
Koutecký, Martin; Zink, Johannes

Article — Published Version

Complexity of scheduling few types of jobs on related and
unrelated machines

Journal of Scheduling

Provided in Cooperation with:
Springer Nature

Suggested Citation: Koutecký, Martin; Zink, Johannes (2025) : Complexity of scheduling few types of
jobs on related and unrelated machines, Journal of Scheduling, ISSN 1099-1425, Springer US, New
York, NY, Vol. 28, Iss. 1, pp. 139-156,
https://doi.org/10.1007/s10951-024-00827-8

This Version is available at:
https://hdl.handle.net/10419/323374

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 http://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s10951-024-00827-8%0A
https://hdl.handle.net/10419/323374
http://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Journal of Scheduling (2025) 28:139–156
https://doi.org/10.1007/s10951-024-00827-8

Complexity of scheduling few types of jobs on related and unrelated
machines

Martin Koutecký1 · Johannes Zink2

Accepted: 13 October 2024 / Published online: 30 January 2025
© The Author(s) 2025

Abstract
The task of scheduling jobs to machines while minimizing the total makespan, the sum of weighted completion times, or a
norm of the load vector are among the oldest and most fundamental tasks in combinatorial optimization. Since all of these
problems are in generalNP-hard,much attention has been given to the regimewhere there is only a small number k of job types,
but possibly the number of jobs n is large; this is the few job types, high-multiplicity regime. Despite many positive results, the
hardness boundary of this regime was not understood until now. We show that makespan minimization on uniformly related
machines (Q|HM |Cmax) isNP-hard alreadywith 6 job types, and that the relatedCutting Stock problem isNP-hard already
with 8 item types. For the more general unrelated machines model (R|HM |Cmax), we show that if the largest job size pmax

or the number of jobs n is polynomially bounded in the instance size |I |, there are algorithms with complexity |I |poly(k). Our
main result is that this is unlikely to be improved because Q||Cmax is W[1]-hard parameterized by k already when n, pmax,
and the numbers describing the machine speeds are polynomial in |I |; the same holds for R||Cmax (without machine speeds)
when the job sizes matrix has rank 2. Our positive and negative results also extend to the objectives �2-norm minimization
of the load vector and, partially, sum of weighted completion times

∑
w jC j . Along the way, we answer affirmatively the

question whether makespan minimization on identical machines (P||Cmax) is fixed-parameter tractable parameterized by k,
extending our understanding of this fundamental problem. Together with our hardness results for Q||Cmax, this implies that
the complexity of P|HM |Cmax is the only remaining open case.

Keywords High-multiplicity jobs · Cutting stock · Hardness · Parameterized complexity

1 Introduction

Makespan minimization is arguably the most natural and
most studied scheduling problem: In the parallel machines
model, we have m machines, n jobs with sizes p1, . . . , pn ,
and the task is to assign them to machines such that the
sum of sizes of jobs on any machine is minimized. Seen
differently, this is the (decision version of the) Bin Pack-
ing problem: Can a set of items be packed into a given
number of bins? Bin Packing is NP-hard, so it is natural

A preliminary version of this work has appeared in Proceedings of the
31st International Symposium on Algorithms and Computation
(ISAAC 2020).

B Martin Koutecký
koutecky@iuuk.mff.cuni.cz

B Johannes Zink
zink@informatik.uni-wuerzburg.de

1 Charles University, Prague, Czech Republic

2 Universität Würzburg, Würzburg, Germany

to ask which restrictions make it polynomial-time solvable.
Say there are only k distinct item sizes p1, . . . , pk , and so
the items are given by a vector of multiplicities n1, . . . , nk
with n = ∑k

j=1 n j ; let pmax = max j∈[k] p j . Goemans and
Rothvoß (2020) and Jansen and Klein (2020) showed that
Bin Packing can be solved in time (log pmax)

f (k) poly log n
for some function f ,1 Note that makespan minimization is
polynomial when k is fixed by simple dynamic program-
ming; the difficult question is whether it is still polynomial
in the high-multiplicity setting where jobs are encoded by
the multiplicity vector n = (n1, . . . , nk). By the equivalence
with scheduling, Goemans and Rothvoß showed that high-
multiplicity makespan minimization on identical machines
is polynomial if the number of job types k is fixed.

1 The complexity stated in Goemans and Rothvoß (2020) is
(logmax{Cmaxn}) f (k) poly log n, but a close inspection of their proof
reveals that the first dependence on n is unnecessary, and the work of
Jansen and Klein (2020) allows bounding the complexity in terms of
the number of vertices of a polytope, which can be independent of the
right-hand side Cmax (Berndt et al., 2021). This way, one can obtain the
complexity stated here.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-024-00827-8&domain=pdf
http://orcid.org/0000-0002-7846-0053
http://orcid.org/0000-0002-7398-718X

140 Journal of Scheduling (2025) 28:139–156

Since 2014 (when Goemans and Rothvoß published the
conference version of their work (2014)), considerable atten-
tion has been given to studying the complexity of various
scheduling problems in the regimewith few job types (Jansen
& Klein, 2020; Knop et al., 2019; Knop & Koutecký, 2018;
Knop & Koutecký, 2022; Chen et al., 2017; Hermelin et
al., 2021; Mnich & Wiese, 2015; Jansen, 2017; Hermelin et
al., 2019, and similar techniques have been used to obtain
approximation algorithms (Jansen et al., 2018; Levin, 2022;
Jansen et al., 2020). However, any answer to the following
simple and natural question was curiously missing:

What is the most restricted machine model in which
high-multiplicity makespan minimization becomes
NP-hard, even when the number of job types is fixed?

There are three main machine models in scheduling: iden-
tical, uniformly related, and unrelated machines. In the
uniformly related machines model, machine Mi (for i ∈
[m]) additionally has a speed si , and processing a job of
size p j takes time p j/si on such a machine. In the unrelated
machines model, each machine Mi (for i ∈ [m]) has its own
vector of job sizespi = (pi1, . . . , p

i
k), so that p

i
j is the time to

process a job of type j on machine Mi . The makespan min-
imization problem in the identical, uniformly related, and
unrelated machines model is denoted as P||Cmax, Q||Cmax,
and R||Cmax (Lawler et al., 1993), respectively,with the high-
multiplicity variants being P|HM |Cmax, Q|HM |Cmax, and
R|HM |Cmax. Notice that the job sizes matrix p of a Q||Cmax

instance is of rank 1: The vector pi for machine Mi is sim-
ply p′/si for p′ = (p1, . . . , pk), and p = p′ · (1/s)ᵀ for the
speeds vector s = (s1, . . . , sm) and its vector of reciprocal
values (1/s) = (1/s1, . . . , 1/sm). Hence, the rank of the job
sizes matrix has been studied (Bhaskara et al., 2013; Chen
et al., 2017, 2018) as a helpful measure of the complexity
of an R||Cmax instance: Intuitively, the smaller the rank, the
closer is the instance to Q||Cmax.

Regarding the question above, it has been shown by
McCormick et al. (2001) that for just 2 different job types, the
problem Q|HM |Cmax is polynomial-time solvable, but so far
it remained openwhether Q|HM |Cmax becomesNP-hard for
some constant number of job types at all—as P|HM |Cmax

remains polynomial-time solvable.We now close this gap for
the most part:

Theorem 4.13 Q|HM |Cmax is NP-hard already for 6 job
types.

The Cutting Stock problem relates to Bin Packing
in the same way as Q||Cmax relates to P||Cmax: Instead of
having all bins have the same capacity, there are now sev-
eral bin types with different capacities and costs, and the
task is to pack all items into bins of minimum cost. Cut-
ting Stock is a famous and fundamental problem whose
study dates back to the ground-breakingwork ofGilmore and

Gomory (1961) from 1961. It is thus surprising that the natu-
ral questionwhetherCutting Stockwith a fixed number of
item types is polynomial or NP-hard has not been answered
until now:

Theorem 4.17 Cutting Stock is NP-hard already with 8
item types.

Parameterized Complexity.
A more precise complexity landscape can be obtained by
taking the perspective of parameterized complexity: We say
that a problem is fixed-parameter tractable (FPT, or in FPT,
for short) parameterized by a parameter k if there is an algo-
rithm solving any instance I in time f (k) poly(|I |) for some
computable function f . On the other hand, showing that a
problem is W[1]-hard means that it is unlikely to have such
an algorithm, and the best one might hope for is a complexity
of the form |I | f (k); we then say that a problem is in XP (or
that it has an XP algorithm); see the textbook by Cygan et al.
(2015) for more information on parameterized complexity.

The hardness instance I thatwe use to proveTheorem4.13
is encoded by a job sizes matrix p, a job multiplicities
vector n, and a machine speeds vector s which all contain
long numbers, i.e., entrieswith encoding length�(|I |).What
happens when some of p, n, and s are restricted to numbers
bounded by poly(|I |), or, equivalently, if they are encoded in
unary?

A note of caution: since we allow speeds to be rational,
and the encoding length of a fraction p/q is �log2 p+�log2 q ,
a Q||Cmax instance with s of polynomial size (with respect
to the input length) might translate to an R||Cmax instance
with p of exponential size. This is because for p to be integer,
one needs to scale it up by the least common multiple of the
denominators in s,whichmaybe exponential inm. Thus,with
respect to the magnitude of n and p, R|HM |Cmax can not
be treated as a generalization of Q|HM |Cmax. This is why
in the following, we deal with both problems and not just
the seemingly more or less general one. For Q|HM |Cmax,
we denote by pmax the largest job size before scaling, i.e., if
p = p′ · (1/s)ᵀ, then pmax = ‖p′‖∞.

Having n polynomially bounded is equivalent to giving
each job explicitly; note that in this setting R|HM |Cmax

strictly generalizes Q|HM |Cmax. A simple DP handles this
case:

Theorem 3.1 {R, Q}|HM |Cmax and {R, Q}||Cmax can be
solved in timem ·nO(k), hence {R, Q}||Cmax is in XP param-
eterized by k.

A similar situation occurs if n is allowed to be large, but p
is polynomially bounded, although the use of certain integer
programming tools (Eisenbrand et al., 2019) is required:

Theorem 3.7 {R, Q}|HM |Cmax can be solved in time pO(k2)
max

m logm log2 n, and hence, {R, Q}|HM |Cmax are in XP
parameterized by k if pmax is given in unary.

123

Journal of Scheduling (2025) 28:139–156 141

Our main result is that an FPT algorithm for Q|HM |Cmax

is unlikely to exist even when n, p, and s are encoded in
unary, and for R|HM |Cmax even when the rank of p is 2:

Theorem 4.15 X ||Cmax is W[1]-hard parameterized by the
number of job types with (a) X = Q and even when n, p,
and s are given in unary; (b) X = R and even when n and p
are given in unary and rank(p) = 2.

We use a result of Jansen et al. (2013) as the basis of our
hardness reduction. They show that Bin Packing is W[1]-
hard parameterized by the number of bins even if the items
are numbers given in unary coding. In the context of schedul-
ing, this means that P||Cmax isW[1]-hard parameterized by
the number of machines already when pmax is polynomially
bounded. However, it is non-obvious how to “transpose” the
parameters, that is, how to go from many job types and few
machines to few job types and many machines which differ
as little as possible (i.e., only by their speeds, or only in a low-
rank way). We first showW[1]-hardness of Balanced Bin
Packing, where we additionally require that the number of
items in each bin is identical, parameterized by the number
of bins, even for tight instances in which each bin has to be
full. Using this additional property, we are able to construct a
Q|HM |Cmax instance of makespan T in which optimal solu-
tions are in bijection with optimal packings of the encoded
Balanced Bin Packing instance. For each item in the
Balanced Bin Packing instance, we have a machine in
the instance of Q|HM |Cmax, whose speed depends on the
item the machine represents. We can transform this also to
a hardness instance of R|HM |Cmax, where we do not have
individual speeds for the machines, by using a newmachine-
dependent job type to “block out” a large part of a machine’s
capacity so that its remaining capacity depends on the item
the machine represents. Then, all other job types have sizes
independent ofwhichmachine they run on as for the hardness
instance of Q|HM |Cmax.

Let us go back to P|HM |Cmax. As mentioned previously,
Goemans and Rothvoß showed that if the largest job size
pmax is polynomially bounded, the problem is FPT because
(log pmax)

f (k) poly log n ≤ g(k) · po(1)max poly log n (Cygan et
al., 2015, Exercise 3.18). We answer the remaining question
whether the problem is in FPT also when all jobs are given
explicitly:

Theorem 3.5 P||Cmax is FPT parameterized by k.

This result partially answers (Mnich and Bevern, 2018,
Question5),which asks for an FPT algorithm for P|HM |Cmax.
Obtaining this (partial) answer turns out to be surprisingly
easy:We reduce the job sizes by a famous algorithm of Frank
and Tardos (1987) and then apply the algorithm of Goe-
mans and Rothvoß (2020), which is possible precisely when
n is sufficiently small. This extends our understanding of

the complexity of P|HM |Cmax: The problem is FPT if the
size of the largest job or the number of jobs are polyno-
mially bounded in the input length. Hence, the remaining
(and major) open problem is the complexity of P|HM |Cmax

parameterized by k, without any further assumptions on the
magnitude of pmax or n. In light of this, our result that already
Q|HM |Cmax is NP-hard when pmax and n are large, and
W[1]-hard if both are polynomially bounded, may be inter-
preted as indication that the magnitude of n and pmax plays
a surprisingly important role, and that P|HM |Cmax may in
fact not be FPT parameterized by k.
Other Objectives.
Besides minimum makespan, two important scheduling
objectives are minimization of the sum of weighted comple-
tion times, denoted by

∑
w jC j , and the minimization of the

�2-norm of the load vector. We show that our algorithms and
hardness results (almost always) translate to these objectives
as well. Let us now introduce them formally.

The load Li of a machine Mi is the total size of jobs
assigned to it. In R|HM |�2, the task is to find a schedule

minimizing ‖(L1, . . . , Lm)‖2 =
√∑m

i=1 L
2
i . Note that this

is isotonic (order preserving) to the function
∑m

i=1 L
2
i , and

because this leads to simpler proofs, we instead study the
problem R|HM |�22. The completion time of a job j , denoted
by C j , is the time it finishes its execution in a schedule. In
the R|HM |∑w jC j problem, each job is additionally given
a weight w j , and the task is to minimize

∑
w jC j .

We show that our hardness instance for R|HM |Cmax is
also hard for �2, and with the right choice of weights is also
hard for

∑
w jC j . We also obtain hardness of Q|HM |�2 by

a different and more involved choice of the speeds, but the
case of Q|HM |∑w jC j remains open so far. To extend the
Cmax reduction to other objectives, we use the “tightness” of
our hardness instance to show that any “non-tight” schedule
must increase the �2 norm of the load vector by at least some
amount. This is not enough for R|HM |∑w jC j because
the value

∑
w jC j is proportional to the load vector plus

other terms, and we need to bound those remaining terms
(Lemma 4.23) in order to transfer the argument from �2 to∑

w jC j . We point out that the these hardness results are
delicate and non-trivial even if at first sight they may appear
as “just” modifying the hardness instance of Q|HM |Cmax.

We give an overview of our results in Table 1.

2 Preliminaries

We consider zero a natural number, i.e., 0 ∈ N. We write
vectors in boldface (e.g., x, y) and their entries in normal
font (e.g., the i-th entry of a vector x is xi). If it is clear from
context that xᵀy is a dot-product of x and y, we just write
xy (Conforti et al., 2014). When we say a vector is given in

123

142 Journal of Scheduling (2025) 28:139–156

Table 1 Overview of the computational hardness of
{P, Q, R}|{_, HM}|{Cmax, �2,

∑
w jC j } relative to the number of

job types k. The cells are colored as follows. Gray are positive results

known before, green are new positive results, red are new negative
results, and yellow are the settings where the computational complex-
ity is unknown

unary, it means that each number in this vector is given in
unary coding. We use log := log2, i.e., all our logarithms are
base 2. For n,m ∈ N, we write [n,m] = {n, n + 1, . . . ,m}
and [n] = [1, n].

We first study the problem to minimize the makespan on
uniformly related machines:

Makespan Minimization on Uniformly Related
Machines (Q|HM |Cmax)
Input: n jobs of k types, job multiplicities n1, . . . , nk ,

i.e., n1 + · · · + nk = n and n j is the number of
jobs of type j , m machines, for each i ∈ [m] a
speed si ∈ Q+ such that processing a job of type
j on machine Mi takes time p j/si , a number T .

Find: An assignment of jobs to machines and non-
overlapping (with respect to eachmachine) time
slots such that everymachine finishes by time T .

We are also interested in a generalization of Q||Cmax in
which machines may be incomparable, e.g., when different
machine types are more suitable for different job types:

Makespan Minimization on Unrelated
Machines (R|HM |Cmax)
Input: n jobs of k types, job multiplicities n1, . . . , nk ,

i.e., n1 + · · · + nk = n and n j is the number of
jobs of type j , m unrelated machines, for each
i ∈ [m] a job sizes vector pi = (pi1, . . . , p

i
k) ∈

(N ∪ {+∞})k , where pij is the processing time
of a job of type j on a machine Mi , a number T .

Find: An assignment of jobs to machines and non-
overlapping (with respect to eachmachine) time
slots such that everymachine finishes by time T .

Note that R|HM |Cmax generalizes Q|HM |Cmax because
we might take pi = (p j/si) j . However, the entries of pi

might then be fractional, so in order for this to correspond to
the definition above, we would need to scale all pi up by the
least common multiple of all the appearing denominators.
This would not increase the encoding length of the instance,
but it might blow up the parameter pmax, so it is indeed better
to treat Q|HM |Cmax and R|HM |Cmax as distinct problems.

Also, notice that our definition uses a high-multiplicity
encoding of the input, that is, jobs are not given explic-
itly, one by one, but “in bulk” by a vector of multiplicities.
Because this allows compactly encoding instances which
would otherwise be of exponential size, the two problems
actually have different complexities and deserve a notational
distinction:R||Cmax the problemwhere jobs are given explic-
itly, and by R|HM |Cmax the problem defined above; see also
the discussion in Knop and Koutecký (2022).

Recall that in R|HM |�2, the task is to minimize
‖(L1, . . . , Lm)‖2, where Li is the sum of sizes of jobs
assigned to machine Mi for i ∈ [m]. In R|HM |∑w jC j ,
each job j has a weight w j , and a schedule determines the
completion time C j of that job. The task is then to minimize
∑

w jC j .
The job sizes matrix p ∈ R

k×m+ has rank r if it can be writ-
ten as a product of matrices C ∈ R

k×r and D ∈ R
r×m . For

example, as we have mentioned, in Q||Cmax, each machine
has a speed si ∈ R+, and pi = p′/si for some p′ ∈ N

k ,
so p = p′(1/s)ᵀ, where s = (s1, . . . , sm), and hence, p has
rank 1.

In the identical machines model, pi = p for all i ∈ [m],
and we denote it by P||Cmax. Its decision variant P||Cmax is
equivalent to Bin Packing:

123

Journal of Scheduling (2025) 28:139–156 143

Bin Packing
Input: n items of sizes a1, . . . , an , k bins, each with

capacity B.
Find: An assignment of items to bins such that the

total size of items in each bin is ≤ B.

Unary Bin Packing is Bin Packing where the num-
bers a1, . . . , an are encoded in unary each, or, equivalently,
amax = maxi∈[n] ai is bounded polynomially in n. Bal-
anced Bin Packing is Bin Packing with the additional
requirement on the solution that the number of items assigned
to each bin is the same, hence n/k; note that n has to be divis-
ible by k for any instance to be feasible. An instance of Bin
Packing is tight if the total size of items

∑
i∈[n] ai is equal

to k · B, which means that if an instance has a packing, then
each bin needs to be full.

3 Algorithms

Wewish to highlight the geometric structure of R|HM |Cmax

by formulating it as an ILP and making several observations
about it. We have a variable xij for each job type j ∈ [k]
and machine Mi (with i ∈ [m]) specifying how many jobs
of type j are scheduled to run on machine Mi . There are two
types of constraints, besides the obvious bounds 0 ≤ xi ≤ n
for each i ∈ [m]. The first enforces that each job is scheduled
somewhere, and the second assures that the sum of job sizes
on eachmachine is atmost T , meaning eachmachine finishes
by time T :

m∑

i=1

xij = n j ∀ j ∈ [k] (1)

k∑

j=1

xij p
i
j ≤ T ∀i ∈ [m] . (2)

Knop and Koutecký (2018) show that this ILP has N -fold
format, i.e., it has the general form:

min f (x) : E (N)x = b, l ≤ x ≤ u, x ∈ Z
Nt ,

with E (N) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

E1
1 E2

1 · · · EN
1

E1
2 0 · · · 0
0 E2

2 · · · 0
...

...
. . .

...

0 0 · · · EN
2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Here, r , s, t, N ∈ N, E (N) is an (r + Ns) × Nt-matrix, for
all i ∈ [N], Ei

1 ∈ Z
r×t and Ei

2 ∈ Z
s×t are integer matri-

ces, and f is some separable convex function. Specifically
for R||Cmax, f ≡ 0, the matrices corresponding to con-

straints (1)–(2) are Ei
1 = I and Ei

2 = pi , for each i ∈ [m],
b = (n, T , . . . , T) is an r + Ns = (k + m)-dimensional
vector, and l = 0 and u = (n,n, . . . ,n) are Nt = (mk)-
dimensional vectors. (Actually, to get constraints (2) into the
equality form E (N)x = b, we need to introduce dummy
jobs of size 1; it is straightforward to compute how many
such jobs need to be introduced, for details see Knop and
Koutecký (2018).) We note that N -fold IP formulations are
also known for R|HM |{�2,∑ w jC j } (Knop and Koutecký,
2018; 2022).

3.1 Large lengths and polynomial multiplicities

A simple dynamic programming algorithm gives:

Theorem 3.1 {R, Q}|HM |{Cmax, �2,
∑

w jC j } canbe solved
in time m · nO(k), hence {R, Q}||{Cmax, �2,

∑
w jC j } are in

XP parameterized by k.

Proof Wewill describe a simple dynamic programming (DP)
algorithm.Call a vector xi ∈ N

k satisfying constraint (2), i.e.,
pixi ≤ T , a configuration of machine Mi . We will construct
a DP table D indexed by k-dimensional integer vectors upper
bounded by n, and i ∈ [m], and each value of the table is a
0/1 bit. The intended meaning is that, for i ∈ [m] and n′ ≤ n,
D[i,n′] = 1 iff the subinstance consisting of jobs n′ and the
first i machines is feasible. Initialize D to be all-zero, and set
D[0, 0] = 1. Then, consecutively for i = 1, . . . ,m, and for
each 0 ≤ n′ ≤ n, set D[i,n′] = 1 if D[i − 1,n′ − xi] = 1
and xi is a configuration of machine Mi . In other words, for
each i = 1, . . . ,m, construct the set Ci of configurations of
machine Mi , and then, for each n′ with D[i − 1,n′] = 1, set
D[i,n′ + xi] = 1 for each xi ∈ Ci if n′ + xi ≤ n. Finally,
the instance is feasible if D[m,n] = 1. In each iteration, we
go over all n′ ≤ n, of which there is at most nk many, and
for each of them, we try to add each element of Ci , of which
there is also at most nk many. In total, the algorithm makes
m · nk · nk = m · n2k steps.

The adaptation of this DP to �2 and
∑

w jC j is straightfor-
ward. Say that a configuration is any vector xi ≤ n. The value
of a configuration xi on machine Mi is f i (xi) = (pixi)2

for �22. For
∑

w jC j , it has been shown Knop & Koutecký
(2018) that the contribution of a machine Mi scheduling jobs
xi is a quadratic convex function f i in terms of xi . Then,
D[i,n′] = minxi≤n−n′ f i (xi) + D[i − 1,n′ − xi]. �

Theorem 3.1 (with a worse complexity bound) can be also
shown in a somewhat roundabout way by manipulating the
ILP formulation (1)–(2). This approach will eventually give
us the result that P||Cmax is FPT parameterized by k. We
use a famous result of Frank and Tardos (1987) which intu-
itively states that a hyperplane determined by an arbitrary
(rational) normal vectorw can be replaced by another hyper-
plane determined by a normal vectorw′ of bounded encoding

123

144 Journal of Scheduling (2025) 28:139–156

length such that it separates exactly the same integer points
within some prescribed box. In other words, the coefficients
of the hyperplane w can be reduced (replaced with smaller
ones) while preserving certain geometric meaning; thus, the
technique is called “coefficient reduction.”

Proposition 3.2 (Frank & Tardos, 1987) Given a rational
vector w ∈ Q

d and an integer M, there is a strongly poly-
nomial algorithm which finds a w̄ ∈ Z

d such that for every
integer point x ∈ [−M, M]d , we have wx ≥ 0 ⇔ w̄x ≥ 0
and ‖w̄‖∞ ≤ 2O(d3)MO(d2).

Lemma 3.3 It is possible to compute in strongly polynomial
time for each i ∈ [m] a vector p̄i ∈ N

k and an integer
T̄ i ∈ N such that replacing constraint (2) with p̄ixi ≤ T̄ i

does not change the set of feasible integer solutions, and
‖p̄i , T̄ i‖∞ ≤ 2O(k3)nO(k2).

Proof Fix some i ∈ [m] and consider the inequality (2),
which is pixi ≤ T . Applying Proposition 3.2 to (pi , T) and
M = n gives a vector (p̄i , T̄ i) such that for all 0 ≤ xi ≤ n,

(pi , T)(xi ,−1) ≤ 0 ⇔ (p̄i , T̄ i)(xi ,−1) ≤ 0,

which means that replacing pixi ≤ T by p̄ixi ≤ T̄ in (2)
does not change the set of feasible solutions, and the bound
on ‖p̄i , T̄ ‖∞ follows immediately from Proposition 3.2. �

We will use the fact that an N -fold IP can be solved effi-
ciently:

Proposition 3.4 (Jansen et al., 2020;Cslovjecsek et al., 2020;
Eisenbrand et al., 2019) A feasibility instance of N-fold IP
can be solved in time

(‖E (N)‖∞rs)O(r2s+s2)Nt log(Nt) log2 ‖u − l‖∞ .

Alternative proof of Theorem 3.1 for Cmax

According to Lemma 3.3, we can reduce ‖E (N)‖∞ down
to 2O(k3)nO(k2). Since r = k, t = k, s = 1, N = m, and
‖u − l‖∞ ≤ n, applying Proposition 3.4 to such a reduced
instance gives an nO(k5)m logm log2 n algorithm. Dealing
with �2 and

∑
w jC j is analogous, see Lemma 3.6. �

While this is worse than the DP above, notice that this
approach also gives:

Theorem 3.5 P||Cmax is FPT parameterized by k.

Proof Apply Lemma 3.3 to a given P||Cmax instance,
which gives a new job sizes vector p̄ ∈ N

k and a new
time bound T̄ ∈ N. Goemans and Rothvoß (2020) have
shown that P||Cmax with k job types can be solved in time
(log pmax)

2O(k)
poly log n. Plugging in pmax ≤ 2O(k3)nO(k2)

gives log pmax ≤ log(2O(k3)nO(k2)) = k3 + k2 log n. Hence,

the algorithm runs in time (k3 log n)2
O(k) = (k3)2

O(k) ·
(log n)2

O(k)
. To verify that this is indeed an FPT runtime

(i.e., f (k) poly(n) for some computable f), we use a sim-
ple observation (Cygan et al., 2015, Exercise 3.18) that
(logα)β ≤ 2β2/2αo(1). Taking α = n and β = 2O(k) gives
(log n)2

O(k) ≤ 22
O(k)

no(1), and we are done.

Remark 1 The algorithm of Goemans and Rothvoß (2020)
shows that P|HM |Cmax is FPT in k if pmax is given in unary.
To the best of our knowledge, it has not been observed before
that P|HM |Cmax is FPT in k if n is polynomially bounded
by the input length, i.e., that P||Cmax is FPT in k. Thus,
Theorem 3.5 shows that the remaining (and indeed hard)
open problem is the complexity of P|HM |Cmax for instances
where both p and n contain large numbers.

The right-hand side b of an N -fold IP can be naturally par-
titioned into N + 1 smaller vectors as b = (b0,b1, . . . ,bN)

with b0 ∈ Z
r and bi ∈ Z

s for all i ∈ [N]. A straightfor-
ward adaptation of the proof of Lemma 3.3 where we reduce
each row of the constraint Ei

2x
i = bi separately gives the

following more general statement:

Lemma 3.6 Given an N-fold IP instance with 0 ∈ [l,u], and
M ∈ N, one can in strongly polynomial time compute Ēi

2
and b̄i , for each i ∈ [N], such that if ‖u − l‖∞ ≤ 2M, then

{x ∈ Z
Nt | E (N)x = b, l ≤ x ≤ u}

= {x ∈ Z
Nt | Ē (N)x = b̄, l ≤ x ≤ u},

where Ē (N) is obtained from E (N) by replacing Ei
2 with Ēi

2
and b̄ is obtained from b by replacing bi with b̄i , for each
i ∈ [N], and ‖Ē i

2, b̄
i‖∞ ≤ 2O(t3)MO(t2). �

Remark 2 If the assumption 0 ∈ [l,u] of the Lemma is not
satisfied, it no longer holds. However, if ‖u − l‖∞ ≤ M ,
it is still possible to transform the original instance into a
new instance with small bounds and right-hand sides whose
optimum is a simple translation of the original optimum.
Thus, from an algorithmic perspective, the assumption 0 ∈
[l,u] is not necessary. Regarding how to translate an instance
with 0 /∈ [l,u], see (Eisenbrand et al., 2019, Lemma 50).

3.2 Polynomial lengths and largemultiplicities

How to deal with instances whose jobs have polynomially
bounded sizes, but come in large multiplicities? Actually,
the fact that R|HM |Cmax belongs to XP parameterized by k
if pmax is polynomially bounded follows by solving the N -
fold IP (1)–(2) using Proposition 3.4:

Theorem 3.7 {R, Q}|HM |{Cmax, �2,
∑

w jC j } and

{R, Q}|HM |{∑w jC j } can be solved in time pO(k2)
max m

logm log2 n and pO(k3)
max m logm log2 n, respectively.

123

Journal of Scheduling (2025) 28:139–156 145

An intuitive description of (a somewhat slower) algorithm
is the following; for a formal but somewhat uninformative
proof, see below. First, one would solve the LP relaxation
of (1)–(2) and then use a “proximity theorem” to show that
some integral optimum is at distance atmost pO(k)

max ·m (Eisen-
brand et al., 2019, Theorem 59) from any optimum of the LP
relaxation. This yields an {R, Q}|HM |{Cmax, �2,

∑
w jC j }

instance where roughly pkmax · m jobs are left to be sched-
uled and which can be solved using Theorem 3.1. To adapt
the model (1)–(2) for uniformly related machines, one has
a single vector p ∈ N

τ of “unscaled” processing times, and
the right-hand side of constraint (2) becomes �T · si� for a
machine of speed si . For �2, the objective f of the N -fold
formulation becomes f (x) = ∑m

i=1(p
ixi)2 which is almost

separable convex. (One needs to add an auxiliary variable zi

and a constraint zi = pixi to express it as separable.) For∑
w jC j , the modification is analogous but slightly more

complicated; the approach is identical to the one described
by Knop and Koutecký (2018).

It is an open problemwhether the pO(k2)
max parameter depen-

dence can be improved: Even in the setting with short jobs
where pmax ≤ k, the best algorithm for Q|HM |Cmax has
a dependence of kk

2
(Knop et al., 2019; Knop & Koutecký,

2018).

Proof of Theorem 3.7 It is known (Knop andKoutecký, 2018;
Knop et al., 2019) that the problems {R, Q}|HM |{Cmax, �2}
have N -fold IP formulations with parameters N = m,
‖A‖∞ = pmax, t = k + 1, s = 1, r = k. For the

∑
w jC j

objective, s = pmax. Applying Proposition 3.4 then shows
the claims. We note that it is possible to get a pk

2

max param-
eter dependence at the cost of a quadratic dependence on N
by exploiting the fact that the constraint matrix has small
treewidth, see (Knop and Koutecký, 2022, Section 3.3). We
are confident that a near-linear algorithm can also be con-
structed for this case, but this is beyond the scope of this
work. �

High multiplicity of machines
So far, for the sake of simplicity, we have only considered
high multiplicity of jobs, but not machines. Such a model
is also studied: Let κ be the number of kinds of machines,
where two machines are of the same kind if every job has
the same processing time on both machines. The input to
a scheduling problem is then represented by a vector n ∈
N
d of job multiplicities, and a vector m ∈ N

κ of machine
multiplicities.

Theorem 3.7 can be easily extended to this setting by
applying the FPT algorithm for high-multiplicity N -fold
IPs (Knop et al., 2023) instead of Proposition 3.4. A high-
multiplicity encoding of an N -fold IP instance is such that
we group blocks by τ types and only give a description
of each type together with a vector of multiplicities μ =

(μ1, . . . , μτ) of block types; analogously to the definition
of machine kinds, two blocks are of the same type if they
have an identical right-hand-side vector, lower and upper
bounds, block matrices, and objective functions. The algo-
rithm of Knop et al. (2023) runs in time polynomial in τ and
log ‖μ‖1, so applying it to the scheduling problems studied
here gives algorithms polynomial in κ and log ‖m‖1. The
parameter dependencies of Knop et al. (2023) are the same
as in Proposition 3.4.

4 Hardness

In this section, we present our hardness results, which are all
based on a reduction from a tight instance of Balanced Bin
Packing to scheduling in the high-multiplicity setting. In this
reduction, the number of bins and the number of job types
have a linear dependence and for both parameters, the corre-
sponding problems are W[1]-hard. Similarly, the number of
items equals the number of machines. For convenience, we
hence use k and m as the number of bins and items, respec-
tively, when we describe our hardness instance. If we say, we
reduce a problem to another problem, we always refer to a
polynomial-time reduction.

4.1 Reducing bin packing to balanced bin packing

First, we need to prove that solving Balanced Bin Pack-
ing with tight instances remains a hard problem. We do this
by reduction from Bin Packing.

Lemma 4.8 Bin Packing reduces toBalanced Bin Pack-
ing such that (a) a′

max = amax+1, (b) B ′ = B+n, (c) k′ = k,
(d) n′ = nk, and (e) tightness is preserved, where n′, k′, B ′,
and a′

max are the parameters of the new Balanced Bin
Packing instance.

Proof Given an instance of Bin Packing, we obtain an
instance of Balanced Bin Packing by increasing the
size of each item by 1, setting the new bin capacity to be
B ′ = B + n, and adding n(k − 1) new items of size 1.
Observe that all items of size 1 are “new” items. It is also
clear that a′

max = amax + 1.
To show that we preserve feasibility of instances, take any

solution of the Bin Packing instance and add new items
of size zero such that each bin contains precisely n items.
Now, if we increase the size of each item by 1 (including the
new items of size zero) and the size of each bin by n, we
have obtained a feasible instance of the newly constructed
Balanced Bin Packing instance.

For the other direction, consider a solution of such a Bal-
anced Bin Packing instance, subtract 1 from the size of
each item and n from the capacity of each bin—note that

123

146 Journal of Scheduling (2025) 28:139–156

there are n items per bin—and remove items of size zero.
This is a solution to the instance of Bin Packing.

Regarding tightness, note that the sum of item sizes has
increased by exactly nk because we have increased the size
by 1 for n “old” items, and added n(k − 1) “new” items of
size 1. Hence, if the total size of items of the original instance
was kB, it became kB + nk = k(B + n), and since B ′ =
B+n is the new bin capacity, the Balanced Bin Packing
instance is tight if and only if the Bin Packing instance was
tight. �

By Lemma 4.8 and the result by Jansen et al. (2013), we
obtain the following corollaries.

Corollary 4.9 Balanced Bin Packing isNP-hard, even for
tight instances.

Corollary 4.10 Unary Balanced Bin Packing is W[1]-
hard parameterized by the number of bins, even for tight
instances.

4.2 Hardness ofQ||Cmax and R||Cmax

Let us describe our hardness instance I . Given a tight instance
of Balanced Bin Packing with k bins of capacity B and
m items, all items sum up to

∑
i∈[m] ai = k · B =: A. We

construct a Q|HM |Cmax instance with m machines and 3k
job types.

The high-level idea is as follows. We use machine Mi to
encode the assignment of item ai to a bin, so we have m
machines. We have job types α1

j , α
0
j (we will refer to both of

them as α×
j), and β j for j ∈ [k]; we refer to a job of type α×

j
for any j as a job of type α or an α-type job, and similarly
for β. For the sake of simplicity, we sometimes do not dis-
tinguish between a job and a job type, e.g., by executing α×

j ,

we mean executing a job of type α×
j .

Our goal is to ensure that a specifically assembled sched-
ule, which we call henceforth perfect, is optimal. In a perfect
schedule, Mi gets, for some j ∈ [k], precisely ai times a job
of type α1

j , A − ai times a job of type α0
j and once a job of

type β j . There is no other job on Mi . This corresponds to
putting ai to the j-th bin. Hence, for each j ∈ [k], there are
m/kmachines2 where only jobs of typesα1

j ,α
0
j andβ j appear

together and they represent a packing of the corresponding
items to the j-th bin.

Let us specify the parameters of I . The target makespan is
T = 3k A3; note that we will show that the feasible schedules
are precisely the perfect schedules and they have the property
that each machine finishes exactly at time T . Jobs of type β

2 Which is an integer by the fact that any Balanced Bin Packing
instance must have a number of items divisible by k in order to be
feasible.

are by far the largest on all machines. As processing times,
we set, for j ∈ [k],

pα1
j
=k A2 + A(k − j) + 1 , pα0

j
= k A2 + A(k − j) ,

pβ j =2k A3 − A2(k − j) ;

note that as j increases, so does pβ j . Complementary to pβ j ,
as j increases, pα×

j
decreases. To show hardness of Q||Cmax,

we give each machine Mi a specific speed depending on ai .
The unscaled load of a machine Mi , denoted L̄i , is the sum
of sizes of jobs assigned to Mi before speed scaling. In a
perfect schedule, it is

L̄∗
i = ai (k A

2 + A(k − j) + 1) + (A − ai)(k A
2 + A(k − j))

+ 2k A3 − A2(k − j)

= A(k A2 + A(k − j)) + ai + 2k A3 − A2(k − j)

= 3k A3 + ai = T + ai . (3)

The machine speed si of machine Mi is

si = T + ai
T

= 3k A3 + ai
3k A3 .

Observe that, in a perfect schedule, eachmachineMi finishes
exactly by time

L̄∗
i

si
= T + ai

T+ai
T

= T = 3k A3 . (4)

The sizes of jobs of type α1
j and α0

j are almost identical,

except jobs of type α1
j are slightly longer. For each j ∈ [k],

we have job multiplicities

nα1
j
= A

k
= B, nα0

j
= Am

k
− B = (m − 1)A

k
,

nβ j =m

k
.

Lemma 4.11 Balanced Bin Packing with tight instances
reduces to Q|HM |Cmax such that (a) the number ofmachines
equals the number of items, (b) the number of job types equals
3k, where k is the number of bins, (c) the job sizes and job
multiplicities are boundedbyO(A4), where A is the sumof all
items of the input instance, (d) the machine speeds are ratio-
nal numbers with numerator and denominator inO(A4), and
(e) the feasible schedules are precisely the perfect schedules,
in which all machines finish exactly at time T = 3k A3.

Proof Clearly, all involved numbers are in O(A4) (w.l.o.g.
we assume k,m ∈ O(A)). The other parameters are clear
from the description of the hardness instance I above. It
remains to prove that the feasible schedules are precisely

123

Journal of Scheduling (2025) 28:139–156 147

the perfect schedules (which, in turn, correspond to solu-
tions of the Balanced Bin Packing instance). On the one
hand, if there is a solution S of the corresponding instance
of Balanced Bin Packing, we construct a (feasible) per-
fect schedule for I as follows. If, in S, ai is assigned to the
j-th bin, we assign to machine Mi , ai jobs of type α1

j , A−ai
jobs of type α0

j , and one job of type β j . According to Eqs. (3)
and (4), this assignment hasmakespan T and, clearly, all jobs
are assigned to some machine.

On the other hand, assume that I is feasible, meaning
there is an assignment of jobs to machines not exceeding
the target makespan T . Let us analyze the structure of such
a schedule σ . First we observe that instead of considering
for a machine Mi the makespan T , which is the sum of jobs
lengths divided by its speed si , we can equivalently consider
T · si = T + ai as its capacity—this is the sum of (unscaled)
jobs lengths it can process.

Per machine, there is exactly one job of type β j for some
j ∈ [k], since we can execute at most one β-type job on
each machine3 and we need to place m β-type jobs onto m
machines. So each machine is in one set M j , where M j is
a set of m/k machines that process a job of type β j .

Having scheduled a β-type job to a machine, we can exe-
cute on this machine at most A α-type jobs.4 In total, there
are Am α-type jobs. Thus, there are exactly A α-type jobs
on each machine. Let j ∈ [k]. When we have analyzed the
perfect schedules, we have seen how to fit A jobs of type α×

j
onto a machine fromM j . Observe that, due to the length of
the α-type jobs, we can only have a job α×

j ′ where j ′ < j

on a machine from M j if we also have a job α×
j ′′ where

j ′′ > j . Therefore, there need to be A jobs of type α×
k on

each machine from Mk . Thus, all jobs of type α×
k have to

be executed by machines in Mk . Consequently, we need to
execute A jobs of type α×

k−1 on each machine ofMk−1 since
there are no more jobs of type α×

k available. This argument
inductively propagates for all j = k, k − 1, k − 2, . . . , 1.
Hence, on each machine, the remaining space is at most5

amax < A < pt for any job type t , so no other job can be
scheduled. Consider the sizes of the jobs that need to be exe-

3 The smallest β-type job is β1, which has length 2k A3 − A2(k − 1).
Two jobs of type β1 on the same machine require a capacity of at least
2 ·(2k A3− A2(k−1)) = 4k A3−2A2(k−1) > 3k A3+k A3−2k A2 =
3k A3+k A2(A−2k), which is still larger than the capacity 3k A3+ai of
any machine Mi as A > 2k (otherwise the Balanced Bin Packing
instance is trivial) and k A2 > amax.
4 The smallest β-type job is β1, which has length 2k A3 − A2(k − 1).
The smallest α-type job is α0

k , which has length k A2. One job of type
β1 and A+1 jobs of type α0

k on the same machine require a capacity of
at least 2k A3 − A2(k − 1) + (A + 1)k A2 = 3k A3 + A2, which is still
larger than the capacity 3k A3 + ai of any machine Mi as A2 > amax.
5 This maximum can only be reached if there are A jobs of type α0

j and

no jobs of type α1
j on a machine.

cuted on a machine. For each i ∈ [m], there can be at most
ai jobs of type α1

j on machine Mi . We have, for each j ∈ [k],

A

k
≤

∑

Mi∈M j

ai (5)

because all A/k jobs of type α1
j are assigned to machines

of M j . Moreover, we have

∑

j∈[k]

∑

Mi∈M j

ai = A .

So if there was a j ∈ [k] with A/k <
∑

Mi∈M j
ai , then

there would be a j ′ ∈ [k] with A/k >
∑

Mi∈M j ′ ai . Since

this would contradict Eq. (5), we have

∑

Mi∈M j

ai = A

k
= B

and ai jobs of type α1
j on each Mi ∈ M j for each

j ∈ [k]. Hence, σ is perfect and the sets {ai | Mi ∈ M j } for
each j ∈ [k] are a solution for the corresponding instance of
Balanced Bin Packing. �

It is easy to adjust the hardness instance I of Q|HM |Cmax

to an instance IR of R|HM |Cmax. Instead of machine speeds
depending, for machine Mi , on ai , we will use a larger
makespan TR to host a new “blocker” job type γ , whose
length is machine-dependent and leaves space T + ai on
each machine—previously the capacity on a machine with
speed si . A perfect schedule for IR is the same as a perfect
schedule for I , but with an additional job of type γ assigned
once to each machine.

Lemma 4.12 Balanced Bin Packing with tight instances
reduces to R|HM |Cmax such that (a) the number ofmachines
equals the number of items, (b) the number of job types equals
3k + 1, where k is the number of bins, (c) the job sizes and
job multiplicities are bounded byO(A4), where A is the sum
of all items of the Balanced Bin Packing instance, (d)
the feasible schedules are precisely the perfect schedules, in
which all machines finish exactly at time TR = 7k A3, and
(e) the job sizes matrix p has rank 2.

Proof In the new hardness instance IR for R|HM |Cmax, we
use the same job types with the same lengths and multiplici-
ties as in I , which is our hardness instance for Q|HM |Cmax.
We introduce a new job type γ with

piγ = 4k A3 − ai , nγ = m .

Observe that γ is the only job type that ismachine-dependent.
However, its variation between machines is only −ai , which

123

148 Journal of Scheduling (2025) 28:139–156

is relatively small compared to its total length. Again, the
parameters are clear from the definition of IR and we prove
the correctness of (d) and (e) next.

On the one hand, if there is a solution S of the correspond-
ing instance of Balanced Bin Packing, we construct a
perfect scheduling for I as follows. If, in S, ai is assigned to
the j-th bin, we assign, to machine Mi , ai jobs of type α1

j ,

A − ai jobs of type α0
j , one job of type β j , and one job of

type γ . This assignment has makespan TR and, clearly, all
jobs are assigned to some machine.

On the other hand, assume that IR is feasible, meaning
there is a schedule σ not exceeding the target makespan TR .
Again, let us analyze the structure of such a solution. Per
machine, there is exactly one job of type γ since we can
execute at most one such job on each machine. The space
remaining on machine Mi after executing a job of type γ is

TR − piγ = 7k A3 − (4k A3 − ai) = 3k A3 + ai .

This is precisely the capacity ofmachineMi in I as described
in the proof of Lemma 4.11. After scheduling all jobs of
type γ , there are also the same job typeswith the same lengths
and multiplicities remaining. Thus, the rest of the analysis is
the same.

It remains to show that the rank of the job sizes matrix p
is 2. Define a matrix C whose rows are indexed by the job
types as follows. The row for job type t ∈ {α0

j , α
1
j , β j } (for

every j ∈ [k]) is (pt , 0), and the row for γ is (4k A3,−1).
Next, define a matrix D whose columns are indexed by the
machines as follows: column i ∈ [m] is (1, ai). It is easy to
verify that C · D = p. �

Applying the reductions ofLemmas4.11 and4.12 toBal-
anced Bin Packingwith 2 bins,we have that Q|HM |Cmax

and R|HM |Cmax are NP-hard with 6 and 7 job types, respec-
tively. R|HM |Cmax can be reduced to 4 job types, and similar
ideas can be used to improve the previously described reduc-
tion to only require 3k − 2 job types.

Theorem 4.13 Q|HM |Cmax is NP-hard already with 6 job
types.

Theorem 4.14 R|HM |Cmax is NP-hard already with 4 job
types and with p of rank 2.

Proof Wewillmodify the reductiondescribed inLemma4.12
to use only four job types if the number of bins k = 2. First,
we remove the job type γ to get to six different job types.
Recall that piγ = 4k A3 − ai . For the 4k A3, we will account
for when adjusting the makespan and we add the −ai to the
β-type jobs (now piβ j

= 2k A3 − A2(k − j) − ai). Sec-
ond, we blow up the makespan by a factor of A/(7k). So we
have T = A4.

To reduce to five different job types, we remove all jobs
of type β1. Still, we want A times a job of type α×

1 on every

machine ofM1. So its size will be around A3. To distinguish
between α1

1 and α0
1 and get a dependency of machine Mi on

item ai , we add A − ai and subtract ai , respectively. So, for
i ∈ [m], we have

pi
α1
1

= A3 + A − ai and pi
α0
1

= A3 − ai . (6)

As in the previous reduction, we can fit ai times pi
α1
1
and

A−ai times pi
α0
1
to machine Mi , which then needs precisely

themakespan T since ai ·(A3+A−ai)+(A−ai)·(A3−ai) =
A3ai + Aai − a2i + A4 − Aai − A3ai + a2i = A4 = T .

To reduce to four different job types, we remove all jobs
of type α0

2 and we change the length of α1
2 to

pi
α1
2

= A2 (7)

for all i ∈ [m]. We lengthen the job of type β2 to

piβ2 = A4 − ai A
2 , (8)

which is the makespan T minus ai times pi
α1
2
. Note that the

rank of p is still just 2: The rows of C are (A3 + A,−1) for
α1
1, (A

3,−1) for α0
1, (A

2, 0) for α1
2, and (A4,−A2) for β2,

and D is defined as before.
It remains to show the correctness of this reduction.

Clearly, if there is a solution to the instance of Balanced
Bin Packing with two bins (i.e., a partition), we can assign
the jobs to the machines as in the perfect schedule from
Lemma 4.11 ignoring β1 and α0

2.
Assume that there is a solution of the obtained instance

of R|HM |Cmax. On half of the machines, there is a job of
typeβ2. On thesemachines, namelyM2, there is no space for
a job of type α×

1 . So, all Am/2 jobs of type α×
1 are scheduled

to them/2 machines ofM1. As there cannot be more than A
jobs of type α×

1 on a machine, there are precisely A jobs of
type α×

1 on each machine Mi of M1—at most ai of them
can be α1

1. To place all A/2 jobs of type α1
1,M1 needs to be

chosen such that the corresponding item sizes in the Bal-
anced Bin Packing instance sum up to at least A/2. The
free space on a machine from M1 is at most amaxA < A2,
so there is no job of type α1

2.
To schedule all A/2 jobs of type α1

2,M2 needs to be cho-
sen such that the corresponding item sizes in the Balanced
Bin Packing instance sum up to at least A/2. As the total
sum of items is A, both partitions correspond to items sum-
ming up to precisely A/2. This yields an equal partition of
the items. �

The complexity of Q|HM |Cmax (R|HM |Cmax) with less
than 6 (4) job types remains open. From Lemmas 4.11
and 4.12 and Corollary 4.10, we get our main result:

123

Journal of Scheduling (2025) 28:139–156 149

Theorem 4.15 X ||Cmax is W[1]-hard parameterized by the
number of job types with (a) X = Q and even when n, p,
and s are given in unary; (b) X = R and even when n and p
are given in unary and rank(p) = 2.

4.3 NP-hardness of Cutting Stock

We can transfer our hardness result for Q|HM |Cmax to the
related problem Cutting Stock.

Cutting Stock
Input: k item types of sizes p = (p1, . . . , pk) ∈ N

k

and multiplicities n = (n1, . . . , nk) ∈ N
k , m

bin types with sizes s = (s1, . . . , sm) ∈ N
m and

costs c = (c1, . . . , cm) ∈ N
m .

Find: A vector x = (x1, . . . , xm) ∈ N
m of how many

bins to buy of each size, and a packing of items
to those bins, such that the total cost cx is min-
imized.

As it seems natural, we associate the job types, job
multiplicities, and machines with the item types, item mul-
tiplicities, and bin types, respectively. The difficulty lies in
enforcing that each bin type is used exactly once.

Lemma 4.16 Q|HM |Cmax with k job types and m machines
reduces to Cutting Stock with k + 2 item types and m bin
types.

Proof We will set the sizes of bin types as 3-dimensional
vectors, whose interpretation as numbers is straightforward
by choosing the base of each coordinate sufficiently large to
prevent carry when summing. For machine Mi with capacity
T + ai , we add a bin type of size and cost (1, 2i−1, T + ai).
For each original job type t of size pt , there is an item type
of size (0, 0, pt) with the same multiplicity nt . We will add
two new item types: There are m items of type η which have
size (1, 0, 0), and 2m − 1 items of type ν which have size
(0, 1, 0). The target cost is C = (m, 2m − 1,mT + A).

Clearly, a feasible schedule translates easily to a pack-
ing: Buying each bin type exactly once costs exactly C ,
the original item types are packed according to the feasi-
ble schedule, and we pack one η-type job and 2i−1 ν-type
jobs on machine Mi .

In the other direction, first notice that we have to use
at least m bins to pack the η-type jobs, and at most m
bins are affordable due to the budget C . We want to show
that we have to use each bin type exactly once. Focus on
the second coordinates of the 3-dimensional vectors. Since
the total size of items with respect to these coordinates is
2m −1, which is precisely the affordable capacity, a solution
to Cutting Stock must buy m bins with capacity 2m − 1.
This is equivalent to decomposing the number 2m − 1 into a

sum of some m numbers which are powers of 2, namely
20, 21, . . . , 2m−1. Clearly, the unique decomposition is
2m − 1 = 20 + 21 + · · · + 2m−1. Hence, the unique way
to obtain capacity C by buying m bins is to buy one bin of
each type, concluding the proof. �

Note that theW[1]-hardness of Q||Cmax does not immedi-
ately implyW[1]-hardness of Cutting Stockwhen p,n, c
are given in unary, because the construction of Lemma 4.16
blows up each of p,n, c: It introduces large costs, items η

with large size, and items ν with large multiplicity. Using
our hardness of Q|HM |Cmax with 6 job types together with
Lemma 4.16 yields:

Theorem 4.17 Cutting Stock is NP-hard already with 8
item types.

4.4 Hardness ofQ||�2 and R||�2
We will now transfer our hardness reduction to the �2 norm.
Remember that, in our hardness instance I , the speed si of
machine Mi depends linearly on T + ai (normalized by 1/T
for all machines). For the �2 norm, we observe that the
machine speed affects the objective value by its square. So
for a machine where we double its speed, it contributes only
a fourth to the objective value. Then, one can construct an
instance where it is more beneficial to schedule more than
the loads of a perfect schedule to the faster machines leaving
the slower machines rather empty.

To still apply our argument that the perfect schedules,
which precisely correspond to bin packings, are the only
ones admitting an optimal schedule, we adjust the machine
speeds. It should be a value in the order of

√
T + ai . We use

the ceiling function to have rational machine speeds. How-
ever, for our reduction, it is crucial that machines Mi and Mj

have different speeds if ai �= a j . To make each
⌈√

T + ai
⌉

different from
⌈√

T + ai + 1
⌉
, we scale up

√
T + ai by a

sufficiently large factor.Wewill see that we can set this factor
to be (T + amax), which results, for machine Mi , in a new
machine speed of

si = ⌈
(T + amax)

√
T + ai

⌉
. (9)

In the following, we will use �22, which is the square of the
�2 norm and is isotonic to it. Recall that the unscaled load of
Mi is L̄i = Li · si = ∑τ

t=1 p
i
t x

i
t , where x

i = (xi1, . . . , x
i
τ)

is the vector of job multiplicities scheduled to machine Mi ,
and τ is the number of job types.

Lemma 4.18 Balanced Bin Packing with tight instances
reduces to Q|HM |�22 with the properties of Lemma 4.11
via the hardness instance I with modified si = ⌈

(T +
amax)

√
T + ai

⌉
and target value

∑m
i=1 ((T + ai)/si)2.

123

150 Journal of Scheduling (2025) 28:139–156

Proof As before, if the instance of Balanced Bin Pack-
ing has a solution where item ai is assigned to the j-th
bin, we construct a perfect schedule, where we assign ai
jobs of type α1

j , A − ai jobs of type α0
j and one job of

type β j to machine Mi . As this gives us load (T + ai)/si
on machine Mi , we reach precisely the target objective
value

∑m
i=1 ((T + ai)/si)2 for the �22 objective.

For the other direction, assume there is a schedule σ of
jobs to machines such that the objective value is at most∑m

i=1 ((T + ai)/si)2. We distinguish two cases.
Case 1: The unscaled load of machine Mi is T +ai , for each
i ∈ [m]. Observe that the objective value of σ equals the
prescribed threshold objective value

∑m
i=1 ((T + ai)/si)2.

By Lemma 4.11 (e), we know that such a schedule is perfect
and exists if andonly if there is a solution to the corresponding
Balanced Bin Packing instance.
Case 2: There is an i ∈ [m] such that Mi has unscaled load
different from T + ai . Consider the unscaled loads L =
(L̄1, . . . , L̄m) scheduled to each of the machines in σ . Since
the total unscaled load is independent of the schedule, we can
reach L from the “perfect” unscaled load distribution (T +
a1, . . . , T + am), which a perfect schedule (as it appears in
Case 1) would admit, by iteratively moving a portion of the
load from one machine to another. Note that we do not speak
of moving jobs here. For this argument, we only consider
the unscaled load of each machine as an integral number and
ignore the jobs. In this process …

• m iterations of re-distribution are sufficient; in each step
we take the machine Mi with the smallest deviation �i

from L̄i (so, initially �i = |(T + ai) − L̄i |) and move
�i integral units of load from or to Mi depending on the
direction of the deviation. Note that there exists some
other machine Mj to/from which to move because we
chose i to minimize �i .

• the load of each machine monotonously increases,
decreases, or remains unchanged, i.e., we do not first
add and then remove a portion of load or the other way
around.

We show that in every step the objective value only
increases, and hence, this case cannot occur as we already
matched the threshold objective value in the “perfect” distri-
bution of Case 1.

Consider one such step. We move load r ≥ 1 to
machine Mi and take it from machine Mj . Before, we have
already moved in total zi ≥ 0 to Mi and we have already
removed in total z j ≥ 0 from Mj . If Mi is slower than Mj ,
then the objective value definitely increases. Hence, we
assume si ≥ s j (this implies ai ≥ a j). So it remains to
show that

(T + ai + zi)2

s2i
+ (T + a j − z j)2

s2j
<

(T + ai + zi + r)2

s2i

+ (T + a j − z j − r)2

s2j

⇔ (T + a j − z j)2

s2j
− (T + a j − z j − r)2

s2j

<
(T + ai + zi + r)2

s2i
− (T + ai + zi)2

s2i

⇔ s2i

(
2r(T + a j − z j) − r2

)

< s2j

(
2r(T + ai + zi) + r2

)

⇔ s2i
s2j

<
2r(T + ai + zi) + r2

2r(T + a j − z j) − r2

⇔ s2i
s2j

<
2(T + ai + zi) + r

2(T + a j − z j) − r
. (10)

Next, we analyze the machine speed si as defined in
Eq. (9). Recall that we scale up

√
T + ai by a sufficiently

large factor b to make each
⌈√

T + ai
⌉

different from⌈√
T + ai + 1

⌉
. If the difference between

√
T + ai and√

T + ai + 1 is at least d, then it must hold that

b >
1

d
≥ 1√

T + amax + 1 − √
T + amax

.

We have chosen b = T +amax, since x > 1/(
√
x + 1−√

x)
for x ≥ 5. Hence, we conclude

⌈
(T + amax)

√
T + ai

⌉
< (T + amax)

√
T + ai + 1 . (11)

Furthermore, note that for three positive numbers w, x , and
y with x ≥ y > w, it always holds that

x + 2w

y
=

y−w
y (x + 2w)

y − w
= (1 − w

y)(x + 2w)

y − w

= x − wx
y + 2w − 2w2

y

y − w

<
x + w(2 − 1 − 0)

y − w
= x + w

y − w
. (12)

With these inequalities in hand, we finally show the correct-
ness of inequality (10):

s2i
s2j

(9)=
⌈
(T + amax)

√
T + ai

⌉2

⌈
(T + amax)

√
T + a j

⌉2

(11)
<

(
(T + amax)

√
T + ai + 1

)2

(
(T + amax)

√
T + a j + 1

)2

123

Journal of Scheduling (2025) 28:139–156 151

= T + ai + 1

T + a j + 1
<

T + ai + 1

T + a j
= 2(T + ai) + 2

2(T + a j)

(r≥1)≤ 2(T + ai) + 2r

2(T + a j)

(12),(ai≥a j),(T>r)
<

2(T + ai) + r

2(T + a j) − r

≤ 2(T + ai + zi) + r

2(T + a j − z j) − r

�

Similarly, we can transfer our hardness instance to
R|HM |�22.

Lemma 4.19 Balanced Bin Packing with tight instances
reduces to R|HM |�22 with the properties of Lemma 4.12 via
the hardness instance IR with target value m · T 2

R.

Proof Again, if the instance of Balanced Bin Packing
has a solution where item ai is assigned to the j-th bin, we
construct a perfect schedule, where we schedule ai jobs of
type α1

j , A − ai jobs of type α0
j , one job of type β j , and one

job of type γ to machine Mi . As this gives us processing
time TR per machine, we precisely reach the target objective
value of mT 2

R for the �22 objective.
For the other direction, assume there is a schedule of jobs

to machines such that the objective value is at most mT 2
R =

49mk2A6. We distinguish three cases.
Case 1: The load of each machine is at most TR = 7k A3.
Such a schedulewould thus havemakespan TR and is feasible
for R|HM |Cmax with target makespan TR . By Lemma 4.12,
we know that such a schedule exists if and only if there is
a solution to the corresponding Balanced Bin Packing
instance. By property (d) of Lemma 4.12, it admits an objec-
tive value of precisely mT 2

R for the �22 objective.
Case 2a: There is a machine with load T ′

R > TR = 7k A3,
and on each machine there is precisely one job of type γ .
Since the processing time for all α- and β-type jobs is the
same on all machines and we have exactly one job of type γ

per machine, the total load is independent of the schedule
and is m · TR . Fixing the total load, the �22 objective reaches
its minimum uniquely by distributing the load evenly; see,
e.g., Knop and Kouteckỳ (2018, Proof of Theorem 3). Thus,
the objective mT 2

R can only be reached if the load of every
machine is TR , so this case cannot occur.
Case 2b: There is a machine which schedules at least two
jobs of type γ . In this case, we exploit Claim 4.20, which we
prove next. Again, it contradicts our assumption of σ having
objective value at mostmT 2

R . So this case can also not occur.�

Claim 4.20 Any schedule in Case 2b has objective value
strictly greater than r · mT 2

R with r = (m − 0.98)/(m − 1).

Hence, the objective value of such a schedule exceeds mT 2
R

by at least

(r − 1)mT 2
R = 0.02

m − 1
· 49mk2A6 > 0.98k2A6 .

Proof The dependence of piγ on the choice of a machine Mi

is only subtracting ai . So we get a lower bound on the total
sum of job sizes of all jobs in any schedule if we subtract m
times amax (as we have m jobs of type γ). This yields a total
sum

T =
∑

j∈[k]

(
nα1

j
pα1

j
+ nα0

j
pα0

j
+ nβ j pβ j

)

+ m
(
4k A3 − amax

)

=7mkA2 + A − mamax .

The machine where we have scheduled two jobs of type γ

has load at least

T ′
R ≥ 2 ·

(
4k A3 − amax

)
> 8k A3 − 2A .

This is already greater than TR , which is in turn at least T /m.
Hence, we assume for the rest of the proof that T ′

R is exactly
8k A3 − 2A and the remaining processing time T − T ′

R is
distributed equally across the otherm−1 machines as other-
wise the resulting objective value would only increase. The
average load Lavg of the remaining machines is

Lavg = T − T ′
R

m − 1
=

(
7mkA3 + A − mamax

) − (
8k A3 − 2A

)

m − 1

>
7mkA3 − 8k A3 − mA

m − 1
.

Hence, the objective value of such a schedule is at least

(
8k A3 − 2A

)2 + (m − 1)

(
7mkA3 − 8k A3 − mA

m − 1

)2

>
64mk2A6−64k2A6−32mkA4+49m2k2A6−112mk2A6−14m2k A4

m − 1

> 49mk2A6m − 48
49 − 64

m − 46m
A

m − 1
≥ rmT 2

R ,

where
m − 48

49 − 64
m − 46m

A

m − 1
≥ r = m − 49

50

m − 1

because, without loss of generality, we can assume that
m ≥ 64 · 4900 as otherwise we could add more dummy
items to our Balanced Bin Packing as described in the
proof of Lemma 4.8, andwe can assume that A ≥ 46·4900m
as otherwise we could scale up the items of the Balanced
Bin Packing instance by a factor of 46 · 4900. �

123

152 Journal of Scheduling (2025) 28:139–156

The following corollaries follow immediately from Lem-
mas 4.18 and 4.19; as before, it is likely that one might
improve this to 4 job types.

Corollary 4.21 X |HM |�2 is NP-hard already for t job types
with (a) X = Q, t = 6. (b) X = R, t = 7, and rank(p) = 2.

Corollary 4.22 X ||�2 is W[1]-hard parameterized by the
number of job types with (a) X = Q and even when n, p,
and s are given in unary; (b) X = R and even when n and p
are given in unary and rank(p) = 2.

4.5 Hardness of R||∑wjCj

We will define weights in the hardness instance IR from
Lemma 4.12 to also cover R|HM |∑w jC j . Denote ρi

j =
w j/pij the Smith ratio of a job j on machine Mi , where w j

is its weight. It is known that given an assignment of jobs
to machines, an optimal schedule is obtained by executing
jobs ordered by their Smith ratios (on each machine) non-
increasingly (Smith, 1956). It suffices to restrict ourselves
to such schedules, and an assignment of jobs to machines
describes such a schedule.

We would like to use the same approach as for �2
(Lemma 4.19) because it is known that

∑
w jC j and �2 are

often (but not always) closely related. However, because the
size of a job of type γ depends on the machine (while its
weight does not), it is impossible to express an exact objec-
tive value of a perfect schedule from the previous sections.
This would make the argument of an analogue of Case 2a of
Lemma 4.19 invalid and a no-instance of Balanced Bin
Packingmight reduce to a yes-instance of R||∑w jC j . On
the positive side, the contribution of all α- and β-type jobs
to the sum of weighted completion times is always the same
as they and their weights are machine-independent. If we
schedule to each machine exactly one job of type γ , then
we will have each machine-dependent processing time once
and, across all machines, their contribution is independent
of the schedule and we can specify an exact target objective
value. Consequently, we can apply the same argumentation
for Case 1 and Case 2a as in Lemma 4.19. For Case 2b, we
will exploit Claim 4.20 once again and combine it with a gap
argument (Lemma 4.23).

To obtain the weighted hardness instance Iw
R , we define

the following weights for our hardness instance IR from
Sect. 4.2. For each α- and β-type job, the weight equals its
processing time and for a job of type γ , it is slightly greater:

wα×
j

= pα×
j

wβ j = pβ j

wγ = 4k A3 (= piγ + ai for each i ∈ [m])

Lemma 4.23 Let σ be any schedule of the weighted hard-
ness instance, let (L1, L2, . . . , Lm) be its load vector, and

let L = 1
2

∑m
i=1 Li

2. Further, let � = 1
2k

∑k
j=1(Aw2

α1
j
+

(m − 1)Aw2
α0
j
+ mw2

β j
), �1:1

linear = 1
2

∑m
i=1 p

i
γ wγ , �1:1

quadr =
1
2

∑m
i=1 p

i
γ ·ai ,�1:1 = �1:1

linear+�1:1
quadr,�

min
linear = 1

2m(wγ −
amax)wγ , and �min

quadr = 1
2m(wγ − amin)amin where amin =

mini∈[m] ai . Then, the following statements hold:

(i) The objective value of σ under
∑

w jC j is at least L +
� + �min

linear + �min
quadr.

(ii) If σ schedules one job of type γ per machine, then the
objective value of σ under

∑
w jC j is L + � + �1:1.

Proof First notice that the Smith ratio of all α- and β-type
jobs is 1, and the Smith ratio of the jobs of type γ is strictly
greater than 1, so the jobs of type γ will always be executed
first. We use the following description of the objective func-
tion due to Knop and Koutecký (2018). Assume that τ job
types are ordered according to their Smith ratios with respect
to some machine Mi (with i ∈ [m]) and let these job types
be indexed by t = 1, . . . , τ . Let xit be the number of jobs
of the type indexed by t that are scheduled on machine Mi ,
and let zit = ∑t

�=1 p
i
�x

i
� be the time spent to process the

first t job types. Define ρi
τ+1 = 0. Then, the contribution of

machine Mi to the total
∑

w jC j objective is

1

2

τ∑

t=1

[(
zit

)2 (
ρi
t − ρi

t+1

)
+ pitwt x

i
t

]

.

In our case, the coefficients of (zit)
2 for any α- and β-type

job except the last one are 0 because their Smith ratios are
identical, hence ρi

t − ρi
t+1 = 0. The term of the last α- or

β-type job has zit = Li as the load of machine Mi and its
coefficient is ρi

τ −ρi
τ+1 = 1−0, so this term is 1

2 L
2
i . Hence,

summing up those terms over all machines gives L, and we
are left to account for (a) the quadratic terms corresponding
to the jobs of type γ , and (b) the linear terms pitwt x it .

First, we consider the linear terms, but only for the α- and
β-type jobs. Since the sizes of these jobs are independent
of the machines, we just sum them up without knowing to
which machines they are scheduled. For each j ∈ [k], we
have A/k jobs of type α1

j , (m − 1)A/k jobs of type α0
j and

m/k jobs of type β j . Hence, across all j ∈ [k], this is

1

2

k∑

j=1

(
A

k
· pα1

j
wα1

j
+ (m − 1)A

k
· pα0

j
wα0

j
+ m

k
· pβ j wβ j

)

= 1

2k

k∑

j=1

(

Aw2
α1
j
+ (m − 1)Aw2

α0
j
+ mw2

β j

)

= � .

Now,we consider the linear and quadratic terms of the jobs
of type γ . Let us first assume that we have scheduled exactly

123

Journal of Scheduling (2025) 28:139–156 153

one job of type γ per machine. This means that across all
machines, every possible quadratic and linear term appears
precisely once. So for the linear terms, we get

1

2

m∑

i=1

piγ wγ = �1:1
linear .

For the quadratic terms, we get

1

2

m∑

i=1

(
piγ

)2
(

wγ

piγ
− 1

)

= 1

2

m∑

i=1

piγ
(
wγ − piγ

)

= 1

2

m∑

i=1

piγ · ai = �1:1
quadr .

This shows the correctness of property (i i).
To show property (i), let us now drop the assumption that

we have scheduled exactly one job of type γ per machine
and determine a lower bound for the objective value of an
arbitrary schedule. Still,L and� have the structure described
above. Thus, we specify a lower bound by minimizing the
linear and the quadratic terms for the jobs of type γ . Clearly,
the linear terms are minimum if we schedule all of the m
jobs to the machine where it has the smallest size—this is
machine Mi corresponding to item amax. Then, since piγ =
wγ − amax here, we have

1

2
m

(
wγ − amax

)
wγ = �min

linear .

For the quadratic terms, assume that, for each i ∈ [m], we
schedule xiγ jobs of type γ to machine Mi . Consequently, the
quadratic term of the γ -type jobs over all machines is

1

2

m∑

i=1

(
xiγ p

i
γ

)2
(

wγ

piγ
− 1

)
(piγ =wγ −ai)= 1

2

m∑

i=1

(
xiγ

)2

(
wγ

(
wγ − ai

) − (
wγ − ai

)2
)

= 1

2

m∑

i=1

(
xiγ

)2 (
w2

γ − wγ ai − w2
γ + 2wγ ai − a2i

)

= 1

2

m∑

i=1

(
xiγ

)2 (
wγ − ai

)
ai .

Since wγ � ai , it is better to schedule more jobs of
type γ to the machines representing small ai and, in par-
ticular, amin. On the other hand, scheduling too many jobs
to one machine can increase the objective value dispropor-
tionately due to (xiγ)2. The optimal solution might be a
trade-off, forwhichwe find the following lower bound (recall

∑m
i=1 x

i
γ = m):

1

2

m∑

i=1

(
xiγ

)2 (
wγ − ai

)
ai≥1

2
m

(
wγ − amin

)
amin=�min

quadr

�

With this lemma at hand, it is not difficult to show that the

weighted hardness instance indeed reduces Balanced Bin
Packing to R|HM |∑w jC j as before:

Lemma 4.24 Balanced Bin Packing with tight instances
reduces to R|HM |∑ w jC j with theproperties of Lemma4.12
via the weighted hardness instance Iw

R with target value
1
2mT 2

R + � + �1:1.

Proof Note that a perfect schedule satisfies the condition that
everymachine executes exactly one job of type γ and the load
of every machine is TR . Hence by Lemma 4.23, the value of
a perfect schedule is precisely the target value.

Now, assume that a schedule σ is given whose
∑

w jC j

objective is at most the target objective. We again distinguish
three cases:
Case 1: The load of each machine is at most TR .
This is again a schedule of makespan at most TR , and the
analysis of Lemma 4.12 applies. Hence, σ is a perfect sched-
ule.
Case 2a: Each machine contains exactly one γ -type job, and
there is a machine with a load greater than TR .
By Lemma 4.23(ii), we know that such a schedule has an
objective value of L+ � + �1:1. In this sum, � and �1:1 are
constant and independent of the loads of the machines. We
use the same argument as in Lemma 4.19. As the objective
value of 12mT 2

R+�+�1:1 ismatchedprecisely if the total load
is distributed evenly (i.e., Case 1), re-distributing the same
total load unevenly increases the quadratic term L. Hence,
this case cannot occur.
Case 2b: There is a machine which schedules at least 2 jobs
of type γ .
By Lemma 4.23(i), the objective value of σ is at least
L + � + �min

linear + �min
quadr. Let us compare this to the target

value 1
2mT 2

R + � + �1:1
linear + �1:1

quadr summand by summand.

As shown in Claim 4.20, we have (
∑m

i=1 L
2
i) − mT 2

R ≥
(r − 1)mT 2

R . However, we now have L = 1
2

∑m
i=1 Li

2. For
comparing the first summands, we put these things together:

L − 1

2
mT 2

R ≥ 1

2
(r − 1)mT 2

R > 0.49k2A6

Then, of course, � is the same in both sums. Consider each
of the m summands of �1:1

linear. Compared to its counter-
part in �min

linear, it is greater by at most wγ amax < 4k A4.
Similarly, consider each of them summands of�1:1

quadr. Com-

pared to its counterpart in �min
quadr, it is greater by at most

123

154 Journal of Scheduling (2025) 28:139–156

(wγ − amax)amax < 4k A4. Combining all 2m summands of
both of these sums, we have at most 8mkA4. This in turn is
at most 0.08k A5 because without loss of generality, we can
assume that A ≥ 100m as otherwise we could scale up the
items of the Balanced Bin Packing instance by a factor
of 100.

So in total, the value of σ is greater by at least 0.49k2A6

minus at most 0.08k A5 and thus cannot attain the target
objective value, so this case also does not occur. �

Corollary 4.25 R|HM |∑w jC j is NP-hard already with 7
job types and rank(p) = 2.

Corollary 4.26 R||∑w jC j is W[1]-hard parameterized by
the number of job types, even if n and p are given in unary
and rank(p) = 2.

5 Open problems

5.1 W[1]-hardness of Cutting Stock Parameterized
by k for Unary Multiplicities

There is a pattern to the results we show: NP-hardness of
scheduling problems goes hand in hand withW[1]-hardness
parameterized by the number of job types for unary inputs.
Onemay thus suspect a similar behavior forCutting Stock
oncewe have shown itsNP-hardness for few item types (The-
orem 4.17). The purpose of this short subsection is to show
that if Cutting Stock is in fact W[1]-hard parameterized
by the number of item types k for unary item multiplicities,
then this will require substantially new ideas.

Specifically, in the proof of Theorem 4.17 we were able
to construct a Cutting Stock instance which uses each
bin type exactly once. We will now show that, with only
unary data, this is impossible to enforce. This is because
there is always an optimal solution using O(k log(km)) bin
types. (On the other hand, our result does not apply to inputs
with unary item sizes but binary item multiplicities; see the
discussion below.)Wewill use the following structural result:

Proposition 5.27 (Aliev et al., 2018, Theorem 1) Let A ∈
Z
r×t , b ∈ Z

t , w ∈ Z
t . There exists an optimal solution

z∗ to the problem min{wx | Ax = b, x ≥ 0, x ∈ Z
t }

satisfying |supp(z∗)| ≤ 2r log(2
√
r‖A‖∞) where supp(z∗)

is the support of the vector z∗, which is the set of nonzero
entries of the vector.

Our result now reads as follows:

Lemma 5.28 Let I be a Cutting Stock instance with
‖n‖∞ ≤ poly(m). Then, there exists an optimal solution
using at most O(k log(mk)) bin types.

Proof Our goal is to model I as an ILP with k rows and with
‖A‖∞ ≤ poly(m). The result then follows straightforwardly
by Proposition 5.27.

Define Ci = {f ∈ N
k | pf ≤ si }, i ∈ [m], to be the set of

all possible configurations of a bin of type i . We call f ∈ Ci
a configuration of type i , and if a bin of type i in a solution
of I contains f j items of type j for each j ∈ [k], we say that
this bin has configuration f . The cost of each configuration
of type i is ci . Construct A to be the matrix whose columns
are first all members of C1, then all members of C2, and so on,
up to Cm . Construct an objective function w such that it first
contains |C1| copies of c1, then |C2| copies of c2, and so on, up
to |Cm | copies of cm . To bound ‖A‖∞, notice that each item
can appear in any configuration at most ‖n‖∞ many times,
which is bounded by poly(m) by our assumption. Hence,
every configuration f is bounded by poly(m) in �∞-norm,
and so is every column of A.

Next, any solution x satisfying Ax = n corresponds to
a solution of Cutting Stock as follows. The value of a
variable xf for a configuration f of type i encodes that the
solution contains xf bins of type i with a configuration f .
By the definition of Ci , this configuration of items indeed
fits in a bin of type i , and by the constraints Ax = n, each
item belongs to one (and exactly one) bin. Moreover, wx
is exactly the cost of this solution since we pay ci for each
configuration of type i . Thus, an optimum of minwx : Ax =
n, x ∈ N

|C1|+···+|Cm | encodes an optimum of I .
By Proposition 5.27, there is an optimum with small

support, meaning using at most O(k log(mk)) distinct con-
figurations, and thus clearly at most this many bin types. �

Symmetrically, if s (and thus p) are bounded by poly(m),
it is clear that any configuration will contain at most poly(m)

items and we get the same bound on the number of bin types
necessary. Curiously, we do not see how to achieve a similar
result using only a bound on p: In the context of schedul-
ing, we would solve a corresponding LP relaxation and then
apply a proximity theorem to obtain an instance with reduced
bounds and this would allow us to do some preprocessing,
resulting in a bound on ‖A‖∞ as above. However, because
the objective function in Cutting Stock is to use as few
bins as possible, this results in a different LP formulation
where the proximity approach no longer works.

5.2 Other open problems

We conclude with a few interesting questions raised by our
results:

• We have shown that Q|HM |Cmax and R|HM |Cmax are
NP-hard with 6 and 4 job types, respectively. Further-
more, we have shown that CUTTINGSTOCK isNP-hard
for 8 item types. What is the complexity for smaller

123

Journal of Scheduling (2025) 28:139–156 155

numbers of job/item types? We are not aware of any
positive result except for Q|HM |Cmax with 2 job types
(McCormick et al., 2001).

• Recall the question whether P|HM |Cmax parameterized
by the number of job types k is in FPT or not. Our results
provide some guidance for how one could use the inter-
play of high multiplicity of jobs and large job sizes to
show hardness.

• We have not yet investigated jobs with release times and
due dates and minimization of makespan, weighted flow
time, or weighted tardiness, already on one machine. The
work of Knop et al. (2019) shows that, for example,
1|r j , d j |{Cmax,

∑
w j Fj ,

∑
w j Tj }parameterized by the

number of job types k is in XPwhen pmax is polynomially
bounded. Is it FPT or W[1]-hard?

Acknowledgements We thank the organizers of the HOMONOLO
2019 workshop for providing a warm and stimulating research envi-
ronment, which gave birth to the initial ideas of this paper. Martin
Koutecký was partially supported by Charles University project UNCE
24/SCI/008 and by the project 24-10306S of GA ČR. Johannes Zink
was partially supported by DFG project Wo758/11-1.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Aliev, I., Loera, J. A. D., Eisenbrand, F., Oertel, T., & Weismantel,
R. (2018). The support of integer optimal solutions. SIAM Jour-
nal on Optimization, 28(3), 2152–2157. https://doi.org/10.1137/
17M1162792

Berndt, S., Jansen, K., & Klein, K. (2021). New bounds for the ver-
tices of the integer hull. In: Proc. SOSA 2021, pp. 25–36. SIAM,
Philadelphia. https://doi.org/10.1137/1.9781611976496.3

Bhaskara, A., Krishnaswamy, R., Talwar, K., & Wieder, U. (2013).
Minimum makespan scheduling with low rank processing times.
In: Proc. SODA 2013, pp. 937–947. SIAM, Philadelphia. https://
doi.org/10.1137/1.9781611973105.67

Chen, L., Marx, D., Ye, D., & Zhang, G. (2017). Parameterized and
approximation results for scheduling with a low rank processing
timematrix. In: Proc. STACS 2017. LIPIcs, vol. 66, pp. 22–12214.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl.
https://doi.org/10.4230/LIPIcs.STACS.2017.22

Chen, L., Jansen, K., & Zhang, G. (2018). On the optimality of exact
and approximation algorithms for scheduling problems. Journal of

Computer and System Sciences, 96, 1–32. https://doi.org/10.1016/
j.jcss.2018.03.005

Conforti, M., Cornuéjols, G., & Zambelli, G. (2014). Integer Program-
ming. Graduate Texts in Mathematics, vol. 271. Springer, Cham.
https://doi.org/10.1007/978-3-319-11008-0

Cslovjecsek, J., Eisenbrand, F., Hunkenschröder, C., Rohwedder, L., &
Weismantel, R. (2021). Block-structured integer and linear pro-
gramming in strongly polynomial and near linear time. In Proc.
SODA 2021, pp 1666–1681. SIAM, Philadelphia. https://doi.org/
10.1137/1.9781611976465.101

Cygan,M., Fomin, F.,Kowalik, L., Lokshtanov,D.,Marx,D., Pilipczuk,
M., Pilipczuk, M., & Saurabh, S. (2015). Parameterized algo-
rithms. Springer. https://doi.org/10.1007/978-3-319-21275-3

Eisenbrand, F., Hunkenschröder, C., Klein, K., Koutecký,M., Levin, A.,
& Onn, S. (2019). An algorithmic theory of integer programming.
CoRR arXiv:1904.01361 preprint

Frank,A.,&Tardos, É. (1987).An application of simultaneous diophan-
tine approximation in combinatorial optimization.Combinatorica,
7(1), 49–65. https://doi.org/10.1007/bf02579200

Gilmore, P.C.,&Gomory,R.E. (1961).A linear programming approach
to the cutting-stock problem.Operations Research, 9(6), 849–859.
https://doi.org/10.1287/opre.9.6.849

Goemans, M.X., & Rothvoß, T. (2014). Polynomiality for bin pack-
ing with a constant number of item types. In: Proc. SODA
2014, pp. 830–839. SIAM, Philadelphia. https://doi.org/10.1137/
1.9781611973402.61

Goemans, M. X., & Rothvoß, T. (2020). Polynomiality for bin packing
with a constant number of item types. Journal of the ACM, 67(6),
38–13821. https://doi.org/10.1137/1.9781611973402.61

Hermelin, D., Mnich, M., & Omlor, S. (2019). Single machine batch
scheduling to minimize the weighted number of tardy jobs. CoRR
arXiv:1911.12350. preprint

Hermelin, D., Karhi, S., Pinedo, M., & Shabtay, D. (2021). New algo-
rithms for minimizing the weighted number of tardy jobs on a
single machine. Annals of Operations Research, 298(1), 271–287.
https://doi.org/10.1007/s10479-018-2852-9

Hermelin, D., Pinedo, M., Shabtay, D., & Talmon, N. (2019). On the
parameterized tractability of singlemachine schedulingwith rejec-
tion. European Journal of Operational Research, 273(1), 67–73.
https://doi.org/10.1016/j.ejor.2018.07.038

Jansen, K. (2017). New algorithmic results for bin packing and schedul-
ing. In: Proc. CIAC 2017, pp. 10–15. Springer, Cham. https://doi.
org/10.1007/978-3-319-57586-5_2

Jansen, K., Klein, K.-M., Maack, M., & Rau, M. (2018). Empower-
ing the configuration-IP-new PTAS results for scheduling with
setups times. In: Proc. ITCS2019, pp. 44–14419. SchlossDagstuhl
– Leibniz-Zentrum für Informatik, Dagstuhl. https://doi.org/10.
1007/s10107-021-01694-3

Jansen, K., Lassota, A., & Maack, M. (2020). Approximation algo-
rithms for scheduling with class constraints. In: Proc. SPAA 2020,
pp. 349–357. ACM, New York. https://doi.org/10.1145/3350755.
3400247

Jansen, K., & Klein, K. (2020). About the structure of the inte-
ger cone and its application to bin packing. Mathematics of
Operations Research, 45(4), 1498–1511. https://doi.org/10.1137/
1.9781611974782.103

Jansen, K., Kratsch, S., Marx, D., & Schlotter, I. (2013). Bin packing
with fixed number of bins revisited. Journal of Computer and Sys-
tem Sciences, 79(1), 39–49. https://doi.org/10.1016/j.jcss.2012.
04.004

Jansen, K., Lassota, A., & Rohwedder, L. (2020). Near-linear time
algorithm for n-fold ILPs via color coding. SIAM Journal on
DiscreteMathematics, 34(4), 2282–2299. https://doi.org/10.1137/
19M1303873

Knop, D., &Koutecký,M. (2022). Scheduling kernels via configuration
LP. In: Proc.ESA2022, pp. 73–17315. SchlossDagstuhl –Leibniz-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/17M1162792
https://doi.org/10.1137/17M1162792
https://doi.org/10.1137/1.9781611976496.3
https://doi.org/10.1137/1.9781611973105.67
https://doi.org/10.1137/1.9781611973105.67
https://doi.org/10.4230/LIPIcs.STACS.2017.22
https://doi.org/10.1016/j.jcss.2018.03.005
https://doi.org/10.1016/j.jcss.2018.03.005
https://doi.org/10.1007/978-3-319-11008-0
https://doi.org/10.1137/1.9781611976465.101
https://doi.org/10.1137/1.9781611976465.101
https://doi.org/10.1007/978-3-319-21275-3
http://arxiv.org/abs/1904.01361
https://doi.org/10.1007/bf02579200
https://doi.org/10.1287/opre.9.6.849
https://doi.org/10.1137/1.9781611973402.61
https://doi.org/10.1137/1.9781611973402.61
https://doi.org/10.1137/1.9781611973402.61
http://arxiv.org/abs/1911.12350
https://doi.org/10.1007/s10479-018-2852-9
https://doi.org/10.1016/j.ejor.2018.07.038
https://doi.org/10.1007/978-3-319-57586-5_2
https://doi.org/10.1007/978-3-319-57586-5_2
https://doi.org/10.1007/s10107-021-01694-3
https://doi.org/10.1007/s10107-021-01694-3
https://doi.org/10.1145/3350755.3400247
https://doi.org/10.1145/3350755.3400247
https://doi.org/10.1137/1.9781611974782.103
https://doi.org/10.1137/1.9781611974782.103
https://doi.org/10.1016/j.jcss.2012.04.004
https://doi.org/10.1016/j.jcss.2012.04.004
https://doi.org/10.1137/19M1303873
https://doi.org/10.1137/19M1303873

156 Journal of Scheduling (2025) 28:139–156

Zentrum für Informatik, Dagstuhl. https://doi.org/10.4230/LIPIcs.
ESA.2022.73

Knop, D., Koutecký, M., Levin, A., Mnich, M., & Onn, S. (2019).
Multitype integer monoid optimization and applications. CoRR
arXiv:1909.07326. preprint

Knop, D., & Koutecký, M. (2018). Scheduling meets n-fold integer
programming. Journal of Scheduling, 21(5), 493–503. https://doi.
org/10.1007/s10951-017-0550-0

Knop, D., Koutecký, M., Levin, A., Mnich, M., & Onn, S. (2023).
High-multiplicity n-fold IP via configuration LP. Mathematical
programming, 200(1), 199–227. https://doi.org/10.1007/S10107-
022-01882-9

Lawler, E., Lenstra, J.K., Kan, A.R., & Shmoys, D. (1993). Sequencing
and scheduling: Algorithms and complexity. In: Graves, S.C., Rin-
nooy Kan, A.H.G., Zipkin, P.H. (eds.) Logistics of Production and
Inventory. Handbooks in Operations Research and Management
Science, vol. 4, pp. 445–522. North-Holland, Amsterdam. https://
doi.org/10.1016/S0927-0507(05)80189-6

Levin,A. (2022).Approximation schemes for the generalized extensible
bin packing problem. Algorithmica, 84(2), 325–343. https://doi.
org/10.1007/s00453-021-00895-8

McCormick, T., Smallwood, S., & Spieksma, F. (2001). A polynomial
algorithm for multiprocessor scheduling with two job lengths.
Mathematics of Operations Research, 26(1), 31–49. https://doi.
org/10.1287/moor.26.1.31.10590

Mnich, M., & Bevern, R. (2018). Parameterized complexity of
machine scheduling: 15 open problems. Computers and Opera-
tions Research, 100, 254–261. https://doi.org/10.1016/j.cor.2018.
07.020

Mnich, M., & Wiese, A. (2015). Scheduling and fixed-parameter
tractability. Mathematical Programming, 154(1–2), 533–562.
https://doi.org/10.1007/s10107-014-0830-9

Smith, W. E. (1956). Various optimizers for single-stage production.
Naval Research Logistics Quarterly, 3(1–2), 59–66. https://doi.
org/10.1002/nav.3800030106

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.4230/LIPIcs.ESA.2022.73
https://doi.org/10.4230/LIPIcs.ESA.2022.73
http://arxiv.org/abs/1909.07326
https://doi.org/10.1007/s10951-017-0550-0
https://doi.org/10.1007/s10951-017-0550-0
https://doi.org/10.1007/S10107-022-01882-9
https://doi.org/10.1007/S10107-022-01882-9
https://doi.org/10.1016/S0927-0507(05)80189-6
https://doi.org/10.1016/S0927-0507(05)80189-6
https://doi.org/10.1007/s00453-021-00895-8
https://doi.org/10.1007/s00453-021-00895-8
https://doi.org/10.1287/moor.26.1.31.10590
https://doi.org/10.1287/moor.26.1.31.10590
https://doi.org/10.1016/j.cor.2018.07.020
https://doi.org/10.1016/j.cor.2018.07.020
https://doi.org/10.1007/s10107-014-0830-9
https://doi.org/10.1002/nav.3800030106
https://doi.org/10.1002/nav.3800030106

	Complexity of scheduling few types of jobs on related and unrelated machines
	Abstract
	1 Introduction
	2 Preliminaries
	3 Algorithms
	3.1 Large lengths and polynomial multiplicities
	3.2 Polynomial lengths and large multiplicities

	4 Hardness
	4.1 Reducing bin packing to balanced bin packing
	4.2 Hardness of Q||Cmax and R||Cmax
	4.3 NP-hardness of Cutting Stock
	4.4 Hardness of Q||ell2 and R||ell2
	4.5 Hardness of R||sumwj Cj

	5 Open problems
	5.1 W[1]-hardness of Cutting Stock Parameterized by k for Unary Multiplicities
	5.2 Other open problems

	Acknowledgements
	References

