must be to identify the type

of trend, i.e., the appropriate model (using also tools from hypothesis

testing), to estimate it and to describe and explain it. But a model for

the trend may also be estimated in order to subtract it from the data

when the purpose is to analyse business cycles (i.e., growth cycles) and/or

seasonality. Moreover, lacking a precise and widely accepted definition of

trend, browsing the menu of the available functional forms may provide

useful insights about its behaviour throughout time and foster a reflection

about the properties that the model must exhibit, as well as motivate a

further study along the lines of economic history.

A warning for less experienced practitioners concerns the goodness of

fit. It is by now widely acknowledged that, despite fitting many time se-

ries rather well, the linear trend model may be a spurious representation

of the data (see section 3.8) and may produce dramatically wrong fore-

casts (see the next section). But, though not so well documented, higher

order polynomials in the time regressor may be even more misleading

due to their sometimes amazing fit. The no less amazing extremely poor

quality of ensuing forecasts usually follows and hence these models should

be very rarely considered in empirical work.

A further warning concerns linear segmented trend models. Although

49



50 CHAPTER 3. MODELING THE TREND

it is often relatively easy to find breaks in linear trending models, as well

as reasons to impose them, practitioners must use of parsimony in spec-

ifying the number of breaks, at the risk of ending up with a meaningless

model. As White and Granger (2011) advise, “chopping practically any

time series into a succession of trend breaks” is “unlikely to be informa-

tive”. Again, goodness of fit is rarely the best criteria to select a model

for the trend.

3.1 The linear and the exponential trend

models

The (deterministic) linear trend model corresponds to the most tradi-

tional and popular notion of trend, both graphically and analytically.

Facing a time series plot with distinct values for the terminal points,

most economists immediately draw with their eyes a (virtual) straight

line joining those two points, increasing or decreasing with time, even

when the series exhibits large, violent and possibly very erratic fluctua-

tions in between. Actually, for many of us, a linear approximation to the

behaviour of a series that most often grows with time is the best intuitive

synonym of what a trend is.

It is also the oldest and simplest model for the trend1, its best repre-

sentative (already previously introduced) is given by

yt = α + β t+ ut, t = 1, 2, . . . , T, (3.1)

with ut a zero mean stationary process. To emphasize that the param-

eters are assumed fixed for all the sample (and “forever”) some authors

label this model as the global trend model. It easily complies with the two

most basic properties that a trend should possess, according to White

and Granger (2011, p. 3): i) it certainly has a direction and ii) it is

1Rivas and Gonzalo (2020) interpret this model as “the best linear least squares
approximation to an unknown trend function” and base their test for the trend on it;
see section 5.2 on this subject.
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“somewhat smooth”. In the particular case that ut ≡ ϵt ∼ iid(0, σ2
ϵ ) I

consider that the yt process is a purely (deterministic) linear trend pro-

cess.

Apparently, about 100 years ago the time variable was sometimes

given the status of a causal factor, i. e., some economic variables were

viewed as functions of time. But although the model of equation (3.1)

was the most popular for detrending at that time (Frickey, 1934), most

economists and statisticians did not considered that time could be con-

sidered as a causal factor (e.g., Yule, 1926, p. 4). Instead, it was used

as a proxy for some unobserved variable, as was (then) the case of pop-

ulation; later it has been used to represent the evolution of technical

progress. Smith (1925, p. 543) is particularly clear about this:

It is merely a statistical convenience to group all these fac-

tors together and predicate that their combined effect may

be defined as a mathematical function of time when time is

numerically described.

Either way, in case the model is considered the detrending device, its

errors, ut, are rather naively interpreted as the cyclical component of the

series, the object of study of business cycles analysts. Later I will come

back to point out the pitfalls of this approach.

The model itself is also rather naive and it is rarely adequate for eco-

nomic time series. Indeed, either silencing the error term and taking first

differences, ∆yt = β, or simply taking the expectation and differencing,

E(∆yt) = β, it is easy to conclude that it is rarely the case that the model

is appropriate in economics because it requires that the series should in-

crease (β > 0) or decrease (β < 0) approximately the same amount in

every period.

Instead, most often in economics it is the rate of growth rather than

growth itself that is considered approximately constant through time.

Then, the appropriate model is the exponential growth model

yt = exp(α + βt+ ut),
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which becomes the linear trend model for the (natural) logarithm of the

series,

log(yt) = α + βt+ ut, (3.2)

and therefore, β ≈ (yt − yt−1)/yt−1, ∀t. The smaller is β the better the

approximation; that is, for small values of β̂, 100β̂% is a good approxi-

mation to the average rate of growth of yt. For instance, if yt represents

investment observed in a sample of quarterly data for the 1990:1 – 2022:4

period and the estimated equation is ̂log(yt) = α̂ − 0.008 t, then −0.8%

is a very good approximation for the average quarterly growth rate of

investment in that period.

If either in (3.1) or (3.2), besides white noise the errors are Gaus-

sian, i.e., ut ≡ ϵt ∼ iidN (0, σ2), then OLS is the best unbiased estimator

(BUE) and usual inference methods associated with it are valid exactly.

Indeed this is a case which goes even further than the classical regression

model with exogenous regressors2 because the only regressor is determin-

istic and hence, in the style of old textbooks, “fixed in repeated samples”.

The practical relevance of this result is however very limited due to the

white noise assumption; it even conflicts with the interpretation of ut as

the cyclical component because it requires that cycles cannot be neither

serially correlated (i.e., really non-cyclical) nor heteroskedastic.

In case the error term ut is serially correlated (and possibly non-

Gaussian as well), OLS is not even BLUE but, provided ut is only a very

general stationary process, OLS is asymptotically efficient (Fuller, 1996,

pp. 476-80 or Canjels and Watson, 1998)3. However, the usual estimator

for its variance is generally biased and inconsistent and therefore infer-

ences based on that estimator cease to be valid, even asymptotically.

Hence, the OLS estimators for the coefficients of both (3.1) and (3.2)

need to be complemented with some HAC estimator for its covariance

matrix (see section 5.3)..

Returning to the case of the purely linear (or exponential) determin-

2See, e.g.,chapter 8 in Hamilton (1994) or chapter 1 in Hayashi (2000).
3This result is originally attributed to Grenander, Ulf, and Murray Rosenblatt

(1957), Statistical Analysis of Stationary Time Series, New York, Wiley.



3.1. THE LINEAR AND THE EXPONENTIAL TREND MODELS 53

istic trend, the OLS estimator can be shown to be superconsistent — and

at a rate that is even faster than in the case of decomposition — despite

non-conformity with classical asymptotic assumptions. The interest of

this case results precisely from this (“benign”) violation since in this case

the typical matrix to invert to obtain the OLS estimator is

X′X =
∑T

t=1 xtxt
′ =

[ ∑T
t=1 1

∑T
t=1 t∑T

t=1 t
∑T

t=1 t
2

]
=

[
T T (T + 1)/2

T (T + 1)/2 T (T + 1)(2T + 1)/6

]
,

where xt = (1, t)′, and hence, even when divided by T three of the

elements of this matrix diverge when T → ∞. This means that the

usual assumption that

plim

(
1

T
X′X

)
= Σxx,

a finite and positive definite matrix does not hold. However, provided

the DGP is really (3.1) or (3.2) with white noise errors (ut ≡ ϵt) and

provided their fourth order moment is finite (E(ϵ4t ) < ∞, ∀t), it can be

shown that[ √
T (α̂− α)

T 3/2(β̂ − β)

]
d−→ N

([
0

0

]
, σ2

[
1 1/2

1/2 1/3

]−1
)
,

see, e. g. Hamilton 1994, pp. 455-60 or Martin, Hurn and Harris, 2013,

pp. 594-6. That is, while the OLS estimator of α is consistent at the

usual rate, the OLS estimator of the slope, β̂, is super-consistent4: it is

not enough to scale its sampling error with T 1/2, as usual; it is necessary

to scale it with T 3/2 to get a non-degenerate limit distribution; while α̂

is Op(T
−1/2) as usual, β̂ is Op(T

−3/2).

Hassler (2000) proves a result similar to this in the case of a bivariate

4The calculations and the intuition for the simpler case where there is no intercept
may be seen in, e.g., Stewart and Gill (1998), pp. 227-8.
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trend stationary process. That is, consider that xt is generated as in

equation (3.1),

xt = γ + δt+ ut,

with ut a zero mean stationary process. And that yt is linearly related

with xt through the equation

yt = α + βxt + vt,

with vt a zero mean stationary process as well. Then, as T → ∞,

√
T 3(β̂ − β)

d−→ N (0, 12
ω2
v

δ2
),

with β̂ the OLS estimator of β and where ω2
v is the long-run variance of

vt, ω
2
v = Var(vt) + 2

∑∞
j=1 cov(vt, vt−j). Since xt is clearly dominated by

the linear trend, this result is hardly surprising.

Although the main criticism to this type of models for the trend

is postponed to section 3.8, one of its most important pitfalls will be

mentioned here. It concerns the apparently high predictability that it

conveys, which is implied by its (deterministic) nature and which can

be very misleading. Actually, the rather strong criticism made by Stock

and Watson (1988) to these models begins with an empirical illustration

where, perhaps even more important than their “dramatic forecasting

errors”, is the severe underestimation of uncertainty regarding the future

(as reflected in the narrow bands associated with the point forecasts).

This is obviously an inescapable implication of these models, where the

only source of uncertainty lies in the deviations from the fixed, non-

changing trend. Such predictability must be always seen with much

suspicion. In figure 3.1 I present an example which is similar to the one

of Stock and Watson (1988) for the case of Australian per capita GDP.

In the left panel the observations of the series and their corresponding

fitted values until 1993 are presented. The fit is very good (R2 = 0.988

but a Durbin Watson statistic of only 0.456), likely originating an ex-
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Figure 3.1: Australian per capita GDP: linear trend fitted until 1993 and
corresponding forecasts for 1994–2018 with their (aprox.) 95% band

pectation that forecasts produced by the model will be equally good.

However, the right panel shows that this expectation fails completely as

the forecasts turn out to be dramatically wrong. Already the first obser-

vation after the base year for the forecasts (i.e., for 1994) jumps above

the upper limit of the (approximate) 95% forecast band and the path

that actual observations follow is ever more divergent from that band,

rendering ever growing positive forecast errors.

These days the linear trend model is rarely considered adequate to

model the trend of economic time series. Linear detrending is also seldom

used explicitly, though it is often employed implicitly in multivariate

analysis, both in regression and in VAR models, through the inclusion of

a trend term. A somewhat recent exception is Hafner (2003), who argues

that the linear trend model is the most adequate to model the trend of

cereal yields for many of the 188 nations whose data were gathered by

FAO (Food and Agriculture Organization) for the 1961–2001 period.

3.2 Polynomial trend models

It is often assumed that although with unknown functional form the trend

must be a continuous and smooth function of time. But since according to

the Weierstrass approximation theorem any continuous function defined

on a compact interval can be approximated by a polynomial, a function
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such as

τ(t) = α + β1t+ β2t
2 + . . .+ βpt

p

appears to be a good candidate to approximate the trend. Moreover,

since the smoothness of the function requires that its first derivative

changes sign only a few times, the order of the polynomial must be low,

say p = 2 or 3.5 Further still, a p too high will very likely imply some

overfitting, with cyclical movements becoming incorporated in the trend

(Mills, 2003, p. 15).

But even quadratic and cubic polynomials may be viewed with much

suspicion:

a) because there is usually no plausible economic justification for them

and their coefficients are not clearly interpretable;

b) since they tend to plus or minus infinity as time increases, some-

times very rapidly, they may produce disastrous forecasts for the

medium and long terms;

c) because often “the effect of altering the degree of the polynomial

by one will be to alter the direction of one or other of the branches

of the fitted function”, which is a “highly unsatisfactory circum-

stance” (Pollock, 1998, p. 5); figure 3.2 illustrates this with dra-

matic consequences for forecasting.

Indeed, in the left panel of the figure it is clear that the fit of the cubic

model is better than the one of the quadratic, particularly in the initial

and final observations of the sample. Adding the cubic term increases the

R2 from 0.90 to 0.97 and its coefficient is highly significant by standard

criteria, with a t-ratio statistic of −4.63. However, as can be observed in

the right panel, its forecasts are catastrophically, diverging to −∞ while

the actual series grows. This explains why even low order polynomials are

rarely used. And when they are, they should be viewed as approximating

local rather than global trends.

5Fuller (1996, p. 481) provides an alternative that will be addressed later, that of
“grafted polynomials”.
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Figure 3.2: Australian per capita GDP again, 1980–1991: in the left
panel the cubic trend (R̄2 = 0.97) fits much better than the quadratic
(R̄2 = 0.90), but (right panel) its forecasts are catastrophically wrong,
diverging to −∞

A recent extensive empirical application of the quadratic trend is

provided by Arata, Fabrizi and Sckokai (2020) who consider trend poly-

nomials with degree between zero and two for 8088 country crop yields

series from the FAO database (covering e.g., cereals, fruits, nuts, vegeta-

bles, etc.). The quadratic trend is considered the most adequate in 53.8%

of the cases. An interesting feature of this study is the employment of

an estimation method which is more robust to outliers than OLS, the

MM method. In Cuestas and Garratt (2011) a cubic trend is considered

adequate to approximate a possibly nonlinear trend in the time series of

GDP per capita for a panel of 19 developed countries between 1870 and

2003 (and it is used to provide the stationary alternative hypothesis for

a unit root test).

3.3 Further nonlinear classical models

In some cases one may consider that the trend is limited by an upper

bound. The most common example is that of the penetration rate of a

consumer durable — say, TV sets — in households. But the idea can

be extended to the proportion of the general population owing a certain

item, or of companies possessing some capital good. In that case, the

so-called S-shaped (or sigmoid) growth curves must be considered as

good candidates. The logistic and the Gompertz models have been used
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in such cases and they may be considered as “classical” because they

are both known for almost a century (see, e.g., Mitchell, 1927). Meade

(1984) and Meade and Islam (1995) contain many examples and further

references. Here I am mostly based in Pollock (1998).

The most basic version of the logistic function is

g(x) =
ex

1 + ex
=

1

1 + e−x
.

It varies between zero, which is its limit when x → −∞, and unity,

the limit when x → +∞, and its midpoint , when x = 0 is g(0) = 1/2,

which is an inflexion point because the growth rate begins to decline (the

second derivative is zero and then becomes negative). The logistic trend

function may be presented as

τ(t) =
γ

1 + eh(t)
=

γeh(t)

1 + eh(t)
, with h(t) = α + βt,

where the parameter γ is the asymptote or upper limit of the function,

and therefore represents the “saturation level”. While β determines the

growth rate, α determines the mid point of the function.

Since

log

[
τ(t)

γ − τ(t)

]
= h(t),

the regression equation can be written as

log

[
yt

γ − yt

]
= α + βt+ ut,

which, for each value of γ can be used to calculate the value of the

dependent variable. That is, for each value of γ, α and β can be estimated

by OLS. This means that the minimization of the sum of squares of the

residuals can be implemented through a grid search procedure to find

the optimal value for γ (and for α and β). An alternative presentation

for the logistic regression model is (see, e.g., Franses, 1998, and Meade,
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1984)

yt =
γ

1 + αe−βt
+ ut,

where all parameters are positive. Estimation must resort to a non-linear

least squares (NLLS) algorithm.

On the other hand, the Gompertz growth trend is

τ(t) = γ exp[−α exp(−βt)],

where again γ represents the saturation level. Franses (1998, p. 77)

provides a simple selection method to choose between the logistic and

the Gompertz curves.

3.4 Segmented linear trend models

The piecewise or segmented linear trend model lies somewhere between

the linear trend model of section 3.1 and the stochastic trend or unit

root model that will be addressed below, in section 3.8. It is also one

of the simplest versions of the standard switching regression model in

the terminology of Teräsvirta, Tjøstheim and Granger (2010). Although

recently it has been associated mostly with the work originating in Perron

(1989), in practice it has been used for a rather long time, dating back

at least to Frickey (1942) (see subsection 2.6). It is a rather simple and

inexpensive alternative to more sophisticated non-linear models that may

be viewed as an entrance door and an approximation to those models,

and its coefficients are very easily interpretable, particularly when the

variable is logarithmized. It also makes the linearity assumption more

tenable, in so far as it is assumed to hold for (much) shorter periods.

Clearly, reducing the time interval where fixed linearity holds makes it

more flexible and local (instead of rigid and global).

A simple example of a segmented linear trend is

τ(t) = α1 + α21(t ≥ Tα) + β1 t+ β21(t ≥ Tβ) t,
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where 1(.) is the indicator function (e.g., 1(t ≥ Tβ) is 1 for t ≥ tβ and 0

otherwise), and where Tα may be different from Tβ, that is, the time of

change or the break date in the intercept can be different from the one of

the slope. As is well known, this trend function can be also represented

using dummy or binary variables:

τ(t) = α1 + α2Dα,t + β1 t+ β2Dβ,t t

where

Dα,t =

{
1, for t ≥ Tα
0, otherwise,

and

Dβ,t =

{
1, for t ≥ Tβ
0, otherwise.

This allows that the intercept is α1 until time Tα−1 and α1+α2 thereafter;

the slope of the trend is β1 until time Tβ −1 and then changes to β1+β2.

It may occur that there is only one break, occurring simultaneously in

the intercept and in the slope, that is, that Tα = Tβ. It is also admissible

that either α2 or β2 is zero, in which case only one of the coefficients

changes. Note additionally that if α2 ̸= 0 the trend is discontinuous at

the point t = Tα, i.e., it has a jump at that point.

A further generalization of this model consists in the increase in the

number of break dates, for both or for only one of the coefficients. How-

ever, this increase must be sensible and only changes that are qualita-

tively important must be object of modeling. The choice of these dates

for modeling purposes, however, is not so much constrained as when the

purpose is testing the significance of those breaks. Provided the purpose

is not this last one, they may be specified endogenously to the data,

i.e., on the basis of some previous narrative which may be itself based in

the data or simply by observing a plot of the series (as, e.g., in Crafts

and Mills, 2017). Preferably, however, it must be based only in qualita-

tive information, to preserve the size properties of the tests assessing the

significance of the breaks.

Admitting the presence of at least one break during the sample pe-
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riod does not allow ruling out the possibility that a similar problem might

affect forecasts, quite on the contrary. And as Stock (1994, p. 2821) em-

phasizes, “treating the break as a one-time nonrandom event presumably

leads to understating the uncertainty of multistep forecasts”.

Gao and Hawthorne (2006) present a model of this type, which they

call bilinear, as a crude approximation to a non-linear and semiparametric

model estimated over a series of global temperatures for the 1867–2001

period with a turning point in 1890.

3.5 Linear spline trend models

A close alternative to the models of the previous section is the linear

spline trend model which, on one hand, ensures continuity of the trend

function but, on the other hand, does not allow changes in level, i.e.,

only the slope of the trend may change, not its intercept. Continuity is

preserved at the cost of some flexibility that is lost.

In its simplest version, the trend function with only two linear seg-

ments that are joined at the point called knot is

τ(t) = α + β1 t+ β2(t− Tβ)1(t ≥ Tβ),

whose intercept is always α but which has two different slopes (provided

β2 ̸= 0), joined at the point t = Tβ, the breakpoint: in the first subperiod

the slope is β1 but in the second it changes, somewhat smoothly, without

any jump, to β1 + β2, i.e., β2 again measures the change in the slope.

Therefore, now the function is constrained to be continuous also at t =

Tβ. Moreover, notice also that the model is more parsimonious than those

of the previous section because it contains one less parameter. However,

as in those models, the break is still somewhat abrupt, sudden, occurring

in one period only6.

6To make the change more gradual, Franses (1998, p. 143) proposes a model that,
besides the change in slope, introduces two breaks in level, one at the time of the
break and the other in the following period.
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In case there are several changes in slope, the model may be general-

ized to

τ(t) = α + β t+
m∑
i=1

δi(t− Tβi
)1(t ≥ Tβi

),

with m denoting the number of breaks. Drake and Mills (2010) estimate

a trend function of this type for the log of the GDP of the Euro area,

for the period 1983Q1 to 2006Q1, imposing five breakdates or knots at

1983Q1, 1992Q1, 1993Q1, 2000Q4 and 2001Q1, this one corresponding to

the entrance of Greece; for instance, the estimated slope for the segment

of the period 1993Q1 to 2000Q3 is β̂ + δ̂1 + δ̂2 + δ̂3. More generally,

the slope of the trend for the i-th segment is given by β + δ1 + . . . + δi
(i = 1, . . . ,m.). More plausibly, Crafts and Mills (2017) also estimate a

model that is mostly a linear spline trend with five breaks for the case

of per capita GDP in England and Britain for the rather long sample

initiated in 1270 and ending in 1913. However, they consider also a

change in level corresponding to the period of the Black Death (1348 to

1352), which they find that has left the rate of growth unchanged 7.

Although these models may often appear attractive, particularly to a

layman in economic history, they must also be subject to a further criti-

cal, non-econometric perspective, as, e.g., in Evans and Quigley (1995).

They argue that a segmented trend representation of time series can be

used to support many alternative, even contradictory hypotheses about

the economic history of a country. More concretely, they argue that since

it is only one of the possible representations of the data, conclusions rely-

ing exclusively on it may be spurious. On the other hand, they recognize

that segmented trends can perform a rather positive role provoking the

debate about the nature of long-run economic growth and the mecha-

nisms that might explain major periods of expansion and contraction.8.

7The remaining breakdates considered by Crafts and Mills (2017) are 1663, 1702
and 1823. Crafts and Mills consider that this model is preferable to the Hodrick and
Prescott filter to produce the estimated trend.

8See also Inwood and Stengos (1995) for a detailed reply to the criticisms of Evans
and Quigley (1995), particularly about the number and the nature of the structural
breaks.
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3.6 Segmented and spline polynomial trend

models

The models of the previous section can be generalized to higher order

polynomials, i.e., with order higher than one (but usually not exceeding

three). Some smoothness is achieved with the spline form: a quadratic

spline has continuous first derivative and a cubic spline has continuous

first and second derivatives. For instance, a quadratic spline trend with

only one knot (or break point) is

τ(t) = α + β1 t+ β2 t
2 + β3(t− Tβ)1(t ≥ Tβ),

where it can be noticed that for t ≤ Tβ the function is the quadratic α+

β1 t+ β2 t
2 and its second derivative is 2β2, but for t ≥ Tβ this derivative

is 2(β2 + β3), i.e., with a change of 2β3. For Mills and Crafts (1996) the

preferred model for British industrial output over the period 1700 to 1913

is a quadratic spline trend where they consider three possible intervals for

the knots: 1764 < T1 < 1786, 1814 < T2 < 1836 and 1854 < T3 < 1876;

the first corresponds to the start date of the Industrial Revolution and

the last two to alternative locations for its ending. Minimizing the sum

of squares of the residuals of the model yt = τ(t) + ϵt, ϵt assumed white

noise, they estimate these dates as T̂1 = 1776, T̂2 = 1834 and T̂3 = 1874.

More generally, a pth-order spline trend function with m knots Tβ1 <

Tβ2 < . . . < Tβm is

τ(t) =

p∑
j=0

βjt
j +

m∑
i=1

βp+i(t− Tβi
)1(t ≥ Tβi

).

Crafts and Mills (2017) estimate cubic spline models for both industrial

production and GDP, for England pre-1700 and Britain post-1700, over

the period 1270 to 1913, with a single knot for the slope of the trend

located in 1871 (and also with four changes in level, two of them for the

beginning and end of the Black Death).

The name that Fuller (1996, pp. 480-4) gives to these spline polyno-
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mials for the trend is “grafted polynomials”. Moreover, he also provides

a few examples where they are specified obeying to certain restrictions

on the length of the subsamples or even on the form adopted for some of

those subsamples.

According to Pollock (1998), often the end of these splines is left free,

with second derivatives equal to zero, and forecasting is made with a

simple linear trend. This is perhaps the best practice to follow with these

models, despite his recommendation in favour of cubic splines; indeed,

these can really provide excellent fits to the data, as in Crafts and Mills

(2017), but Pollock (1998, p. 10) himself warns that

the device which is most appropriate to the extrapolative fore-

casting of a trend is rarely the best means of representing it

within the sample. An extrapolation is usually based upon a

simple analytic function; and any attempt to make the func-

tion reflect the local variations of the sample will endow it

with global characteristics which may affect the forecasts ad-

versely.

Cubic splines may fit the data very well but most researchers will be

hardly convinced to use them outside the sample, to produce forecasts.

At least they will hesitate a lot, and with good reasons.

3.7 Modern nonlinear models: the smooth

transition trend

Despite a significant outburst in research on nonlinear models for the

mean for a period of about two decades, starting around 1990, the inter-

est in modeling the trend with a nonlinear approach lagged much behind.

This was because most efforts centered on stationary time series. Hence,

very often the series to model was previously (first or seasonally) differ-

enced to become stationary.

Moreover, some models for non-stationary, trending time series were

proposed with the sole purpose of serving as alternative hypotheses to
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the unit root/stochastic trend null model; in some of these cases the role

of such models was almost virtual, not even arriving at the estimation

stage9. In some other cases the presentation of the estimated nonlinear

trend was omitted because attention was directed towards analysing the

long-run properties of the residuals. It is therefore rather difficult to

find a modern empirical nonlinear model for the trend as a result of this

research.

Kapetanios (2003) provides an interesting example of these modeling

efforts, where the basic approach does not differ radically from the one

that was used in empirical research dated a century ago. A threshold

autoregressive (TAR) model for U.S. GDP based in ideas from Hicks

is proposed with the attractive feature that fluctuations in output are

endogenous, i.e., there is no need to assume that they result from exoge-

nous shocks. But modeling the trend is relinquished because the model

is built for the detrended series, the trend previously estimated with the

Hodrick-Prescott filter.

The most important and representative model of this research period

is the smooth transition (ST) trend model, derived from the regression

model originally proposed by Bacon and Watts (1971) for general regres-

sors10, and which nests the segmented trend model of section 3.4. Later,

Granger and Teräsvirta (1993), Lin and Teräsvirta (1994) and Teräsvirta

(1994) further developed the general smooth transition regression model.

The main feature of this type of model is the smoothness, the continuity

of states or regimes that it allows, which is coupled with the complete

endogeneity in selecting the timing and the speed of the transition be-

tween the “extreme” regimes. In other words, the information about

these issues that is usually required by the previous models is now to-

tally redundant as the estimation of the parameters that reflect them

9This is because they may become unidentified under a certain null hypothesis and
therefore testing needs to rely on a regression obtained with a Taylor series expansion.

10Albeit with a transition function that would be abandoned. Bacon and Watts
(1971) emphasize that the particular form of the transition function is “of secondary
importance” (p. 527). According to Granger and Teräsvirta (1993), in a textbook
published in 1977, G. S. Maddala was also an early proponent.
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is completely data-dependent. This is most often an advantage but it

can be seen as unappealing as well when the researcher wishes to impose

a specific date for the break (corresponding to, e.g., a major political

or institutional change). But even in such a case the ST trend model

is admissible because there is usually no simultaneity in the reaction of

economic agents to the shocking event; i.e., though individually some

of them may react swiftly, the aggregate response that follows may be

rather protracted. Therefore, allowing the data speak for themselves is

usually a good idea.

Some versions of the ST trend model were firstly presented in Ley-

bourne, Newbold and Vougas (1998, LNV)11 as a non-linear alternative

to the unit root hypothesis. The simplest version, the logistic ST trend

for the case where there is only a change in level (and the slope of the

trend is constrained to remain fixed), labeled as model B in LNV, is

τ(t) = α1 + β t+ α2St(γ, c),

where

St(γ, c) = {1 + exp[−γ(t− cT )]}−1, γ > 0,

is the (logistic) transition function, which monotonically traverses the

interval (0, 1) as t → ∞, and which controls the transition between the

two “extreme” regimes. Therefore, the model permits a smooth transi-

tion between the two submodels. It can also be viewed as a simple linear

trend model but with deterministically changing parameters. Most often,

it is viewed as a regime-switching model with two regimes, corresponding

to the extremes of the interval. Alternatively, it can be interpreted as a

model that allows for a continuum of regimes, each associated with each

value taken by the transition function between 0 and 1.12 That is, the

combined intercept fluctuates between α1 and α1 + α2.

Since, for γ > 0,

S−∞(γ, c) = 0, S+∞(γ, c) = 1, and Sc T (γ, c) = 0.5,

11See also Mills (2003) for a very clear presentation and for a few examples.
12See, e.g., van Dijk, Teräsvirta and Franses (2002, vDTF) and Teräsvirta (1998).
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the parameter c determines the timing of the transition mid-point. The

smoothness or the speed of the transition is determined by the parameter

γ:

a) if γ is small the function needs a long period of time to traverse the

interval (0, 1) and, in the case that γ → 0, then St(0, c) approaches

0.5, ∀t, that is,
τ(t) = (α1 + 0.5α2) + β t,

i.e., there is only one regime, the model collapsing to the simple

and single linear trend.

b) if γ is large, the function traverses the interval (0, 1) very rapidly

and, as γ goes to +∞, the limiting behaviour of the St function is

that of a change from 0 to 1 instantaneously, at time t = c T , that

is, the St function reduces to the indicator function. Instead of

smooth, the change in regime becomes abrupt, as with the models

of the previous sections.

If, on the other hand, γ < 0, then the order of the initial and final

regimes or states is reversed but the interpretation of the parameters

remains unchanged.

A more general model for the trend corresponds to model C in LNV

and allows the change in regime to affect both the level and the slope of

the trend:

τ(t) = α1 + β1 t+ (α2 + β2 t)St(γ, c),

where the interpretation of the parameters remains the same except in

the case of the collapse to a single regime, which is now

τ(t) = (α1 + 0.5α2) + (β1 + 0.5 β2)t,

but still only one change is permitted, the initial regime now given by

α1 + β1t and the final one by (α1 + α2) + (β1 + β2)t. Moreover, the

restrictions that the changes in intercept and in slope are simultaneous

and occur with the same speed are also imposed. Using the form of
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presentation adopted in vDTF, it can be also written as

τ(t) = (α1 + β1t)[1− St(γ, c)] + (α2 + β2t)St(γ, c).

Estimation of these models needs to resort to a non-linear least squares

(NLLS) optimization algorithm. A popular option is the BFGS (Broy-

den, Fletcher, Goldfarb and Shanno) algorithm. However, noting that

for fixed values of the parameters γ and c the transition function becomes

linear in the remaining parameters, as suggested in LNV estimation may

also be made in two steps. In the first step, conditional upon γ and c,

the sum of squares of residuals function can be concentrated with re-

spect to the αs and the βs, which are estimated by OLS. In the second

step, estimation of γ and c is made with a two-dimensional grid search.

Teräsvirta (1994) and vDTF offer some practical tips that may be very

helpful for estimation, e.g., to choose the starting values or to overcome

difficulties when γ is large.

Using the series of quarterly U.S. logged GDP for the period 1947:1

to 2004:4, Vougas (2007) estimates the model

ŷt = 7.370
(0.018)

+ 0.0087
(0.0004)

t+ (0.160
(0.025)

− 0.0011
(0.0004)

t)St (0.979
(0.453)

, 0.325
(0.004)

),

complemented with an AR(3) model for the errors. The negative (and

significant) estimate for β2 provides evidence for a productivity slow-

down in the second regime. And since ĉ = 0.325 corresponds approxi-

mately to the 75th observation, the estimated mid-point of the transition

is at about 1965:2 (which Vougas, 2007, finds that accords well with es-

timates from other models but which is much different from the dates

associated with the first oil shock, in 1973).

Still in the context of testing for unit roots, Harvey and Mills (2002)

extend the previous models to the case of two smooth changes in regime,

with

τ(t) = α1 + β1 t+ (α2 + β2 t)S1t(γ1, c1) + (α3 + β3 t)S2t(γ2, c2)
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with

Sit(γi, ci) = {1 + exp[−γi(t− ciT )]}−1, i = 1, 2,

where the mid-points are now at c1T and c2T and the two transition

speeds may be different. This model was used by Salamalikis and Venutis

(2014) to study the long-run properties of the series for labour supply in

the U.S., for 1948:1 to 2011:1.

In Teräsvirta, Tjøstheim and Granger (2010, p. 38) the general ST

model is further generalized to the case of several changes in regime, and

adapting it to a model for the trend is easy. However, the speed of the

transitions is constrained to be same for all of them. For instance, the

model that (adapting from, e.g., Teräsvirta, 1998) may be labeled as the

LT2 for the trend has the transition function

St(γ, c) = {1 + exp[−γ(t− c1T )(t− c2T )]}−1, γ > 0, c1 ≤ c2,

which is also symmetric, now about (c1T + c2T )/2, and which produces

three regimes. However, contrary to the simplest LT (or LT1) model,

now the St function is not monotonic. A transition function with similar

properties is obtained with the exponential function,

St(γ, c) = 1− exp[−γ(t− cT )2], γ > 0,

originating the ET model for the trend. To the best of my knowledge,

this model was proposed by Sollis (2005) and used by him to produce unit

root test statistics for 20 series of quarterly real exchange rates against

the U.S. dollar. Sollis graphically presents some estimated trends.

3.8 Unit root/stochastic trend model

Although the basic idea of the unit root/stochastic trend model dates

back at least to Working’s (1934)13, it started to be seriously considered

13You may need to review section 2.5, but notice also that according to Klein (1997,
p. 272) the random walk model was initially proposed in 1900 by Louis Bachelier in
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in macroeconomics only in the beginning of the 1980s, and only after

the divulgation of the work of time series analysts through Box-Jenkins

(1976) influential book and the proposal of the first unit root tests by

Dickey and Fuller (1979, 1981). Moreover, the introduction of this sub-

ject in econometrics marks the beginning of a revolution of its methods for

macroeconomic analysis — the unit root and decomposition revolution

—, and indeed the beginning of macroeconometrics as a really separate

branch of study as well. In this section I assume that the typical reader

is aware of the basic material about unit root tests; in case I am wrong

I recommend the following survey papers, monographs and textbooks:

Campbell and Perron (1993), Enders (2010, chapter 4), Hamilton (1994,

chapters 15-17), Hatanaka (1996, chapters 1-7) and Maddala and Kim

(1998, chapters 3-4)14. My purpose is only to highlight certain points

more closely related with the subject of this book.

The simplest member of the family is the driftless random walk, yt =

yt−1+ϵt, ϵt ∼ iid(0, σ2
ϵ ) which, solving backwards, can be also represented

as

yt = y0 +
t∑

i=1

ϵi, (3.3)

where y0 represents the initial value and the second term represents the

stochastic trend, the accumulation of small (and possibly not so small)

random shocks, that is, of fluctuations without any systematic nature.

Although time appears only as the upper index of the summation, it is

indeed appropriate to call this term a trend because it is the main (and

almost the only) ingredient of forecasts, whatever their horizon, even in

the very long-run. Actually, note that the best (in MSE) forecast of the

process for an horizon that may lie arbitrarily far in the future, say t+ s

with s > 0, made with the information about the process that is available

his doctoral thesis.
14A concise presentation is provided by Phillips (2010a). More advanced treatments

are provided in, e.g., Martin, Hurn and Harris (2013, chapters 16-17) and in Stock
(1994). Choi (2015) provides an extensive and updated survey. My own little book
(Lopes, 2015) is an alternative in case portuguese is preferred.
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Figure 3.3: Two simulated random walks, without (left) and with (right)
drift, both with zero as initial value and with ϵt ∼ iidN (0, 0.32)

at time t, is

yt+s|t = Et(yt+s)

= Et(yt + ϵt+s + ϵt+s−1 + . . .+ ϵt+1)

= yt.

But if the forecast horizon changes, say h periods into the future, for any

h > 0 (that can be very large), and the forecast is now made at time

t+ s, the best forecast is now given by

yt+s+h|t+s = Et+s(yt+s+h)

= Et+s(yt + ϵt+s+h + . . .+ ϵt+s+1 + ϵt+s + ϵt+s−1 + . . .+ ϵt+1)

= yt + ϵt+s + ϵt+s−1 + . . .+ ϵt+1 = yt+s.

Hence, the random shocks that have occurred between periods t and t+s

are completely included in the new forecast, even for an horizon that may

lie in the very far future. The change in the forecasts is completely made

up of these shocks. It is therefore really a trend, because it may concern

really long-run forecasts, which is made of stochastic fluctuations, which

changes stochastically.

On the other and, if the random walk contains a drift parameter, say

γ, yt = γ+ yt−1 + ϵt, ∼ iid(0, σ2
ϵ ), then it may be also represented (again
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solving backwards) as

yt = y0 + γ t+
t∑

i=1

ϵi, (3.4)

where the presence of a linear deterministic trend emerges due to the

drift. That is, besides the stochastic trend, the random walk contains

also a deterministic trend. As is well known, the origin of the relevant

non-stationarity lies, however, in the stochastic trend. In figure 3.3 plots

of 150 observations of two simulated random walks are presented, one

without drift and the other with a positive drift (in both cases, discard-

ing the first 50 simulated observations, to reduce the dependence on the

initial value, which was set equal to zero in both cases). Notice that al-

though it has no drift and hence no deterministic trend, if the observation

of the driftless random walk is made within certain stretches of the sam-

ple only, the presence of a deterministic trend is clearly suggested. This

is the case particularly for the long period between 2000 and 2080, with

the series appearing to be dominated by a strongly growing deterministic

trend. Unfortunately, such a misleading graphical behaviour occurs very

often. This is indeed unfortunate because one is expecting that such

a process always wanders without showing any systematic tendency to

increase or to decrease.

The previous random walk may be presented in a way that makes

more clear the presence of the unit root in the autoregressive polynomial:

(1− L)yt = γ + ϵt,

where L denotes the usual lag or backward operator (Lkyt = yt−k), that

is, (1 − L)yt = ∆yt and, for macroeconomic time series, γ is usually

positive. But this is only the simplest unit root or I(1) process, i.e., first

order difference stationary process (DSP)15. More generally, a unit root

15To be precise, a (weakly) stationary process with positive long-run variance is
said to be integrated of order 0, yt ∼ I(0). And it is said to be integrated of order d,
positive integer, yt ∼ I(d), if ∆dyt ∼ I(0).
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process may be represented as

(1− L)yt = γ + ψ(L)ϵt, (3.5)

where ψ(L) = 1+ψ1L+ψ2L
2+. . ., with ψ(1) ̸= 0 (to rule out the possibil-

ity that the original level process is already stationary) and
∑∞

j=0 |ψj| <
∞, the usual condition for the coefficients of the MA representation of

the error process to be absolutely summable. This ensures that this error

process, say ut = ψ(L)ϵt is stationary, I(0). Thus, instead of equation

(3.4) we now have

yt = y0 + γ t+
t∑

i=1

ui,

that is, although stationary I(0), the accumulating shocks may be serially

correlated. For the simplest and particular case of the random walk

ψ(L) = 1.

But the same process (3.5) can equivalently be represented as

yt = α + γt+ vt, (3.6)

with vt a non-stationary, unit root I(1) process, (1−L)vt = ψ(L)ϵt, with

ARIMA representation

ϕ∗(L)(1− L)vt = θ(L)ϵt,

with all the roots of ϕ∗(L) outside the unit circle, θ(L) a finite and

invertible MA polynomial and ψ(L) = θ(L)ψ∗(L)−1. That is, instead

of appearing directly in the autoregressive polynomial of the original

series yt, the unit root is lurking in the autoregressive polynomial of

the error process of (3.6). Therefore, the presence of a unit root in

the level series yt is equivalent to the presence of a unit root in the

autoregressive polynomial of its deviations from a deterministic trend.

One must therefore not be tempted to say that deciding for the presence

of an autoregressive unit root in a series is the same as deciding whether

the series contains a deterministic or a stochastic trend (as can be found
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sometimes). Rather, very often macro time series contain a strongly

growing or positive deterministic trend and the issue is whether, besides

this, its deviations around that trend are stationary or not (in which case

there is a stochastic trend as well).

As became clear only much later, the importance of unit root tests

for economic theory was greatly exaggerated. It started with a paper

by Nelson and Plosser (1982) whose main ideas have been followed by

many others as, for instance, Shapiro and Watson (1998)16. Their work

suggested that the presence or absence of a stochastic trend in the series

of real output should decide whether real business cycles (RBC) theory

or Keynesian theory should be accepted as the best explanation for out-

put fluctuations. This was made with the association of supply shocks

(especially technological shocks) with stochastic trends, and of demand

shocks (especially monetary shocks) with purely transitory, stationary

fluctuations.

But as noted by Hansen (2022, p. 581), “fundamentally, the unit

root/stationarity distinction says little about the RBC/Keynesian de-

bate”. Actually, standard Keynesian models of the 1970s resorted to

the deterministic linear trend model with stationary disturbances around

that trend — the trend stationary process (TSP) — because it was tra-

ditional and the most plausible among available econometric models of

the time to describe the behaviour of output through time. Then in

the 1980s, rapidly associating with the unit root revolution, RBC mod-

els linked supply side shocks with permanent but stochastic effects and

prohibited, by assumption, that demand shocks could have such kind of

effects; for instance, Shapiro and Watson (1988, p. 112) stated that: “it

[our model] only excludes the possibility that aggregate demand shocks

permanently affect the level of output”. Hence, the strong evidence sup-

porting the unit root model found by Nelson and Plosser (1982) could

be only interpreted as favouring RBC theory and excluding the possibil-

ity that aggregate demand policies could permanently affect the level of

16Some issues of this debate are summarized in, e.g., section 1.1 of Blanchard and
Fisher (1989).
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Table 3.1: Comparison between TSPs with DSPs with drift

TSP DSP or UR

transformation subtracting the differencing
to stationarize deterministic trend

dynamic the effect of shocks shocks have a permanent
multipliers is transitory (goes to effect on the level of

zero as time passes) the process

forecasts, yt+s|t, converge to a

linear function of their horizon, s
forecasts forecasts converge to the intercept of the line of

a line whose intercept the limiting forecast varies
is independent of yt with yt

MSE of the limiting MSE when the MSE grows linearly with
forecasts horizon increases is finite the forecast horizon

output. The fallacy was firmly rooted in a predetermined allocation of

assumptions.

Incidentally, to defend the Keynesian position from the attacks of

RBC theorists, rejecting that it implied the association of “technical

progress and capital accumulation” (p. 449) with the linear deterministic

trend, De Long and Summers (1998) also adopted the particular view of

the trend in output as its potential level. Therefore, cycles corresponded

to output gaps.

Perhaps the main motivation for the study of unit roots was indeed

the choice between the difference stationary (DSP) or unit root process

of this section and the trend stationary process (TSP), as represented

by (3.1) or (3.2), as the most adequate model to represent macro time

series. Summarizing the most important issues, in table (3.1) I provide

a comparison between the two models that is entirely based in chapter

15 of Hamilton (1994), whose consultation I strongly recommend for a

detailed presentation17.

With the obvious exception of the required transformation to station-

17This table is a translation from a similar table in Lopes (2015).
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arize, the two models differ in their limiting or asymptotic properties.

That is, their implications are rather extreme but one has to consider

infinite time horizons. Here lies perhaps the main reason why the choice

is so difficult in practice, with limited and often really small samples.

The radical difference concerning dynamic multipliers is particularly

meaningful. For a TSP as the one of (3.1), yt = α + βt + ut, ut zero

mean stationary with ut = ψ(L)ϵt its MA representation, with absolutely

summable coefficients (
∑∞

j=0 |ψj| < ∞), the dynamic multiplier for the

effect s periods ahead of a transitory unit shock occurring in period t is

∂yt+s

∂ϵt
= ψs.

But precisely because ut is stationary, the ψj coefficients decline to zero

with j and hence

lim
s→∞

∂yt+s

∂ϵt
= 0,

that is, the effect of all shocks vanishes with time, it is purely transitory.

There is not a single shock with a permanent effect.

Radically opposing to this, the UR model postulates that all the

shocks have permanent effects; there is no single shock with only a tran-

sitory effect. To see this, since now it is ∆yt that admits a MA represen-

tation with absolutely summable coefficients, say ψj again to simplify, it

is easy to show that the effect s periods ahead of a transitory unit shock

in period t is
∂yt+s

∂ϵt
= 1 + ψ1 + ψ2 + . . .+ ψs.

And hence,

lim
s→∞

∂yt+s

∂ϵt
= 1 + ψ1 + ψ2 + . . . = ψ(1) ̸= 0.

Thus, both views are overly extreme; neither is plausible in this respect.

Concerning forecasts, the stochastic or “changing” or “variable” trend

model provides the most reasonable framework, allowing uncertainty to
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grow as the forecast horizon grows. The main motivation for this model

in Stock and Watson (1988) relies precisely in ridiculing and dismissing

long-run forecasts for U.S. macroeconomic time series based in the linear

deterministic trend model, which are catastrophically wrong.

Another frequently used motivation is the failure of classical asymp-

totic theory, designed for stationary processes, to provide valid inference

methods in models with unit root processes. Besides the well known

problem of spurious regressions with independent I(1) series in multi-

variate analysis, firstly highlighted by Granger and Newbold (1974), a

more pertinent issue here is the one of spurious regressions of I(1) se-

ries on a deterministic time trend regressor. This is the case where data

is generated by a unit root or stochastic trend model but a determin-

istic linear (or exponential) trend model is assumed as adequate, and a

regression as (3.1) or (3.2) is estimated with OLS.

This problem was first addressed by Chan, Hayya and Ord (1977),

and although they have found some serious consequences, the case they

addressed is not the most worrisome because the data generation pro-

cess (DGP) they have considered was of a random walk with drift, and

hence, although the stochastic trend was left without a proper consider-

ation, the data really contained a linear deterministic trend originated

by the drift. The most serious case was addressed by Nelson and Kang

(1984), who have shown that the regression of a driftless random walk

on a deterministic time trend very often produces spurious results, “find-

ing” erroneous or misleading evidence supporting the presence of such

a deterministic trend. Conventional standard errors and t-statistics as-

sociated with the coefficient of the trend term will very often support

the presence of that trend in the data although it is not really present.

Provided one remembers the graphical behaviour of the driftless random

walk of figure (3.3), such a frequent outcome is not completely surprising.

Nevertheless, it is very disturbing that deterministic trends appear to fit

so well to stochastic ones, falsifying completely their nature.

On this regard, my own Monte Carlo study for samples with size

T = 200, based in 10000 replications, produced the following results:
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a) an estimate of the real size of the test for the insignificance of the

trend coefficient of 91.6% for 5% nominal size tests;

b) a sample average of 0.434 for the R2 of those 10000 regressions.

Moreover, Nelson and Kang (1984) also demonstrated that the resid-

uals of those regressions will tend to exhibit pseudo-periodicity, that is,

they will often mislead researchers into “finding” cyclical behaviour that

is nonexistent in the data.

The simplest example of a process which is I(2) is the second order

random walk, where the process that accumulates is itself a first order

random walk process. Denoting with yt this one, yt = yt−1+ϵt, it is given

by
zt = zt−1 + yt

= zt−1 + yt−1 + ϵt
= 2zt−1 − zt−2 + ϵt,

which requires differencing twice to become stationary:

∆2zt = (1− L)2zt = ϵt.

It can be interpreted as a trend where the slope — its first difference —

is a random walk. If the variance of the shocks is small, this random

walk changes slowly, meaning that the slope of the trend changes slowly.

Hence, as noted by Pollock (1998), for long periods it may appear to

follow a linear time trend.

More generally, variables that are I(2) usually exhibit even more

smoothness than I(1) variables. Although the I(2) model appears to be

only rarely adequate to describe macroeconomic time series18, Clements

and Hendry (1999) recommend its use for forecasting because its fore-

casts are more robust to structural breaks, tending to adapt more quickly

to them, even when there is no statistical evidence (e.g., favourable unit

root test statistics) supporting that practice.

18This appears to be the case only for some price indexes as well as for some nominal
variables.
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3.9 Revisiting the segmented trend model

Starting with the highly influential work by Perron (1989) as well as with

the one by Rappoport and Reichlin (1989), a large branch of literature

developed defying or at least examining in more detail the evidence about

unit roots in macroeconomic time series. In a simple and intuitive but

imprecise way, the problem was of a lack of power of unit root tests when

there was a break or a shift in an otherwise deterministic linear trend.

Such segmented or broken trend processes confounded tests, producing

misleading evidence supporting stochastic trends.

Although Campbell and Perron (1991) were very clear expositing the

importance of correctly specifying the deterministic components in test-

ing regressions for consistent and efficient inference, in some cases the

problem was not exactly this one. Rather, as early acknowledged in

both seminal papers, it was instead one of choosing the frequency with

which large shocks, those shocks with permanent, long-run effects occur.

Indeed, the rather extreme and implausible opposition between the TS

and the DS models of the previous section is ill-posed. The choice must

not be between a trend that never changes and a trend that is always

changing with each new shock. Large shocks, with permanent effects,

may occur more often than the TS model admits but less often than

the DS model imposes. Such large shocks include, for instance, the 1929

crash, World War II, the oil shocks of 1973 and the beginning of the

1980s, the recent Global Financial Recession and the covid19 pandemic,

etc. The problem is that modeling these large shocks is difficult because

they possibly arise from a distribution that is different from the one that

generates regular or normal shocks. Hence, as acknowledged in Perron

(1989), breaks in the deterministic component were used as a device to

remove those shocks from the noise function and into the deterministic

trend, without having to model them explicitly. The segmented deter-

ministic linear trend model gained new momentum but it could not be

considered an “unconditional representation of the time series properties

of the various variables” (Perron, 1989, p. 1387).

Perron (1989) built a rather systematic and exhaustive framework of
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analysis, considering several distinct cases and the single break situation,

as well as different transition mechanisms inspired in the time series lit-

erature. More recent surveys summarizing Perron’s approach as well as

some others are, inter alia, Haldrup, Kruse, Teräsvirta and Varneskov

(2013) and Perron (2006). His work was further extended in several di-

rections but, besides a renewed interest in the segmented trend model

and in non-linear models in general, no grand, all-encompassing or very

useful model emerged for the trend. Moreover, in some cases the model

of the alternative hypothesis was not even really considered as an alter-

native because it had to be merged with the null model to form a nesting

regression, statistically useful to provide the test but meaningless.

A model that appears to be particularly useful for the case of level

shifts is the general model proposed by Lanne, Lütkepohl and Saikkonen

(2002) for the case where the time of the break is known:

yt = α + βt+ ft(θ)
′γ + ut,

where θ and γ represent (m × 1) and (k × 1) vectors respectively, and

ft(θ) is a (k×1) vector of deterministic sequences. In the most interesting

case, ft(θ) defines a slowly evolving trend after the time of the break (Tb)

and is given by

ft(θ) =

{
0, < Tb
1− exp{−θ(t− Tb + 1)}, t ≥ Tb,

which allows for a smooth deterministic shift resembling the (exponen-

tial) transition function proposed by Sollis (2005) and presented in sec-

tion 3.7. Figure 3.4 presents a series simulated with a segmented trend

model with a break of this type in 2020. The smoothness of the break

makes its dating by visual inspection very hard or even impossible.
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Figure 3.4: A series simulated with the segmented trend model with a
break of the type suggested by Lanne et al. (2002) in 2020

3.10 Pure and mixed autoregressive mod-

els

Hansen (2022, p. 474) attributes to Nobert Wiener and to Pesi Masani,

in a paper published in 1958,19 the authorship of a theorem ensuring

the existence of an infinite order autoregressive representation for any

stationary process whose coefficients of its Wold representation satisfy a

summability condition. But regardless of this result, the practical im-

portance of autoregressive models to model the behaviour of economic

time series has been established a long time ago, independently of the

so called Box-Jenkins approach, not as a particular case of their gen-

eral model. Autoregressive models are the most important econometric

models for time series. Their interpretation is simple, their estimation

is easy and the methods available to specify them have well established

properties. Their basic role in the definition of Granger causality is also

well known. They are usually considered as the best instrument to get

19“The prediction theory of multivariate stochastic processes, II”, Acta Mathemat-
ica, 99, pp. 93-137.



82 CHAPTER 3. MODELING THE TREND

rid of serially correlated regression errors, i.e., as the best available tool

to capture dynamic relationships in the economy.

According to Hansen (2022, p. 477), “the AR(1) model is probably

the most important model in econometric time series analysis”. Further,

in one of the most important textbooks in econometrics for undergrad-

uates, Stock and Watson (2015) begin the presentation of the part on

“regression analysis of economic time series data” with autoregressive

models, which they also consider the preferable tool to use in forecast-

ing 20. Therefore, although it is true that, apparently eclipsed by unit

roots, autoregressive models have not been often used recently to model

trends, it is somewhat surprising that Mills (2003) implicitly rules out

this possibility, reserving them only to model cyclical behaviour. At least,

they might be helpful to improve the precision in the estimation of the

coefficients of deterministic trend terms.

The autoregressive model of order p, AR(p), is

yt = α + ϕ1yt−1 + . . .+ ϕpyt−p + ϵt, or

ϕ(L)yt = α + ϵt,

where ϕ(L) = 1 − ϕ1L − . . . − ϕpL
p is the autoregressive polynomial.

Stationarity demands that all the roots of ϕ(z) = 1−ϕ1z− . . .−ϕpz
p lie

outside the unit circle. In this case the OLS estimator of the autoregres-

sive coefficients is consistent and if, besides white noise, ϵt is Gaussian as

well, then it is the same as the conditional maximum likelihood estimator,

and hence it is asymptotically efficient.

A polynomial in the deterministic linear trend term may be also

added, as in the “augmented” Dickey-Fuller test regressions, but in most

applications a simple linear trend will be sufficient, as in the following

example, which is one of the final empirical models estimated by Seater

(1993) with data series of annual average global temperatures over the

20And significantly, in the subject index of this textbook, autoregressive models are
implicitly designated as the time series regression models (p. 825).
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period from 1854 to 1989:

ŷt = −5.287
(1.220)

+ 0.0027
(0.0006)

t+ 0.494
(0.086)

yt−1, R2 = 0.669.

Seater started his work on model specification with a cubic polynomial

in t and an autoregressive polynomial of order (p =)11 and subsequently

simplified his models using a general-to-specific (GTS) modeling strategy

resorting to (asymptotically valid) F -tests until he arrived at models as

the one presented as example. Instead of F tests he could have used

equivalently individual t tests, that is, the popular t−sig testing strategy.
Both this strategy and the one that minimizes the AIC statistic are not

consistent since they tend to overfit, leading to autoregressions which are

too lengthy or liberal; on the other hand, and provided the starting order

(usually called pmax) is at least as large as the true one, the strategy that

minimizes the BIC (or SIC) statistic is consistent, that is

lim
T→∞

p̂BIC = p,

where p now denotes the true lag length (see, e.g., Hayashi, 2000, pp.

394-7). However, my own empirical experience indicates that although

it works well when the purpose is forecasting, in small samples the BIC

criterion tends to produce autoregressions that are too short, too much

parsimonious, and that sometimes fail in capturing all the relevant dy-

namics; both the GTS t− sig method (usually with a liberal significance

level, say α = 0.10) and the AIC criterion appear to be preferable on

these grounds.

Along the way to the final models, Seater (1993) reports also some

collinearity problems which are typical of these models. To reduce them,

we may resort to the useful polynomial decomposition

ϕ(L) = ϕ(1)L+ γ(L)(1− L),

where γ(L) is a new polynomial in L of order p − 1, with coefficients

γ0 = ϕ0 = 1 and γi = −
∑p

j=i+1 ϕj, i = 1, . . . , p − 1. Considering the
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“mixed version” with only one deterministic trend term, one may then

write

∆yt = δ + βt+ ϕyt−1 +

p−1∑
i=1

∆yt−1 + ϵt,

where ϕ = −ϕ(1), which is a typical augmented Dickey-Fuller (ADF) test

regression as well. Since most regressors are now differenced, collinearity

problems must be now almost completely absent.

On the other hand, modeling trends seems to dispense with the re-

source to threshold (TAR) and to smooth transition (STAR) autoregres-

sive models as primary mechanisms. These models are particularly ade-

quate to model asymmetric features which are common in cycles but that

do not appear to be present in trends. Nevertheless, a logistic smooth

transition autoregressive model (LSTAR) proposed by He and Sandberg

(2006) to serve as alternative to the unit root hypothesis is worth men-

tioning:

yt = x′
tπ1 + x′

tπ2F (t) + ut,

where xt = (1, yt−1, . . . , yt−p, t)
′, π1 and π2 are (p+ 2)× 1 vectors of co-

efficients, e.g., π1 = (π10, π11, . . . , π1,p+1), and F (t) is a logistic transition

function defined by

F (t) = {1 + exp[−γ(t− c)]}−1 − 1

2
,

where γ is the parameter that determines the speed of the transition

from one regime to another, and c indicates the point about which the

transition is symmetric, i.e., the midpoint of the transition21. The model

then allows one transition over time for each parameter. But it does

not necessarily impose that all parameters change; if, for instance, only

the coefficients of the deterministic regressors are allowed to change, the

restrictions π21 = . . . = π2,p = 0 must be imposed. A model similar to

this one was already presented in section (3.7), but the current model

21He and Sandberg (2006) use a notation that is slightly different from the one I
have used in section (3.7)
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allows that dynamics may also change, which may be useful to improve

the precision of estimation of the changing trend. To the best of my

knowledge, this model was not yet estimated with any real data. It is

not difficult, however, to find applications over differenced, non-trending

data (an example is mentioned at the beginning of section 3.7).

3.11 Other models

Besides the previous models, there are other approaches that may be

used to estimate trends. Some of them do not really rely on models,

justifying that I use the term “approach” instead. For instance, Mills

and Patterson (2015) describe in some detail three of these approaches

proposed in the 1920s: rolling window estimation, the “arctan trend”

and the concept of quadrature. The first approach is well known and

it may indeed sometimes represent an effective way to track a growing

but slowly changing trend. The resource to the inverse of the tangent

function was a way to approximate a non-linear trend that has been

rarely used and the concept of quadrature may be seen as a precursor of

the random walk/white noise pair, i. e., of a process that is defined as

the accumulation of another, much simpler.

Markov switching (MS) models are addressed in Mills (2003) but,

like the TAR and STAR models of the previous section, they are not

really used to model trends, at least directly. Instead, they may be very

useful to capture nonlinearities that are usually reported on business

cycles. The difference to the TAR and STAR models lies in the nature

of the state variable that rules the regime switching of the series, which

is unobservable (and discrete) in the case of MS models.

As acknowledged in Mills (2003), nonparametric trend modeling re-

mains rather uncommon. Nonparametric estimation may be quite ef-

fective smoothing the observed series but the meaning of the estimated

trend is indefinite. As the presentation in Mills (2003) suggests, non-

parametric methods seem to follow closely the first approaches to the

trend, aiming only to remove it from the data rather than to describe or
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explain it. This appears to be the case as well with the method proposed

recently in Fritz, Gries and Feng (2019), which contains some obscure

aspects. For instance, the reason why one should estimate the “ν-th”

derivative of a smooth function of time is simply not explained.

Finally, Granger, Inoue and Morin (1997) proposed a class of models

for non-stationary processes that is wider than the linear unit root model,

which is defined in general by

yt = yt−1 + g(yt−1) + ϵt,

with g(y) > 0 and

E(ϵ2t |yt−1, yt−2, . . .) = σ2(yt−1) > 0,

which they call the nonlinear stochastic trend model. Several of the

models of this class are presented and attention is focused on the “K(α, β)

model”, characterized by

g(y) = cyα, α < 1, and σ2(y) = νyβ

that is

yt = yt−1 + cyαt−1 +

√
νyβt−1.ϵt,

with ϵt ∼ iidN (0, σ2
ϵ ). Its estimation is addressed, involving a three-step

procedure, mostly based in maximum likelihood but requiring NLS to

obtain initial estimates of α and β.

Several empirical applications are provided with monthly data over

relatively long periods that provide large samples, with sizes in the order

of 400-600 observations, rendering useful the conditional heteroskedastic-

ity assumption of the model. However, no significant gains over simpler

models appear to emerge clearly in the study. Perhaps this explains the

modest number of empirical applications that followed. Neusser (1999)

is an exception, providing a presentation focused in the K(α, β) model

as well as several empirical examples.



Chapter 4

Decomposition Methods

Under the title of this chapter – decomposition methods– I subsume

the procedures that are designed to remove or nullify components of

the series which are not considered as relevant, as worthy of further

attention, and that permit segregating the trend. That is, they are aimed

at either removing the trend or, on the contrary, removing the cyclical

(and possibly the seasonal) component(s) and isolate the trend. As is

well known, most often their aim is to isolate the cycle, i.e., they usually

belong to the toolbox of business cycles methods, but as mentioned in

chapter 2, their aim may be instead to isolate the trend (as in Burns’1934

book). This is however seldom the case. Generally, these methods do

not propose any model for the underlying trend, and they rarely suggest

a way to predict their values, but there are important exceptions.

The most well known of these procedures are the so called filters,

and their fundamental characteristic is precisely that one: they do not

generate any model for the trend. Much of the material in this chapter

refers to these filters, and readers less familiarized with their approach

are invited to spend some time previously reading the appendix that is

provided to introduce them.

Although the approach is mostly statistical, the economic perspec-

tive may be helpful for the case of GDP, particularly if the (restrictive)

notion of the trend as representing potential output is adopted. Poten-

87



88 CHAPTER 4. DECOMPOSITION METHODS

tial output is a concept from economic theory and since it represents an

unobservable magnitude, it is often made to coincide with the trend or

permanent component of GDP. Hence, methods that are devised to esti-

mate it — or its difference to effective output, i.e., the output gap — are

indeed methods allowing to estimate the trend, often with the purpose

of subtracting it from output.

Even when considered jointly with the previous chapter, the present

chapter does not exhaust the presentation of the wide spectra of trend

estimation methods. For instance, Álvarez and Gómez-Loscos (2018),

Chalmovianský and Nêmec (2022) and Ladiray, Mazzi and Sartori (2003)

address several other methods used in economics, particularly multivari-

ate ones, that lie beyond the scope of this work. Curiously, the common

ultimate purpose of the methods surveyed in these papers is to measure

the output gap. Nachane and Chaubal (2022) provide a pedagogical

introduction to the digital signal processing filters, rarely used in eco-

nomics, as well as a comparison between their properties and those of

the two band-pass filters that will be addressed below. In other research

areas, a recently proposed methodology which is mostly empirical, that

of “empirical mode decomposition”, is gaining popularity as a tool to re-

move nonstationary and nonlinear trends. For instance, it is employed in

Li, Yao and Chau (2017) to uncover effects that appear to be masked by

an increasing trend in temperatures on reference-crop evotranspiration

(whose estimation is required as an input to schedule field irrigation, and

to drought assessment and climate change research).

4.1 Moving averages

This section briefly reviews the simplest and oldest method of detrending,

that of using moving averages, not to be confused with moving average

models.
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Simple moving averages

Detrending with a symmetric, simple, two-sided moving average is the

oldest method for detrending, proposed by Hooker (1901), that can be

considered as a smoothing method, i.e., one which attenuates or even

completely removes the high frequency components of the series, while

preserving those that are low frequency. Thus, it closely agrees with the

idea of the trend as the smooth component of the series. And it is for this

reason that Brockwell and Davies (1987) consider that it is a low-pass

filter. It is also one of the most basic methods of detrending, dominating

practice in the 1980s and 1990s within government and quasi-government

organizations according to Osborn (1995).

A simple (symmetric, two-sided) moving average of the yt series is

given by

zt =
1

2m+ 1

m∑
j=−m

yt+j, t = m+ 1,m+ 2, . . . , T −m,

with m a non-negative odd integer1, which is sometimes denoted simply

as MA(2m + 1), and called a MA(2m + 1) filter or smoother, the MA

really corresponding to its stricto sensu (i.e., not as in “moving average”

models). Hence, it is a particular case of a linear filter:

m∑
j=−m

ajyt+j = (a−mL
−m+a−m+1L

−m+1+. . .+a0+. . .+am−1L
m−1+amL

m)yt,

with weights aj = 1/(2m+1), j = −m, . . . ,m,
∑m

j=−m aj = 1. Therefore,

it is indeed an average that moves along the original series, until zt is

computed at each observation for which all elements of the average that

are available; as it advances, the oldest observation is dropped and the

next observation is included in the computation.

1The case where m is even and/or the moving average is one-sided is addressed in
e.g., Hyndman (2009) and Mills (2003). Hyndman (2009) addresses also the equiva-
lence between weighted moving averages and kernel regression.
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A well known problem affecting this method is the “end-effects” prob-

lem, the estimated trend becoming available only for observations from

t = m + 1 to T − m for obvious reasons. To remedy this problem the

method is sometimes complemented with backcasting and forecasting

procedures but I will not address these here.

An alternative patch consists in employing an asymmetric moving

average with a gradually expanding window for the first and last m ob-

servations of the series (as in, e.g. Chalmovianský and Nêmec (2022)):

a) for t ≤ m, z1 =
∑m

i=0 yt+i

m+1
, z2 =

∑m
i=−1 yt+i

m+2
, . . . , zm =

∑m
i=−m+1 yt+i

2m
;

b) for t > T −m, zT =
∑0

i=−m yt+i

m+1
, zT−1 =

∑1
i=−m yt+i

m+2
, . . . , zT−m+1 =∑m−1

i=−m yt+i

2m
.

Denoting the (estimated) detrended series with D̂t, one may write it

as
D̂t = yt − a(L)yt

= [1− a(L)]yt
= d(L)yt,

where a(L) is the filtering polynomial of the previous equation and d(L) =

1 − a(L) represents the detrending polynomial. Since the weights sum

to unity, a(1) = 1, implying that d(1) = 0. Therefore, d(L) can be

factorized as

d(L) = (1− L)b(L),

that is, as the detrending filter incorporates a differencing operator it

will remove a single stochastic unit root; therefore, it will render any

I(1) process stationary.

Actually, it is easy to go even further and show that simple moving

averages remove two unit roots that the series might have and hence

they also reduce the order of any deterministic trend polynomial by 2

(Osborn, 1995). This also means that they introduce two moving average

unit roots if the original series is I(0), and one moving average unit root

if it is I(1). This is the most likely case given the prevalence of the I(1)

property among macroeconomic time series.
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This is not, however, the most negative aspect of this method. Using

tools from frequency domain analysis, Osborn (1995) also shows that the

method is rather inadequate for business cycle analysis because it may

induce spurious cyclicality. In particular, for the case of I(1) processes,

Osborn shows that the strength of this effect increases with the length of

the moving average filter that is applied. This explains why the method

appears having been abandoned in empirical applications.

Weighted moving averages

Weighted moving averages are obtained with weights that sum to one,

that are symmetric, that is, aj = a−j, but that are not equal in absolute

value, producing an estimated trend that can be much smoother because,

instead of observations suddenly entering and leaving the calculations of

the average, they can be slowly downweighted.

The Spencer 15-point moving average is a weighted moving average

that can be obtained applying successively an equal weighted MA(4)

twice to an equal weighted MA(5) and finally applying a weighted 5-

term MA with weights. It can be shown that its weights 2 are:

a0 =
74

320
, a±1 =

67

320
, a±2 =

46

320
, a±3 =

21

320
,

a±4 =
3

320
, a±5 = − 5

320
, a±6 = − 6

320
, a±7 = − 3

320
.

Henderson’s weighted moving averages, on the other hand, have been

particularly popular in seasonal adjustment methods. They rely on an

idea of local polynomial regression, with a (deterministic trend) cubic

polynomial fitted to rolling samples of size 2m + 1. Hence, polynomial

trends of degree less than or equal to 3 pass undistorted through the

filter. For further details see, e.g., Pollock (2016).

2The weights of the 21-point Spencer’s MA are presented in section 2.4.
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4.2 The Beveridge-Nelson (BN) decompo-

sition

Beveridge and Nelson (1981, BN) proposed that the measure of the trend

of a series should be given by its long-run forecast, i.e., “the best estimate

of where the variable will be in the distant future” (Nelson, 2008). For

this purpose, they rejected that the (then prevailing) linear trend model

could be a valid possibility, as it implied a perfectly predictable evolution

for the series and, as shown by Nelson and Kang (1984), could strongly

distort the cyclical properties of the series. The BN decomposition is,

however, also a model based approach to decompose a time series into a

permanent or trend component and a transitory or cyclical component.

To obtain the original forecasting version decomposition, assume that

the yt series is integrated of order one, I(1), with Wold representation

for its first difference given by

∆yt = δ + ψ(L)ϵt = δ +
∞∑
j=0

ψjϵt−j, (4.1)

with ψ(0) = 1 (i.e., ψ0 = 1), ψ(1) ̸= 0 (to rule out the possibility

that yt ∼ I(0)), and
∑∞

j=0 j
1/2|ψj| < ∞, where this 1/2−summability

condition, together with the Wold decomposition guarantee the existence

and uniqueness of the decomposition3.

The optimal prediction of yt+k conditional on the information dataset

available at time t (It) is

E(yt+k|It) = ŷt+k|t = yt + ∆̂yt+1|t + ∆̂yt+2|t + . . .+ ∆̂yt+k|t, (4.2)

3See Oh, Zivot and Creal (2008) and note that this condition is less demanding
than the usual of one-summability (e.g., Hamilton, 1994, p. 504, or Hayashi, p. 564).
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with terms given by

∆̂yt+1|t = δ + (ψ1ϵt + ψ2ϵt−1 + ψ3ϵt−2 + . . .),

∆̂yt+2|t = δ + (ψ2ϵt + ψ3ϵt−1 + ψ4ϵt−2 + . . .),

∆̂yt+3|t = δ + (ψ3ϵt + ψ4ϵt−1 + ψ5ϵt−2 + . . .),
...

∆̂yt+k|t = δ + (ψkϵt + ψk+1ϵt−1 + ψk+2ϵt−2 + . . .) .

Substituting into (4.2) gives

ŷt+k|t = yt + k δ +

(
k∑

j=1

ψj

)
ϵt +

(
k+1∑
j=2

ψj

)
ϵt−1 +

(
k∑

j=3

ψj

)
ϵt−2 + . . . .

Considering a very long horizon, an approximation is given by

ŷt+k|t ≈ yt + k δ +

(
∞∑
j=1

ψj

)
ϵt +

(
∞∑
j=2

ψj

)
ϵt−1 +

(
∞∑
j=3

ψj

)
ϵt−2 + . . . .

Therefore, what may be called the forecast function is a linear func-

tion of the forecast horizon, k, with slope δ, which is the drift parameter.

It contains also a level or intercept, denoted with yt, that BN consider

as the permanent or trend component of the series, which is given by

yt = yt +

(
∞∑
j=1

ψj

)
ϵt +

(
∞∑
j=2

ψj

)
ϵt−1 +

(
∞∑
j=3

ψj

)
ϵt−2 + . . . , (4.3)

and which is a pure random walk with drift:

yt − yt−1 = δ +
(∑∞

j=0 ψj

)
ϵt

= δ + ψ(1)ϵt,

where ψ(1) =
∑∞

j=0 ψj is the very long-run effect of a transitory shock

ϵt, i.e., the limit of the impulse-response function as the horizon goes

to infinity (and recall that it is not zero to rule out the possibility of
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stationarity of yt).

Returning to equation (4.3), one can write it as

yt = yt + (γ0ϵt + γ1ϵt−1 + γ2ϵt−2 . . .),

where γj = −
∑∞

i=j+1 ψj, that is, yt may be decomposed as the sum of a

random walk — the trend —, accumulating the elements of a white noise

process, ϵt−j, j = 0, 1, 2, . . ., and a stationary stochastic process, which is

driven by exactly the same white noise process, the cycle.

The alternative derivation of the decomposition can be derived from

the polynomial factorization4

ψ(L) = ψ(1) + (1− L)γ(L),

where γ(L) =
∑∞

j=0 γjL
j, with γj = −

∑∞
j=0 ψj. Using this factorization

in equation (4.1), it may be written as

∆yt = δ + ψ(1)ϵt + (1− L)γ(L)ϵt.

Integrating and denoting with ηt the stationary process ηt = γ(L)ϵt, one

obtains

yt = y0 +
t∑

s=1

∆ys = y0 + δ t+ ψ(1)
t∑

s=1

ϵs + ηt − η0,

which is the version of the decomposition appearing in, e.g., Hayashi

(2000): any linear I(1) process can always be written as the sum of a

linear time trend, a pure random walk or stochastic trend, a stationary

process representing the cycle, ηt, and an initial condition (y0 − η0).

It should be also noted that:

a) even if the process is driftless (i.e., δ = 0), it contains a long-run

4This factorization is similar but it is not identical to another factorization of the
previous chapter. To prove it, one must note that ψ(L) − ψ(1) = −(1 − L)[ψ1 +
ψ2(1 + L) + ψ3(1 + L + L2) + . . .]. Pollock (2011) names this result as the “the
ordinary remainder theorem of polynomial algebra”.
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or permanent or trend component, which is the stochastic trend.

Only the deterministic trend disappears.

b) Since they are driven by the same shocks, the BN trend and cycle

are perfectly correlated.

c) It is usually assumed that ∆yt follows an ARMA(p, q) process, so

that

ψ(L) = θ(L)/ϕ(L),

with p and q denoting the orders of ϕ(L) and θ(L), the autoregres-

sive and moving average polynomials, respectively, whose roots are

assumed to lie outside the unit circle.

Apparently starting with Campbell and Mankiw (1987), an esti-

mate of ψ(1) based on ARIMA modeling has been used to measure

the persistence of economic shocks. That is,

ψ̂(1) =
∞∑
j=1

ψ̂j = θ̂(1)/ϕ̂(1)

is the estimate of the long-run effect of shocks, with unity corre-

sponding to the case of the random walk model as the reference

value. For a (trend) stationary process ψ(1) = 0, as can be easily

shown5, and, if the order of integration is larger than 1, this mea-

sure is infinity (see Miller and Newbold, 1995). Estimates between

1.2 and 1.6 are common for series of GDP.

To the traditional, linear trend based decomposition, with no shocks

with permanent effects, the BN decomposition opposed radically, resting

on the unit root model and hence considering that all shocks have per-

manent effects. It is not surprising, then, that when applied to output

series, BN estimated trend output almost coincides with actual output,

leaving only a small role to the cycle. Ascribing much movements to

the trend not only makes it much less smooth than customary but also

5It may also be helpful to revisit section 3.8, in the previous chapter.
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implies that business cycles are very small, unimportant and noisy. This

is the main critique that is usually made to the BN decomposition and

indeed it may be noted that if ϕ(1) > 1 the variance of the innovations of

the trend (ϕ(1)2σ2) is larger than the variance of the original innovations

(σ2). Another common critique is that since the decomposition depends

on ARIMA modeling and different acceptable models may possess very

different long-run properties, alternative specifications may imply very

different decompositions6.

Empirical implementation of the decomposition again may resort to

ARIMA modeling. As reviewed in Mills (2003), a few simple calculations

allow obtaining the BN trend as

τt = ϕ(L)
θ(L)

ψ(1)yt,

= ω(L)yt,

with ω(1) = [ϕ(1)/θ(1)]ψ(1) = 1, i.e., the trend is a weighted average of

current and past observations. Notice also the crucial role performed by

the persistence measure of the series in the calculation. This equation

permits the recursive estimation of τt. For instance, if the adequate model

for ∆yt is an ARMA(1,1),

∆yt = δ + ϕ∆yt−1 + ϵt + θϵt−1,

then ϕ(L) = 1− ϕL and θ(L) = 1 + θL, and hence

τt =

(
1− ϕL

1 + θL

)
ψ(1)yt,

that is,

(1− θL)τt = (1− ϕL)ψ(1)yt,

τt = ψ(1)yt − ϕψ(1)yt−1 − θτt−1, t = 2, 3, . . . , T.

6See Álvarez and Gómez-Loscos (2016). Oh et al. (2008) contest the idea that BN
cycles are always too noisy.



4.3. THE HODRICK-PRESCOTT FILTER 97

Therefore, it must be assumed that τ1 = y1 to initiate the recursive

calculations. The cycle is obtained residually (ct = yt − τt) and the

previous assumption now implies that c1 = 0.

4.3 The Hodrick-Prescott filter

As mentioned in chapter 2, the so-called Hodrick-Prescott (1981, 1997)7

procedure uses penalized least squares and coincides with the one pro-

posed by Leser (1961). Hodrick and Prescott (HP) are very clear from

the outset: their purpose is not to study the trend; the fluctuations that

are aimed “are those that are too rapid to be accounted for by the slowly

changing demographic and technological factors and changes in the stocks

of capital that produce smooth secular growth in output per capita” (e.g.,

1981, p.1).

Since the 1990s the procedure has become widely adopted and per-

haps it is still the most popular method used for detrending in statistical

and government agencies and in academic research. The main reason for

this dominance may be found in the intuitive appeal of the procedure: the

trend must be the best fitting curve to the data which, simultaneously,

is as smoothest as possible. This idea corresponds very closely to the

common, graphical or intuitive notion of the trend among economists: a

curve that fits the data very well but which must sacrifice some goodness

of fit for the sake of smoothness, as this is an indisputable feature that a

trend must possess8. Moreover, since it is based in an optimizing proce-

dure, it is in close harmony with the behaviour of rational, optimizing,

economic agents.

In close similarity with Leser’s (1961) decomposition (see subsection

7The history of this paper is succintly but delightfully described in footnote 2 of
Hodrick’s (2020) working paper.

8E.g., Canova (1998, p. 485):“... the implied trend resembles what an analyst
would draw by hand through the plot of the data”; see also Kydland and Prescott
(1990).
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??, Hodrick and Prescott start from the decomposition

yt = gt + ct, (4.4)

where the trend, gt, is called the “growth component” and ct denotes

the cycle or cyclical component (but notice that in Leser there is no

cycle, only disturbances besides the trend). The data are assumed to

be seasonally adjusted but, relatively to some traditional decompositions

(e.g., Persons, 1919), there is no irregular or noise component; one must

therefore presume that it is included in ct.

As in Leser, the growth component is the solution to the problem

min
{gt}Tt=−1

{
T∑
t=1

c2t + λ
T∑
t=1

[(gt − gt−1)− (gt−1 − gt−2)]
2

}
, (4.5)

where ct = yt−gt and λ is a positive parameter which penalizes variability

in the growth component, i.e., it is a smoothing parameter: the larger

it is the smoother the solution, which will be a linear time trend in the

limit, when λ → ∞. On the other hand, when λ → 0 the solution will

be the series itself. The terms of the second sum are easily recognizable

as the second differences of the trend (∆2gt = ∆∆gt = ∆(gt − gt−1) =

(gt − gt−1)− (gt−1 − gt−2)).

While maximizing the goodness of fit of the trend to the data appears

to be a sensible purpose, one which is common sense or simply intuitive

for most economists, minimizing the variability of the cyclical component,

is questionable as a desirable property that one must search, unless that

component is essentially noise. Viewing gt as potential output — and

hence ct as the output gap — does not improve this state of affairs:

potential output is a supply variable and seeking its optimal adherence

to observed output is hardly an undisputable objective.

As regards the smoothing or penalizing parameter λ, under restrictive

assumptions that both ct and ∆2gt follow white noise processes, with

variances σ2
c and σ2

g respectively, HP find that its value should be given

by the ratio σ2
c/σ

2
g and proposed that a reasonable and empirically based
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value should be λ = 1600. This is the value typically used with quarterly

data, but for annual data the usual choice is λ = 100.

Solving the matrix equation of the first order conditions produces the

solution of (4.5) as (see e.g., Hamilton, 2018):

g∗ = (H′H+ λQ′Q)−1H′y,

where g
(T̃×1)

= (gT , gt−1, . . . , g1)
′, with T̃ = T+2, y

(T×1)

= (yT , yT−1, . . . , y1)
′,

H
(T×T̃ )

= [ IT
(T×T )

0
(T×2)

], and

Q
(T×T̃ )

=


1 −2 1 0 . . . 0 0 0

0 1 −2 1 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . −2 1 0

0 0 0 0 . . . 1 −2 1

 .

Hence, the rows of the matrix (H′H + λQ′Q)−1H′ contain the filter

weights that allow obtaining the trend estimates. And the rows of the

matrix I− (H′H+λQ′Q)−1H′ represent the weights of the cyclical filter.

It is not easy to reconcile the wide popularity of the filter with the

theoretical analyses published about it throughout time, beginning with

the work of King and Rebelo (1993). These have been mostly critical,

pointing to drawbacks and frailties that most practitioners have been

reluctant to acknowledge. The reason for this lies very likely in the

intuitive attractiveness of the filter, particularly in its smoothness, “that

shows where trending economic activity has been, is now, and where it

may be heading” (Phillips and Jin, 2021, p. 501).

The first criticism has been already introduced, implicitly at least:

the framework of the procedure reduces the importance of the subject

that it claims to be its object of study, the cycle, to the point of denying

its existence. Although Canova (1998) considers that the HP filter is

an economic procedure, there is no basis in economic theory that sup-

ports the notion of cyclical fluctuations as a component with minimum
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variability. Although this is desirable and a goal of economic policy,

what is required here is a measure of observed, actual, not of desired

cyclical fluctuations. Searching for the decomposition that aims at this

minimization logically stems from the replacement of Leser’s disturbance

term with the cyclical component but there is no further justification in

this besides convenience reasons.

Actually, Leser’s framework goes back at least to the work of Wiener

and Kolmogorov in the 1940s, aiming to extract a signal from a series of

observations when that signal is contaminated or corrupted by noise. In

equation (4.5) the trend performs the role of the signal and, contradicting

the stated purpose, the cycle corresponds to noise. Gómez (1998, 2001)

and Pollock (2013, 2016) provide brief presentations of the Wiener and

Kolmogorov’s approach and explicitly consider the HP filter as one of its

particular cases; however, both are silent about the adequacy of Hodrick

and Prescott’s approach to the decomposition of macroeconomic time

series.

In a sense, however, the previous criticism is not completely new.

Formally, it can be related with a result by Harvey and Jaeger (1993)

according to which the HP filter is optimal for a DGP given by a struc-

tural or unobserved components model where the trend has a random

walk growth rate, i.e., it is I(2), and the cycle is reduced to a simple

white noise process. This point will be resumed in section (4.5), where

these models will be addressed.

Resorting to a simpler framework, in his proposition 1 Hamilton

(2018) proves a similar optimality result for the filter, implying a serially

uncorrelated cyclical component, i.e., with “no discernible pattern”. As

Hamilton (2018, p. 832) observes with some irony, this obviously and

strongly contrasts with what “users of the HP filter hope to see”: “sug-

gestive patterns in plots of the series that are supposed to be interpreted

as the cyclical component of yt”.

The work of Gómez (1999, 2001) is also important in this regard.

Gómez showed that the HP filter is a Butterworth filter9 for a signal

9Butterworth filters are filters used mainly in electrical engineering. The gain
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extraction problem with the signal following an IMA(2, 0) process and

the noise a white noise process uncorrelated with the innovations of the

signal (as in Harvey and Jager, 1993). Besides the stringent and partially

inappropriate conditions for optimality, this also opens the possibility of

finding a better Butterworth filter. Gómez (2001) further shows that the

HP filter for the cycle — that is, 1 minus the trend filter — is a rather

good approximation for the ideal filter that passes components with pe-

riods smaller than eight years. Notwithstanding the general positiveness

of this result, this is a serious shortcoming as well, because these fre-

quencies include those with periodicities between six and two quarters,

“which cannot be considered to belong to a proper cyclical component”10;

that is, “the cycle estimated with the HP filter will be more noisy than

the one estimated with a band pass filter” (Gómez, 2001, p. 367).

King and Rebelo (1993, KR) had also previously derived the inap-

propriate optimality conditions of the filter but directed their attention

mainly to its distorting consequences, both in univariate analysis and

for the operation of multivariate dynamic models. Some of their exam-

ples showed that cyclical fluctuations could be “dramatically altered” (p.

210) by the filter and that, as a consequence, gathered stylized facts

could become corrupted. From the first order conditions for optimiza-

tion and assuming an infinite sample, they derived the (approximate or

asymptotic version of the) trend filter as

τ(L) = [λ(1− λ)2(1− L−1)2 + 1]−1,

which is a two-sided moving average, and from which the one of the

function of the filter based on the sine function is G(ω) =

[
1 +

(
sin(ω/2)
sin(ωc/2)

)2d]−1

,

where ωc is a frequency such that G(ωc) = 1/2 and d is a positive integer. See also
Pollock (2013, 2016).

10Recall that for quarterly data the classical approach by Burns and Mitchell (1946)
defines business cycles as those components with no less than six quarters (1.5 years)
and no more than 32 quarters (8 years) in duration.
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Figure 4.1: The gain function of the Hodrick-Prescott filter for λ = 1600

cyclical filter can be obtained:

c(L) =
λ(1− L)2(1− L−1)2

1 + λ(1− L)2(1− L−1)2
. (4.6)

Since the gain of this filter is

G(ω) =
4λ(1− cosω)2

1 + 4λ(1− cosω)2
,

the cyclical filter assigns zero power to the zero frequency (because cos 0 =

1) and, since cos(π) = −1, power close to unity to the high frequencies

for large values of λ (G(ω) = 16λ/(1 + 16λ)). Hence, as previously men-

tioned, the cyclical filter approximates an ideal high pass filter. Figure

4.1 presents the plot of the gain of the usual HP filter.

Cogley and Nason (1995) extend the critique of King and Rebelo

(1993) to the point of showing that the filter may induce spurious ef-

fects — both univariate and multivariate, through RBC models — on

persistent data, exaggerating the importance of fluctuations at the busi-

ness cycle frequencies. The severity of the problem is particularly acute
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when the original data is generated by random walks, in which cases

business cycle dynamics may emerge as a complete artifact of the proce-

dure (as clearly there were none originally). In this case, there is thus a

close analogy with the spurious deterministic linear detrending of random

walks described by Nelson and Kang (1984). Harvey and Jaeger (1993)

prove the same result with a different method and, although agreeing

with the spurious label, they also refer to the case as an example of the

Yule-Slutsky effect (see section A.11).

Hamilton (2018) uses equation (4.6) to shed more light on the op-

eration of the filter on random walks. Considering observations near to

the middle of the sample, so that the asymptotic approximation per-

forms well, and naming the polynomial of the denominator as F (L), i.e.,

F (L) = 1 + λ(1 − L−1)2(1 − L)2, the estimated cyclical component can

be approximated with

ct =
λ(1−L−1)2(1−L)2

F (L)
yt

= λ(1−L)4

F (L)
yt+2

= λ(1−L)3

F (L)
ϵt+2,

where ϵt denotes the (white noise) innovations of the random walk ((1−
L)yt = ϵt). Then, still following Hamilton (2018) closely, for the usual

choice λ = 1600, it becomes

ct = 89.72
{
−q0,t+2 +

∑∞
j=0(0.8941)

j[cos(0.1117j)

+8.916 sin(0.1117j)] (q1,t+2−j + q2,t+2+j)} ,

where

q0t = ϵt − 3ϵt−1 + 3ϵt−2 − ϵt−3,

q1t = ϵt − 3.79ϵt−1 + 5.37ϵt−2 − 3.37ϵt−3 + 0.79ϵt−4, and

q2t = −0.79ϵt+1 + 3.37ϵt − 5.37ϵt−1 + 3.79ϵt−2 − ϵt−3.

Therefore, starkly contrasting with the original innovations, the esti-

mated cycle is highly predictable because it depends on past innovations
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and, since it also depends on future innovations, it is capable of pre-

dicting the future as well. Hence, as the coefficients of F (L)−1 depend

only on the value assigned to λ, “these patterns in the cyclical component

are entirely a feature of having applied the HP filter to the data rather

then reflecting any true dynamics of the data-generating process itself”

(Hamilton, 2018, p. 833). Hamilton further illustrates these spurious

effects with the cases of the series of U.S. stock prices and real consump-

tion.

Hamilton (2018) also points out that it is the two-sided nature of the

filter that lies at the center of its attractiveness because it is its use of

unknown future values that allows it to display the expected or imagined

smoothness that many economists believe a trend must possess. For

instance, in early 2009 it would be reasonable to expect that much of the

2008’s crash of the stock market would be permanent or at least that it

would take a long time to recover. With its “foresight”, the filter was

able to smooth the crash, as well as the rapid and strong appreciation

that followed. The smoothness of the “long-run” component that most

researchers enjoy observing is not a feature of the DGP; instead, it “is

just something that their imagination has imposed on the data” (ibidem,

p. 835).

Another drawback of the filter that many practitioners know well from

applied work is the failure to stationarize integrated time series, in partic-

ular I(1) series. This is a feature that runs against expectations because

the filter is a detrending one and I(1) series contain a stochastic trend.

But series detrended with the HP filter often continue to fail rejection

of the unit root hypothesis by, say, ADF tests. Moreover, the intuitive

expectation is also theoretically grounded in KR’s work, in particular

in equation (4.6): since the numerator contains a fourth difference, the

filter should render stationary any time series integrated up to the fourth

order.

The problem with this inference, according to DeJong and Sakarya

(2016, DS), is that it is based on the approximate version of the filter,

which neglects the effect of the observations in the beginning and end of

the sample. Indeed the first order conditions from which equation (4.6)
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is derived cannot hold for those observations. DS prove that the HP filter

is capable of removing a unit root from a DGP but only provided the

resulting estimated cyclical component is limited to observations away

from the beginning and end of the sample. The influence of these obser-

vations in practice may explain that the observed original nonstationary

behaviour is passed to the estimated cycle.

Phillips and Jin (2021) also criticize the approach by KR and all that

followed, labeling it as “superficial”, pointing out that in equation (4.6)

the numerator cannot be considered in isolation from the denominator;

more precisely, they stress that the cyclical filter is a nonlinear rational

function filter, where the “denominator operator produces a smoothing

operation on the data that accompanies and partially reverses the fourth

difference operator in the numerator of the filter” (p. 473). Although

their approach is purely asymptotic, they claim that the popular value

adopted for the smoothing parameter in quarterly data samples of com-

mon size (λ = 1600) is too large to remove a unit root, and that the

price to pay for the smoothness of the trend is a estimated cycle “that

inevitably imports the random wandering character of a stochastic trend”

(ibidem, p. 486). Their asymptotic analysis, where they make λ → ∞
as T → ∞, leads them to state that it is not so much the value of λ

that is a concern but rather that value in relation with the sample size;

and λ = 1600 is “extremely large” for the usual sample sizes of quarterly

data. Unfortunately, their recommendation to effectively remove a unit

root has limited practical value because it requires only that, as T → ∞,

the smoothing parameter must be of order o(T ).

With such an important role, one would expect that the choice of

λ would obey some rationality, that its value would be selected on the

basis of some principle. As Harvey and Jaeger (1993) observed, however,

if λ were estimated in the framework of the structural model where the

filter is optimal, the cycle would be reduced to a white noise process.

Imposing a value selected a priori counteracts this effect but has no

support in empirical evidence. Hamilton (2018) obtains estimates for λ

for some U. S. macroeconomic time series and finds that they are hugely

at odds with the popular choice, much smaller than 1600, close to unity,
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producing estimated trends that would be much choppier, barely differing

from the original series.

When facing the choice between the smooth look and statistical opti-

mality, economists understandably often tend to favour the first. What

is questionable, even dangerous however, is to base all inferences in such

unique, possibly flawed estimates (both for the trend and the cycle).

Canova (1998) tried to compile stylized facts for U. S. business cycles

applying a variety of detrending methods to 7 macroeconomic time se-

ries. One of his main conclusions was that the outcomes vary widely

across detrending methods, making impossible to derive one single set of

uncontroversial stylized facts. Another was that the HP filter may pro-

duce results that are not much dissimilar from a few other methods. He

also found that the popular version of the HP filter tended to emphasize

cycles with average duration between 4 and 6 years, which may be “in-

appropriate” in some cases. But, as Burnside (1998) pointed out in the

first sentence of his paper, “there is nothing misleading in the fact that

different filtering techniques lead to different facts about macroeconomic

time series”. On the contrary, given the absence of commonly accepted

notions of trend and cycle, it is rather beneficial that different methods

illuminate different angles of the subjects. The HP filter may continue

being used, provided one bears in mind its drawbacks and limitations,

and hence avoids basing the analysis uniquely on its outcome.

Despite the wide popularity of the method, in most applications the

objective is to estimate the cyclical component; moreover, often the main

purpose is multivariate. Crafts and Mills (2017) provide an interesting

example for British GDP and industrial production trends for the period

1270-1913. However, they prefer to estimate the trend with a segmented

trend model.

Recently, Phillips and Shi (2021, PS) proposed an iterated proce-

dure with the HP filter, addressing its inadequacy to remove effectively

stochastic trends, which they have named the boosted HP filter, bHP.

The procedure really consists of the repeated application of the HP filter,

with all the iterations following the first applied to the residual, i. e., to

the cyclical component. In all these iterations it is now the trend that is
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obtained residually, with

τ̂
(i)
t = yt − ĉ

(i)
t ,

the superscript denoting the iteration. The purpose is to gradually purge

the estimated cycle from any stochastic trend effect. PS claim that,

asymptotically, the bHP filter is capable of removing trend mechanisms

that might contain integrated processes, deterministic trends and even

multiple structural breaks. In this analysis, not only λ→ ∞ with T → ∞
but also the second tuning parameter, m, the number of iterations, grows

to infinity as T → ∞. Two data-based stopping rules are considered, one

based on the outcome of an ADF unit root test, bHP-ADF, and the other

on an information criterion, IC(m), similar to BIC, the bHP-BIC.

In their simulation study, PS show that the new method performs

much better than the standard HP filter in a MSE sense. This is the

case particularly for the BIC version of the boosted filter which, however,

usually requires much more iterations than the bHP-ADF.

Even more recently, Lu and Pagan (2023) made two criticisms to

PS. First, using the asymptotic solution for the HP filter previously pre-

sented, they show that if the (true) trend and cycle are I(1) and I(0),

respectively, the HP cycle is also I(0), so that there is no integration

leakage per se, and so boosting is not necessary to remove the unit root

from the estimated cycle; rather, they ascribe the empirical evidence of

a unit root in HP cycles to beginning and end of sample effects in small

samples. Second, they contest the PS recommendation based on their

simulation results, arguing that there are plausible DGPs whose boost-

ing may not work well. This is particularly the case when permanent

shocks are relatively unimportant in the first differenced series (∆yt).

4.4 The exponential smoothing filter

The exponential smoothing (ES) filter was presented by King and Rebelo

(1993, KR) as another example of a filter to compare with the HP filter

but has not gained much popularity since then. The work of Lucas
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(1980) provides an empirical illustration. To derive the filter, one may

begin again with an optimization problem, which is now

min
gt

T∑
t=1

[
(yt − gt)

2 + λ(gt − gt−1)
2]
]
, (4.7)

where gt continues to denote the growth component or trend and, there-

fore, since the terms of the second sum are its simple first differences

(∆gt), it is now the changes in the trend that are penalized.

From the first order condition, the solution is

gt =
1

1 + 2λ− λL− λL−1
yt,

and hence the asymptotic version of the trend filter is now

τ(L) = (1 + 2λ− λL− λL−1)−1

= [λ(1− L)(1− L−1) + 1]
−1
.

(4.8)

Similarly to the HP filter, a matrix form solution can be provided for

this infinite sample version:

g∗ = (IT + λD′
1D1)

−1y,

where g∗, IT and y maintain their previous definitions and D1 is the

(T − 1)× T first difference matrix such that D1y = [∆y2, . . . ,∆yT ]
′ 11.

The cyclical filter is easily derived from (4.8):

c(L) =
λ(1− λL)(1− L−1)

1 + λ(1− L)(1− L−1)
,

and, using an identity that results from Euler’s identity (see the ap-

11See Yamada (2020), where this result, together with many other algebraic results,
is presented. Yamada (2018) provides an alternative expression that shows that the
estimated trend can be decomposed into the sum of a deterministic linear trend and
a low-frequency component of the linearly detrended series (the residuals from the
regression of the series on the linear deterministic trend).
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pendix), the gain is

G(ω) =
2λ(1− cosω)

1 + 2λ(1− cosω)
.

Since cos 0 = 1, this filter has zero power at the zero frequency and

conversely the trend filter has unity power. Moreover, since cos π = −1,

the cyclical filter ascribes power close to unity to the high frequencies.

Compared to the HP filter, the ES cyclical filter is slightly further

away from the ideal filter because its gain is not so close to zero for

frequencies below π/16 (i.e., for periodicities longer than 8 years) and it

is not so close to 1 for frequencies larger than π/16 (i.e., for periodicities

shorter than 8 years).

Unfortunately I am not aware of any recent empirical application that

has resorted to the ES filter12. Tödter (2002) proposes an “extended”

exponential smoothing filter obtained with a slight modification of the

ES filter, which is now the solution to

min
gt

T∑
t=1

[
(yt − gt)

2 + λ(∆gt − β)2]
]
,

where β denotes the sample average of the change in the trend compo-

nent. Yamada (2020) proposes also a (slightly) “modified” HP (mHP)

filter that he considers to be closer to the ES filter.

4.5 Unobserved components models

For an obvious reason, structural unobserved components (UC) models

could have been presented in the previous chapter, dedicated to trend

modeling. Moreover, they are the models that are the closest heirs of

the historical idea that lies at the origin of the theme of this book —

12Moreover, the filter is usually omitted in both methodological surveys (as, e.g.,
Álvarez and Gómez-Loscos, 2018) and empirical comparisons (as, e.g., Chalmovianský
and Nĕmec, 2022).
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that of the decomposition of economic time series into rather distinct

components —, which could justify their presentation earlier. However,

they are most often used with the cycle as their primary interest, with

the purpose of isolating and analysing the cyclical component only, i.e.,

simply to detrend the data. Therefore, often they are mostly competi-

tors of the Beveridge-Nelson decomposition and of the HP filter. And

despite allowing a direct and immediate association with those economic

components, as well as with the seasonal component, in what concerns

the trend that association is seldom made with thorough descriptive and

analytical purposes.

The UC approach appears to have been introduced chiefly in two

papers, those of Harvey (1985) and Clark (1987) and, slightly later, in

Harvey’s (1989) book and in another paper, by Harvey and Jaeger (1993).

To defy the then prevailing “Box-Jenkins” or ARIMA approach two main

arguments were put forward:

a) the ARIMA approach does not allow a direct correspondence with

the usual economic components;

b) both the ARIMA and the unit root testing approach are too much

concerned with parsimony, and rely too much on (typically) small

sample sizes, leaving some explainable but unexplained variation

in the data; hence, it is argued that sometimes they may even yield

misleading conclusions.

As an example of this last critique, Watson (1986) contrasts the (much

larger) estimated long-run effect of an innovation using the ARIMA ap-

proach with the (much smaller) UC one. In the same vein, Clark (1987)

argues against the large proportion of the variation in economic time

series that is attributed to the trend by the unit root/Beveridge-Nelson

approach. On the other hand, a drawback of UC modeling that is rarely

acknowledged lies in its identification issues (see, in particular, Oh and

Zivot, 2006).

Although the basic local linear trend model is the most appropriate

to introduce UC modeling due to its simplicity, the absence of an explicit
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cyclical component makes it somewhat unappealing. Instead, I present

the basic equations of the trend plus cycle model, proposed by Harvey

(1985):

yt = τt + ct, (4.9)

where, as usual, yt denotes the log of the series (usually output), τt
represents the trend, and ct the cycle. Sometimes an irregular component,

assumed to be Gaussian white noise is also added but, for instance in

Clark (1987), it is deleted at a later stage due to an insignificant estimate

of its variance. The model for the trend is the local linear trend model, a

random walk,

τt = τt−1 + βt−1 + ηt, ηt ∼ iidN (0, σ2
η), (4.10)

with stochastic drift or slope βt, which is itself also a random walk

βt = βt−1 + ξt, ξt ∼ iidN (0, σ2
ξ ). (4.11)

Therefore, it is a double random walk model13, which means that yt is

assumed to be an integrated process of order 2, yt ∼ I(2). This is a

rather flexible trend model, one which can allow for a smooth structural

break with some ease. Further, it is usually assumed that ηt and ξt
are independent of each other. Combining these components so far and

hence their disturbances gives rise to a single equation model with a

single disturbance, which is called the reduced form model. The reduced

form of the trend here is an ARIMA(0,2,1) process.

If σ2
ξ = 0 the trend is reduced to a random walk with constant drift

and if, additionally, σ2
η = 0 it becomes a deterministic trend, τt = τ0+β t.

On the contrary, the larger these variances the greater the stochastic

movement in the trend. Even if σ2
η = 0 but σ2

ξ > 0, the process is still

I(2).

As regards the (stochastic) cycle, in e. g. Harvey (1985) and Harvey

13It is more often known as a double-drift trend model but, though not strictly
correct, the label that I adopt appears to be more appropriate.
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and Jaegger (1993) it is assumed to be generated (trigonometrically) with

ct = ρ cosλ ct−1 + ρ sinλ c∗t−1 + ωt (4.12)

c∗t = −ρ sinλ ct−1 + ρ cosλ c∗t−1 + ω∗
t (4.13)

where c∗t appears by construction and is unimportant, ρ is a damping

factor on the amplitude of the cycle such that 0 ≤ ρ < 1 (so that it

is stationary), λ is the frequency of the cycle in radians (so that the

period is 2π/λ), and ωt and ω
∗
t are both iidN (0, σ2

ω). The disturbances

of all the components are independent of each other and of the irregular

component.

Harvey (1985) provides the reduced form for ct that shows that it

is an ARMA(2,1) process, which becomes an AR(2) if σ2
ω = 0. But it

is a special case of an AR(2) with the restriction 0 < λ < π, because

the parameters are restricted to imply that its roots are complex, which

is a desirable feature because it implies “pseudo-cyclical” behaviour14.

Equations (4.9) to (4.13) imply that the reduced form of the model is

an ARIMA(2,2,4) representation which, since it is heavily parametrized,

would very unlikely emerge as the final result of a typical exercise in

ARIMA modeling for a common macroeconomic time series.

Harvey (1985) proposed also a different model for the trend, incor-

porating the cycle within it, which he called the cyclical trend model.

Equations (4.9) and (4.10) are replaced by

yt = τt + ϵt and

τt = τt−1 + βt−1 + ct + ηt,

where ϵt ∼ iidN (0, σ2
ϵ ), and equation (4.11) remains unchanged. This

model appears also in Harvey (1989) but, apparently at least, it was

subsequently abandoned.

On the other hand, as previously mentioned, the HP filter corresponds

14See, e.g., Harvey (1993), p. 18 or Mills (2003), pp. 29-31. See also Harvey (1993),
pp. 182-86 for a more detailed treatment of this model for the cycle.
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to model (4.9)-(4.11) with ct = ϵt ∼ iidN (0, σ2
ϵ ), i.e., with the cyclical

component reduced to an irregular, white noise process and the very

smooth trend resulting from the restriction σ2
ξ = 0.0252σ2

ϵ or σ2
ξ/σ

2
ϵ =

1/1600 for quarterly data.

In practice, as proposed originally by Clark (1987), the most popular

version of the UC model uses an autoregressive representation for the

cyclical component instead of the sinusoidal one. Thus, equations (4.12)

and (4.13) are replaced by

ϕ(L)ct = ωt, ωt ∼ iidN (0, σ2
ω), (4.14)

where ϕ(L) is a stationary autoregressive polynomial, often of second

order, i.e., ϕ(L) = (1− ϕ1L− ϕ2L
2), with ϕ+ ϕ2 < 1. If ϕ2

1 +4ϕ2 < 0 its

roots are complex and hence it displays pseudo-cyclical behaviour. The

reduced form model corresponding to equations (4.9)–(4.11) and (4.14)

is an ARIMA(2,2,3)15.

Estimation is usually carried out in the time domain framework and

resorting to the Kalman filter. The first step consists in casting the model

in state space form. For the model of equations (4.9)– (4.11) and (4.14)

the state vector is αt = (τt, βt, ct, ct−1)
′, the measurement equation is

yt = [1 0 1 0]αt,

and the transition equation is

αt = Tαt−1 + νt, νt ∼ iidN (0,V), where

15Indeed, differentiating twice equation (4.9) produces ∆2yt = ∆2τt + ∆2ct. Sub-
stituting from equations (4.10) and (4.11) yields: ∆2yt = ξt−1 +∆ηt +∆2ϕ(L)−1ωt.
Multiplying by ϕ(L) gives ϕ(L)∆2yt = ϕ(L)ξt+ϕ(L)∆ηt+∆2ωt. Since the right hand
side of this equation is a MA(3) process (see, e.g., Oh and Zivot, 2006) and since ϕ(L)
is a second order autoregressive polynomial, the process follows an ARIMA(2,2,3).
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T =


1 1 0 0

0 1 0 0

0 0 ϕ1 ϕ2

0 0 1 0

, νt = (ηt, ξ, ωt, 0)
′, and V =


σ2
η 1 0 0

0 σ2
ξ 0 0

0 0 σ2
ω 0

0 0 0 0

 .
Application of the Kalman filter to these equations provides first esti-

mates of the trend and cycle that are based only on current and past

observations and that are known as filtered estimates. The Kalman filter

provides also one-step-ahead predictions and prediction errors or innova-

tions that, together with the Gaussian assumption, allow constructing the

likelihood function. The likelihood is maximized numerically to estimate

the parameters σ2
η, σ

2
ξ , σ

2
ω, ϕ1 and ϕ2. Finally, a smoothing algorithm

is run backwards, starting from the estimates produced by the Kalman

filter at time T , to produce smoothed estimates of the trend and cycli-

cal component. These are the estimates that are usually retained and

are indeed smoother than the filtered estimates because they use all the

observations in the sample.

The model of (4.9)– (4.11) and (4.14) is very close to the Clark (1987)

model and will be referred as such in what follows. The observation of the

Q matrix reveals that the model contains many restrictions. In particu-

lar, several orthogonality restrictions are imposed affecting all the shocks

or innovations of the model: σηξ = σηω = σξω = 0. Indeed, without im-

posing a priori some assumption(s) concerning the correlations between

these shocks it would not be identified.

In the context of UC models identification is often not addressed but

its nature is the usual: identification of the UC, structural model re-

quires that its parameters are solved uniquely from the knowledge of

the reduced form parameters. But only somewhat recently it became

clear that so many restrictions as previously imposed were not really

necessary to identify the model, i.e., the model is over-identified. In par-

ticular, although usually considered non-realistic16, the assumption that

the correlation between the shocks to the trend and to the cycle (σηω) is

16Clark (1987, p. 800) himself acknowledged that “strictly speaking, this assumption
is clearly false”.
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zero, despite not strictly necessary to achieve identification, is frequently

adopted in UC models. It is known to produce a smooth trend, not very

far from a linear one, and large and relatively smooth business cycles,

i.e., decompositions that differ radically from the Beveridge-Nelson ones.

Oh and Zivot (2006) considered the following two cases of exact iden-

tification:

I) σηξ = σξω = 0 (σηω ̸= 0) and II) σηξ = σηω = 0 (σξω ̸= 0).

Han, Liu and Ma (2020, HLM) label case I as the trend-cycle case: the

shocks to the trend and to the cycle can be correlated but the shock to

the drift must be orthogonal to the other two; and they label case II as

the drift-cycle case: the shocks to the drift and the cycle are allowed to

be correlated but the shocks to the trend need to be independent from

the remaining two.

HLM estimate these two models as well as the original (“indepen-

dent”) one and, although the estimated models share some features, oth-

ers differ significantly, demonstrating that identification issues are in-

deed very far from innocuous in these models. The models can produce

Beveridge-Nelson-like decompositions, with volatile trends and small and

noisy cycles, as well as radically different ones, depending on the restric-

tions that are imposed. These restrictions can be tested with likelihood

ratio tests but, in some cases, as those of cases I and II above, tests for

non-nested hypotheses are needed and, as far as I am aware, these have

not yet been used in this context. Moreover, in some cases, as appears

to be the case in HLM, data may not contain enough information to

discriminate between rival assumptions17.

Oh and Zivot’s (2006) paper is an extension to an influential paper

by Morley, Nelson and Zivot (2003, MNZ), who considered a restricted

version of Clark’s model, with constant (deterministic) drift (σ2
ξ = 0)

and showed that, instead of being restricted, the correlation between

the shocks of the trend and the cycle could be identified from the data

17In the current context, given the imprecision associated with the concepts of trend
and cycle, this is not necessarily a “bad thing”.
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alone. Moreover, in that case they also reconciled the BN decomposition

with the UC one, in sharp contrast with popular wisdom based on this

one, which assigned most of the variation in output to transitory/cyclical

shocks18. That is, the UC decomposition is also able to yield much more

(less) volatile trends (cycles) than was previously thought, provided their

correlation is left to be determined freely.

Although some of them are somewhat “dry”, all the papers mentioned

so far in this section contain also interesting empirical illustrations. In

Mills and Crafts (1996) the version of the model with the sinusoidal cycle

is applied to the series of the British industrial sector output, the sample

ranging from 1700 to 1913. In an interesting paper, Ball and Wood (1996)

criticize some of the work of Mills and Crafts. They adopt two alternative

specifications differing only in the restrictions imposed on the trend with

little to choose empirically according to statistical criteria. However,

the models imply radically different estimated trends and, consequently,

radically different estimated cyclical properties as well, demonstrating

that statistical analysis alone may not be able to act as a neutral arbiter

of disputes concerning historical questions.

Han, Liu and Ma (2020) use the autoregressive version of the cy-

cle to model annual GDP data for China, for the period between 1952

and 2017. Their analysis is complemented with qualitative, historical

information, to “make sense” of the estimated trend and cycles. They

interpret the cyclical component as the output gap and propose a simple

method for its empirical validation, analysing its relation with the infla-

tion rate (which they later include in a bivariate UC model). Another

interesting application is that of de Bonis and Silvestrini (2014), who esti-

mate several versions of Harvey’s (1985) and Clark’s (1987) models with

annual Italian data from 1861 to 2011 of the credit-to-GDP ratio. The

statistical analysis both benefits and feeds a detailed historical analysis

of the Italian banking sector.

A rather distinct use of Clark’s model is made in Hodrick (2020),

18Although this reconciliation was incomplete because the UC model of MNZ still
implies that yt ∼ I(2) (while the BN decomposition assumes that yt ∼ I(1)), Oh and
Zivot (2006) showed that it still holds for BN decompositions of I(2) processes.
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where it serves as one of the DGPs in a simulation study designed to

assess its own properties and to compare it with the HP filter, as well as

with the Baxter and King and Hamilton filters. Both these procedures

will be addressed below.

The previous “classical” models have been extended and/or gener-

alized more recently. For instance, Harvey and Trimbur (2003) gener-

alize equations (4.10)-(4.11) and (4.12)-(4.13) so that the model con-

tains a mth-order stochastic trend and a nth-order stochastic cycle, re-

spectively, with m and n positive integers19. Perron and Wada (2009),

propose to constrain the drift of the trend function to be determinis-

tic but introduce a change in its slope at an exogenously determined

date and, in another alternative model, maintain equations (4.9)-(4.11)

and (4.14) but model the shocks to the drift and to the cycle as mix-

tures of Gaussian white noise processes with weights given by Bernoulli

random variables. And Grant and Chan (2017) propose replacing equa-

tions (4.10)-(4.11) for the trend with a second order Markov process

(∆τt = ∆τt−1 + uτt , u
τ
t ∼ iidN (0, σ2

uτ )) and model the cycle with a gen-

eral stationary AR(p) process.

As regards software, Pedregal (2022) offers a panoramic view of the

available options, ranging from the general statistical software (such as

Eviews or RATS) and from popular environments as R or MATLAB, to

STAMP, a commercial package dedicated exclusively to UC modeling. In

the same article, Pedregal provides also a brief but compelling presenta-

tion of UComp, a powerful open source library of procedures for building

and analysing UC models.

4.6 The Hamilton filter

Pure and mixed autoregressive models have already been addressed in

section 10 of the previous chapter. The “Hamilton filter”, as has been

dubbed in the recent literature, relies on a particular, fixed order, pure

19E.g., for the trend: τ1,t = τ1,t−1 + ηt and τi,t = τi,t−1 + τi−1,t, i = 1, 2, . . . ,m,
with ηt ∼ iidN (0, σ2

η).
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autoregressive model, containing only a constant besides the autoregres-

sive terms. Hamilton (2018) proposed it consistently with his critic of

the HP filter and recently it has been subject to close scrutiny in Schüler

(2021) and in Quast and Wolters (2022). Although it is not immune to

criticism, it closely matches the simple but compelling requirements sum-

marized by Phillips and Jin (2021), showing “where trending economic

activity has been, is now, and where it may be heading”. However, as its

previous rivals in this chapter, it is chiefly designed to isolate the cycli-

cal component. Strictly speaking, although it is linear, it is not a linear

filter in the usual sense because it does not operate always the same way

on every series; it is not the same linear transformation that is applied

across all series. Instead, as will be seen below, it is data-dependent,

that is, the way it operates changes with the dynamic properties of each

series and hence its weights are not invariant. For this reason, I prefer

to refer to it as Hamilton’s method (HM). Nevertheless, as with the HP

filter, often I will follow the literature.

The Hamilton filter is clearly inspired in the Beveridge-Nelson decom-

position and hence it adopts also a forecasting approach20. The cycle is

the answer to the question: “how different is the value at date t+h from

the value that we would have expected to see based on its behavior through

date t?” And the trend, the expected values, are the “very simple fore-

casts within a restricted class: the population linear projection of yt+h on

a constant and the four most recent values of y as of date t” (Hamilton,

2018, p. 836, h denoting as usual the forecast horizon). Provided that

the order of the autoregression, p, is equal or higher than the order of

integration of the series (d) or the order of the deterministic polynomial

in time that produces a stationary (I(0)) deviation, Hamilton shows that

the OLS residuals of the regression of yt+h, the value to forecast, on

(yt, yt−1, yt−p+1, 1), that is,

v̂t = yt+h − (β̂0 + β̂1yt + β̂2yt−1 + . . .+ β̂p−1yt−p+1),

20As Hodrick (2020) notes, while Beveridge and Nelson’s purpose it to forecast for
a very distant future, that we may formalize with limh→∞ Et(yt+h), in Hamilton the
horizon is only eight quarters ahead and so the forecast is Et(yt+8).
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converge to a stationary process that can be used to represent the cycle.

Assuming that the maximum admissible order of integration is 4, dmax =

4, Hamilton proposes that the regression is

yt+h = β0 + β1yt + β2yt−1 + β3yt−2 + β4yt−3 + vt+h,

so that the fitted values of yt+h provide the estimated trend.

As regards h, the forecast horizon, assuming that the data are quar-

terly, Hamilton proposes that h = 8 because he considers that 8 quarters

is the horizon at which cyclical factors, such as a recession or a “recovery

from any downturn”, play the primary role at justifying forecast errors

for macro and financial variables. A distinct reason, the frequency of

data, is used as a further argument for the convenience that h (and p as

well) is a multiple of the number of observations in a year.

Hamilton (2018) does not claim the superiority of his proposal over

any other method to estimate the trend. The merits of autoregressive

models and their appeal for macroeconomic time series are well known

and have been mentioned in the previous chapter. Instead, his goal is

to avoid the drawbacks of the HP filter and hence his major concern is

to show that, under the very liberal conditions previously mentioned,

his filter always provides a stationary estimated cycle. In particular,

for the case where the HP filter exhibits a strong vulnerability, that of

the random walk process, Hamilton shows that asymptotically his filter

converges to a difference filter, i.e., β̂1
p→ β1 = 1 and all other coefficient

estimators converge to zero, and hence the filtered series converges to

the overall change between periods t and t + h, that is, with h = 8, to

ϵt+8 + ϵt+7 + . . . + ϵt+1. This limiting filter, 1 − L8, thus “wipes out any

cycles with frequency exactly one year”, that is, besides detrending it also

removes any seasonality, aiming to render a clean cyclical component.

Hamilton further argues for the following gains of this method over

the HP filter:

a) any forecasting power of the estimated cycle is not an artifact of

the method because it is a one-sided filter and hence it does not

borrow any information from the future;
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b) the estimated cycle is model-free and, as an outcome of a simple

autoregression, “essentially [an] assumption-free summary of the

data” (o. cit., p. 837).

Moreover, one does not need to know the exact form of the non-stationarity

of the series nor the correct or true model for forecasting. Further, al-

though equating a trend with a more or less medium to long-term forecast

is a common and intuitive practice, the merit of the proposal lies in the

simplicity of the forecasting model.

Since Hamilton’s chief concern is to ensure that the cycle is stationary,

not that the trend contains only the variation that is due to permanent,

non-stationary fluctuations, it may contain transient, short-lived fluctua-

tions that may show up as erratic movements. More precisely, Hamilton

shows that when the order of integration of the series, d, is smaller than

p(= 4), while the first d regressors (yt, . . . , yt−d) serve to absorb non-

stationarity, the remaining p + 1 − d capture part of the variation of

∆dyt, which is stationary. Thus, these transitory fluctuations will pass

to the estimated trend, which will then tend to show less smoothness

than expected. This is perhaps the major criticism to the procedure,

which has been empirically confirmed for the case of US GDP by Quast

and Wolters (2022). Their aim is to get a measure of potential output

and they provide some reasons why it must be smooth, not the “noisy”

estimate provided by Hamilton’s procedure.

Another unsurprising criticism concerns the (fixed) order of the au-

toregression. Hodrick (2020) notes that the regression of yt+8 onto yt and

its first three lags may not be sufficient to capture all the forecasting in-

formation that is contained in the past history of the series. Augmenting

the order of the autoregression appears to be the obvious and straightfor-

ward answer but it risks to further worsen the noisiness of the estimated

trend.

Most of the criticisms are formulated by Schüler (2021), but several

of them simply originate in a rather different perspective from that of

Hamilton, one that is based in frequency domain analysis. While ac-

knowledging that Hamilton’s procedure avoids the drawbacks of the HP
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filter21, Schüler bases his critical approach on a bandpass filter view,

which radically diverges from the forecasting approach of Hamilton. In

particular, Schüler frequently criticizes Hamilton’s method (HM) for not

being amenable to a strict frequency domain approach. And indeed, al-

though it is linear it is not strictly a linear filter, as previously mentioned.

The issue lies in the series- or data-specific nature of HM, with coeffi-

cients that are not fixed across series, although they are time invariant

for each series. This implies that “the cyclical properties of the Hamil-

ton filter vary across data generating processes (DGPs)” (Schüler, 2021,

p.2), contrasting with those of band pass filters, that are constant across

series. This is obviously due to the fact that the weights or coefficients

of HM depend on the dynamic, autoregressive properties of each series,

preventing a general characterization of its properties.

Hence, Schüler (2021) correctly points out that “the Hamilton filter

does not separate an underlying time series into a cyclical component

and a trend component according to some cutoff frequency” (o. cit., p.

14). And it is only provided that one assigns cyclical fluctuations as

corresponding to frequencies with periods between 1.5 and 8 years that

several criticisms arise concerning estimated cycles. For instance, both

Schüler and Quast and Wolters (2022) agree that HM tends to provide

an uneven coverage of those frequencies. They further agree that it tends

to mute short cycles while simultaneously amplifying medium and long

term cycles, with periods between 10 and 32 quarters. That is, the HM

may distort some features of business cycles as commonly perceived.

Simulation studies appear to be more useful than frequency domain

based approaches in this case. Provided they employ a sufficiently wide

variety of DGPs, they may shed some light on the general performance of

HM. Although their focus is restrained to the properties of the estimated

cycles, both Hodrick (2020) and Schüler (2021) offer this type of analysis.

Hodrick compares the HP filter, the bandpass filter of Baxter and

King (1999, BK) and the Hamilton filter, while Schüler compares the

21“The Hamilton filter does indeed avoid spurious cycles, ad hoc filter settings, and
end-of-sample bias”, Schüler (2021, p.1).
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Hamilton and HP filters. Hodrick obtains a quite interesting conclu-

sion: while HM dominates the HP and BK filters in traditional, classical

or simple environments where there is no clear-cut separation between

trends and cycles (such as those that are generated by random walks and

ARIMA models), the reverse is true when data is generated with more

complex models, containing growth (trend) components that vary slowly

over time.

Schüler’s results do not allow him to assert that, in general, the HP

filter dominates HM, but he finds that the first tends to outperform the

second in matching simulated cycles. His first recommendation for this

purpose is, therefore, the HP filter, with HM relegated to a secondary

role. He considers, however, that HM may provide a rather useful, com-

plementary perspective to the HP filter.

Quast and Wolters (2022) proposed a simple modification of HM to

correct the shortcomings they perceived. Instead of a fixed 8 quarter

forecast horizon, they propose taking the average of forecasts with hori-

zons from 4 to 12 quarters as a smoother estimate of the trend (potential

output in their case). That is, start by running the regressions

yt = β0,i+β1,i yt−i+β2,i yt−i−1+β3,i yt−i−2+β4,i yt−i−3+vt,i, i = 4, 5, . . . , 12,

and obtain the corresponding forecast errors

v̂t,i = yt − (β̂0,i + β̂1,i yt−i + β̂2,i yt−i−1 + β̂3,i yt−i−2 + β̂4,i yt−i−3),

allowing to estimate the cycle with

v̂t =
1

9

12∑
i=4

v̂t,i.

According to Quast and Wolters, this produces both a smoother trend

and a more comprehensive coverage of the frequencies considered to rep-

resent business cycles.

Similarly to Hodrick (2020), Quast and Wolters (2022) perform a sim-



4.7. BAND-PASS FILTERS 123

ulation study comparing HM, both the original and their modified version

(MHM), with the HP filter and a bandpass filter due to Christiano and

Fitzgerald (1999). But instead of a Monte Carlo study, their simulations

aim to assess the “real-time reliability” of estimated output gaps, com-

puting them on the basis of real-time data vintages that are compared

to those that result from revised data. They conclude that both HM and

MHM are the most reliable because their revisions are (much) smaller and

are mainly caused by data revisions. That is, both the HM and MHM

present the most favourable real-time properties22. Jönsson (2020) ar-

rives at the same conclusion when comparing the Hamilton and the HP

filter with recursive estimates for US trend and cycles of US GDP, as well

as with data with several vintages. According to Jönsson, the source for

the instability of the HP filter estimates lies in a large volatility of its

weights for the last sample observations as more data become available.

4.7 Band-pass filters

For the sake of completeness, I now briefly address band-pass filters

(BP), and the Baxter and King (1999, BK) and Christiano and Fitzger-

ald (2003) filters in particular. While previous filters proposed trend

estimators as means to derive business cycle measures, band-pass-pass

filters are rather different: trend estimation is pointless as cyclical fluc-

tuations can be isolated directly. As their name indicates, BP filters are

filters that pass through components of time series with periodic fluctua-

tions inside a predetermined range or band of periodicities or frequencies,

while removing components at higher and lower frequencies. Since Burns

and Mitchell identified U.S. business cycles as those cyclical fluctuations

with lengths between 6 and 32 quarters, BP filters are now commonly

understood as referring to those periodicities. Here lies precisely their

main appeal for macroeconomists: they make the notion of business cycle

22Chalmovianský and Nĕmec (2022) contain a somewhat similar study considering
a larger set of alternative estimation methods; however, readers must be aware of
some typographical errors.



124 CHAPTER 4. DECOMPOSITION METHODS

operational.

Filters aiming to isolate the trend component are low-pass filters: they

retain only the long-term, slow moving components of the data, i.e., they

pass through only those components corresponding to low frequencies,

and remove those at medium and high frequencies. A well known result

is that the weights or coefficients of the ideal symmetric low pass filter

are

b0 = ω1/π, and bj = sin(j ω1)/jπ, j = ±1,±2, ...

where ω1 denotes the upper frequency of the band. But since this filter

is an infinite order moving average, it is unfeasible. A feasible filter is

an approximation to this ideal filter and it is a finite moving average,

aJ(L) =
∑J

j=−J ajL
j.

This approximation filter can be determined so that a certain distance

(the integrated square error) between its frequency response function

and that of the ideal filter is minimized. As noted by BK (p. 577),

given a maximum lag length, J , an indeed “remarkable result” for this

minimization problem is provided by simply truncating the weights of

the ideal filter at lag J , i.e., the optimal approximating filter solution

has coefficients

aj = bj, for j = 0, 1, . . . , J, and aj = 0, for j ≥ J + 1.

On the other hand, to stationarize an integrated time series, the sum

of the weights of the filter must sum to zero, so that the frequency re-

sponse function at frequency zero is zero. This implies that the filter may

be factored as

aJ(L) = −(1− L)(1− L−1)ΨJ−1(L)

= L−1(1− L)2ΨJ−1(L),

where ΨJ−1(L) is a lag polynomial of order J−1. Therefore, as the filter

contains two differencing operators, it removes both linear and quadratic

deterministic trends and up to two unit roots.

Denoting with ω and ω the lower and upper frequencies of the BP fil-
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ter, BK note that the ideal BP filter is constructed from the two low-pass

filters with those frequencies as their cutoff frequencies. Their respective

weights are represented with bj and bj, and the weights of the BP filter

are simply bj − bj.

However, these weights need to be adjusted to comply with the sta-

tionarity condition stated above. BK show that these adjusted optimal

approximate coefficients must have the form

aj = bj + θ,

where (bj denote the weights of the ideal low-pass filter and) θ is a con-

stant that depends on the selected maximum lag length, J , which is given

by

θ =
1−

∑J
j=−J bj

2J + 1
.

The weights of the approximate BP filter must be similarly adjusted, and

hence they are given by

(bj − bj) + (θ − θ),

where θ and θ are the adjustment coefficients of the upper- and lower-

cutoff filters, respectively. BP further suggest the notation BPJ(p, q)

to denote the approximation to the ideal filter that passes cycles with

lengths between p and q periods (usually 6 and 32, for quarterly data).

Finally, an issue still remains: the selection of J . A tradeoff must be

balanced: J must be large enough to provide a good approximation but

the larger it is the shorter will be the filtered series (since J observations

are lost at the beginning and end of the sample). After substantial exper-

imentation, BK recommend using J = 12, as lower values incur in serious

problems of leakage and compression23. Hence, BK recommendation is

23Leakage refers to the problem that the filter passes through frequencies that it
was built to suppress, adding them to those that it must retain. Compression means
that the filter has frequency response less than unity in the range immediately above
the cutoff frequency.
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to use a BP12(6, 32) filter for business cycle analysis. In table 4 of their

article (p. 591) they present the weights for this filter, as well as those

for BP12(2, 32) and BP3(2, 8) filters, this one for annual data.

Similarly to the Schüler vs. Hamilton case, Murray (2003) criticizes

the BK filter (and BP filters in general) adopting a definition of business

cycles grounded on UC models, as stationary deviations from a stochastic

trend, not as the stationary component that remains unaltered when the

series is subject to an ideal BP filter. Murray (2003) departs from a

simple UC model, with trend given by

ηt = µ+ τt−1 + ηt, ηt stationary,

and shows that the BK filter stationarizes the series removing the unit

root but allowing its first difference, ηt, to pass through. In many cases,

this implies that the BK filter will tend to exaggerate the importance of

transitory dynamics in estimated business cycles.

Canova (2007, p. 96) reports results of a simulation study where the

DGP is a simple random walk (yt = yt−1 + ϵt, ϵt ∼ iid(0, σ2)) where

the BK filter induces spurious periodicity in the filtered series because

it tends to be serially correlated. Hence, in this case the BK filter per-

forms worse than the simple differencing filter, which renders a serially

uncorrelated filtered series (ϵt).

Christiano and Fitzgerald (2003) propose also a filter that approxi-

mates the ideal BP filter but employ a rather different approach. Instead

of truncating the coefficients of the ideal filter, they minimize a distance

that is weighted by the estimated spectral density of the series. Their

approximate filter is asymmetric, nonstationary (as its weights vary with

the observations) and depends on the time series properties of each series.

As they state, their method “is not for everybody”, meaning that when

the focus is the usual statistical analysis of business cycles for quarterly

data they consider that the “HP filter appears to do just fine” (p. 463).

However, they also propose a simpler filter, derived for the case where

the data are assumed to be generated by a pure random walk, which they

argue performs reasonably well for many macroeconomic time series. In
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this case the filtered series is given by

ĉt = B0yt +B1yt+1 + . . .+BT−1−tyT−1 + B̃T−tyT+

B1yt−1 + . . .+Bt−2y2 + B̃t−1y1

for t = 2, 3, . . . , T − 1, where

Bj =
sin(j b)− sin(j a)

πj
, j ≥ 1,

B0 =
b− a

π
, a =

2π

pu
, b =

2π

pl
,

B̃T−t =
T∑

j=T−t

Bj, and B̃t−1 =
T∑

j=t−1

Bj,

where pl and pu denote the lower and upper periodicities of the band,

corresponding to the upper and lower frequencies, respectively (e.g., for

quarterly data, pl = 6 and pu = 32). As for the first and last observation

of the filtered series, they are given by

ĉ1 =
1

2
B0y1 +B1y2 + . . .+BT−2yT−1 +BT−1yT , and

ĉT =
1

2
B0yT +B1yT−1 + . . .+BT−2y2 + B̃T−1y1,

respectively. Drake and Mills (2010) apply this filter to the GDP of the

Eurozone for the 1980:1 to 2006:1 period, drawing interesting conclusions

about the effect of the adoption of the Euro on trend output.
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Chapter 5

Testing for the presence of a

trend

As in the case of the Loch Ness monster or in the one of UFOs, establish-

ing whether a trend is present in the data cannot rely simply on sightings.

So, why has testing for the presence of a trend not been addressed yet?

In many instances, it logically appears to be the first step in a coherent

strategy for empirical research. That is, this chapter seems to arrive too

late. Actually, the absence of a single, rigorous and generally accepted

definition of trend justifies the late positioning of this chapter. Obvi-

ously, the aim is not to measure the significance of “’that which trend

filters remove”’ (White and Granger, 2011, p. 14). But postponing the

presentation of the tests to a stage preceded by that of the models and

the decomposition methods is very useful: only after knowing how diverse

trends are understood we are ready and minimally equipped to search

for them. At the very worst, this ordering may be useful to highlight a

shortcoming of this chapter: it can hardly be considered as thorough as

it could be.

A wide variety of tests for the most popular form that trends are

perceived, the linear trend, are presented: it starts with the standard

textbook approach and ends with recent tests that are robust to the order

of integration of the data (provided it is either I(0) or I(1)). Besides a

129
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brief presentation of two nonparametric tests employed outside economics

at the end of the chapter, the rest of the chapter is devoted to testing

for nonlinear trends: first a small sample of approaches to their most

popular version — the linear segmented trend — followed by a general

test for nonlinearity. Although stochastic trends are obviously one of

the most important cases of trends, as previously stated, tests to detect

them, i.e., unit root and stationarity tests, will not be addressed here. A

very useful reference for this topic is Choi (2015).

5.1 Motivations for testing

In macroeconomics there are several motives underlying the interest in

testing for the presence of a trend. First, if the trend corresponds to

a special, smooth, permanent or slowly evolving long-run component,

which is present in some series but not in others, then it is obviously

important to know whether the series at hand really contains such a

component. From this investigation another may arise that sheds some

light on the root causes of such behaviour.

Second, several testing procedures for the presence of a trend require

some previous knowledge about the long-run statistical properties of the

series, which often turn out to amount to the knowledge about the prop-

erties of the errors in the regression of the series on a linear deterministic

trend. That is, testing for a trend often requires submitting the series

to a previous unit root or stationarity test. But the properties of these

tests are also strongly dependent on the deterministic regressors included

in the test regression and, in particular, on the presence or absence of a

linear trend term. There is thus a serious circularity problem: to know

whether a linear trend is present in a series, we often need to know

whether it is I(1) or I(0) (in the most common cases), but the validity of

the inference about this choice is itself highly dependent on the previous

knowledge we have about that presence.

Moreover, as clearly exposited in Perron, Shintani and Yabu (2017),

a similar problem often afflicts tests for nonlinearity in the trend:
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a) the limiting distribution of test statistics designed to detect non-

linearities in the trend usually depends on the order of integration

of the series;

b) but testing to determine this order usually also depends on the

exact nature of the deterministic trend.

Thus, the relevance of tests for the trend inflates itself.

To break the first type of circularity problems, Ayat and Burridge

(2000) propose an algorithm, a sequential procedure for unit root and

trend testing, aiming also at the identification of the degree of the trend

polynomial. The algorithm is not particularly complex but it obviously

cannot eliminate uncertainty completely.

Third, assessing whether a time series is characterized by (linear)

trending behaviour is both a general and a specific issue in macroeco-

nomics. In general terms, it matters whether the GDP of a country, or a

stock price index, or even real interest rates tend to evolve approximately

along a linear trend in the long-run. For instance, although it may ap-

pear somewhat surprising, Rogoff, Rossi and Schmelzing (2024) present

some evidence supporting a decreasing trend of global long-maturity real

interest rates over the very deep long-run, as they analyse the period

1311–2021.

A more specific issue is, for instance, assessing whether there is a

catching-up process in the difference between (logged) income per capita

of two countries, which usually requires that the gap between those two

(logged) incomes linearly decreases with time (see, e.g., Bernard and

Durlauf, 1996). Another specific example concerns the Prebisch-Singer

hypothesis, according to which the prices of primary commodities, sold by

developing economies, present a downward long-run trend in relation to

those of manufactured goods and services, produced by more advanced

economies. Therefore, developing countries could face a deterioration

in their terms of trade that prevents their advancement. Still another

specific example is provided by Papell and Prodan (2014), who try to

establish a close connection between several linear segmented models for
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the trend and some specific hypotheses about long-run economic growth

(more on this in subsection 5.6).

5.2 The standard textbook test

It should be immediately clear that the test that is focused here is the

test for the significance of the parameter β in the equation

yt = α + βt+ ϵt, ϵt ∼ iid(0, σ2
ϵ ), (5.1)

which is equation (3.1) with white noise errors and where yt may denote

a logged time series. This is the most common and simple test for the

trend, but it concerns also the most limited, naive and often inadequate

of its notions. This equation corresponds to the linear trend model of

section (3.1), or to the exponential trend model of the same section in

case yt represents a logged time series, but particularizes it to the rather

restricted case of white noise errors, a case that was labeled as the purely

deterministic linear trend model. To comply with this model, yt must

be a very particular I(0) process, a rather inhibited version of a trend

stationary process, with no serial correlation in its innovations and hence,

for instance, with no cyclical component.

Testing for the trend consists in testing H0 : β = 0 and the alternative

in macroeconomics is most often H1 : β > 0, but in some cases it is

H1 : β < 0. It is rarely the case that H1 : β ̸= 0. Recall also that

if, instead of yt ∼ I(0), yt is integrated of order one, yt ∼ I(1), the

error term of the equation is also necessarily I(1), and equation (3.1) is

a spurious regression equation, of the Nelson and Kang (1984) variety,

which was addressed in section (3.8)1. As recently as 2022 this test

has been used by Lima, Cribari-Neto and Lima-Junior (2022) in the

framework of dynamic quantile regression models to analyse trends in

time series of river streamflows.

1The problem of spurious inference induced by (strongly) serially correlated errors
is not confined to macroeconomics; Rybski and Bunde (2009) report a similar problem
in the analysis of temperatures.
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The test statistic is the simple t-ratio or t-statistic β̂/se(β̂), β̂ de-

noting the OLS estimator of β and se(β̂) its usual associated standard

error. Recall also that if equation (3.1) is indeed the DGP, β̂ is super-

consistent, it is Op(T
−3/2), and that T 3/2(β̂− β)

d−→ N (0, σ2
ϵ/6), so that

under the null hypothesis the statistic is asymptotically standard nor-

mal. Still assuming that the DGP coincides with the model and adding

the gaussianity assumption of the error term produces an exact, small

sample, t−Student distribution under the null.

Removing the assumption that the error term of equation (5.1) is

white noise and even allowing it to be I(1), Rivas and Gonzalo (2020,

RG) propose a questionable “practical definition” of trend (p. 158):

a characteristic Ct of a functional stochastic process Xt con-

tains a trend if in the [O]LS regression

Ct = α + βt+ ut, t = 1, . . . , T,

β = 0 is rejected.

In this definition, equation (3.1) ceases to be considered the DGP

and serves only as the “linear LS approximation of an unknown trend

function h(t)”. Ct (and hence ut) is now even allowed to be I(1).2 RG

are resorting to the asymptotic power properties of the standard test to

solve the old and difficult problem of trend definition:

a) when yt ∼ I(0), a trend stationary process, the test asymptotically

classifies the series as trending because it is consistent;

b) when yt is a driftless I(1) process, asymptotically the test tends

to produce erroneous inferences, rejecting the null, thereby finding

evidence of a trend, which actually exists but it is a stochastic one

in this case, not the deterministic linear trend of the alternative

hypothesis.

2Rivas and Gonzalo (2020) extend their analysis to fractionally integrated, near
unit root and local models as well.
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Actually, RG are taking advantage of two surprising results concerning

b) presented in Durlauf and Phillips (1988):

i) when yt is a driftless I(1) process the OLS estimator for the slope

(β̂) is surprisingly consistent (at rate T 1/2) because it converges to

the true value of the parameter, which is zero;3

ii) despite this, the test statistic for the significance of β diverges, as

the previous Monte Carlo study by Nelson and Kang (1983) had

indicated.

Furthermore, when yt ∼ I(1) with drift, as the asymptotic behaviour

of the OLS slope coefficient estimator and its t-statistic coincide with

those of the driftless case, the trend, which is present in both determin-

istic and stochastic forms in this case, will be detected in the limit as

T → ∞.

It appears that RG confound consistency of the test in the detection

of a trend — be it either deterministic or stochastic or both — with the

definition of trend. However, it does not appear to be admissible that a

definition regarding the presence or the absence of a characteristic might

depend entirely on the outcome of a statistical test (however powerful

it might be). A finding of evidence can surely depend, but that is not

the same as an undisputable, uncertainty-free statement about the true

nature of a series. To say that there is evidence on the presence of a

trend is not the same as asserting unambiguously that one is present.

Moreover, one can easily conceive a simple counter-example: a time

series that contains some trend but whose sample size is insufficient for

the test to reject the (false) null hypothesis is incorrectly defined, not

simply tentatively considered, as non-trending. While the result of the

test is admissible, as well as the inference that no evidence of trending

behaviour was found, using such evidence to unambiguously assert the

true nature of the series is not. Paraphrasing White and Granger (2011)

this would amount to declare that “the trend is that thing that emerges

when the standard test rejects”. Unless the standard test never fails, i.e.,

3See also theorem 2 of Canjels and Watson (1997).
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its probability of making type I or type II errors equals zero, one cannot

rely entirely on a decision of a statistical test to make such unambiguous

statements about the presence of a trend. Asserting the true nature of

a series is impossible on the basis of the outcome of a statistical test

only: it would require the observation of all other possible realizations of

the stochastic process that underlies that series. There is thus a logical

contradiction between the definition and its object, the time series.

Summing up, there are two problems with RG’s approach:

a) make a definition (completely) depend on the outcome of a statis-

tical test;

b) assume that the asymptotic behaviour of the test statistic is suf-

ficient to ensure that one always arrives at the correct decision

concerning the DGP.

According to a), the standard t-test would possess the power of deciding

what the series really is, not simply the capacity to make a decision,

possibly wrong, regarding the hypothesis about the nature of a series.

RG further recommend using a robust HAC version of the test statistic,

not its standard version. But as will become clear in the next section,

this recommendation is far from precluding the approach of being flawed.

5.3 Robust versions of the standard test

The assumption that the error term of equation (5.1) is a white noise

process is rather unrealistic for most applications in macroeconomics.

As previously mentioned, it amounts to impose the absence of a cyclical

component or, equivalently, that this component displays no pattern at

all as any serial correlation is prohibited. In this section the error term

is allowed to be serially correlated, but no so strongly as to be I(1), and

it is now denoted with ut, that is, the test equation is (3.1), which is

reproduced for convenience,

yt = α + βt+ ut, (5.2)
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instead of (3.1), with ut ∼ I(0). At the end of this section, a brief

reference about methods that attempt to be robust to strongly serially

correlated errors, with ut ∼ I(1), will be made. The topic will be further

pursued in the next section.

With ut usually positively autocorrelated, conventional standard er-

rors tend to overestimate the precision of OLS estimators, inflating the

respective t-statistics. Hence, the most common effect is a case of over-

rejection of the true null hypothesis and, particularly when testing for the

significance of the trend slope, a situation of spurious finding of evidence

supporting the presence of the linear trend.

Initially with heteroskedasticity only, and later with both heteroskedas-

ticity and serial correlation allowed, inference methods that attempt to

preserve the usual asymptotic properties of inferences associated with

OLS in the presence of these problems have become common practice

and are popularly known as HAC (autocorrelation and Heteroskedasticity

Consistent) methods. This is because they simply aim at the consistent

estimation of the (asymptotic) covariance matrix of the OLS coefficient

estimator under those circumstances, exempting from the knowledge of

the particular form of serial correlation.

As in Canjels and Watson (1997) and Bunzel and Vogelsang (2005),

the following rather liberal assumptions about the error term are made:

ut = ρut−1 + ϵt, t = 2, 3, . . . , T, u1 = ϵ1, |ρ| < 1,

ϵt = d(L)et, d(L) =
∞∑
i=0

diLi,

∞∑
i=0

i |di| <∞, d(1)2 > 0,

with {et} a martingale difference sequence (m.d.s.) satisfying E(e2t |et−1,

et−2, . . .) = 1 and supt E(e
4
t ) <∞.

The only nuisance parameter is then σ2 = d(1)/(1 − ρ)2, the long-

run error variance, and it is estimated non-parametrically from the OLS

residuals, ût, with

σ̂2
u = γ̂0 + 2

T−1∑
j=1

k

(
j

M

)
γ̂j, (5.3)
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where γ̂j = T−1
∑T

t=j+1 ûtût−j are the estimates of the autocovariances,

and k(x) is a kernel function,M denoting its bandwidth or truncation lag.

For consistency, this estimator requires that sample autocovariances for

longer lags receive less weight or are simply neglected. In particular, as

T → ∞, the conditionsM → ∞ butM/T → 0 must hold. Most popular

kernel functions simply discard autocovariances with order higher than

M , so that the kernel function complies with k(x) = 0 for |x| > 1.

It is this estimator that enters the estimation formula for the variance

of β̂, to produce the HAC robust t-statistic:

tHAC =
β̂√

σ̂2
u

[∑T
t=1(t− t̄)2

]−1
, (5.4)

where the denominator is simply known as the robust HAC standard error

of β̂ (seHAC(β̂)) and which is asymptotically standard normal under the

null hypothesis.

Despite important research efforts in this area, HAC methods have

managed to achieve some attenuation in the tendency for over-rejection

but they have failed to attain their complete elimination in empirical

work, particularly when ρ, the largest autoregressive root, is positive

and large (but less than one, in the case that I am considering). Bunzel

and Vogelsang (2005) provide two main reasons for this failure:

a) although the asymptotic distribution of the tests does not depend

on specific choices of bandwidth and kernel, finite sample distribu-

tions do, and this dependence is high;

b) the possibility of strong positive serial correlation must be seriously

entertained more often than previously thought (and even the unit

root case must be taken into consideration).

Kiefer and Vogelsang (2005, KV) designed a framework to overcome

the deficiencies of the already traditional HAC approach and, in par-

ticular, to improve its performance in controlling the size of the tests.

Phillips, Wang and Zhang (2019, PWZ) label this approach as HAR
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(Heteroskedasticity and Autocorrelation Robust) and stress that it sacri-

fices consistent estimation of the covariance matrix of the OLS estimator

in the interest of achieving an improved performance in testing.

The specification of the bandwidth parameterM as a fixed proportion

of the sample size T , i.e., M = bT, b ∈ (0, 1], lies at the center of KV’s

approach. They label it as “fixed-b” asymptotic framework, to contrast

it with the traditional “small-b” asymptotics, because it holds b fixed as

a constant, while the standard approach had to consider that b → 0 as

T increases (to comply with condition that M/T → 0 as T → ∞). Al-

though the statistics are computed the same way as in the standard HAC

approach, the asymptotic approximation to the sampling distribution is

changed to reflect the choices of kernel and bandwidth. In particular,

the standard normal is considered an inaccurate approximation and it is

no longer used to avoid size distortions.

Bunzel and Vogelsang (2005) adapt KV’s approach to the tests for

the linear trend and recommend using the Daniell kernell, which is given

by

k(x) =
sin(π x)

π x
,

to maximize power4. Furthermore, they also recommend using the fol-

lowing data dependent procedure to select the bandwidth. Start by esti-

mating ρ with the OLS regression of ût on ût−1, so that

ρ̂ =

∑T
t=2 ûtût−1∑T
t=2 ût−1

.

Then compute ρ̂ = T (1 − ρ̂), which I denote simply with ρ∗ to lighten

the notation. With this, estimate the optimal kernel with

b̂opt = .02 + .02 · 1(ρ∗ ≤ 21) + .02 · 1(ρ∗ ≤ 20) + .04 · 1(ρ∗ ≤ 19)+

.02 · 1(ρ∗ ≤ 18) + .12 · 1(ρ∗ ≤ 17) + .1 · 1(ρ∗ ≤ 14) + .1 · 1(ρ∗ ≤ 12)+

.06 · 1(ρ∗ ≤ 11) + .12 · 1(ρ∗ ≤ 10) + .02 · 1(ρ∗ ≤ 7) + .2 · 1(ρ∗ ≤ 4),

4Recall that the Bartlett and the quadratic spectral kernels are the most popular
in the traditional HAC approach of Newey and West.
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Bandwidths and 5% critical values for 3 cases
case ρ̂ b̂opt M̂ cv(̂bopt)0.95
I 0.30 0.02 2 1.71
II 0.80 0.06 6 1.87
III 0.85 0.24 24 3.04

which maximizes a measure of average power over the space of the alter-

native hypothesis. This allows obtaining the bandwidth that should be

used in (5.3) with:

M̂ = max(̂boptT, 2).

Finally, the asymptotic critical value (cv(b)) is calculated with a polyno-

mial function

cv(̂bopt) = θ0 + θ1b̂opt + θ2b̂
2
opt + θ3b̂

3
opt + θ4b̂

4
opt + θ5b̂

5
opt,

that Bunzel and Vogelsang estimate with OLS. For instance, for the

95% percentile, the following estimates are taken from their table 2:

θ̂0 = 1.6383, θ̂1 = 3.5083, θ̂2 = 3.1079, θ̂3 = 31.3777, θ̂4 = −16.0674, θ̂5 =

3.6881.

A simple example illustrates the importance of ρ̂. Suppose that the

sample size is T = 100 and that the purpose is to do a 5% one-sided test.

Further consider three cases: in case I ρ̂ = 0.30, in case II ρ̂ = 0.80 and

in case III ρ̂ = 0.85. The most relevant information is summarized in the

simple table that follows, which shows that both bandwidth parameters

and 5% critical values are highly sensitive to small changes in ρ̂ when its

magnitude is already large.

Actually, Bunzel and Vogelsang’s approach is more general than this

shortened presentation here and encompasses the unit root case too.

However, in this case the statistic must be scaled with a factor that

depends on a unit root test statistic. When only the stationary case is

considered this factor is simply unity, and the statistic reduces to (5.4).

Approaches that are designed to be robust to both I(0) and I(1) error

terms will be addressed after the next section. On the other hand, PWZ’s
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approach is meant to address the pure spurious regression case only, i.e.,

the case of the regressions of stochastic trends on a (deterministic) linear

trend.

As regards Rivas and Gonzalo’s recommendation to use the standard

HAC approach to assist in their definition, it is clear that while it possibly

improves it in the I(0) case, it further complicates the case against them

in the I(1) case. Indeed, on the one hand, trendless I(0) series will

be less often (incorrectly) defined as trending, as size distortions will

be alleviated, but on the other hand, in the driftless stochastic trend

case, the same effect will allow the (changing) trend to pass undetected

more often than with standard OLS inference, thereby implying that

more series will be incorrectly defined as non-trending. In this case, as

the HAR approach is more effective in controlling size, the problem is

further worsened.

5.4 The I(1) case

Assume now that it is known that the series is I(1), or at least that there

is some evidence that it can be considered as I(1). Recalling again equa-

tion (3.4) from section 3.8, the problem then amounts to know whether

there is a (non-zero) drift in the series. In this case, although consistent,

the OLS estimator of equation (5.2) ceases to be asymptotically efficient,

as it was in the I(0) case. The simplest solution is to difference the

series, so that the sample mean of ∆yt, which is the OLS estimate of

the coefficient of the regression of ∆yt on a constant only, is asymptoti-

cally efficient5. The presence of a linear trend can then be assessed with

the t-statistic of that coefficient (possibly with a serial correlation robust

version). The testing regression is then simply,

∆yt = β + vt,

5This is due to the equivalence of the OLS estimator with the GLS estimator,
which in this case, since ρ = 1, implies differencing yt.
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and the robust HAC t-statistic is

tHAC
1 =

β̃√
σ̃2
v/(T − 1)

, (5.5)

where β̃ denotes the OLS estimator of β in the previous equation and σ̃2
v

represents the estimate of the long-run variance of its errors, vt, built as

in (5.3) but with the corresponding residuals, ṽt = ∆yt − β̃.

There is however an alternative test that continues to rely on equation

(5.2), which is due to Ventosa-Santaulária and Gómez-Zald́ıvar (2010, V-

SG-Z), and which uses the R2 of that regression, since they show that:

a) while when the null is true (β = 0) it converges to a non-degenerate

and non-standard distribution that is always strictly less than one,

b) under the alternative (β ̸= 0), it converges in probability to one

(R2 p→ 1).

Therefore, a critical or rejection region can be defined for large values

of R2. V-SG-Z obtain the asymptotic critical values by means of Monte

Carlo simulation: for instance, for 10% and 5% sizes they are, respec-

tively, 0.84 and 0.89.

V-SG-Z also address the case of a unit root process affected by one

structural break in the drift parameter, implying a change in the slope

of the linear trend at the same date. Continuing to base inference in

equation (5.2) does not allow (asymptotically) valid inferences anymore,

as the R2 no longer converges to unity under the alternative hypothe-

sis, and the test loses all its power. They propose a relatively simple

procedure that is robust to these shifts and that allows estimating the

date of the break and making asymptotically valid inferences about the

presence of the trend. The distribution of the test statistic (R2) under

the null becomes dependent on the location of the break in the sample,

and V-SG-Z tabulate the most common critical values for multiples of

0.05 for the fraction representing that location.
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5.5 Robustness to the order of integration

As hopefully is more clear now, testing for a linear trend faces a serious

circularity problem that can be summarized briefly as follows:

a) while such test requires prior knowledge about the long-run proper-

ties of the regression error term in equation (5.2) because different

orders of integration imply different asymptotic distributions for

the test statistic under the null hypothesis,

b) to preserve the usual properties of any unit root (or stationarity)

test one needs to know in advance whether a linear trend term must

be considered.

However, starting with the pioneering work of Vogelsang (1998) and

Bunzel and Vogelsang (2005, BV05), several test statistics have been pro-

posed that do not require a priori such knowledge, breaking the circu-

larity just mentioned. BV05 recommend the test they name as Dan−J ,

which is a scaled version of test statistic (5.4). I will not further address

it here because the scale factor depends on a somewhat uncommon unit

root test statistic, J , proposed by J. Y. Park and by J. Y. Park and I.

Choi6. Moreover, its small sample performance appears to be dominated

by the tests summarized below: the zλ test of Harvey, Leybourne and

Taylor (2007, HLT07), the tRQF
β test of Perron and Yabu (PY07), and

the TR tests test of Elliot (2020). Astill, Harvey, Leybourne and Taylor

(2014) propose two test procedures that modify the tests of Vogelsang

(1998) and Bunzel and Vogelsang (2005) in a way that is similar to the

HLT07 test but, rather than switching between two test statistics as will

be seen below, they switch between the two critical values that are ap-

propriate for the I(1) and I(0) cases, according to the value of the J test

statistic.

6Park, J. Y. (1990), Testing for unit roots and decomposition by variable addition,
in Advances in Econometrics: Cointegration, Spurious Regressions and Unit Roots,
eds. T. Fomby and F. Rhodes, London: Jai Press, pp. 107–134 and Park, J. Y. and
Choi, I. (1988), A new approach to testing for a unit toot, Working Paper 88-23,
Center for Analytic Economics, Cornell University.
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The zλ test

Besides asymptotically valid regardless of the order of integration of ut,

the test statistic proposed in HLT07 presents the additional nice property

that its asymptotic null distribution is standard normal because it is a

weighted average of two standard normal statistics. Building on the work

of BV05, HLT07 propose an ingenious test that mixes the two previous

t-statistics, the one that is appropriate when ut ∼ I(0) and the other that

is appropriate when it is I(1). The mixing is made with an auxiliary test

statistic which consistently estimates the order of integration, d ∈ {0, 1},
and the mixing weights are designed to switch weight between those two

HAC trend statistics.

Adopting a simple change in notation, denote the two previous HAC

t-statistics of (5.4) and (5.5) with z0 and z1, respectively. Further, denote

with U a unit root test statistic for testing the null that ρ = 1 (i.e., that

ut ∼ I(1)), against the alternative that ρ < 1(i.e., that ut ∼ I(0)) and

with S a stationarity test statistic reverting the roles of the hypotheses,

i.e., the I(0) null that ρ < 1 against the I(1) alternative ρ = 1. Both

statistics are computed with the detrended residuals of (5.2), ût.

Considering a function λ(U, S) on [0, 1], such that

� λ(U, S)
p→ 0 when ut ∼ I(0), and

� λ(U, S)
p→ 1 when ut ∼ I(1),

the statistic of HLT07 is the following weighted average

zλ = [1− λ(U, S)]z0 + λ(U, S)z1.

Therefore, provided U, S and λ(U, S) satisfy a few unrestrictive condi-

tions:

� when ut ∼ I(0) =⇒ zλ
p→ z0 , and

� when ut ∼ I(1) =⇒ zλ
p→ z1.
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Hence, at least asymptotically, the correct test will be selected in both

situations. Moreover, the limiting null distribution of zλ is always stan-

dard normal. As a by-product, HLT07 derive also an estimator of β that

is consistent and asymptotically efficient regardless of whether ut is I(0)

or I(1). They derive also a tweaked version of the test statistic when

there is a concern that the series might correspond to a near-unit root

or near-I(1) process, with ρ = ρT − c/T, 0 ≤ c < ∞. In this case they

recommend using instead

zmδ
λ = [1− λ(U, S)]z0 + λ(U, S) zmδ

1 ,

with zmδ
1 = γξ,δRδz1, Rδ =

(
σ̂2
v

T−1σ̃2
u

)δ
, where σ̃2

u = (T − 2)−1
∑T

t=1 û
2
t ,

δ = 1 or 2, and the values for γξ,1 and γξ,2 are obtained from simulation

and depend on the significance level; HLT07 present a table in p. 1312

for several significance levels.

As regards the statistics U and S and the function λ(U, S), HLT07

recommend, respectively:

a) although standard unit root test statistics satisfy the conditions

required, the DF-GLSτ statistic of Elliot, Rothenberg and Stock

(1996) for U ;

b) for S, the standard KPSS (Kwiatkowski, Phillips, Schmidt and

Shin, 1992) test denoted with η̂τ ;

c) and based on some numerical experimentation,

λ(U, S) = exp

[
−0.00025

(
DF−GLSτ

η̂τ

)2
]
.

In terms of finite sample properties, according to HLT07, although the

zλ test presents some size distortion and is a bit worse than the zm1
λ and

zm2
λ tests for pure unit root processes, its size-adjusted power behaviour

is almost always superior to both these tests and to the Dan− J test of

BV05. It is therefore the most recommended for empirical work.
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Yang and Wang (2017) propose a modified zλ test statistic which

is robust to time varying variance. As they show that this problem

does not change the limiting null distribution of z1, the modification

needs to be concerned with z0 only. A different extension is provided in

Harvey, Leybourne and Taylor (2011), who propose a test for a quadratic

(deterministic) trend robust to the order of integration as a by-product

of their unit root test that allows a local quadratic trend.

The tRQFβ test

Perron and Yabu (2009, PY09) also proposed a test for the linear trend

when it is not known a priori whether the series is I(0) or I(1). Their

approach is much different from those of BV05 and HLT07 and places

a greater emphasis in the efficient estimation of β and ρ. It relies on

a feasible GLS (FGLS) procedure, employing an estimate of the autore-

gressive coefficient which is truncated to unity when the usual estimate is

in a certain neighborhood of that value. Using this estimate to build the

FGLS transformed regression “bridges the gap” between the asymptotic

distributions of the test statistic for the I(0) and the I(1) cases and the

limiting null distribution is standard normal in both cases.

Although the assumptions about ut are the same as in Canjels and

Watson (1997) and BV05, PY09 prefer relying on its autoregressive rep-

resentation

A(L)ut = et, with A(L) = 1−
∞∑
i=1

aiL
i,

so that

ut = ρut−1 + A∗(L)∆ut−1 + et,

where A∗(L) =
∑∞

i=0 a
∗
iL

i, with a∗i = −
∑∞

j=i+1 aj, and ρ now repre-

senting the sum of the autoregressive coefficients. Therefore, to estimate

it, rather than relying on an autoregression of order one, PY09 employ
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instead

ût = ρût−1 +
k∑

i=1

ϕi∆ût−1 + etk, (5.6)

with ût still denoting the OLS residuals from equation (5.2), which is

a truncated autoregresssion of order k selected with an information cri-

terion. PY09 recommend using the modified AIC (MAIC) of Ng and

Perron (2001), with kMAX = 12
(

T
100

)1/4
.

The tRQF
β statistic of PY09, where RQF means “robust quasi fea-

sible” (GLS), is an autocorrelation corrected t-statistic on β, obtained

estimating the following quasi-GLS regression with OLS:

yt−ρ̃MS yt−1 = (1−ρ̃MS)α+β [t−ρ̃MS(t−1)]+(ut−ρ̃MS ut−1), t = 2, . . . , T,

and y1 = β + u1, (5.7)

where ρ̃MS is obtained with the truncation

ρ̃MS =

{
1, if |ρ̃WS − 1| < T−1/2,

ρ̃WS, otherwise,

where ρ̃WS is a weighted symmetric least squares (WSLS) estimate of ρ

in equation (5.6), with one of two truncations explained in detail in p.

59 of PY07, ρ̃MU and ρ̃UB.

The statistic can then be represented as

tRQF
β =

β̃√
ĥ(X ′X)−1

22

,

where β̃ is the estimate obtained from the quasi-GLS regression and

(X ′X)−1
22 is the second diagonal element of the (X ′X)−1 matrix, with

X = [x1, . . . , xT ]
′, xt = [(1 − ρ̃MS), t − ρ̃MS(t − 1)] for t = 2, . . . , T ,

and x′1 = (1, 1). ĥ is a consistent estimator of the long-run variance

of {ut − ρut−1} (denoted with ϵt in section 5.3), for which, instead of a

non-parametric estimator, PY09 suggest using an autoregressive spectral
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density estimator (see their p. 61 for details).

While asymptotically this test is equivalent to the zλ test of HLT07

because their asymptotic power functions are the same, in finite samples

their behaviour can be much different. The simulation results in PY09

allow them to claim that their test, mainly the tRQF
β (MU) version, is

preferable to the Dan − J and zλ tests, but the dominance is far from

being uniform, both in terms of size and size-adjusted power properties.

Yang and Wang (2017) further extend the test to the case where,

besides possibly strongly serially correlated, the error term in (5.2) is

also affected by time-varying volatility.

A brief reference to the TR tests

In a similar vein to the two previous testing procedures and particularly

to HLT07’s, more recently Elliot (2020) proposed two new tests, based

on two statistics that he names as TR0 and TR1. His main innovation

lies in the component test statistic which is appropriate for the I(1)

and near-I(1) cases, which he labels as WLR because it is a ratio of

weighted likelihoods (under both hypotheses). Furthermore, to build

the likelihood functions he considers two different assumptions regarding

the initial value of the stochastic component: the more common that

assumes that it is asymptotically irrelevant and the assumption that it is

drawn from its unconditional distribution. A major problem with these

procedures is that the calculation of the WLR statistics appears too much

involved to be frequently adopted in empirical research.

5.6 Tests for linear segmented trends

Tests for linear segmented trends gained some popularity after the work

of Perron (1989) on unit root tests which are robust to breaks but some-

times breaks are imposed on linear trends with only graphical evidence

supporting them (which was the case with Perron’s article). This con-

trasts with a growing and ever more refined theoretical approach to the
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subject, which intersects the more general literature on the topic of struc-

tural breaks in time series. I have selected only a few approaches from

this voluminous library: the one by Papell and Prodan (2014) and the

tests by Hsu and Kuan (2001) and Wu (2016).

Characterizing long-run GDP growth

Papell and Prodan (2014, PP14) strongly defy the stochastic trend hy-

pothesis concerning long-run economic growth. They propose a proce-

dure to analyse the stability of long-run per capita GDP growth consist-

ing of several tests for linear restrictions in the context of a regime-wise

trend stationary model. They consider a sample of annual data from

1870 to 2008, taken from Maddison’s database, for 19 OECD and 7 Asian

countries.

PP14 seem to try to establish a relation between statistical and eco-

nomic models but their work in this respect is somewhat unsuccessful.

Rather, they obtain some success in the presentation of some stylized

facts concerning long-run growth for many advanced economies and for

some Asian countries. Statistically, after discarding the stochastic trend

model for most of the countries on the basis of several unit root tests7

and after estimating the number and the dates of the breaks in a linear

trending model using Bai’s (1999) procedure, the most general model

they consider is

yt = α+β t+γ1DU1t+θ1DT1t+θ2DT2t+θ3DT3t+
k∑

i=1

ρiyt−i+ut, (5.8)

where yt denotes logged per capita GDP, DU1t is a step dummy variable

defined by

DU1t =

{
1, if t > Tb1,

0, otherwise,

7Most of them allowing for breaks in the sample. PP14 do not control the size of
their joint procedure, searching for a rejection of the unit root null with four distinct
tests.
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DTit = t − Tbi = 1 if t > Tbi and 0 otherwise, i = 1, 2, 3, are changing

slope dummies, k is selected with the Schwarz information criterion (SIC

or BIC), and ut is (presumed to be) a well behaved error term, serially

uncorrelated and homoskedastic.

For the countries that exhibit at least one rejection of the unit root

tests, the following models are considered:

a) the linear trend model;

b) the level shift model;

c) the growth shift model;

d) the transition dynamics hypothesis.

As all the tests corresponding to these models are performed on a I(0)

context, i.e., for trend stationary series because the I(1) environment was

previously waived, resorting to standard inference methods, and partic-

ularly to the usual F -tests is a valid procedure8.

Since PP14 find evidence of at least one break for all the retained

countries, model a) is not really a pure, no-break linear trend model

with a long-run average growth rate approximately constant throughout

the sample. Instead, a “disturbed”, non-aligned intermediate segment is

allowed, the trend following the last break appearing as “a linear pro-

jection of the trend preceding the first break” (PP14, p. 469). Therefore,

this model cannot be considered for the cases where only one break was

found. The two sets of linear restrictions that allow obtaining this model

as a particular case of equation (5.8) are

i∑
l=1

θl = 0 and γ1 + θ1(Tbi − Tb1) = 0, for i = 2, 3.

Two of the countries less affected by the world wars —- Canada and the

U.S. — appear to be well characterized by this model, the first break

8Five countries were left out of this analysis because all unit root tests failed to
reject the unit root null hypothesis.
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located around the Great Depression and the linear trend resuming its

previous trajectory at the beginning of the 1940s.

The level shift model leaves parameter γ1 unrestricted and imposes∑i
l=1 θl = 0, i = 2, 3, that is, it allows a permanent change in the level of

per capita income but imposes that changes in growth rates may only be

temporary. Contrary to the previous one, this model may hold for the

cases where only one break was previously identified; for this case, the

only restriction is θ1 = 0. PP14 find that this model is appropriate for 6

countries.

The growth shift hypothesis requires the existence of permanent changes

in long-run growth rates and therefore leaves the θi parameters unre-

stricted and imposes only that γ1 = 0. Based on their preliminary break

analysis, PP14 do not consider this to be a real possibility. Instead, they

consider that a large group of countries belong to this class but allow

that all the parameters of equation (5.8) are left unrestricted.

Finally, PP14 allow the possibility that after the last break there was

not enough time until the end of the sample for countries to settle down

to a new steady-state growth rate. This is the the transition dynamics

hypothesis. They extend the sample with more 50 years of data generated

artificially with autoregressive models estimated over samples starting in

1973 and consider the countries for which there was not evidence favoring

the linear trend or the growth shift hypothesis and test again whether the

restriction
∑i

l=1 θl = 0 could be imposed. Only one more country now

failed to reject these restrictions and therefore, in general, the results do

not appear to be driven by transition dynamics.

Tests for partial parameter stability

Still in the context of the trend stationary, linear trend model of equation

(5.2), sometimes interest centers on tests for partial parameter stability.

When a structural break is identified, is it a crash-type of break (change in

the intercept only), or a changing growth one (change in the slope only)?

Obviously, in the case of a mixed break both parameters may change.

Hsu and Kuan (2001, HC01) address this problem: testing each one of
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the coefficients of the linear trend while keeping the other unchanged

(and untested).

Allowing the error term to be serially correlated, with a similar frame-

work to the one of section 5.3, HK01 firstly demonstrate that Wald-type

tests are not appropriate for the purpose of partial parameter stability

testing because they suffer from a serious size problem when the coef-

ficient being tested is stable but the other coefficient changes. This is

because although they are partial, these tests depend on all the coef-

ficients of the model but the critical values are derived assuming the

constancy of all the coefficients.

Instead, HK01 propose the following two-step procedure for the case

where the date of the break is not known a priori. In the first step the

constancy of the coefficients is tested jointly and the break date is esti-

mated by least squares when the null hypothesis is rejected. Otherwise

the procedure stops.

In practice, since minimizing the sum of squared residuals is equiv-

alent to maximizing the LR statistic of joint parameter constancy, the

least squares estimator of the change point observation, denoted with k

as in HK01, may be obtained from the test statistic for the joint (J) test

LRT (k, J) = (RSS0(k, J)−RSS1(k, J))/s
2
T (k, J),

where RSS0(k, J) is the constrained residual sum of squares (RSS) cor-

responding to the null hypothesis of parameter constancy, RSS1(k, J) is

the unconstrained RSS allowing both parameters to change after obser-

vation k and s2T (k, J) = RSS1(k, J)/T is the variance estimator of the

unconstrained regression, with

k̂ = arg max
k∈[k,k]

LRT (k, J),

where k = [Tτ ] and k = [Tk], τ and τ denoting the lower and upper limit

for the trimmed sample interval adopted for the fraction of break dates,

respectively; as is well known, usually τ is a value close to zero, such as

0.05 or 0.10. Hence, the likelihood ratio test statistic plays two distinct
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roles: testing joint constancy of the two coefficients and estimating the

break date.

In the second step the constancy of each coefficient may be tested

with

LTT (k̂, i) = (RSS0(k̂, i)−RSS1(k̂, i))/s
2
T (k̂, i), i = 1, 2,

with 1 denoting the intercept and 2 the slope coefficient. Under the null

hypothesis

LTT (k̂, i)
d−→ χ2

(1), i = 1, 2.

To control the overall size of these tests HK01 recommend performing

each of them with half the usual size (say, 0.025), so that the desired

overall size of the procedure is not exceeded

In one of the empirical illustrations they present, HK01 compare the

results of their method over the Nelson-Plosser data with those of Perron

(1989) and find that they agree for only five (of the 13) series. Different

conclusions for the break types and dates are the dominant feature.

A test with monotonic power

Tests for a changing linear trend may possess the undesirable feature

of non-monotonic power: as the change grows the power of the test de-

creases instead of increasing, as would be expected. The test proposed by

Wu (2016) has monotonic power and allows for weak serial dependence,

conditional heteroskedasticity and time-varying unconditional variance,

and although it is derived mainly against smoothly changing alternatives,

it has power to detect both abrupt and smooth structural changes. How-

ever, it does not provide any estimate of the breakpoint when the null of

stability is rejected.

The basic idea is that under the null hypothesis the OLS residuals of

equation (5.2), ût, are good estimates of a zero mean process. But under

the alternative hypothesis, the instability of the coefficients will likely
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induce that ût will deviate from zero. Hence, a first statistic is

λ̃T =
1

T 2h1

T∑
t=1

∑
s/∈B(t)

k

(
t− s

Th1

)
ûtûs,

where B(t) = [t−Th2, t+Th2] is a growing neighborhood around t, and

h1 and h2 are bandwidth parameters such that as T grows, h1 → 0, h2 →
0, h2/h1 → 0, and k(·) is a symmetric and bounded kernel function with

support on [−1, 1].

When the null hypothesis is true λ̃T should be close to zero, and when

there is instability it will tend to be positive. However, it still needs to

be standardized. Wu proposes the test statistic

ŨT = Th
1/2
1 λ̃T/Σ̃

1/2,

where the estimate of the variance is

Σ̃ =
2

T 2h1

T∑
t=1

∑
s/∈B(t)

k2
(
t− s

Th1

)
û2t û

2
2,

which is asymptotically standard normal under the null of stability.

Based in some Monte Carlo evidence, Wu (2016) sets h2 = h1T
−1/5

and recommends using h1 = 0.75T−1/5. This version of the test often

exhibits better power performance in the simulations than such popular

tests as CUSUM and supWald (or maxChow) tests.

5.7 Testing for a nonlinear trend

Several nonlinear models were presented in chapter 3. The purpose here is

not to prescribe a test for each one of them but rather to deal with a gen-

eral procedure to detect any nonlinear feature in the deterministic trend.

The segmented linear model, containing at least one break or change in

intercept and/or slope figures prominently among the alternatives but,

of course, it is not the only alternative hypothesis. For instance, such a
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procedure must be useful to detect smooth transition type behaviour in

the trend. The idea is to search for any type of nonlinearity without any

prior knowledge about its true functional form.

An approximation that has been servicing this purpose because it is

known as capturing well many types of nonlinearities is the Fourier series

expansion, where the approximating model is given by

yt = α + βt+
n∑

j=1

γ1j sin

(
2πkjt

T

)
+

n∑
j=1

γ2j cos

(
2πkjt

T

)
+ ut, (5.9)

where the kj coefficients are non-negative integers for j = 1, . . . , n, which

denote the particular frequency, and n represents the total number of

frequencies. In the approach of Perron, Shintani and Yabu (2017, PSY17)

the set of kjs can be a proper subset of all the integers between 1 and

the maximum frequency, kn, and hence kn may not correspond to the nth

frequency. For instance, when n = 2 and kn = 3, (k1, k2) can be either

(1, 3) or (2, 3).

Note as well that the presence of the trigonometric terms does not

imply that the series must be periodic. Rather, it is known that such

terms can often capture the behaviour of any nonlinear function even

when it is not periodic. Moreover, the approximation is particularly well

suited to the case of trend stationary series affected by several structural

breaks, particularly when they are smooth or gradual. It does not re-

quire any knowledge about the nature of those breaks, nor about their

number and date. And since breaks distort the spectral density function

of the series at low frequencies, values for kj equal to 1 and 2 are usually

recommended to deal with them. When used to test for a unit root in

ut, the usual recommendation is to use only one frequency so that there

is no significant power loss resulting from over-fitting (see, e.g., Becker,

Enders and Lee, 2006, hereafter BEL06, and Lopes, 2023).

In figure (5.1) the simulated series represented in figure (3.4) is pre-

sented again, together with the fitted values of the Fourier approximation
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Figure 5.1: The simulated series of figure (3.4) and its fitted values with
the Fourier approximation using a single frequency

using only one frequency, which is unity. The estimated model is

ŷt = 3.51 + 0.021t− 0.103 sin

(
2πt

T

)
− 0.373 cos

(
2πt

T

)
and the fit is particularly good as the trend changes and evolves smoothly

after 2021.

As another example, the series of figure (5.2) was generated with

three breaks, all affecting the trend negatively: a) the first, in 1980, af-

fects both the intercept and the slope; b) the second, in 2020, affects

only the slope (a growth shift); c) and the third, in 2080, affects only the

intercept (a level shift). The model used for the approximation employed

two frequencies, (k1, k2) = (1, 2), and provided a much better fit than the

approximation with a single frequency, all the estimated γ coefficients ap-

pearing highly statistically significant according to the standard criteria;

moreover, a conventional F -statistic to test H0 : γ12 = γ22 = 0 is also

highly significant.

The test that was just mentioned is valid because the series is known

to be trend stationary, I(0), and the error term of its DGP is serially
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Figure 5.2: A series simulated with three breaks and its fitted values with
the Fourier approximation using two frequencies

uncorrelated. But this information is almost never available. The typical

situation is again subject to a circularity problem:

a) to perform valid tests to assess whether there is some nonlinearity

in the data and to determine the correct order of the Fourier ap-

proximation, one needs to know in advance the order of integration

of the series;

b) but the validity of unit root or stationarity tests that are necessary

to determine the order of integration also depends critically on the

adequate specification of the deterministic component, which again

requires that the tests mentioned in a) are made beforehand.

BEL06 tabulate the critical values of a sup−F test to determine the

order n which is valid only in a stationary environment. On the other

hand, imposing a unit root, Enders and Lee (2012, EL12) derive the

critical values for a F -test for a nonlinear trend. The tests of BEL06 will

be oversized in case the data are I(1); and the tests of EL12 will have

reduced power in case the data are I(0). Hence, as in the case of tests
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for a linear trend, what is desirable is to have a test that is robust to the

order of integration.

Harvey, Leybourne and Xiao (2010, HLX10) devised the first ap-

proach to the problem that is valid regardless of the order of integration

(provided it is either I(0) or I(1)). Considering equation (5.9), the test

for a nonlinear trend is a test for

H0 : γ1j = γ2j = 0, j = 1, . . . , n, vs.

H1 : at least one γ1j, γ2j ̸= 0, j = 1, . . . , n.

Their method builds upon the work of Vogelsang (1998): a Wald statistic

based on the partial sum or accumulation of equation (5.9) is considered

and the limiting distribution under both assumptions, I(0) and I(1), is

derived; the key feature is a modification that is applied to ensure that

the critical values for each test coincide under both assumptions. To

achieve this feature, the modification must depend on another, auxiliary

statistic that converges in probability to zero in case the data is I(0) but

converges weakly to a pivotal limiting distribution when it is I(1).

Moreover, HLX10 proposed also a robust algorithm to determine the

order of the approximation, which again relies on a composite statistic.

The complexity of the algorithm is not high but the process is somewhat

cumbersome.

Astill, Harvey, Leybourne and Taylor (2015, AHLT15) further modify

HLX10’s procedure: instead of building a composite statistic, they use

the auxiliary unit root test statistic to switch between the asymptotic

critical values for the Wald statistic in the two contexts. The modification

improves the small sample performance of the test, particularly in terms

of power.

In both these cases, the limiting distributions of the test statistics

are non-standard and depend on the choice of the frequencies. This is

not the case when the approach presented in PSY17 is followed: the

limiting distribution is standard χ2 and depends only on the number of

frequencies. And although it is also somewhat involved, its improved

finite sample properties appear to justify the choice. It builds on the
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work of PY09 addressed in subsection (5.5), sharing with it the following

features:

a) it relies on a FGLS procedure which is supported by a estimator of

the sum of the autoregressive coefficients (ρ) which is super-efficient

when ρ = 1;

b) it builds the “bridge for the gap” between the limiting distributions

of the test statistic for the I(0) and I(1) cases upon this property

of the estimator for ρ, making the limiting distribution for the I(1)

case collapse into the one for the I(0) case9.

Differently from PY09, it needs to resort to the Prais-Wisten version

of the FGLS estimation to ensure that the limiting distribution is not

dominated by the initial condition. Indeed, as can be observed in equa-

tion (5.7), PY09 use the more popular Cochrane-Orcutt method, which

implicitly assumes that the initial condition is zero; for further details

about the distinction between these two versions of FGLS estimation see,

e.g., Canjels and Watson (1998).

Equation (5.9) can be written in vector form as

yt = x′tΨ+ ut, (5.10)

where xt = (z′t, f
′
t)

′, with zt = (1, t)′ and ft = (sin(2πk1t/T ), cos(2πk1t/T ),

. . . , sin(2πknt/T ), cos(2πknt/T ))
′, Ψ = (ϕ′, γ′), with ϕ = (α, β)′ and

γ = (γ11, γ21, . . . , γ1n, γ2n)
′. The assumptions for the error term ut (and

for ∆ut) are similar to those made in section (5.3):

a) in the I(0) case, ut = C(L)et, C(L) =
∑∞

i=1 ciL
i,
∑∞

i=1 i|ci| <
∞, 0 < |C(1)| <∞;

b) in the I(1) case, ∆ut = D(L)et, D(L) =
∑∞

i=1 diL
i,
∑∞

i=1 i|di| <
∞, 0 < |D(1)| <∞,

9This becomes particularly easy to observe in the simple example offered by PSY17
for the case of a single trigonometric regressor.
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with et ∼ (0, σ2) a m.d.s. and u0 = Op(1). As in PY09, the autoregressive

representation is employed, ut =
∑∞

i=1 aiut−i + et or

ut = ρut−1 + A∗(L)∆ut + et,

ρ still representing the sum of the autoregressive coefficients, ρ = A(1).

As regards the null hypothesis for the absence of any nonlinear compo-

nent, it may be written as

RΨ = 0,

where R = [0 : I2n] is the 2n × (2 + 2n) matrix of the restrictions. In

the following paragraphs the steps of PSY17’s procedure are described

in detail.

i. Run the OLS regression (5.9) or (5.10) to obtain the residuals ût.

ii. Estimate ρ with the OLS regression

ût = ρût−1 +

p∑
i=1

a∗i∆ût−i + ept, (5.11)

where p is the truncation lag order, that PSY17 recommend estimat-

ing with the modified AIC (MAIC) method proposed in Ng and Perron

(2001); alternatively, resort to the usual AIC statistic or to the general-

to-specific (GTS) popular method. PSY17 recommend starting with

pmax = [12
(

T
100

)1/4
], which is a generous lag order. Denote with τ̂ the

usual unit root test statistic, τ̂ = (ρ̂− 1)/se(ρ̂).

iii. Since the estimator of ρ based in equation (5.11) is known to

be biased downward, particularly when ρ is close to 1, use instead the

bias-corrected estimator:

ρ̂M = ρ̂+ C(ρ̂) se(ρ̂),
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where

C(ρ̂) =


−τ̂ , if τ̂ > τpct
IpT

−1τ̂ − (1 + r)[τ̂ + c2(τ̂ + 10)]−1, if − 10 < τ̂ ≤ τpct

IpT
−1τ̂ − (1 + r)τ̂−1, if − c

1/2
1 < τ̂ ≤ −10

0, if τ̂ ≤ −c1/21

with τpct denoting a percentile of the limiting distribution of τ̂ when ρ = 1

that PSY17 considered as τ0.50 and τ0.85, for the “median-unbiased” and

“upper-biased” tests, respectively, c1 = (1 + r)T , r = 2 + 2n is the total

number of coefficients in (5.9) or (5.10), Ip is the integer part of (p+2)/2,

c2 = [(1+r)T−τ 2pct(Ip+T )][τpct(10+τpct)(Ip+T )]−1. The percentiles τ0.50
and τ0.85 are tabulated in PSY17, both when a singe frequency is used,

with a value between 1 and 5, and for cases with multiple frequencies

(see table 1 of PSY17, p. 830).

iv. With the previous estimator, construct the super-efficient estima-

tor when ρ = 1 given by

ρ̂MS =

{
ρ̂M , if |ρ̂M − 1| > T−1/2

1, otherwise.

v. Use the previous estimate to build the Prais-Wisten FGLS regres-

sion, given by

(1− ρ̂MSL)yt = (1− ρ̂MSL)x
′
tΨ+ (1− ρ̂MSL)ut, t = 2, . . . , T,

and (1− ρ̂2MS)
1/2y1 = (1− ρ̂2MS)

1/2x′1Ψ+ (1− ρ̂2MSL)u1,

to estimate Ψ and denote the residual of this regression with v̂t since

they estimate vt = (1− ρL)ut.

vi. Finally, the Wald statistic robust to serial correlation in vt is

Wγ̂ = Ψ̂′R′[ω̂2R(X̃ ′X̃)−R′]−1RΨ̂,

where X̃ denotes the T×(2+2n) regressor matrix of the FGLS regression,

i.e., its tth row is x̃′t = (1−ρ̂MSL)x
′
t, t = 2, . . . , T , but x̃′1 = (1−ρ̂2MS)

1/2x′1,
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(X̃ ′X̃)− is the generalized inverse of (X̃ ′X̃), and ω̂2 is a long-run variance

estimator of vt, which is given by

ω̂2 =

{
(T − p)−1

∑T
t=p+1 ê

2
tp, if T 1/2|ρ̂M − 1| > 1

T−1
∑T

t=1 v̂
2
t + T−1

∑T−1
j=1 ωj(j,mT )

∑T
t=j+1 v̂tv̂t−j, otherwise

with êpt the residuals from equation (5.11) and ωj(j,mT ) a weight func-

tion with bandwidth mT ; PSY17 recommend using Andrews’s automatic

selection method for mT and the quadratic spectral window.

In both the I(0) and I(1) cases and under H0,

Wγ̂
d−→ χ2

(2n).

Regarding the choice between the median-unbiased and the upper-biased

versions of the test, PSY17 recommend using this last one since its power

performance is comparable to the first, only slightly inferior, but it is less

affected by size distortions.

As regards the choice of frequencies, assuming that their set (k1, . . . , kn)

is known, with kn = n, PSY17 propose a simple GTS procedure which

consists of the sequential application of the version of their test for sub-

sets of coefficients, adapting the R matrix accordingly. For instance,

starting with n = 3, the null hypothesis that the coefficients related to

the maximum frequency are both equal to zero is tested. If this hypoth-

esis is rejected, n = 3 is selected; otherwise n is set at n = 2 and the

hypothesis that the coefficients related to k = 2 are zero is tested. The

process stops when a decision for rejection is reached or when n = 0. A

Monte Carlo study indicates that this method is more powerful than the

one proposed in HLX10.

More recently, Perron, Shintani and Yabu (2020) returned to this

problem, removing the assumption of a known set of frequencies and

proposing a specific-to-general method which is again robust to the long-

run properties of the data. Their procedure relies in two new tests, the

mean and the sup-type tests. However, when the problem is confined to

the nonlinearity in trend, not in the level, the assumption of a known set
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of frequencies does not appear to be particularly restrictive. Actually, in

unit root testing literature where the Fourier approximation is also used,

a single frequency is usually employed and the only constraint is that

its value must be low, not far from zero, to accommodate the effect of

structural breaks. In the case at hand, considering n = 2, and so kn = 2,

must be sufficient for most cases. Abandoning the assumption of integer

frequencies only, as has been done in that literature, appears to be a

more promising avenue for research.

5.8 Two nonparametric tests

Tests for the detection of trends are not confined to economics, however.

They can easily be found in research in earth science, and in particular

in hydrology — as in Hamed and Rao (1998) and Shi et al. (2013) —

and in climate change analysis. Actually, as recently as 2020, the Journal

of Econometrics published an entire issue dedicated to this topic. As in

the past in economics, where a linear time trend was often considered to

provide a good approximation to the evolution of technology, a similar

suggestion may be found in this area concerning the representation of

anthropogenic influences.

The most well known trend test in hydrology is the Mann (1945)–

Kendall (MK)10 test, which is clearly presented in, e.g., Hamed and Rao

(1998). Empirical applications vary much, ranging from rainfall data,

to temporal pan evaporation series, to data on the streamflow of rivers

or groundwater quality, to the occurrence of floods and droughts, etc.

The MK test is a nonparametric test originated in the analysis of rank

correlations between two groups of observations and particularized to the

case where one of them is the order of the observations in time. Its focus

is the correlation between the rank order of the observations and their

order in time. The null hypothesis is that the data come from a random

sample, i.e., that they are independently and identically distributed, and

the commonly adopted alternative is that the data contain a trend.

10Kendall, M. K., 1955, Rank Correlation Methods, Griffin, London.
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In the general case, the two sets of observations are denoted with

y1, y2, . . . , yT and x1, x2, . . . , xT , respectively. An original test statistic S

is defined by

S =
∑
i<j

aijbij,

where

aij = sign(yj − yi) =


1, if yi < yj
0, if yi = yj
−1, if yi > yj

,

and similarly for bij with the observations of X. Under the null hypoth-

esis, S is asymptotically normal with E(S) = 0 and

Var(S) =
T (T − 1)(2T + 5)

18
.

When variable X is replaced by the order in time of the observations

of Y , the test statistic adopts its trend form and it is given by

S =
∑
i<j

aij =
∑
i<j

sign(yj − yi).

It is frequently acknowledged that this test performs poorly, with se-

rious size distortions when the data are serially correlated, i.e., the test

often indicates the presence of a trend when none exists, simply because

the data are serially correlated. And indeed the correct alternative hy-

pothesis is much more general than the presence of a trend: any depart

from randomness is a violation of the null. Several methods have been

proposed to tackle this problem but I will not address them here. This

test has not find its way into macroeconomics and, at least apparently,

with good reason11.

11An exception may be found in the work of Rogoff, Rossi and Schmelzing (2024),
who refer to the test as providing evidence for a positive linear trend in global output;
however, their strong claim for a downward linear trend in global long-maturity real
interest rates is substantiated in visual inspection only, as they do not present the
results for this or for any other formal test.



164 CHAPTER 5. TESTING FOR THE PRESENCE OF A TREND

A simpler test, coming also mainly from hydrology, is the Cox-Stuart

test. The sample is split into two parts, y1, . . . , yT/2 and yT/2+1, . . . , yT ,

and the sign of the difference between each pair (yt, yt+T/2) is retained
12.

The test statistic is given by the number of pairs in which yt < yt+T/2,

that is

CS =

T/2∑
t=1

1(yt < yt+T/2),

and its distribution under the null is the binomial with parameters T/2

and 1/2 (CS ∼ Bi(T/2, 1/2)). According to the Monte Carlo study in

Rutkowska (2015), despite its simplicity the loss in power relatively to the

MK test is small. However, in this study the problem of serial correlation

is not addressed because it is assumed from the outset to be absent from

the data, so that the test can be validly performed.

12T is assumed to be even; if it is not, the middle observation is removed from the
series.



Appendix A

A brief introduction to filters

Although it is not claimed that economic time series display regular cy-

cles, it may be useful to think that some of their variation results from

the contribution made by periodic components. This is the subject of

frequency analysis, which provides insights unattainable in the time do-

main and which is useful to understand linear filters. The brief overview

that follows aims to provide a few tools to better understand this topic

and starts by addressing a basic subject, that of complex numbers.

A.1 Complex numbers

Complex numbers as

z = a+ bi,

are composed of a real part, a, and an imaginary one, +bi, where the

complex unit is defined by i =
√
−1 (i2 = −1). Complex numbers can

be represented in the complex plane, with a plotted in the x axis and b

in the y axis.

Euler’s identity,

e±iθ = cos θ ± i sin θ,

is often useful. It can be used to represent complex numbers in polar

165
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coordinate form, as
z = Reiθ

= R [cos θ + i sin θ]

where R = (a2+b2)1/2 is themodulus of the complex number, i.e., R = |z|,
and

θ = tan−1(b/a)

is the angle, in radians (π = 180o), that the point (a, b) makes with the

real axis, which can be also characterized with

cos θ = a/R

sin θ = b/R.

Two useful identities that result from Euler’s identity are

cos θ = (eiθ + e−iθ)/2,

sin θ = (eiθ − e−iθ/2i.

Adding complex numbers is easy:

(a+ b i) + (c+ d i) = (a+ c) + (b+ d)i.

And multiplication is also easy:

(a+ b i)(c+ d i) = ac+ ad i+ bc i− bd = (ac− bd) + (ad+ bd)i.

But it is easier in polar notation:

R1e
iθ1R2e

iθ2 = R1R2e
i(θ1+θ2),

thus, the modulus of the product is the product of the two modulus and

the angle of the product is the sum of the two angles.

The complex conjugate, denoted with an asterisk (some prefer to de-

note it with z̄), is

z∗ = (a+ bi)∗ = a− bi,
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and, in polar coordinates,

(Reiθ)∗ = Re−iθ.

Note that the product of a complex with its conjugate is real:

(a+ bi)(a− bi) = a2 + b2 = R2.

Comparing the first equality with the expression for the modulus of a

complex number, it can be deduced that the modulus of the complex

number can be viewed as the square root of the product of the number

with its complex conjugate:

R = |a+ bi| =
√

(a+ bi)(a− bi).

A.2 Cyclical functions

Suppose one wishes to build a periodic deterministic model for a time

series. Since a sinusoidal function is a possibility, one may consider, e.g.,

xt = H cos(ωt+ ϕ),

where H is the height or amplitude of the sinusoidal variation, ω is its

(angular) frequency in radians, that is, the number of radians per unit

time, and ϕ is the angular amount by which the cosine wave is shifted,

called the phase, which when is measured in time is ϕ/ω. Since the cosine

function completes a full cycle in 2π radians, the period of this function,

that is, the time that x takes to complete its complete sequence is given

by

period =
2π

ω
,
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Figure A.1: An illustration of a sinusoidal function: the function
H cos(ω t+ ϕ) with H = 3, ω = π/2 and ϕ = π/4

which is sometimes called the length of the period or the wavelength1.

This simple expression is very useful to economic reasoning.

The relation can obviously be inverted; for instance, if a trigonometric

function repeats itself every 4 periods, its frequency is derived from 4 =

2π/ω, that is, ω = π/2.

In figure (A.1) the sinusoidal function 3 cos( π
2
t + π

4
) is represented.

To approximate a continuous time variable, a time trend s was first

generated for a sample of annual data from 2000 to 4000 and then t was

made equal to s/100.

1Indeed, recalling that the sine and cosine functions are periodic with period 2π,
and rewritting sin(ωt) and cos(ωt) as sin(2π ωt

2π ) and cos(2π ωt
2π ), repectively, it is easy

to see that both these functions repeat whenever ωt
2π is an integer. Hence, setting

ωt
2π = 1 allows concluding that both repeat every t = 2π

ω periods.
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A.3 Fourier transforms

The (discrete) Fourier transform of a time series xt is defined by

x(ω) =
∞∑

t=−∞

e−iωt xt.

Thus, it transforms a function of t into a complex valued function of ω.

Given x(ω), the inverse Fourier transform is defined by

xt =
1

2π

∫ π

−π

eiωtx(ω)dω,

that is, it allows recovering the original series from its transform.

A.4 Spectral density

Suppose that the process {xt} is stationary, with autocovariances γj that

are absolutely summable. Then its spectral density or spectrum is defined

as the Fourier transform of its autocovariance function, i.e., as2

sX(ω) =
∞∑

j=−∞

γj e
−iωj .

But since the autocovariance function is an even function (γ−j = γj)

and using Euler’s identity as well as the properties of the sine and cosine

functions3 it can be written as

sX(ω) = γ0 + 2
∞∑
j=1

γj cos(jω).

2Unfortunately there is no unanimity in the literature. For instance, in Hamilton
(1994) and in Brockwell and Davies (2016), the (population) spectrum is this magni-
tude divided by 2π. Harvey (1993, p. 167) also adopts this convention but calls it the
power spectrum. I will use the terms spectral density and spectrum interchangeably.

3Recall that cos(0) = 1, sin(0) = 0, sin(−θ) = − sin(θ) and cos(−θ) = cos(θ).
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Hence, it is a real function, that can be shown to be nonnegative

for all ω and symmetric around ω = 0 because cos(ωj) = cos(−ωj) for
any ω and, since cos[(ω + 2πk).j] = cos(ωj) for any integers k and j,

sX(ω + 2πk) = sX(ω) for any k, i.e., the spectral density is a periodic

function of ω: it is sufficient to know the value of sX(ω) for all ω ∈ [0, π]

to know its value for any ω.

The autocovariance function can be recovered inverting the spectral

density:

γj =
1

2π

∫ π

−π

eiωjsX(ω)dω.

In particular, with j = 0:

γ0 =
1

2π

∫ π

−π

sX(ω)dω,

that is, the variance of the process is the area under the spectral density

between ±π divided by 2π. Cochrane (2005, p. 74) provides an inter-

esting interpretation: “this equation interprets the spectral density as a

decomposition of the variance of the process into uncorrelated components

at each frequency ω (if they weren’ t uncorrelated, their variances would

not sum without covariance terms)”.

This result can be generalized. Indeed,

1

2π

∫ ω1

−ω1

sX(ω)dω,

for any ω1 ∈ [0, π] is a positive magnitude that can be interpreted as

the proportion of the variance of xt that is associated with frequencies ω

that are smaller than ω1 in absolute value. But since sX(ω) is symmetric,

twice the integral between 0 and ω1, that is,

1

π

∫ ω1

0

sX(ω)dω,

represents the fraction of the variance of xt that can be attributed to

periodic random components with frequencies less than or equal to ω1.
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And of course we can convert these in terms of periodicities.

Moreover, if a spectrum exhibits a peak at a certain frequency, it

means that the frequency and the frequencies close to it have an impor-

tant contribution to the variance of the series.

A.5 Some spectral densities

For a white noise process, xt = ϵt ∼ iid(0, σ2
ϵ ), that is, with γ0 = σ2

ϵ and

γj = 0 for j > 0,

sX(ω) = σ2
ϵ = σ2

x.

Thus, the spectral density is flat; all the frequencies are equally repre-

sented and actually the name white noise derives from the analogy with

white light, which contains all the frequencies in the colour spectrum.

For the MA(1) process, xt = ϵt+θϵt−1, with γ0 = (1+θ2)σ2
ϵ , γ1 = θσ2

ϵ

and γj = 0 for j > 1, it is

sX(ω) = (1 + θ2)σ2
ϵ + 2θσ2

ϵ cosω

= (1 + θ2 + 2θ cosω)σ2
ϵ .

MA(1) processes with θ > 0 have spectral densities with low frequencies

emphasized, while those with θ < 0 have spectral densities with high

frequencies emphasized.

For a stationary AR(1) process, xt = ϕxt−1 + ϵt, the spectral density

is

sX(ω) =
σ2
ϵ

1 + ϕ2 − 2ϕ cos(ω)
.

When ϕ > 0 the denominator is monotonically increasing in ω over [0, π],

and hence sX(ω) is monotonically decreasing. When ϕ < 0, sX(ω) is a

monotonically increasing function of the frequency.
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A.6 Linear filters

It is well known that several characteristics of a time series can be mod-

ified by means of a linear transformation. In particular, linear filters

modify the spectral characteristics of a series in a predictable way, and

hence are useful to highlight the behaviour of the series at certain fre-

quencies, i.e., to enhance certain parts of its spectrum.

Denote with xt the stationary input series and consider that the series

yt is constructed as a weighted average of xt:

yt =
s∑

j=−r

ajxt−j,

with weights a−r, . . . , a0, . . . , as real and fixed. This transformation is

a linear time-invariant filter because the weights do not vary with time.

When the weights sum unity the filter is usually called a moving average.

Using the common notation of polynomials in the lag operator (L),

the filter may be represented as

yt = A(L)xt,

with

A(L) = a−rL
−r + . . .+ a−1L

−1 + a0 + a1L+ . . .+ asL
s.

The weights or coefficients are called the impulse response function.

A very simple example is the case of the moving average defined by

yt =
1

3
(xt−1 + xt + xt+1),

which has A(L) = (1/3)(L−1+1+L) and whose impulse response function

is

aj =

{
1/3, j = −1, 0, 1

0, otherwise.
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In the case that the filter is infinite,

yt =
∞∑

j=−∞

ajxt−j,

its coefficients are required to satisfy an absolute summability condition,∑∞
t=−∞ |at| <∞, so that the Fourier transform

A(e−iω) =
∞∑

j=−∞

aje
−iωj ,

which is called the frequency response function, is well defined.

A.7 Relation between the spectral densi-

ties

A very important result concerns the relation between the spectral den-

sities of the input and output series. This relation is given by

sY (ω) = |A(e−iω)|2 sX(ω),

where the term |A(e−iω)|2 is called the power transfer function. Thus

the filter changes the spectrum of the input series through a frequency-

by-frequency multiplication by the squared modulus of the frequency

response function.

Recalling the well known property of the variance which states that if

x denotes a random variable with variance σ2
x then, y = bx has variance

σ2
y = b2σ2

x, there is therefore a close analogy between this property and

the effect of filtering on the spectrum of a series.
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A.8 Some examples

In the first example probably the most popular filter is addressed, the

one of first differencing:

yt = ∆xt = (1− L)xt.

It is an example of a high-pass filter because it passes the higher fre-

quencies while reducing or attenuating the low frequency variation of the

series. Baxter and King (1999) strongly criticize this filter as a band-

pass (business cycle) filter, isolating fluctuations in the data associated

with a certain range of periodicities, because it induces a “a dramatic

reweighting of frequencies” (p. 585) towards the higher frequencies while

downweighting lower frequencies.

The weights of the impulse response are simply a0 = 1, a1 = −1 and

ar = 0 otherwise. Therefore,

A(e−iω) = 1− e−iω,

and
|A(e−iω)|2 = (1− e−iω)(1− eiω)

= 2(1− cosω).

Therefore,

sY (ω) = 2(1− cosω) sX(ω).

This power function is represented in figure A.2. The filter attenuates

the lower frequencies — and it is even equal to zero at ω = 0 — and

enhances the higher frequencies.

A simple application of the filtering formula concerns the MA(∞)

representation, which expresses any stationary process as an infinite lin-

ear filter of a white noise process. Indeed, from the Wold representation

of the series,

yt = Ψ(L)ϵt =
∞∑
j=0

ψjϵt−j,
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Figure A.2: The power or squared frequency
response function of the first difference filter

one can easily derive that

sY (ω) = Ψ(e−iω)Ψ(eiω).σ2
ϵ ,

and hence the spectral density of any stationary ARMA process can be

derived.

For instance, for the MA(1) process

yt = ϵt + θϵt−1 = (1 + θL)ϵt,

sY (ω) = (1 + θe−iω)(1 + θeiω) σ2
ϵ

= [1 + θ(eiω + e−iω) + θ2] σ2
ϵ

= [1 + 2θ cos(ω) + θ2] σ2
ϵ ,

as previously indicated.

A.9 Gain and phase

Applying a filter to a series produces two different types of effects:
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a) it changes the relative importance of the various cyclical or periodic

components;

b) it may shift the position of the series in time.

The first effect is usually the one that is sought with the filter: to increase

or enhance and to reduce or attenuate the amplitude of certain cyclical

components. This effect is called the gain, G(ω), and it is given by the

modulus of the frequency response function:

G(ω) = |A(e−iω)|.

Hence the power transfer function is the gain squared. At any given

frequency, it indicates the extent to which the filter augments or reduces

the variance of the filtered series in relation to the original series (Baxter

and King, 1999).

I take an example from Harvey (1993, p. 193) to illustrate this effect.

It is the case of a symmetric moving average, targeted to smooth the

series, i.e., to reduce or even eliminate the irregular fluctuations and to

emphasize the trend, i.e., the low frequency component. Suppose that

the moving average has length m = 2r + 1, with equal weights summing

unity:

yt =
1

m

r∑
j=−r

xt−j.

Then it can be shown that

A(e−iω) =
sin(mω/2)

m sin(ω/2)
,

which is real because the filter is symmetric.

Figure A.3 illustrates the gain function for the case of a five-period

moving average filter. Since the gain is small at high frequencies, irregular

movements of the series are dampened, smoothing the series and making

the trend appear more clearly. Notice also that the gain is zero at the

frequency corresponding to a five-period cycle, ω = 2π/5.
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Figure A.3: The gain function for a five-period moving average

The second effect is called phase shift and it is represented with

Ph(ω). As a simple example consider that the filter simply shifts the

series four periods back in time:

yt = xt−4.

If the original series, xt, were generated by a cyclical process as, for

instance

xt = cosωt,

the filtered series would be

yt = cosω(t− 4) = cos(ωt− 4ω),

and hence the phase shift is Ph(ω) = 4ω, i.e., a backward shift of four

time periods is transformed in a phase shift of 4ω in the frequency do-

main.

The analysis of phase shifts appears to be both less interesting and

more involved than that of the gain. However, a few results are available

that may be helpful. First, a sinusoidal input of a filter originates a
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sinusoidal output at the same frequency. Intuitively, as pointed out by

Cochrane (2005, p. 82), “all you can do to a sine wave is stretch it or

shift it”. Harvey (1993) provides a brief discussion about the calculation

of phase shifts.

Second, symmetric filers — as, for instance, most moving averages —

have real response functions and do not exhibit any phase shift.

A.10 Ideal filters

Suppose now that one wishes to find an optimal or ideal filter, such that

when it is applied to a series it retains or extracts only those components

of the series whose frequencies lie (in absolute value) in a certain subset

Ω∗ of [−π, π]. The ideal low pass filter is the filter that leaves the low

frequencies, long-run or slow movements unchanged and “wipes out” the

high frequency components of the series. It is denoted with AL(ω) and

it must pass only frequencies in the interval Ω∗ =]− ωc, ωc[, where ωc is

called the cut-off frequency. Its frequency response function must be

AL(ω) =

{
1, if ω ∈ Ω∗

0, if ω /∈ Ω∗ .

It should be also phase neutral, that is, not inducing any temporal shift,

and this requires that the filter is symmetric, AL(ω) = AL(−ω). Resort-
ing to the inverse Fourier transform, Mills (2003, pp. 85-86) derives the

weights of this filter:

aL,0 =
ωc

π
, and aL,j =

1

πj
sin(ωcj), j ̸= 0.

This is an infinite moving average and, although the weights aL,j tend

to zero as j increases, an infinite sample of observations is required.

Therefore, the filter is unfeasible.

Conversely, if the gain of the filter is small (or even zero) for low

values of ω but large for high values of ω, the filter is a high-pass filter.

Finally, a band-pass filter can be viewed as a combination of a low pass
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and a high pass filter: “wiping out” very high and very low frequencies

and allowing only the intermediate frequencies to “get through”. That

is, components of the series corresponding to cycles with lengths inside

a band, defined by a lower and a upper bound, are passed through or

extracted, and the remaining are filtered out. This is the type of filter

typically used in business cycle analysis; Canova (2007, pp. pp. 94-99)

provides an overview of these filters.

All these filters are unfeasible and only approximate solutions are

feasible. The graphical representation of their gain functions is box-

shaped but those of their feasible, finite sample, approximations is bell-

shaped. Thus, relatively to their ideal versions, feasible filters imply

some loss of power at the edges of the band; this is called the leakage of

the filter. It also implies an increase in importance of the frequencies in

the middle of the band, and this phenomenon is calledcompression. The

opposite phenomenon is called exacerbation.

For the case of low pass filters, Mills (2003, p. 87) shows that the

weights of the ideal approximation filter sets aj = aL,j for j = 0, 1, . . . ,m

and aj = 0 for j > m, that is, the ideal approximation simply trun-

cates the set of the (infinite) unfeasible ideal filter weights. According

to Baxter and King (1999), this result can be generalized to any approx-

imating filter, provided the loss function is quadratic and attaches the

same weights to the (squared) approximation errors at different frequen-

cies.

Besides providing a very pedagogical introduction to linear filters,

Baxter and King (1999) derive the ideal band-pass filter for business

cycles analysis as well as its optimal approximation, which they represent

with BPK(p, q): it passes cycles between p and q periods in length, with

a truncation at point K(= m in Mills’2003 notation). Since Burns and

Mitchell (1946) specified that business cycles components were those with

periodic fluctuations between 6 and 32 quarters, for quarterly data the

ideal business cycles band-pass filter is denoted with BP∞(6, 32) and its

optimal approximation is represented with BP12(6, 32). For annual data

Baxter and King recommend BP3(2, 4). A brief presentation of Baxter

and King’s filter is provided in Álvarez and Gómez-Loscos (2018) and a
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more extensive, though brief presentation is provided in the main text.

Murray (2003) shows that the Baxter and King filter, and more gen-

erally any bandpass filter, is incapable of isolating the cyclical component

of the UC modeling approach when the trend is an integrated process be-

cause the first difference of the trend passes through the filter and joins

the cyclical component. That is, the definition of the cyclical compo-

nent according to the frequency domain approach does not appear to be

compatible with the UC modeling one.

A.11 Spurious effects

Besides the previously mentioned drawbacks, filters may also distort fluc-

tuations in such an extension as to provoke spurious effects. A well known

case may occur when applying summing operations over previously dif-

ferenced data, a spurious cycle likely emerging from the combined effect.

This phenomenon is known as the Yule-Slutsky effect, and is described

in Harvey (1993, pp. 195-6). While differencing attenuates low frequen-

cies, summing attenuates high frequencies and hence certain intermediate

frequencies will tend to appear reinforced.

The most well known example of this phenomenon is provided by

a work from Kuznets published in 19614. While searching for evidence

on long swings in economic data, Kuznets found it with a periodicity of

around 20 years. A few years later it came out that this was an artifact of

the two filters that he had employed, a five-year moving average followed

by a five-year differencing (i.e., yt = xt − xt−5). The distortion emerged

from the combined effect of these two filters, whose transfer function is

given by

|A(e−iω)|2 =
[
2 sin 5ω sin(5ω/2)

5 sin(ω/2)

]2
,

which has a very high peak at a frequency corresponding to cycles with

length of 20.3 years.

4Simon S. Kuznets (1961), Capital and the American economy : its Formation and
Financing, NBER, New York.
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