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Abstract

With ever-rising student numbers and an increasing shift towards more interdisciplinary study programs, the requirements for
finding schedules for courses and exams become ever more complex. In real-world scenarios, the models used for calculating
solutions to the course and the examination timetabling problem often must be provided to the students at the time of
registration. In the field of curriculum-based course timetabling, timetables are calculated based on the structure of the study
programs. For the examination timetabling problem, only a few papers focus on scheduling exams without registration data,
as the requirements for exams are often more strict, or partial information is known from course registrations. In this paper we
show that with the use of robustness techniques, we can also define the examination timetabling problem based on curricula.
We introduce three robustness measures that address the inherent uncertainty when using the curriculum-based model. These
robustness measures, along with other quality measures, are analyzed using a multi-objective simulated annealing algorithm.
The results are compared on the Pareto front approximations found. We present a case study showing that, without a significant
loss in solution quality, the chance is significantly reduced that rescheduling will be required after the exact numbers for the
model are known.

Keywords Examination timetabling - Curriculum-based - Simulated annealing - Multi-objective optimization - Robustness

1 Introduction

Atuniversities there are many scheduling tasks that need to be
handled in each term. These can range from simple meetings
that are held only once or are repeated a few times, to very
complex scheduling tasks such as scheduling all exams. Each
scheduling task can be summarized as the process of assign-
ing a number of entities, e.g., exams, lectures, or meetings,
to a set of resources, e.g., rooms, time slots, or specialized
hardware. As the number of entities that have to be scheduled
can be extensive and the additional requirements for a rea-
sonable schedule quite complex, this scheduling often cannot
be satisfactorily solved manually. This has given rise to the
field of educational timetabling, including the two similar
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but distinct specializations called course timetabling prob-
lem (CTTP) and exam timetabling problem (ETTP), which
are sometimes grouped as university timetabling. In very sim-
plified terms, both problems involve finding a timetable that
is feasible if each lecture or exam is assigned to a time and a
room, while a specified set of constraints has to be satisfied.
For a recent and more detailed overview and discussion of
different variants of educational timetabling, see (Ceschia et
al., 2022). The difference between the CTTP and the ETTP
is in the constraints that need to be satisfied and the require-
ment that the timetable needs to be repeatable for the CTTP,
which is not the case for ETTP. However, in practice, we are
not really satisfied with simply finding a feasible timetable,
as this timetable might not be acceptable when evaluated
under quality measures. As a consequence, these problems
are usually modeled as optimization problems. In terms of
complexity, both problems are NP(O)-complete, which was
shown by (Even et al., 1975), as both problems are exten-
sions of the timetabling problem proven NP-complete by the
authors, or by a simple reduction from the graph coloring
problem which is NP-complete as shown in (Garey & John-
son, 1979). For large problem sizes, it becomes challenging
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to find good solutions in reasonable time, which has led to
an extensive field of research.

A solution to the ETTP is a timetable that assigns each
exam one or more rooms and a time slot such that all spec-
ified hard constraints are satisfied and which is optimal in
regard to a set of specified measures. As each exam is held
only once every term, this assignment is not required to
be repeatable. A complete model can be found in (McCol-
lum et al., 2012), from which our model as introduced in
Sect.2 is derived. As the ETTP is NP(O)-complete, we can-
not expect to find the best solution in polynomial time. In
the literature, many different approaches are used to actu-
ally solve this timetabling problem. Prominent optimization
approaches include genetic algorithms (Leite et al., 2018),
local search heuristics (Amaral & Pais, 2016), and swarm
intelligence-based algorithms (Eley, 2007), which are often
inspired by nature, that try to improve a solution or a set
of solutions iteratively. On the other hand, there are also
solvers that work more directly on a model of the problem,
such as mixed-integer linear programming solvers (Cataldo
et al., 2017) or constraint programming (Battistutta et al.,
2020), which reduce the search space in each step by elim-
inating areas where no improvements can be found. For a
comprehensive overview on examination timetabling, we
refer to the surveys of (Qu et al., 2009) and (Ceschia et
al., 2022). Other research has been done in bringing this
abstract model closer to the requirements found in real-world
timetabling scenarios, where additional requirements might
be present. This often leads to new hard or soft constraints
as well as other measures to be optimized that need to be
addressed by the solver. Additional requirements that are
commonly found for educational—or here, more specifically,
university—timetabling include fairness (Muklason et al.,
2017; Miihlenthaler & Wanka, 2016) or robustness objec-
tives Akkan and Giilcii (2018) that should be fulfilled for a
timetable to be acceptable. These additional requirements are
more prominently found for the CTTP, as there is a significant
trend towards bringing the abstract models closer to real-
world requirements, while for ETTP they are addressed by
only a few papers. (Yanez & Ramirez, 2003) address exami-
nation timetabling as an example of the robust graph coloring
problem and describe a model that uses known probabilities
for the robustness calculation. They show that their model
is NP-complete and provide examples for a simple small
examination timetabling problem. (Gtadysz & Kuchta, 2010)
model the uncertain information in regard to nonstandard
student conflicts using fuzzy numbers and provide an integer
linear programming model for finding robust timetables for
small problem sizes.

In general, robustness approaches can be classified into
several distinct categories based on how one chooses to
handle the different types of uncertainty in a given model
and the information that is available regarding the uncer-
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tainty. A more detailed overview of the different categories
can be found in (Ben-Tal et al., 2009), with many different
forms of robustness being introduced in the field of railway
scheduling. If the complete scenario space, i.e., all possible
uncertainty realizations, is known, or at least can be bounded,
strict robustness can be used to find solutions that are feasi-
ble regardless of uncertainty. However these solutions often
come at a large cost of quality in other aspects. Furthermore,
if the probability distributions of the uncertain variables are
known at the time of optimization, stochastic optimization
approaches can be used; see (Birge & Louveaux, 2011).
These approaches use the probability distribution of each
uncertain variable to minimize the overall probability of a
found solution being infeasible at the time the actual values
of the variables become known. Another robustness category
can be used if we only expect minor disruptions that cannot
be fixed trivially. For such cases, (Liebchen et al., 2009) intro-
duced recovery robustness in the area of railway optimization
and (Cicerone et al., 2009) for shunting and timetabling prob-
lems. In recovery robustness, solutions are calculated that
have good values in solution quality while providing simple
strategies for fixing infeasible solutions after the scenario is
known. For the CTTP, both (Phillips et al., 2017) and (Lin-
dahl et al., 2019) formulate a minimal perturbation problem
to find a feasible solution once the actual numbers are known.
This can be used even if robustness was not addressed dur-
ing the initial optimization process. (Phillips et al., 2017)
show that using different neighborhoods of allowed pertur-
bations can lead to solutions with only a few perturbations,
which the scheduler can customize to adapt the process to
different situations. (Lindahl et al., 2019) show that if the
perturbation problem is solved directly, the solution quality
is negatively impacted in a significant way. They show that
increasing the number of perturbations can actually lead to
overall better quality of the recovered solutions. More closely
related to our approach is light robustness, which was intro-
duced by (Fischetti & Monaci, 2009). In this approach, a
slack is introduced for each constraint containing uncertain
variables, and this slack is used in finding robust solutions
with only a bounded deviation from a previously calculated
nominal solution.

In this paper, we want to focus on such robustness aspects.
In the literature, the ETTP is often described as a post-
enrollment problem, where prior to the optimization process
the students register for their exams, so all information is
present when the actual optimization is performed. We want
to focus on a fundamental deviation from this model, which
in CTTP is often called curriculum-based. In this model, stu-
dents do not register for their exams, or they only register
after the optimization is already performed.

This situation can occur for different reasons that lead to an
absence of registration data, which can all be modeled by our
approach. To give an example, at the Friedrich-Alexander-
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University of Erlangen-Nuremberg (FAU), students do not
have to register for their courses. Restrictions are only
enforced for exams, and not courses, where students can
only get credits for exams that are specified by their curricu-
lum. Therefore, there are no registration data available for the
courses, and the numbers of students in a course do not corre-
spond to the number of students that actually take the exam.
This is especially prevalent in the masters programs, where
students only have to accumulate a fixed number of credit
points from a large selection of courses and their respective
exams. Furthermore, while students have to register for their
exams eventually, the university wants to provide the students
with a schedule at the time of registration.

Therefore, not all information that is required in the opti-
mization process is known. When handling such situations,
many papers in the literature use the information that was
acquired in the previous year and treat the optimization pro-
cess as a post-enrollment problem. (Cataldo et al., 2017)
directly addressed the issue of uncertainty resulting from this
curriculum-based model for examination timetabling with
multistage integer linear programming. In contrast to the
recovery robustness approach that is mainly used when the
chance for an infeasible timetable is low and only a few
disturbances are expected, the uncertainty resulting from
missing registration information is always present, which
leads to more prevalent feasibility issues. Therefore, our
goal is to find solutions that only have a very small chance
of becoming infeasible even if the data used are subject to
uncertainty. This paper is an extension of three conference
papers (Bassimir & Wanka, 2018, 2019, 2021) where we
first introduced these approaches for finding robust solutions.
Here, we provide a more detailed study of these approaches
where we use a multi-objective simulated annealing algo-
rithm (MOSA) to study the trade-off between the robustness
aspect and the quality of the solution based on the Pareto
front, similar to the idea described by (Schobel & Kratz,
2009), which we analyze using the hypervolume measure first
introduced by (Zitzler & Thiele, 1998). We further extend
the case studies presented in the conference papers by using
a random instance generation approach introduced in this
paper, consequently extending the number of instances that
can be used when testing different approaches. For compar-
ing different optimization strategies, there exist several sets
of instances that can be used for a fair comparison between
different solvers; these include the Toronto data sets (Carter
et al., 1996) and the data sets used in the ITC 2007 competi-
tion (McCollum et al., 2007). There also exist some randomly
generated instances and simple random generators for gen-
erating more instances to compare different solvers. Most of
the time the generation process is quite simple. A large set
of instances are sampled uniformly, and afterwards instances
are selected by some kind of similarity measure to existing
instances (Battistutta et al., 2017). In this paper, we introduce

a more systematic framework for generating instances that
are structurally similar to a given instance and which can be
easily adapted to different requirements for the model. We
use a simulation approach, where we simulate student plans,
i.e., for each student all exams that the student actually takes
and the semester in which the student takes the exams, based
on a curriculum structure where choices are made according
to random distributions that can be chosen by the researcher.
These student plans are then used to derive an instance of
our ETTP. We can therefore keep our structure, and only
actually randomize the parts of our model that are subject to
uncertainty.

The remainder of the paper is structured as follows. In
Sect. 2, we define the model we used and the first part of
handling the uncertainty by finding good estimations. In
Sect. 2.3, we introduce two real-world instances and discuss
problems that can be encountered when calculating estima-
tions, and in Sect.2.4 we introduce our instance generation
approach. In Sect. 3, we discuss the robustness approaches
we developed to find solutions that are robust in regard to
the uncertainty in the model. Sections4 and 5 introduce the
solver we used and discuss experimental results we obtained
with the solver when using our robustness approaches.

2 Model

Most papers about ETTP focus on the so-called post-
enrollment variant of the ETTP, or at least treat it as such.
Therefore, the instances that are used do not contain uncer-
tainty. As we want to focus on a pre-enrollment variant of
the ETTP, often called curriculum-based, we have to deal
with uncertainty in the input data. To still attain results that
are comparable to the existing approaches and to be able
to use existing algorithms for solving the actual scheduling
problem, we want our model to be similar to existing models.
(McCollum et al., 2012) introduce an extensive model for the
ETTP. Our model is in large part similar to that model, with
the key difference in the associated soft and hard constraints;
see Sect.2.2.

Definition 1 An instance I = (&, %,«,v,C,H,S,TS) €
2 of the examination timetabling problem is presented as
follows.

e &: A set of exams

e Z: A set of rooms

e k : # — N: the capacity available for each room and
Kk P(A) — N as the canonical extension such that for
RCZ:k(R):=),.gk(r)

e v € NI¢I: A vector specifying for each exam how many
students are attending
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e Conflict matrix C € NI¢1xI€1. specifying the number of

overlapping students of two exams

e A set of hard constraints H and a set of soft constraints S
with associated weights

e A set of available time slots TS, possibly divided into
weeks, days, and periods

Note that the vector v and the conflict matrix C are subject
to uncertainty in our case.

For an instance I € &, we can define a valid timetable as
an assignment of an exam to a time slot and a set of rooms.

Definition 2 Let / € 2 be an instance of our model. We can
define the set of valid timetables .77 of instance I:

Tp={T | T:&— TS x (%)} . (1)

As we perform the scheduling before students register for
their respective exams, we do not have all of the actual data
available when generating the respective instances. It there-
fore becomes necessary to estimate parts of the instance. In
this work we focus on the uncertainty regarding student data,
i.e., uncertainty in v and C. Consequently, we assume the
basic structure of the instances to be fixed. We assume the
rooms to be a fixed set, with no uncertainty in « . Furthermore,
we assume the set of exams to be fixed, with the set of all
possible conflicts to be known. The uncertainty for conflicts
in regard to feasibility is whether the conflict is active, i.e.,
there is at least one student attending both exams, or inac-
tive, i.e., no student takes both exams in this term, even if
taking both exams is a valid choice. We disregard the cases
where a student takes two exams in which neither is specified
as a valid choice by the curriculum. This structure is often
provided by curriculum data which are available before the
scheduling process. As the different terms, i.e., summer and
winter terms, are expected to differ extensively in their exams
and possible conflicts, we restrict our calculations to the same
term that is repeated each year. The following calculations
can be performed for each term independently.

2.1 Estimation approach

Even if scheduling is performed without the actual student
data, students still often have to register for their respec-
tive exams. This provides us with two possibilities. First,
we can verify whether the calculated timetable is actually
feasible and use recovery algorithms to restore feasibility,
if necessary, before the timetable is actually applied. Sec-
ond, combined with the structure data that were used for the
generation of the instance, we can further improve our esti-
mations for the next year by using both sets of data points. In
the rest of the paper we call the curriculum data the structure
instance, which consists of a set of exams, each specifying

@ Springer

a set of curricula, i.e., major, degree, and semester com-
binations, with their respective priority, i.e., mandatory or
elective, that include the exam. Additionally, for each major,
degree, and semester, the enrolled students v are given.
We refer to a semester of a curriculum as the denomination
of time relative to the enrollment, which is measured in terms.
For example, at FAU, a bachelor’s degree is regularly six con-
secutive terms starting at a winter term. Therefore, an exam
with a curriculum specifying semester 3 should be taken by
a student of this major and degree in the second winter term
after enrollment. Lastly, a set of possible conflicts is given,
each specifying a set of curricula that induce the conflict, i.e.,
that contain both exams of the conflict. We call the actual data
that are attained by the students registering for the exams the
data instance, which consists of a set of exams with the reg-
istered students split into their respective curricula and the
actual conflicts with the actual overlapping student numbers
split analogously. In the following paragraphs, we describe
how these sets of data points of the structure instance and the
data instance are used to calculate the estimations v and C,
which are an extension of the definitions first introduced in
(Bassimir & Wanka, 2018).

2.1.1 Available data for estimations

Even when using robustness approaches, it is still neces-
sary to have numbers for v and C that can be used by the
solver to find solutions for the instance. As argued before,
we do not have the exact scenario and therefore do not have
student and actual conflict numbers. As a result, estimation
techniques are necessary to calculate a close approximation
to the exact unknown scenario. The literature offers many
different approaches for calculating good estimations. How-
ever, in the case of examination timetabling, the information
is limited. The numbers of students do not follow a fixed
distribution which we could use in the estimation, and tight
bounds are often impossible to find. A common problem with
many estimation techniques is that they require a large set of
data points to be available for each variable to be estimated,
and therefore they often cannot be successfully applied if
there are only limited data available for the calculations. In
Sect. 2.3 we argue why we used only 3—4 data points in the
estimations. However, even in a general sense, it is often
neither possible nor reasonable to use a larger number of
data points for the estimation. The study programs a uni-
versity offers can change, at least in part, with new study
programs offered and existing ones changed to address new
developments in research and industry. Furthermore, even if
we assume the study programs to be fixed, there are soci-
ological factors that influence students’ choices regarding
which study programs they choose and which courses are
more popular. For example, in computer science there has
recently been a dramatic increase in the popularity of arti-
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ficial intelligence (AI) courses. Given these restrictions, we
opted for a simple approach using arithmetic mean and stan-
dard deviation for the estimation, and focus on robustness to
compensate for the errors made by the estimation approach.

2.1.2 Attending student numbers

As we assume the set of exams of the data and structure
instances to be fixed over the different years, we can find
an isomorphism between the exams of the structure instance
and the data instance for each of the previous years of the
given term. More specifically, we can build an isomorphic
relation between the curricula for which students can attend
the exam with the respective maximal number of students
and the actual number of students of this curriculum that
attended/canceled the exam, i.e., actually attended the exam
or canceled their registration to write the exam in a different
year and therefore were not in attendance. The value of 0 is
used if no student of a given curriculum did attend the exam.
In our case, a curriculum is specified by a tuple of a major, a
degree, and a semester.

Definition 3 Let vyax(cr, ¢) be the maximal number of stu-
dents of a curriculum cr that can attend an exam e, and
Vattend (€7, €) and veancel (¢, €) the students of curriculum cr
attending exam e and that have canceled exam e, respectively.
Furthermore, Curr(e) denotes the set of curricula associated
with exam e. This gives us, for each exam e, the available
data points D(e).

Ve € & : D(e):={(vmax(cr, €), Vattend(cT, €),
Veancel (¢, €)) | cr € Curr(e)}. 2)

Note: For generality we use vmax (cr, €) for the data points,
which allows us to use knowledge of upper bounds on the
number of students that can attend exam e. In our case, we
Uuse Vmax (cr, €) = veurr(cr), the number of students enrolled
in curriculum cr.

With the assumptions mentioned in the previous section,
we can further build isomorphic relations between the data
points of Def. 3 for each different year, as the basic structure
is considered fixed.

Definition 4 Let [¢] be the ordered set of exam e in regard to
the isomorphic relation of data sets D(e) available for differ-
ent years. D, (e) denotes the element of D (e) corresponding
to a curriculum cr:

D([e]):={{D,(€') | € € [e]} | cr € Curr(e)} . A3)

Note that the inner sets are ordered in regard to the years.

When simply using the number of students that have
attended an exam in the previous years, the changes in the

number of students that are enrolled in a major are disre-
garded. In our estimations, we instead use the arithmetic
mean and standard deviation of the enrollment/cancel fac-
tors based on the data described in Def. 4, which represent a
simple popularity approximation.

Ve € &Vcr € Curr(e) : Vepron(cr, )

1 Z Veancel (€7, e/) =+ Vattend (CF, e/)

TR T @
Ve € &EVcr € Curr(e) : Veancel(cr, €)
::L ) Veancel (€T, €') (5)
el 7, Veancel(er', €) + Vaena (e, &)

The standard deviation o (Venror1(cr, €)) is calculated analo-
gously.

With Egs. (4) and (5) and the standard deviation, we can
calculate an estimation for the number of students that will
attend an exam e in curriculum cr.

v(e, cr):=[(Vmax(cr, €) - Venron(cr, €)) - (1 — Veancel (c7, €))

+ Vmax(cr, €) - 0 (Venror(c7, €)) - (1. (6)

Equations (4) and (5) provide a simple estimation for the
popularity, i.e., the fraction of students we expect to enroll,
and additionally the fraction of students that will afterwards
cancel the registration for the exam e and curriculum cr.
We multiply the number of students that are enrolled in the
curriculum in the current year by the enrollment factor and
afterwards subtract the students we estimated will cancel
their registration. Using the parameter ;& when calculating
the estimations for v, we increase the number of students
in the exam by the specified factor of the standard devia-
tion. This represents a trade-off between reducing the chance
that the assigned rooms will be too small and reducing the
number of feasible solutions and therefore the quality of the
solutions. In our experiments, a small value was sufficient
for a good estimation, as we will use robustness measures
in the optimization. Using a small value for the factor u, we
mostly skew the values for exams with high deviations, while
exerting very little influence on the solution space.

v(e):= Z v(e, cr). @)

creCurr(e)

To obtain the overall estimation for the number of students,
we simply accumulate the numbers of students estimated for
each curriculum in Eq. (7).
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2.1.3 Conflict numbers

As with the uncertainty in the student numbers, we use esti-
mations based on collected data for the uncertainty in the
conflict matrix C. With the previous assumptions of a fixed
structure, the uncertainty in the conflicts is in the number
of students attending both exams. Therefore, we know what
conflicts are actually possible based on the curriculum data.

In contrast to the number of students attending an exam,
the estimations for the conflicts have only a limited influence
on the feasibility of a solution. For feasibility, it is only rele-
vant if a conflict has at least one student attending both exams
or if no student wants to attend both. The actual number of
students inducing this conflict is not relevant for feasibility;
however, as we will discuss in a later section, it heavily influ-
ences the soft constraints and therefore the perceived quality
of the solution.

As we have a fixed structure, we can again build an iso-
morphic relation for the possible conflicts of the structure
instance with the maximal number of students that can induce
the conflict of a curriculum and the actual number of students
that attended both exams.

Definition 5 Let Cphax(e1, €2, cr) be the maximal number of
students of a curriculum cr that can attend exam e; and
exam ey, and Cyyend (€1, €2, cr) the actual number of students
of curriculum cr attending exam e; and e;. Furthermore,
Curr(e) denotes the set of curricula associated with an exam
e and Curr(eq, e2) = Curr(ey) N Curr(ez). This gives us the
available data points D (e, ;) if the two exams e and e are
in conflict, i.e., they have at least one curriculum in common:

Vey, ey € &, Curr(er, er) #0:
D(ela 62):2{(Cmax(€la 625 Cr)a
Cuend(e1, €2, cr)) | cr € Curr(ey, e2)}. (8)

Note: As with Def. 3, we use Cnmax (€1, €2, cr) for generality.
In our case this is again simply Cpax(e1, €2, cr) = veurr(cr).

This can be analogously extended with the isomorphic
relation between the data points of Def. 5 for each different
year.

Definition 6 Let [{e], e}] be the ordered set of conflicts in
regard to the isomorphic relation of data sets available for
different years. D.,(e1, e2) denotes the entry of D(ey, e2)
corresponding to a curriculum cr and Curr(eq, e) as defined
in Def. 5:

D([{e1, e2}]):={{Dcr (€}, €3) | {€}, €3} € [{e1, e2}1} |
cr € Curr(ey, ep)} . )

Note that the inner sets are again ordered in regard to the
years.

@ Springer

Curriculum information often provides us with not only
the maximal number of students that can attend an exam
in a curriculum, but additionally the priority for the exam
and, consequently, for the possible conflicts. The common
distinction is between mandatory and elective exams for a
curriculum. If an exam is mandatory, a student must take
the exam to achieve the degree, while an elective exam is
optional. Therefore, for a conflict in a curriculum between
two mandatory exams, we have to guarantee that the exams
are scheduled conflict-free, while a conflict between two
elective exams might not be present in the actual enrollment
data.

Let [{e1, e2}] be the ordered set of possible conflicts in the
isomorphic relation between the different years. We use the
arithmetic mean and the standard deviation of the quotient of
the values in D([{e], e2}]) as defined in Def. 6 of each year:

Cattend(e/l , 3/2, cr)
Cmax(e/l, 9/21 cr)

(10)

1
cley,er,cry=— - Z

el,e
[[{e1, e2}]] € eyteltenen

With Eq. (10) and the analogously calculated value for
the standard deviation o (c(e1, e2, cr)), we can calculate the
estimated value for a given possible conflict {e1, ez} of a
curriculum cr.

c(er, e, cr)

. if e1 and ey are
min(v(ey, cr), v(ep, cr
(e, er), v(ea, er)) mandatory for cr
Cmax(e1, €2, cr) - c(ey, ez, cr) ’
else
+ Cmax(eq, ez, cr) - a(c(ey, ez, cr))

Y

In this equation, we add the standard deviation instead of
only a factor, unlike Eq. (6). In regard to feasibility, there is
actually only a difference between a value of 0, i.e. the con-
flict is not present, and a value greater than 0, i.e. students
are estimated to induce the conflict. Therefore, increasing
the value does not influence feasibility but will affect solu-
tion quality directly by increasing the influence of exams
with a high standard deviation. We also use the minimum
of the estimated student numbers if both exams are manda-
tory in curriculum cr to further enforce these conflicts, as all
estimated students should induce this conflict without any
choice involved.

Cl(ey, er):= Z

creCurr(eq,e2)

c(ey,en, cr). (12)

The resulting value for the conflict between exam e; and
exam e is the sum over all curricula in Eq. (12). Note that
all other values in C are 0, as there can be no conflict between
these exams.



Journal of Scheduling (2025) 28:159-181

165

2.2 Hard and soft constraints

After the generation of the appropriate instance based on
the model introduced in Def. 1, we can use an optimization
algorithm to solve the actual scheduling problem. The fea-
sibility and the quality of the generated schedule are based
on the hard and soft constraints introduced in the following
paragraphs.

2.2.1 Hard constraints

For a timetable to be feasible, the set of hard constraints 1-5
must be fulfilled. These are similar to the constraints specified
in (McCollum et al., 2012), with the exception that we allow
multiple rooms per exam, which is especially relevant for
universities with very large exams or many large exams and
not enough large rooms.

1. Each exam is assigned to exactly one time slot.

2. Each exam is assigned to one or more rooms.

3. Two exams that are in conflict are not scheduled at the
same time.

4. No room is used by two exams at the same time.

5. The sum of capacities of the assigned rooms is larger or
equal to the number of students taking the exam.

We can see that the only hard constraints that are influ-
enced by the uncertainty are 3 and 5.

2.2.2 Soft constraints

In our reduced model we use the soft constraints two-
in-a-row, two-in-a-day, and period-spread as defined in
(McCollum et al., 2012). Other constraints are possible, but
we do not have data for these available for our test instances.

1. two-in-a-row: If two exams are in conflict according to
C they should not be assigned to two adjacent time slots
on the same day.

2. two-in-a-day: If two exams are in conflict according to C
they should not be assigned to two time slots on the same
day. Note that we exclude the directly adjacent time slot
to avoid double counting.

3. period-spread: If two exams are in conflict according to
C, they should not be assigned to time slots less than A
apart.

Each violation of a soft constraint induces a penalty corre-
sponding to the number of students that are in conflict, given
by C. Given a feasible timetable, i.e., a timetable that satisfies
hard constraints 1-5, we can formulate a quality measure as
the weighted sum of the penalties induced by the soft con-
straints 1-3. As a violation of soft constraint 1 implies a

violation of soft constraint 2, we exclude the adjacent time
slot in the calculation of the violations of soft constraint 2.
For the soft constraint 3, we ignore overlaps and compensate
this in the weight. The weights of the penalties can vary for
each university and therefore are not fixed in the model.
These soft constraints are all heavily influenced by the
estimations for the conflict matrix C, as the actual penalty
for each soft constraint is dependent on the numbers in C.

2.3 Real-world instances

Based on this model, we have generated two real-world
instances taken from the Friedrich-Alexander-University of
Erlangen-Nuremberg (FAU). We used the estimations (7) and
(12) for the number of students and the conflicts, respectively.
In practice, the fixed structure assumptions do not hold com-
pletely. Exams that are not present in the structure instance
for the target year can simply be ignored, but there might be
new exams. For these exams, we used the values of the data
instance, as in practice the estimations for these exams would
be obtained through lecturer feedback or other sources. In our
instances, the number of these exams was very limited, and
therefore the influence is minimal.

In practice, there are a few problems that have to be
addressed. The first problem is the availability of data. There
are several factors that can influence the usability of a data
set. If the curriculum data are undergoing a larger restructur-
ing, the old data might not be relevant and therefore cannot
be used. For example, at the FAU, the system was restruc-
tured to a bachelor/master system in the years 2009/2010
and two cohorts starting at the same time due to a change in
the Bavarian school system in 2011/2012. Other influences
might also prevent the use of some data sets because they are
biased by isolated circumstances, e.g., the pandemic in the
years 2020/2021 which led to a temporary restructuring for
online lectures.

Even without the external influence on the curriculum
structure, it might be reasonable to limit the number of
data points used in the estimations. The estimations are
designed to at least incorporate changes in the student num-
bers; however, larger-scale popularity shifts might lead to
overly conservative estimations, as the old data are no longer
relevant.

In our experiments, for the winter term 2017 instances
we used the data sets of the winter terms 2014-2016, and
for the summer term 2018 instance the data sets of the sum-
mer terms 2014-2017. In the following sections we call the
generated winter term instance FAU-Winter and the summer
term instance FAU-Summer. Table 1 shows the numbers for
the two generated real-world instances.
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Table 1 Numbers for the real-world instances

FAU-Winter FAU-Summer
Exams |&| 305 274
Rooms | 2| 13 13
Nonzero conflicts |C| 9822 8658
Possible conflicts |Cgy| 18,836 15,856

Students 7586 6540

Time slots TS 5 weeks, 5 days, 3 periods

2.4 Random instance generation

The approach we used for generating our real-world instances
drastically limits the number of instances we can use in
our experiments. In this section we will introduce a random
instance generation algorithm we used in our case study to
increase our test size.

As we use estimation techniques and want to focus on
the robustness of the calculated solutions, we cannot simply
generate a random instance which is then solved. We have
two goals we want to preserve for our randomly generated
instance. The first is an instance structure that has similar
properties to real-world instances. The second is generating
realistic scenarios for the uncertainty we might expect in our
real-world instances.

In the literature, when dealing with randomly generated
instances, the dominant approach is to generate completely
random instances and afterwards select from a set of such
generated instances the ones that are similar to the real-world
instances via stochastic similarity tests. This would satisfy
our first goal of randomly generated instances that have struc-
ture similar to real-world instances; however, we neither see
the influence of the estimation techniques nor have a realistic
scenario for the uncertainty of our model.

To fulfill both of our goals, we used a simulation-based
approach for generating random instances. The primary input
to our randomly generated instance generation is a structure
instance and the corresponding data instance.

The structure instance provides us, for each major and
degree combination m € M, the set of exams that are manda-
tory &mand(m) and a selection of exams that are elective
Select(m) from which students can choose N,(m). Further-
more, we know for a major and a degree m and a semester
s how many students are enrolled veyr (7, s). Let S be the
ordered set of semesters in which students can be enrolled.
Algorithm 1 shows the main procedure for generating the
artificial history, i.e., a set of instances of the same term, one
for each year, based on a structure and data instance.

Based on the data of the structure instance, i.e., the num-
bers for the different major and degree combinations, we
generate Ve (11, §) artificial student plans for all students in
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each major and degree combination m € M and semester
s € S; see Algorithm 2.

First, the mandatory exams are scheduled according to
the possible semesters in which they can or should be taken,
line 6. These are simply scheduled in the first semester that
is available without further checks. Afterwards, N, (m) elec-
tive exams are chosen according to the empirical distribution
provided by the data instance, line 9. These are then sched-
uled based on their possible or recommended semester, line
11. For elective exams, the scheduling is a bit more com-
plex. We try to balance the plans to avoid clustering in only
a few semesters. Therefore, elective exams that can only be
selected in a subset of semesters are scheduled in the first
semester with less than 5 exams, which is university-specific.
Elective exams that are possible to take in any semester are
scheduled in the semester with the smallest number of exams
already scheduled. Finally, we perturb the generated schedule
by applying arandomization to simulate cancellation, i.e., the
shift of the exam to the next semester and failure of exams,
i.e., the duplication of the exam into the next semester, line
12. For this chance we use a random variable with a decreas-
ing probability for each repeat r: for cancellation, 0.2 - SL,
and 0.2 - ﬁ for failure. However, different distributions can
be applied.

To generate the data instance, lines 5 and 15 in Algorithm
1, we simply attribute each student to the exams that are
specified by the corresponding student plan for semester s.
Conflicts are generated for each exam combination of these
exams and are aggregated over all student plans.

For the rest of the instances, we iterate the generated struc-
ture and data instances. The new data for the student numbers
are generated from the old data using a beta-distribution
B(5.0,5.0), and the corresponding number of student plans
are generated accordingly using Algorithm 2. All other num-
bers are shifted to the next semester and reduced by a
stochastic process, with a probability according to the orig-
inal differences between the semester which simulates the
dropout rates for each major and degree according to the
structure instance, line 11. We used B(5.0, 5.0) for the cal-
culation of the new numbers of students in the first semester,
as with the given parameter it has a symmetrical probabil-
ity density function in the interval [0, 1], with a mean of 0.5
and standard deviation of 0.15. As such, the new number of
students in the first semester is the old number with a ran-
dom symmetrical deviation of about 15%. It is possible to
use other distributions for the calculation of the new num-
ber, e.g., not limited to double the number or with a skew
to increasing numbers. As we use the same distribution for
all majors and degrees, we did not use a skew to increasing
numbers due to FAU having some majors and degrees with
decreasing student numbers and others with increasing num-
bers. The new student plans for all other semesters than 1
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are taken from the same term in the previous year and the
previous semester. These are then cleaned in line 13 of plans
that would be empty, i.e., student has finished all exams, and
from the remaining plans v/ (m, s + 1) are selected at ran-
dom, line 14. From these plans we can generate the new data
instance for the same term in the previous year, similar to
line 15, and the structure instance from the previous struc-

ture instance, with only the new student numbers exchanged.

Algorithm 1: Generate random structure and data

instances
input : Structure St, Data D, history length H

output: history instances S¢'~# and D! H
1 Sth:=Sr;
2 for m € M do
3 for s € Sdo
4 L SP(m, s):= GeneratePlans(St, m, veur(m, 5));

5 D':= generate data instance from the student plans SP';

6 for i from 2 to H do

7 for m € M do

8 vl m, D=l om, 1) — (2 B(5.0,5.0) — 1) - vl om, 1) ];

9 SP"(m, 1):= GeneratePlans(St, m, vé’m(m, 1));
10 fors € S:(s+ 1) € Sdo

it (m,
Y Ve, s+ 1i= 3 )

rNU<0.1)<vg‘;".](ux.:+l) >
ey (m.5)

12 SPh(m,s+ 1):=SPh_l(m,s);
13 Remove all plans from § P! (m, s + 1) that have no exams in
a semester > s + | and decrease vi‘urr(m, s + 1) if necessary;
14 SP"(m, s + 1):= Select v(’:’urr(m, s + 1) plans from
SPh(m, s + 1) at random;
15 D":= generate data instance from the student plans S P";
16 Sth:= generate structure from the numbers vi’m;

17 return St H pleH

These generated structure and data instances can then be
used to generate an instance / € 2 of our model according
to the estimations introduced in Sect. 2.1.

Table 2 shows the values for two randomly generated
instances we used in our experiments, using our random
instance generation approach introduced in this section.

3 Robustness

As mentioned in Sect. 2.1, we use estimations for the values
of the number of students attending an exam v and for the
number of students inducing a conflict C. Using estimations,
we inherently must deal with uncertainty in the input data to
our scheduling algorithm.

There are a few ways to deal with this uncertainty. The first
possibility is to improve the estimations to a point that the
deviation between the estimations and the actual numbers
in the data instance is negligible. However, as our uncer-
tainty comes from students choosing exams, the uncertainty

Algorithm 2: Generation of student plans for the major
and degree combination m

1 function GeneratePlans(St, m, n):

input : Structure Instance St=(mandatory exams &mand (1),
elective exams &gject (M), number of elective exams
N, (m)),
major and degree m, number of plans to generate n,
output: Student plans S P (m) for major and degree m
2 SP(m):=0;
3 for u from 1 to n do
4 SP,:=0;
5 for e € &nana(m) do
6 L Schedule(S Py, e, m);
7 ES:=0;
8 for i from 1 to N.(m) do
9 e := SelectExam(&gject(m) \ ES);
10 ES:=ES U {e};
11 Schedule(SP,, e, m);
12 perturb(SP,);
13 SP(m):=SP(m)U{SP,};
14 return S P (m)

Table 2 Numbers for two randomly generated instances from the his-
tory generated using Algorithm 1

Random-winter Random-summer

Exams |&| 309 277
Rooms |Z| 13 13
Nonzero Conflicts |C| 9654 8636
Possible Conflicts |Cyqyy| 18,351 15,696
Students 6784 5026

Time slots T'S 5 weeks, 5 days, 3 periods

does not follow a fixed distribution, and therefore we can-
not bound the deviations realistically. Another approach is
to deal with the inherent uncertainty of the model and the
deviations from the calculated estimations. In the following
sections we discuss how the optimization algorithm can try
to improve the robustness in regard to the uncertainty of the
returned solution.

3.1 Robustness of student numbers per exam

In contrast to the CTTP, the hard constraint for the capacity
assigned to an exam in the ETTP cannot be relaxed, as each
student must have a seat to write the exam. This is enforced
via the hard constraint 5. However, as we have uncertainty
in the number of students attending an exam, there might
be more students registered than estimated, and therefore
the room capacity assigned to the exam can be too small.
Therefore, even if the solution based on the estimations is
feasible, the solution when using the data attained by the
students registering for their exams might become infeasible.
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If we calculate a timetable based on our estimations, the
assigned room capacity has to be larger than the estimated
number of students. This is enforced by the hard constraint
5. When using this timetable, we can observe three possible
scenarios for an exam:

1. The actual number of students in the exam is smaller
than the estimated number and therefore smaller than the
assigned room capacity.

2. The actual number of students in the exam is larger than
the estimated number of students, but still smaller than
the assigned room capacity.

3. The actual number of students in the exam is larger than
the estimated number of students and also larger than the
assigned room capacity.

The first scenario is the least problematic, as hard constraint
5 enforces only an upper bound on the number of students
of the exam; the timetable is still feasible when evaluated
with the actual number of students. The drawback is that the
assigned rooms are not completely filled and the timetable
might be inefficient in regard to room utilization. In the sec-
ond scenario, we underestimated the number of students, but
the actual number of registered students is still smaller than
the assigned room capacity. In this scenario there are still
enough seats in the assigned rooms for all registered students,
i.e., hard constraint 5 is not violated and the timetable is still
feasible. In the last scenario, the actual number of students
exceeds the assigned room capacity and therefore violates
hard constraint 5, which leads to an infeasible timetable.

As we only have estimations at the time of scheduling,
we cannot prevent the last scenario from occurring without
a drastic increase in estimated numbers, which would lead
to infeasible instances at scheduling time. To deal with this
scenario, we use robustness techniques to reduce the chance
of scenario 3 occurring.

To achieve this, we use a slack-based approach in the form
of a new robustness measure we first introduced in (Bassimir
& Wanka, 2018) and improved in (Bassimir & Wanka, 2019).
As we have discussed before, if we overestimate the number
of students, the only real downside is that we decrease the
utilization of our rooms. However, as this can be improved
after registration without any real changes to the schedule by
removing excess rooms, it is only of secondary concern. The
basic idea of the objective based on this robustness measure
is to increase the slack, i.e., the difference between the esti-
mated number of students and the assigned room capacity. It
is sufficient for feasibility to have more room capacity than
registered students assigned to an exam. Therefore, we do
not try to maximize the slack for each exam, but rather try
to improve a lower bound on the slack. For this, we define a
measure that is shown in Eq. (RM1).
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Definition7 Let I € 2 be an instance of our model and
T € 7 be a valid timetable for instance I. Let RP (e, T)
denote the room pattern assigned to an exam e in timetable
T, and v(e, I) be the number of students attending exam
e in instance /. We define the student robustness measure
SR:92 x 9 — QT as

SR(I,T) = min

n { k(RP(e, T)) } . (RM1)

vie, I)

This differs from the robustness measure introduced in
(Bassimir & Wanka, 2018) insofar as the quotient is inverted
and minimized instead of maximized. The reason for this
change is that in this new form, the measure is linear in T,
and therefore an objective based on this form of the robust-
ness measure can easily be linearized for an integer linear
programming solver.

3.2 Robustness of conflict numbers

When using estimations for the conflict numbers, we can
identify two major influences of this number on the model.
The first is a binary decision as to whether a conflict should
be considered in the model and therefore enforced via hard
constraint 3. The second influence pertains to the soft con-
straints, which are dependent on the actual estimated number.
In this section we look at both influences and discuss robust-
ness approaches for dealing with them.

As discussed in Sect. 2.1, the curriculum information pro-
vides us with the priority of a possible conflict in regard to
a curriculum. If two exams that have overlapping curricu-
lum lists have at least one curriculum in which both exams
are mandatory, we can always assume that there are students
that induce this conflict in the data instance. Therefore, these
conflicts are always present and have to be considered for
hard constraint 3. In the rest of the paper we call this type of
conflict a mandatory conflict. As for conflicts between exams
that have overlapping curriculum lists with no curriculum in
which both exams are mandatory, this is not the case. These
conflicts depend entirely on the choices of the individual stu-
dents. We call these conflicts elective conflicts, as they always
depend on students electing to take both exams or the one that
is elective if one exam is mandatory for the curriculum. In the
rest of the paper, when considering robustness in regard to
conflicts, we restrict the discussion to these elective conflicts.

The simplest solution to this uncertainty is the strict
robustness approach. For this we consider every possible con-
flict to be active and enforce all elective conflicts through hard
constraint 3. This solves the problem of feasibility in regard
to all possible uncertainty scenarios. However, depending on
the size of the elective portfolio a university provides its stu-
dents and the possible restrictions on the choices a student
has to respect, this approach can lead to a completely infea-
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sible instance. In contrast, the completely opposite approach
that is often used when dealing with elective courses/exams
is to accept that conflicts might occur. Therefore, the prob-
lem of infeasible instances is solved; however, this approach
leads to complaints and consequently nonacceptance of the
solutions by the student body.

An obvious compromise is to use the estimations for the
conflicts. These provide us with the knowledge as to whether
a conflict was active in previous years. Therefore, if a student
has chosen both exams, we might expect to have other stu-
dents making similar choices. The main benefit is that we can
reduce the set of conflicts we have to consider to a manage-
able size. Furthermore, we can expect to inherently address
some correlation between exams that are possible to take in
the same year but which, due to similar topics with one exam
covering the more advanced subjects, might be beneficial to
take in a specific order. This can lead to the conflict never
being an actual issue in the data instance.

We are presented with several issues we have to address
when using estimations. First and foremost, we use several
years of data for the calculations of the estimations. As we
only check if at least one student has chosen two possible
conflicting exams in the past, it is quite possible that for
larger majors, each choice will be made at least once. There-
fore, most conflicts might be active, and consequently the
instance might become infeasible. The second issue we have
to address is the issue of bias. If the estimation for a con-
flict of our instance is that no student takes both exams even
if the conflict is possible, we might schedule both exams at
the same time without incurring any penalty. In this case,
no student will register for both exams, even if the student
wants to take both. In the next year the estimation will again
be that no student wants to take both exams. Thus, a con-
flict that would actually be present in the data would not
be addressed, and consequently the acceptance of the stu-
dent body will decrease without the person managing the
scheduling process actually noticing the issue.

Instead of enforcing all possible elective conflicts that
have estimated students via hard constraint 3, we introduce a
new robustness measure (RM2) that, when minimized as an
objective, reduces the estimated number of students induc-
ing conflicts. Note that a student can induce more than one
conflict and is counted for each induced conflict.

Definition 8 Let / € 2 be an instance of our model, with C;
being the conflict matrix of I and T € 7 a valid timetable
for instance I; we define the conflict robustness measure
CRy:9 x 97 — Ny as

CRI(I.T)=Y_ > Ciler.e).

teT ey,e2€t
e1#er

(RM2)

Using this robustness measure to try to enforce the elec-
tive conflicts instead of hard constraint 3, we solve the first
issue of possible infeasible timetables. However, the second
problem of bias is still present, as only conflicts with at least
one estimated student are considered.

To solve the issue of bias, we extend the robustness mea-
sure (RM2) with a lower bound of 1.

Definition9 Let I € Z be an instance of our model, with C;
being the conflict matrix of I and 7 € .77 a valid timetable
for instance I; we define the conflict robustness measure
CRy: 9 x 91 — Ny as

CR>(I,T)

= Z Z max {C1(€1, €2), ILI:Curr(m,e;)#Vl AVCreCurr(el,ez):]} .

teT e1,eret e] or ep elective exam in cr
e1#£es

(RM3)

Using the maximum in robustness measure (RM3), each
possible conflict as specified in the structure instance has
a penalty of at least 1. Even if a conflict is inactive, i.e., the
estimated number of students is 0, the conflict will be consid-
ered with a low priority. Minimizing the robustness measure
(RM3) as an objective not only provides an increase in the
robustness of the found solution by reducing the number of
estimated elective conflicts, but also increases the chance
of an inactive conflict still being considered and the corre-
sponding exams not being scheduled at the same time. This
provides us with an exploratory component which enables
us to find previously unrecognized conflicts and reduces the
chance for bias in the solutions.

4 Scheduling algorithm

In this section we will introduce the scheduling algorithm we
used for evaluating the influence of the introduced robustness
measures on the quality of the solutions and the objective
function used.

4.1 Optimization function

As the goal of this paper is to investigate the influence of the
robustness measures on the quality of the solution, we use a
multi-objective algorithm. We first must define the objective
function used by our multi-objective algorithm.

Definition 10 Let / € & be an instance of our model, and
T € 7 be a valid timetable for instance /. Furthermore, let
Py (1, T), Pg(I, T)and Pps(I, T) be the penalties incurred
by violations measured in the number of students given by
instance [ of the soft constraints 1, 2, and 3 in timetable T,
respectively. w1, w2, and w3 are weights for the linearization
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of the soft constraint measures. We define the quality measure
0:9 x 95 — Ny as follows.

U, T)=w- Py, T)+ w2 Pg(I,T)+ w3 Pps(I, T).
(13)

With Q and the robustness measures SR, CR;, and CR; as
defined in (RM1)—(RM3), we can define the actual fitness
function F : 2 x 97 — Ny x Q™ x Ny as a 3-valued
function that is to be minimized.

F(I,T)=(QU,T),—SR(I,T),{CRi(I,T),CRy(1, T)}).
(14)

Note that the second objective value is negative, as we have
a minimization problem. An objective using the robustness
measure defined in Eq. (RM1), however, should be a function
to be maximized. Furthermore, the third value is a choice
between the two introduced conflict robustness measures,
which is fixed for a specified run.

To reduce the number of dimensions, we use the weighted
sum of the soft constraint violations, which gives us the qual-
ity of a solution in regard to student acceptance. We used
w1 = 200, wp = 100, and w3 = 1 with a period spread of
4 in our experiments. The other dimensions have no direct
impact on the perceived quality of the solution; instead they
represent the robustness of the solution in regard to the uncer-
tainty of the number of registered students and the induced
conflicts.

4.2 Multi-objective simulated annealing algorithm

For the optimization algorithm, we used a MOSA algorithm
(see Algorithm 3), first introduced in (Suppapitnarm et al.,
2000) with an archive of non-dominated solutions, which
gives us an approximation of the Pareto front.

During the optimization process, an archive of non-
dominated solutions A is maintained. Every A, iterations,
a decreasing interval of iterations (line 13 in Algorithm 3)—
we used 100 and 0.95 for ry; and r,eq4, respectively, and
20,000 for the initial value—a solution of this archive is
selected (see Algorithm 5), and the normal SA algorithm
is executed. To select a new solution from the archive, the
archive is first sorted according to an isolation metric (line
7 in Algorithm 5) and a solution is then drawn uniformly at
random (u.a.r.) from the first s entries of the sorted archive,
additionally guaranteeing that the best solutions can always
be selected. In our experiments we used « = 1.0002 as a
factor for the length of the selection from the archive.

In every other iteration, a solution is selected from the
neighborhood of the current solution; see Sect. 4.2.1. If the
new solution is not dominated by any of the solutions in
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Algorithm 3: MOSA-Algorithm for the ETTP

: Instance I, maximal number of iterations », solution
dimensions D, fitness function F

parameter: cooling start oy, cooling interval A ,, restart

interval A,, restart cutoff r,;, restart reduction r, .4

output  : Pareto front of solutions A

1 T := initial_solution(/);

2 A:={T};

3Vde{l,...,D}: pj:=00;

4 accepted =0,

5 r:=0;

6

7

8

9

input

for i from O to n do

if i mod Ay =0 Ni > pgar then

p:= reduce_temperature(p, accepted, D);
accepted :={/,

10 if i mod A, = 0 then

1 T .= select_from_archive(A, r, F, D);
12 ri=r+1;
13 L Api=max{reus, A - Treal;

14 T’ := select_from_neighborhood(1, T);
15 if non_dominated(7’, A) then

16 A:=AU(T'};

17 accepted := accepted U {T'};

18 T:=T

19 else

20 if probability_accept(7”, p) then
21 accepted := accepted U {T'};
22 L T:=T

23 return A

Algorithm 4: Function for reducing the temperature
used by the MOSA algorithm

1 function reduce_temperature(p, accepted, D):

input : temperature vector p, list of accepted solutions
accepted, solution dimensions D

parameter: temperature reduction cutoft p.,, temperature
reduction factor pyeq

output : temperature vector p

2 if p = oo then

for d from 1 to D do

| pa:=5 - o (accepted;);

5 else
6 L for d from 1 to D do

___PdPred
Pd:=pd - Max{peyr, e 7w —0.2};

8 return p

the archive, it is immediately accepted, all dominated solu-
tions in the archive are removed, and the algorithm continues
from this solution (line 18 in Algorithm 3). Otherwise, it is
accepted with a probability corresponding to the current tem-
perature or it is discarded (line 22 in Algorithm 3).
Algorithm 4 shows the cooling scheme which is used by
the MOSA algorithm. In the first py, iterations, we used
8000 for this parameter. The temperature is at co, so all
solutions are simply accepted. Afterwards, the temperature
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Algorithm 5: Function that selects a solution from the
archive to be used after a restart

1 function select_from_archive(A, r, F, D):

input : archive A, restart counter r, fitness function F, solution
dimensions D

parameter: selection factor «

output : selected solution 7’
2 for d from 1 to D do
3 worsty:=argmax, ¢ o { F(a)q};
4 besty:=argmin,, . 4 {F(a)a}:

5 s:=max{(|A| - (" — 1)) —
6 for T € Ado

7 ET)= Y

acA\{T} defl,....D}
F(worsty)g—F (besty) >0

IUaeqt.....py bestal, 0}

( F(a)g — F(T)q )2,
F (worstg)y — F(besty)q

8 sorted_archive := sort (A \ (Ude“ D) bestd)) according to &

decreasing;
9 archive_selection :=J; _ sorted_archive; U ¢y, . p) besta;
10 T’:= select solution u.a.r. from archive_selection;
1 return 7’

is set to five times the standard deviation of all solutions
accepted since the last update (line 4). After py,,,¢ iterations,
a reduction of the temperature is done for each dimension
individually every A, iterations. We used 4000 for this inter-
val. The reduction is limited with a cutoff value p.,;, which
we set to 0.5 in our experiments. An exponential function is
used in the reduction, where the old value is reduced by the
factor preq, which we set to 0.95, and divided by two times
the standard deviation of all solutions accepted since the last
update (line 7).

The parameters specified in this section were selected
through an experimental survey and showed good results
across all robustness and instance variants, which we discuss
in Sect 5.

4.2.1 Neighborhood

In our experiments, we use the Kempe-exchange neigh-
borhood to select a new solution, unless a restart is done.
Using Kempe-exchanges instead of the commonly used swap
operation, i.e., switching time slots between two exams, or
move operation, i.e., moving an exam to a different time
slot, ensures that each neighbor of a feasible solution is
again feasible in regard to the conflicts. Kempe-exchanges,
or Kempe-changes, were first defined by (Kempe, 1879) in
his proof of the four-color theorem, which even though the
proof turned out to be incomplete are helpful in recoloring.
A new solution is calculated from the old solution by select-
ing an exam e (line 3 in Algorithm 6) with its corresponding
time slot ¢ and a second different time slot ¢’ u.a.r. from the
remaining time slots. The conflict graph induced by the two
time slots is a bipartite graph. On this sub-graph we calculate
the connected components. The connected component of the

Timeslot T'1

Exchange 2

40

Fig. 1 Kempe-exchange of the connected component of selected exam
2. The upper row shows the exams in time slot 7' 1 and the lower row the
exams in time slot 72 before and after the exchange. The bipartite sub-
graph induced by the two time slots is 2-colored. Only the connected
component that is selected by exam 2 is colored in the two colors in this
example for clarity (Color figure online)

Timeslot 72

chosen exam e is selected, and all exams in the same con-
nected component are swapped between the two time slots,
i.e., all exams of the connected component in ¢ are swapped
to ¢’ and all exams of the connected component in " are
swapped to 7 (line 7). Figure 1 shows an example of this oper-
ation with 2 as the selected exam e, t = T1, and t’ = T2.
This exchange cannot induce new conflicts, if the solution
was feasible in regard to the conflicts. As the solution was
feasible, the graph induced by ¢ and ¢’ is guaranteed to be
bipartite. If we want to swap exam e from ¢ to ¢/, we have
to swap all exams of ¢’ that are in conflict with e. Therefore,
exam e does not induce a conflict in ¢/, but this does not hold
true for the exams we swapped from ¢’ to 7. However, if we
swap the complete connected component, this cannot occur,
as all exams from ¢ that would induce conflicts with exams
swapped from ¢" are swapped to time slot ¢/, and the reverse
is also true.

However, this only holds true for the conflicts, and in our
model we also consider the room assignment sub-problem. If
we swap all exams of the connected component, it is possible
that no room assignment exists for one of the changed time
slots. In such a case we discard the calculated neighbor and
continue with solution 7 in the next iteration.

4.2.2 Room assignment

After exams are swapped as discussed in 4.2.1, we have to
calculate new rooms for each exam in the two time slots. For
feasibility it is sufficient to calculate an assignment of exams
to rooms such that the estimated number of students for the
exam does not exceed the assigned room capacity. However,
as discussed in Sect. 3.1, the number of students is subject
to uncertainty. We use Eq. (RM1) to measure the robustness
of a timetable in regard to this uncertainty. This measure is
directly influenced by the room assignment. Therefore, we
use an optimization algorithm that returns a room assignment
that maximizes this property for a given time slot.

In our experiments, we use a heuristic for the assignment
of rooms for the given exams of a time slot developed by
(Héckler, 2019) in his bachelor thesis (see Algorithm 7 and
8), as the room assignment problem with multiple rooms per
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Algorithm 6: Function for selecting a solution from the
neighborhood of a given solution

Algorithm 8: Greedy algorithm for the room assignment
problem

1 function select_from_neighborhood(1, T ):

input : Instance 7, Solution T
output  : New solution 7’
2 T:=T;
argmin {%“,)T”} with probability 0.1
3| e=1] ees ’ ;

ee€ed& uar otherwise

4 t:= time slot of ¢;

5 t":= select time slot u.a.r. from the remaining time slots;

6 calculate connected components of bipartite Graph induced
by ¢ and ¢’ according to I;

7 swap all exams of connected component that includes e
between ¢ and ¢’ in T”;

8 calculate_room_assignment(/, 1) in T’;

9 calculate_room_assignment(/, t') in T';

10 if room assignments exist then

1 | return T’
12 else
13 | return T

exam is NP(O)-complete. This can be proven by a reduction
from 3-partition.

Algorithm 7: Heuristic for calculating a new room
assignment for a given time slot maximizing the slack

1 function calculate_room_assignment(1, t):

input : Instance I, Time slot ¢

output  :Room assignment RP/ : E; — P(X%)
2 E;:= Exams of Time slot ¢;

3 for e € E; do

4 L Vi(e):=v(e, I)

5 R P/:= greedy_assign(/, E;, v');
6 r:=0;

7 while True do

8 end_round := True;

9 for e € E; do

10 if v'(e) < v(e, I)-1.3" then
11 Vi(e):=v'(e) +5;

12 end_round := False;

13 if round_end = True then

14 ri=r+1;

15 continue;

16 RAP,:: greedy_assign(/, E;, v');
17 if RP ¢ is room assignment then
18 | RP/:=RP;

19 else

20 L return R P/

The basis of the algorithm is a greedy room assignment
strategy that returns a solution to the assignment problem
without considering the quality of the assignment; see Algo-
rithm 8. The greedy algorithm handles each exam iteratively
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1 function greedy_assign(I, E;, V' € N,

input : Instance 7, Exams E,,O Student numbers
Ve N(‘)E’ !

output  :Room assignment RP/ : E; — P (%)

2 sort E; non-increasing in v’;

3 sort # non-increasing in «';

for unassigned rooms remaining A unassigned exams

remaining do

EN

5 e:= largest unassigned exam in E;;

6 RP/(e):={R} with R largest unassigned room in %;

7 if Kk (RP/(e)) > V'(e) then

8 L continue;

9 if 3R unassigned : k(R) > (V'(e) — k(R P/(e))) then

10 RP/(e):=RP/(e) U{R'} with R" smallest unassigned
L room with k (R) > (V'(e) — k(RP/(e)));

11 while « (RP/(e)) < V'(e) and unassigned rooms

remaining do

12 RP/(e):=RP/(e) U{R’} with R’ smallest unassigned
L room;

13 if All exams have sufficient capacity assigned then

14 | return RP/

15 else

16 | return Failure

in non-increasing order. It starts with assigning to the exam
the largest room that is not yet assigned to a different exam
(line 6). If this room is not sufficient, we try to find a room
that is large enough to hold the remaining students. If such a
room exists, we use the smallest such room to keep as much
room capacity as possible for other exams (line 10). If no
such room exists, we assign rooms in non-decreasing order
of capacity until the exam has sufficient rooms (line 12).
The heuristic increases the number of students in the exams
considered until the greedy room assignment strategy can
no longer find a feasible solution (line 16ff in Algorithm 7).
The increase in the number of students is proportional to
the number of students in the unperturbed exam (line 10 in
Algorithm 7). However the increase is not done in one step;
instead, we increase the number of students of each exam in
rounds. One round is finished if all exams have more students
than the corresponding relative increase in the round (line 10
in Algorithm 7). During a round, the number of students is
increased by a fixed amount (line 11 in Algorithm 7) to find
solutions closer to the unknown theoretical bound. This algo-
rithm therefore returns an approximate solution in regard to
the robustness measure in Eq. (RM1), as the slack simulated
by the increase in students per exam is maximized.
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5 Results
5.1 Experimental setup

In this section we present the results obtained in regard to the
robustness and quality of the solutions found by the MOSA
algorithm for different instances /. The MOSA algorithm
returns a set of feasible solutions that are all mutually non-
dominated. This set of feasible solutions is an approximation
of the unknown Pareto front defined by F.

5.1.1 Evaluation layers

To evaluate the robustness of the solutions and the influence
of said robustness on the quality of the solutions returned
by the MOSA algorithm, we define two different evaluation
layers of such a solution. The first layer, which is used when
calculating the solution set, is defined on the instance Iyncertain
of our model which uses the estimated values for the number
of students and the conflicts as introduced in Sect. 2.1. We
call this layer objective space, as it is used by the MOSA
algorithm in the calculation of the fitness of a possible solu-
tion and is defined by the objective function F (Iyncertain, 1)-
Thus, the result of the MOSA algorithm is an approximation
of the fitness function for instance Iyncertain-

The second layer is not used in the optimization process,
as it is not available at the time of optimization. However,
it allows us to evaluate a given solution in regard to robust-
ness measures. This layer is called scenario space. Instead of
using the estimations for the number of students and the con-
flicts, we use the values of the corresponding data instance
Iscenario- The values of F (Iscenario, I') provide us with a rep-
resentation of the scenario when implementing the given
solution as a timetable for the exams. Evaluating a solution
in the scenario space, we verify whether the solution would
have been feasible and can measure the actual quality of the
solution when used in the given year. In our experiments,
for each instance we generated and use as Iucertains 1-€.,
FAU-Summer, FAU-Winter, Random-Summer, and Random-
Winter, we use the corresponding data instance as Iscenarios
i.e., for the real-world instances the data instances for the
years 2018 and 2017, respectively, and the data instances
D' which were generated by our random instance genera-
tion algorithm for the randomly generated instances.

However, when evaluating the solution set in the scenario
space, the resulting vectors do not form an approximation
of the Pareto front in the scenario space. As we want to use
Pareto front measures to compare the performance of the
robustness measures, we need an approximation to the Pareto
front in the scenario space. To achieve this we calculate two
subsets of the given solution set. The first set includes all solu-
tions that are non-dominated in the scenario space, and the
second set includes all solutions that do not dominate other

solutions. As both solution sets are mutually non-dominating,
they are approximations of the Pareto front in the scenario
space. The solution set including all non-dominated solutions
is therefore a lower bound, and the solution set containing
all non-dominating solutions an upper bound on the solution
set, as we have a minimization problem.

5.1.2 Instance constraint variants

We furthermore differentiate between two different instance
constraint variants for our model in regard to conflicts
between elective exams. In the firstinstance constraint variant
we call NonZero, all elective conflicts with estimated students
inducing the conflict are enforced via hard constraint 3. In
the second instance constraint variant called NoElective, no
elective conflict is enforced with hard constraint 3.

5.1.3 Pareto measure

As the optimization process is subject to randomization, we
have to deal with variance in our results. For multi-objective
optimization algorithms, this is not as simple as for single-
objective algorithms. Several approaches can be found in the
literature to compare different Pareto fronts. The two major
categories are unary and binary measures. Binary measures
directly compare two Pareto fronts in regard to a specified
relation. This can be successfully used to compare the results
of two runs of the algorithm. However, if we want to use
several runs for each variant we introduced and provide
aggregated comparisons between these variants to account
for the variance in the results, this method is ill-suited. The
unary Pareto measures assign each Pareto front a real value,
and comparisons are done on these values. These can be
more easily aggregated, and are therefore more suited to the
analysis we provide. We therefore use the unary Pareto mea-
sure called Hypervolume indicator, which is often used for
comparing multi-objective evolutionary algorithms in the lit-
erature, on the introduced Pareto front approximations. Using
this measure, we calculate the mean and standard deviation
of the hypervolumes of the three Pareto fronts discussed in
this section, obtained by several runs on the same instance
Luncertain Using the algorithm proposed by (While et al.,
2006). As the range of values of the different objectives are
quite distinct, we normalize the values of each objective in
respect to areference pointand use (1.1, 1.1, 1.1) as our new
reference point.

5.1.4 Optimization time
All our experiments were performed on a 64-bit Linux
machine running Ubuntu with an 8-core 3.8 GHz Intel Core

i7-4770 processor and 31.3 GB memory. One run of the
introduced MOSA algorithm, implemented in Common Lisp,
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Fig.2 Hypervolume in the optimization process for the FAU-Summer
and FAU-Winter instances and two random instances

performing 2-10° iterations for one variant and instance, took
about 1 hour in regular normal operations on this computer
system.

5.2 Impact of robustness scenario instance

In the first set of experiments, we study the influence of
the robustness constraints on the progress of the optimiza-
tion process. To show that the robustness constraints actually
influence the solutions in the scenario space, we calculated
the hypervolume normalized to the reference point on the
archive and the lower and upper bounds in the scenario space.
We used the same reference point for the lower and upper
bounds in the scenario space, but a different one for the
archive. Therefore, the actual values of the hypervolume in
the objective space and the scenario space are not directly
comparable; however, the changes in the values can be com-
pared.

In Fig. 2 we show the changes in the normalized hyper-
volume in the objective and scenario space in the course of a
run of our optimization algorithm on the FAU-Summer and
FAU-Winter instances, as well as on two randomly gener-
ated instances Random-Summer and Random-Winter using
our random generation approach. One can see that the hyper-
volume of both the lower and upper bounds, while subject
to fluctuation, follows the graph of the hypervolume in the
objective space. The same can be observed for the ran-
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domly generated instances using the approach introduced in
Sect. 2.4 and shown for two such instances in Fig. 2. A key
observation on the random instances is that the fluctuations in
the hypervolume of the lower and upper bounds are smaller.
This can be attributed to the outliers that are found in the
real-world instances and are not as present in the randomly
generated instances. We can conclude that the robustness
constraints actually influence the solution found, such that
improvements in the robustness constraints reduce the influ-
ence of the uncertainty and lead to fewer actual conflicts in
the scenario. However, as shown by the fluctuations, large
errors in the estimations can still detrimentally influence the
quality of the solutions.

5.3 Influence on the solution quality

By considering the robustness of solutions in the optimization
process, it is often the case that the robustness of a solution
is a trade-off with respect to the quality of the solution. In
robustness optimization, this is called the cost of robustness.

As we use robustness measures SR and CR; or CR» in
the objective function of our optimization algorithm, we can
directly observe the influence of these measures by studying
the approximations of the Pareto front returned by our multi-
objective algorithm. Similar to the first experiment, we look
at the results in the scenario space which do not directly
translate to an approximation of a Pareto front. Therefore,
we again observe the bounds of the solutions, i.e., the lower
and upper bounds, as previously defined.

In Fig. 3 we plotted the 2D projections of the 3D Pareto
front returned by the MOSA algorithm of a single run on the
FAU-Summer and FAU-Winter instances, and in Fig. 4 for
two randomly generated instances using instance constraint
variant NoElective and robustness measures SR and C R, for
robustness. In the first two pictures of Fig. 3 we can observe
the robustness cost for our real-world instance FAU-Summer.
In the case of SR, we can see that the relative slack can be
reduced to 1.6 for all solutions, with a drop in the solution
quality only from about 30,000 to 60,000. Note that we cal-
culate the slack as a factor of the assigned room capacity and
the students in the exam. As the SR value is maximized, we
show the negative value shifted by 3 to have all objective
values in R*. Almost all data points are below 2, which is
the line of feasibility, as a value higher than 2 translates to a
slack of below 1. In the case of actual student conflicts that
would have been present in the scenario, the improvement is
even more significant. To reduce the number of students with
elective conflicts from around 150 to close to 0, the quality
of the solutions Q(7T") drops again from 30,000 to 60,000.
To further improve the robustness for either robustness mea-
sure, we can see a greater impact on the solution quality.
However, decreasing the quality from 30,000 to 60,000, we
can nearly completely eliminate the conflicts, which is a sig-
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Fig.3 2D projections of the Pareto front using the soft constraints SR
and C R, for the FAU-Summer and FAU-Winter instance. Room slack is
calculated analogously to the soft constraint SR multiplied by —1 and
the negative values shifted by +3 to have only positive values

nificant improvement. We can further observe that beyond a
quality value of 60,000, we do not have improvements in the
robustness.

For the FAU-Winter instance shown in Fig. 3b, the
improvement is even more significant. In this instance, the
solutions for the best quality values are not feasible. However,
with a similar drop in solution quality as we discussed for
the FAU-Summer instance, the solutions are reliably below
the feasibility line of 2, and with a slightly greater drop in
solution quality, the student conflicts are again close to 0.

As the randomly generated instances do not contain as
many outliers, the drop in solution quality is significantly
less for reducing the student robustness to near 0 and all
solutions being feasible.

5.4 Comparison of constraint variants

In this section we compare the different constraint variants
we introduced in this paper. In Tables 3 and 4 we show the
arithmetic mean and standard deviation of the normalized
hypervolume indicator over 10 runs on the FAU-Summer
and FAU-Winter instances, respectively. The first two lines
of Tables 3 and 4 show the results for the FAU-Summer and
FAU-Winter instances with all nonzero conflicts as hard con-
straints, only excluding the elective conflicts that have no
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Fig.4 2D projections of the Pareto front using the soft constraints SR
and C R, for the Random-Summer and Random-Winter instances. Room
slack is calculated analogously to the soft constraint SR multiplied by
—1 and the negative values shifted by +3 to have only positive values

estimated students associated, while the last three lines are
the results of the FAU-Summer and FAU-Winter instances
with all elective conflicts excluded from the hard constraints.
For the objective Q, all nonzero conflicts are considered in
the robustness approaches. All entries use the robustness con-
straint SR.

Table 3 shows that the best results are obtained by using
the conflict robustness measure C R;. If we use the robust-
ness measure C Ry, the hypervolume is increased to about
the same value as the hypervolume for the NonZero + SR
constraint variant, i.e., the runs without using conflict robust-
ness and only conflicts with a value of 0 excluded. However,
when using this measure, the standard deviation is greater
than with all other constraint variants, especially in the upper
bound. When using the measure C Ry, we can observe a fur-
ther increase in the hypervolume indicator. This holds true for
both instance versions. Similar differences can be observed in
Table 4. Tables 5 and 6 show the same information for the two
randomly generated instances introduced before. Here, the
differences are smaller; however, the previously discussed
observations still hold.

The hypervolume indicator, while providing a value which
helps in evaluating the different constraint variants, partic-
ularly when aggregated over multiple runs, is subject to
discrimination. The first and most obvious discrimination
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Table 3 Constraint variants for

the FAU-Summer instance. The Variant Upper bound Lower bound

arithmetic mean + the standard ), 7., g 0.34765977 + 0.077687204 0.38247722 + 0.047305077

deviation is shown for the lower

and upper bounds NonZero+SR + CR; 0.40336004 + 0.052247487 0.516373 + 0.048616074
NoElective+SR 0.12412788 + 0.059266403 0.2173398 + 0.05206661
NoElective+SR + CR; 0.33652505 + 0.07653496 0.49600616 + 0.034985162

NoElective+SR + CR,

0.43798947 £ 0.060741153 0.59320325 £ 0.03665869

Table 4 Constraint variants for

the FAU-Winter instance. The Variant

arlthmetlc. mean =+ the standard NonZero+SR

deviation is shown for the lower

and upper bounds NonZero+SR + CR»
NoElective+S R

NoElective+SR + CR,
NoElective+SR + CR»

Upper bound Lower bound

0.2848891 £ 0.051172428 0.3453682 £ 0.050359294
0.3030739 + 0.030513562 0.42566514 £ 0.026174081
0.15639836 + 0.0427168 0.20648953 = 0.037506036
0.28924003 £ 0.11056109 0.3956934 + 0.047037054
0.34289578 £ 0.041596193 0.46169314 + 0.030278686
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Fig. 5 2D projections of the Pareto fronts for the different constraint
variants for the FAU-Summer instance. Room slack is calculated anal-
ogously to the soft constraint SR multiplied by —1 and the negative
values shifted by +3 to have only positive values

@ Springer

is that the indicator rates a large and diverse Pareto front
higher than one with only a few but very good points. Fur-
thermore, it also depends on the reference point and the scale
of the different objective functions. The second problem can
be reduced by the normalization of the data points, but it does
not account for different weights of the objective functions.

Therefore, we must take a closer look at the Pareto fronts
themselves. In Figs. 5 and 6 we show the 2D-projections of
the results for the different constraint variants for a single
run of the MOSA algorithm on the FAU-Summer and FAU-
Winter instances, and in Figs. 7 and 6 for the same randomly
generated instances, we used in previous parts of this section,
respectively.

If we compare the results for the different constraint vari-
ants, we can see that, as with the hypervolume, the baseline
constraint variant NoElective + SR has the worst Pareto
fronts. This is especially prevalent in the run for the FAU-
Summer instance, but can also be observed to varying degrees
for the other instances. For instance FAU-Summer, a closer
look at the number of elective conflicts shows that for the con-
straint variants NonZero + SR and NonZero + SR + CR»,
the values are quite small, with objective values between
20,000 and 40,000. We can see that when using C R, with
this instance version, the number of elective student conflicts
can be further decreased, with a slight drop in the quality Q.
The results are similar for FAU-Winter, although on this run
of this instance, the improvement is minor. Furthermore, for
the student robustness on the FAU-Summer instance in Fig. 5,
the results of the two constraint variants show that the room
slack for NonZero + S R for most timetables is below 2, i.e.,
most timetables are feasible. For NonZero + SR + CR», the
resulting timetable increased not only the conflict robustness,
but also the student robustness, with all timetables being fea-
sible. For the FAU-Winter instance shown in Fig. 6, the results
are worse in regard to student robustness. On this instance
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Fig. 6 2D projections of the Pareto fronts for the different constraint
variants for the FAU-Winter instance. Room slack is calculated anal-
ogously to the soft constraint SR multiplied by —1 and the negative
values shifted by +3 to have only positive values

version, the solutions found are not feasible using constraint
variant NonZero + SR. Using NonZero + SR + CR», the
solutions with the best quality are also not feasible; how-
ever, with a drop in solution quality from 30,000 to 60,000,
the solutions are feasible, with similar results for the student
conflicts.

When we compare the values for the FAU-Summer
instance version shown in Fig. 5 with all elective con-
flicts not enforced by hard constraint 3, we can see that
the constraint variant NoElective + SR + CR; can reduce
the elective student conflicts to about the same value as
NoElective + SR + CR;. The gradient of the Pareto front
is even a bit better for C Ry when compared with C R;, and
more solutions are found with good values in both measures.
As shown in Fig. 6, the difference between C R and CR; is
a bit smaller, but still in the same order of magnitude for the
NoElective version of the FAU-Winter instance. If we look at
the student robustness in Fig. 6, we can see that while C R
has solutions that are better in the quality Q, these solutions
are not feasible. If we restrict the comparison to the fea-
sible solutions, both conflict robustness measures show the

same performance, with C Ry being slightly better. For the
FAU-Summer instance in Fig. 5, both CR; and C R; found
solutions with the best quality values being infeasible. Using
CR; and CR3, we find solutions that are feasible, with only
a small drop in solution quality. And with a drop in solution
quality that reduces the student conflicts to near 0, we obtain
solutions with slack up to 1.6 for C Ry and 1.8 for C R,. How-
ever, as we have shown in Table 3, C R is more susceptible
to variance.

We can conclude that with the use of our robustness
measure SR, most solutions are feasible, and with only a
slight drop in solution quality we can increase the slack sig-
nificantly. This also holds true when using this robustness
measure with the two introduced conflict robustness mea-
sures, as they do not negatively influence each other, and both
favor timetables with a more even spread in exams per time
slot. For the number of elective student conflicts, we can con-
clude that when using robustness measure C R|, we obtain
slightly better values in solution quality while reducing the
number of elective student conflicts to near 0. However, this
is more susceptible to variance and does not account for bias.
Using C R;, with only a slightly worse solution quality, we
can also reduce the number of elective student conflicts to
near 0, and have the added benefit of a reduction in variance.
In addition, as all possible conflicts have a value of at least
1, we can reduce bias in our solutions.

We further repeated the experiment for two randomly
generated instances. As Tables 5 and 6 and the respective
Figs. 7 and 8 show, the differences between the variants are
smaller; however, over all experiments the previously dis-
cussed results can be observed. The smaller differences can
be attributed to the real-world instances having higher and
more frequent outliers than the randomly generated instances
with the parameters used.

We can conclude that using CR; is therefore encour-
aged when a significant number of deviations in the conflicts
between different years of the same term are expected; oth-
erwise, the measure C R; is sufficient to reduce the number
of elective student conflicts to close to 0.

6 Conclusion

We introduced a model for the examination timetabling prob-
lem that is defined on the curriculum information provided
by the structure defined for the study programs available
at a university. The resulting models are subject to uncer-
tainty, given that the exact numbers of students for exams, and
consequently the conflicts induced by the students between
exams, are not known at the time of scheduling. We discussed
the exact influence this uncertainty has on the model and
discussed the benefits of using robustness measures in con-
junction with estimation approaches, as data are limited for
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improving estimations using standard techniques. We intro-
duced three different robustness measures for the number of
students of exams and the conflicts between exams, and dis-
cussed their use. We showed that the robustness measures can
significantly improve the robustness of the solutions found
by the optimization algorithm, with only a moderate impact
on the solution quality. We can conclude that the use of CR»
is therefore encouraged when a significant number of devi-
ations in the conflicts are expected between different years
of the same term; otherwise the robustness measure C R is
sufficient to reduce the number of elective student conflicts
to near 0.

A Appendix

Tables 5 and 6 show the aggregated results that we discussed
in Sect. 5.4 for the randomly generated instances Random-
Summer and Random-Winter introduced in Sect. 2.4. Fur-
thermore, the Pareto fronts for the different variants of a
single run of the MOSA algorithm for each of the randomly
generated instances can be found in Figs. 7 and 8.

Table 5 Constraint variants for

the Random-Summer instance. Variant Upper bound Lower bound

The arithmetic mean £ the NonZero+SR 0.35925484 + 0.05955675 0.40935653 + 0.03784311

standard deviation is shown for

the lower and upper bounds NonZero+SR + CR; 0.36059603 + 0.026806103 0.4284907 £+ 0.015303807
NoElective+SR 0.25598246 + 0.07676259 0.33621103 + 0.051204514
NoElective+SR + CR; 0.37343073 4 0.08591962 0.47737598 + 0.02296595
NoElective+SR + CR; 0.3752732 £ 0.044009466 0.444837 + 0.01957122

Table 6 Constraint variants for .

the Random-Winter instance. Variant Upper bound Lower bound

The arithmetic mean = the NonZero+SR 0.22616526 - 0.04205869 02570113 = 0.044756006

standard deviation is shown for

the lower and upper bounds NonZero+SR + CR; 0.24433252 £ 0.027770452 0.29589984 =+ 0.007044443
NoElective+SR 0.15014997 + 0.04854938 0.18565114 =+ 0.04065477
NoElective+SR + CR; 0.24279578 + 0.068723746 0.31989923 =+ 0.0065063466
NoElective+SR + CR, 0.2812462 + 0.013288419 0.30888095 =+ 0.0060866736
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Fig. 7 2D projections of the Pareto fronts for the different constraint
variants for the Random-Summer instance. Room slack is calculated
analogously to the soft constraint S R multiplied by —1 and the negative
values shifted by +3 to only have positive values

NonZero+ SR x
NonZero+SR+CRy x
NoElective + SR~

NoElective+SR+CR;| x
NoElective + SR+ CR,

25 F
24 -
23 F x
22 |
2.1 + x

Room Slack
[\)
X
X

1.9 -
8ok
1.7 +
1.6 &

14 16 18 20 22 24
O(I,T) x 107*

=)
o]
—_
(=}
—_
[\S]

NonZero+ SR x
NonZero+SR+CR, x
NoElective+SR

NoElective+SR+CR; x
NoElective + SR+ CR;

100 F

40 |

Student conflicts

20 F

0 KX Xy L L L L L L L L
6 § 10 12 14 16 18 20 22 24
O(I,T) x 107

Fig. 8 2D projections of the Pareto fronts for the different constraint
variants for the Random-Winter instance. Room slack is calculated anal-
ogously to the soft constraint SR multiplied by —1 and the negative
values shifted by +3 to only have positive values

@ Springer



180

Journal of Scheduling (2025) 28:159-181

Acknowledgements We would like to thank Matthias Kergafiner for
fruitful discussions and the anonymous referees for valuable remarks.

Funding Open Access funding enabled and organized by Projekt
DEAL. Research was funded in part by the School of Engineering of
the University of Erlangen-Nuremberg.

Data availability The data that support the findings of this study are
available from the corresponding author upon request.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Akkan, C., & Giilcii, A. (2018). A bi-criteria hybrid genetic algorithm
withrobustness objective for the course timetabling problem. Com-
puters & Operations Research, 90,22-32. https://doi.org/10.1016/
j.cor.2017.09.007

Amaral, P,, & Pais, T. C. (2016). Compromise ratio with weighting
functions in a tabu search multi-criteria approach to examina-
tion timetabling. Computers & Operations Research, 72, 160—174.
https://doi.org/10.1016/j.cor.2016.02.012

Bassimir, B., & Wanka, R. (2018). Probabilistic curriculum-based
examination timetabling. In: Proc 12th International conference on
the practice and theory of automated timetabling (PATAT), 273—
285.

Bassimir, B., & Wanka, R. (2019). Robustness approaches for the exam-
ination timetabling problem under data uncertainty. In: Proc. 9th
multidisciplinary international conference on scheduling: theory
and applications (MISTA), pp 381-395.

Bassimir, B., & Wanka, R. (2021). Conflicts in examination timetabling
under uncertainty. In: Proceedings of the 13th international confer-
ence on the practice and theory of automated timetabling-PATAT.

Battistutta, M., Schaerf, A., & Urli, T. (2017). Feature-based tuning
of single-stage simulated annealing for examination timetabling.
Annals of Operations Research, 252, 239-254. https://doi.org/10.
1007/s10479-015-2061-8

Battistutta, M., Ceschia, S., & De Cesco, E., et al. (2020). Local
search and constraint programming for a real-world examination
timetabling problem. In: Integration of constraint programming,
artificial intelligence, and operations research (CPAIOR). Springer
international publishing, pp 69-81, https://doi.org/10.1007/978-
3-030-58942-4_5.

Ben-Tal, A., Ghaoui, L., & Nemirovski, A. (2009). Robust optimiza-
tion. Princeton series in applied mathematics, princeton University
Press, https://books.google.de/books?id=DttjR7IpjUEC.

@ Springer

Birge, J. R., & Louveaux, F. (2011). Introduction to Stochastic Pro-
gramming (2nd ed.). Incorporated: Springer Publishing Company.

Carter, M. W., Laporte, G., & Lee, S. Y. (1996). Examination
timetabling: Algorithmic strategies and applications. Journal of
the Operational Research Society, 47, 373-383. https://doi.org/
10.2307/3010580

Cataldo, A., Ferrer, J. C., Miranda, J., et al. (2017). An integer pro-
gramming approach to curriculum-based examination timetabling.
Annals of Operations Research, 258(2), 369-393. https://doi.org/
10.1007/s10479-016-2321-2

Ceschia, S., Di Gaspero, L., & Schaerf, A. (2022). Educational
timetabling: Problems, benchmarks, and state-of-the-art results.
European Journal of Operational Research. https://doi.org/10.
1016/j.ej0r.2022.07.011

Cicerone, S., D’ Angelo, G., & Di Stefano, G., et al. (2009). Recoverable
robustness in shunting and timetabling, Springer Berlin Heidel-
berg, Berlin, Heidelberg, pp 28-60. https://doi.org/10.1007/978-
3-642-05465-5_2.

Eley, M. (2007). Ant algorithms for the exam timetabling problem.
In: Proceedings of the 6th International conference on practice
and theory of automated timetabling VI. Springer-Verlag, Berlin,
Heidelberg, PATAT’ 06, pp 364—-382. https://doi.org/10.1007/978-
3-540-77345-0_23.

Even, S., Itai, A., & Shamir, A. (1975). On the complexity of time
table and multi-commodity flow problems. In: 16th annual sym-
posium on foundations of computer science (sfcs 1975), pp
184-193,https://doi.org/10.1109/SFCS.1975.21

Fischetti, M., & Monaci, M. (2009). Light Robustness, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp 61-84. https://doi.org/10.1007/
978-3-642-05465-5_3.

Garey, M.R., & Johnson, D.S. (1979). Computers and intractability. A
Guide to the Theory of NP-Completeness

Gtadysz, B., & Kuchta, D. (2010). Multicriterial examination
timetabling with uncertain information. Multiple Criteria Deci-
sion Making, 09(5), 97-112.

Hickler, A. (2019). Robuste Greedy-Approximationsverfahren fiir
das Raumzuweisungsproblem. Bachelor thesis, University of
Erlangen-Nuremberg.

Kempe, A. B. (1879). On the geographical problem of the four colours.
American Journal of Mathematics, 2(3), 193-200.

Leite, N., Fernandes, C. M., Melicio, F., etal. (2018). A cellular memetic
algorithm for the examination timetabling problem. Computers &
Operations Research, 94, 118—138. https://doi.org/10.1016/j.cor.
2018.02.009

Liebchen, C., Liibbecke, M., & Mohring, R., et al. (2009). The Concept
of recoverable robustness, linear programming recovery, and rail-
way applications, Springer Berlin Heidelberg, Berlin, Heidelberg,
1-27. https://doi.org/10.1007/978-3-642-05465-5_1,

Lindahl, M., Stidsen, T., & Sgrensen, M. (2019). Quality recovering of
university timetables. European Journal of Operational Research,
276(2), 422-435. https://doi.org/10.1016/j.ejor.2019.01.026

McCollum, B., McMullan, P., & Burke, E.K., et al. (2007). The second
international timetabling competition: Examination timetabling
track. Tech. rep., Technical Report QUB/IEEE/Tech/ITC2007/-
Exam/v4. 0/17, Queen’s University.

McCollum, B., McMullan, P., Parkes, A. J., et al. (2012). A new
model for automated examination timetabling. Annals of Opera-
tions Research, 194(1), 291-31. https://doi.org/10.1007/s10479-
011-0997-x

Miihlenthaler, M., & Wanka, R. (2016). Fairness in academic course
timetabling. Annals of Operations Research, 239, 171-188. https://
doi.org/10.1007/s10479-014-1553-2

Muklason, A., Parkes, A. J., Ozcan, E., et al. (2017). Fairness in
examination timetabling: Student preferences and extended for-
mulations. Applied Soft Computing, 55, 302-318. https://doi.org/
10.1016/j.as0¢.2017.01.026


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cor.2017.09.007
https://doi.org/10.1016/j.cor.2017.09.007
https://doi.org/10.1016/j.cor.2016.02.012
https://doi.org/10.1007/s10479-015-2061-8
https://doi.org/10.1007/s10479-015-2061-8
https://doi.org/10.1007/978-3-030-58942-4_5
https://doi.org/10.1007/978-3-030-58942-4_5
https://books.google.de/books?id=DttjR7IpjUEC
https://doi.org/10.2307/3010580
https://doi.org/10.2307/3010580
https://doi.org/10.1007/s10479-016-2321-2
https://doi.org/10.1007/s10479-016-2321-2
https://doi.org/10.1016/j.ejor.2022.07.011
https://doi.org/10.1016/j.ejor.2022.07.011
https://doi.org/10.1007/978-3-642-05465-5_2
https://doi.org/10.1007/978-3-642-05465-5_2
https://doi.org/10.1007/978-3-540-77345-0_23
https://doi.org/10.1007/978-3-540-77345-0_23
https://doi.org/10.1109/SFCS.1975.21
https://doi.org/10.1007/978-3-642-05465-5_3
https://doi.org/10.1007/978-3-642-05465-5_3
https://doi.org/10.1016/j.cor.2018.02.009
https://doi.org/10.1016/j.cor.2018.02.009
https://doi.org/10.1007/978-3-642-05465-5_1
https://doi.org/10.1016/j.ejor.2019.01.026
https://doi.org/10.1007/s10479-011-0997-x
https://doi.org/10.1007/s10479-011-0997-x
https://doi.org/10.1007/s10479-014-1553-2
https://doi.org/10.1007/s10479-014-1553-2
https://doi.org/10.1016/j.asoc.2017.01.026
https://doi.org/10.1016/j.asoc.2017.01.026

Journal of Scheduling (2025) 28:159-181

181

Phillips, A. E., Walker, C. G., Ehrgott, M., et al. (2017). Integer pro-
gramming for minimal perturbation problems in university course
timetabling. Annals of Operations Research, 252,283-304. https://
doi.org/10.1007/s10479-015-2094-z

Qu, R., Burke, E. K., McCollum, B., et al. (2009). A survey of search
methodologies and automated system development for examina-
tion timetabling. Journal of Scheduling, 12(1), 55-8. https://doi.
org/10.1007/s10951-008-0077-5

Schobel, A., & Kratz, A. (2009). A Bicriteria approach for robust
timetabling, Springer Berlin Heidelberg, Berlin, Heidelberg, 119—
144. https://doi.org/10.1007/978-3-642-05465-5_5.

Suppapitnarm, A., Seffen, K. A., Parks, G. T, et al. (2000). A
simulated annealing algorithm for multiobjective optimization.
Engineering Optimization, 33(1), 59-85. https://doi.org/10.1080/
03052150008940911

While, L., Hingston, P., Barone, L., et al. (2006). A faster algorithm
for calculating hypervolume. IEEE Transactions on Evolutionary
Computation, 10(1), 29-38. https://doi.org/10.1109/TEVC.2005.
851275

Yanez, J., & Ramirez, J. (2003). The robust coloring problem. European
Journal of Operational Research, 148(3), 546-558. https://doi.
org/10.1016/S0377-2217(02)00362-4

Zitzler, E., & Thiele, L. (1998). Multiobjective optimization using evo-
lutionary algorithms—a comparative case study. In: Parallel prob-
lem solving from nature—PPSN V: 5th international conference
Amsterdam, The Netherlands September 27-30, 1998 Proceedings
5, Springer, 292-301. https://doi.org/10.1007/BFb0056872.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer


https://doi.org/10.1007/s10479-015-2094-z
https://doi.org/10.1007/s10479-015-2094-z
https://doi.org/10.1007/s10951-008-0077-5
https://doi.org/10.1007/s10951-008-0077-5
https://doi.org/10.1007/978-3-642-05465-5_5
https://doi.org/10.1080/03052150008940911
https://doi.org/10.1080/03052150008940911
https://doi.org/10.1109/TEVC.2005.851275
https://doi.org/10.1109/TEVC.2005.851275
https://doi.org/10.1016/S0377-2217(02)00362-4
https://doi.org/10.1016/S0377-2217(02)00362-4
https://doi.org/10.1007/BFb0056872

	On the computation of robust examination timetables: methods and experimental results
	Abstract
	1 Introduction
	2 Model
	2.1 Estimation approach
	2.1.1 Available data for estimations
	2.1.2 Attending student numbers
	2.1.3 Conflict numbers

	2.2 Hard and soft constraints
	2.2.1 Hard constraints
	2.2.2 Soft constraints

	2.3 Real-world instances
	2.4 Random instance generation

	3 Robustness
	3.1 Robustness of student numbers per exam
	3.2 Robustness of conflict numbers

	4 Scheduling algorithm
	4.1 Optimization function
	4.2 Multi-objective simulated annealing algorithm
	4.2.1 Neighborhood
	4.2.2 Room assignment


	5 Results
	5.1 Experimental setup
	5.1.1 Evaluation layers
	5.1.2 Instance constraint variants
	5.1.3 Pareto measure
	5.1.4 Optimization time

	5.2 Impact of robustness scenario instance
	5.3 Influence on the solution quality
	5.4 Comparison of constraint variants

	6 Conclusion
	A Appendix
	Acknowledgements
	References




