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Abstract
To streamline their fulfillment processes, many e-commerce retailers today use automated packaging machines for their
outbound parcels. An important performance–waste tradeoff is associated with these machines: To reduce packaging waste
when handling different sized goods, packaging machines should be able to handle different carton sizes. However, more
carton sizes lead to a more involved scheduling process, so that the throughput performance deteriorates (and vice versa). To
investigate this tradeoff, this paper develops scheduling procedures for a specific type of packaging machine, called blocking
machines. These packaging machines provide multiple back-to-back packaging devices, each continuously processing a
dedicated carton size, but blocking each other whenever incoming goods are not properly ordered according to carton sizes
on the infeed conveyor. To reduce the resulting throughput loss, we derive various scheduling problems for optimizing the
inflow of goods, provide a thorough analysis of the computational complexity, and derive an exact dynamic programming
approach that is polynomial in the number of orders to be packed. This allows us to solve even large real-world instances to
proven optimality with which we can analyze the performance–waste tradeoff of blocking machines.

Keywords E-commerce · Packaging machines · Environmental impact · Scheduling

1 Introduction

Because of the repetitive and physically demanding nature of
warehouse work, many efforts have been made to reduce the
burden on human workers. In addition to forklifts and con-
veyors, which have an even longer tradition, crane-operated
high-bay warehouses, for example, have been assisting in the
storage and retrieval of goods since the 1960s (Boysen and de
Koster, 2024).Drivenby the huge success of e-commerce, the
last decades have seen further progress in the field of ware-
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house automation (see Azadeh et al. 2019). Today, there are
automated solutions for all basic warehousing functions (see
Boysen et al. 2019): For example, there are mobile shelf-
lifting robots for the transport function, autonomous mobile
robots for picking rectangular goods from shelves, robotic
arms with vacuum grippers for picking from bins, mobile
robots with tiltable trays for order sorting, and industrial
robots for palatalizing boxes and cartons.
This paper deals with the automation of the packaging func-
tion, where the picked (and consolidated) products required
by customer orders are either wrapped in plastic film or
packed in cardboard boxes by a fully automated packaging
machine. Machines for the latter case, which we focus on in
this paper, are very common in e-commerce because card-
board boxes provide better protection, especially for fragile
goods (Escursell et al., 2021). These machines are fed with
goods and cardboard packagingmaterial via a conveyor and a
feeding shaft, respectively. Most machines include a cutting
mechanism to reduce the size of the boxes to fit the orders.
This avoids higher postage charges and excess fill mate-
rial caused by unnecessarily large packages. The packaging
material is then folded, sealed and labeled by the machine.
Finally, the finished boxes are conveyed to the shipping area.
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Fig. 1 PaperE-ComFit ofHugoBeckwith twoback-to-backpackaging
devices (Source: Hugo Beck)

In their packaging machine evaluation paper, Pfoser et al.
(2021) report state-of-the-art throughput performance of up
to 1000 packages per hour for single-piece orders. For multi-
piece orders, throughput is lower because their variety is still
a greater technological challenge. However, since the major-
ity of e-commerce orders are for a single item (the average
number of items ordered at Amazon Germany, for example,
is only 1.6, see Boysen et al. 2019), automated packaging
machines are very common in today’s e-commerce fulfill-
ment centers.
There are several types of packaging machines, which we
compare in more detail in Sect. 2. One common setup that
we will focus on in this paper is the blocking machine, shown
in Fig. 1. To avoid the disadvantages of setups where cartons
must be changedon-the-flywhenever a different carton size is
required, blocking machines use multiple downstream pack-
aging devices, each of which is permanently associated with
a specific carton size. These subsequent packaging devices
are arranged back-to-back along the infeed conveyor, caus-
ing blockages whenever incoming goods are not properly
ordered by size. Because goods cannot overtake each other
on the infeed conveyor, a good that is assigned to an upstream
packaging device will block subsequent goods that require a
downstream device. Thus, one or multiple packaging slots
in a packaging batch (i.e., the set of orders concurrently
packed by all parallel packaging devices) remain empty and a
blocking loss occurs. A suitable sequencing of orders within
the infeed sequence can reduce the blocking loss and thus
improve the throughput performance of a blocking machine.
This directly leads to the followingperformance–waste trade-
off: More carton sizes to choose from reduces packaging
waste, but also tends to increase the loss of throughput perfor-
mance due to blockings. To explore the performance–waste
tradeoff, this paper provides the following contributions:

• We introduce a novel scheduling problem for block-
ing machines that minimizes blocking loss for different
inflows of orders. For example, many e-commerce retail-

ers equip their humanpickerswithmulti-bin picking carts
to collect completed orders in a sort-while-pick picking
process (e.g., see De Koster et al. 2007). In this case, the
inflow to a packing machine can be altered by changing
the order in which these carts are processed and the order
in which each cart’s orders are placed on the machine’s
infeed conveyor.Wedescribe alternative inflows and their
effect on the scheduling problem in Sect. 3.

• We provide a thorough analysis of computational com-
plexity for all resulting problem variants. This leads to
an exact dynamic programming (DP) algorithm that is
polynomial in the number of goods to be packed, once
the number of carton sizes is fixed. This allows us to
solve large instances of real-world size within very short
runtimes to proven optimality.

• With this algorithm in hand,we explore the performance–
waste tradeoff of packaging machines. For a given
number of carton sizes to be provided, we first optimize
a suitable selection of specific carton sizes to minimize
packaging waste. Then, we minimize the blocking loss
by solving our scheduling problem for the selected car-
ton sizes. This allows us to quantify packaging waste and
throughput loss if different numbers of carton sizes are
to be provided. This delivers decision support for ware-
house managers who need to make the right choice of
carton sizes.

The rest of the paper is organized as follows. In Sect. 2,
we discuss related decision problems and review the lit-
erature. In Sect. 3, we define the different variants of the
packaging machine scheduling problem (PMSP) treated in
this paper, which differ in the inflow of goods and the flex-
ibility to reduce blocking loss by changing the processing
sequence of orders. Section4 contains a detailed analysis of
the computational complexity, and Sect. 5 provides an effi-
cient exact solution method based on DP. In Sect. 6 and Sect.
7 we elaborate on our computational study and explore the
performance–waste tradeoff. Finally, Sect. 8 concludes the
paper.

2 Related decisions and literature review

A recent in-depth survey paper on sustainability in e-
commerce packaging (Escursell et al., 2021) and our own
(thorough) literature search reveal that there is no previous
research on packaging machine scheduling and its impact on
the waste–performance tradeoff. However, in order to posi-
tion our work in relation to previous research, we take a
look at related decision tasks. Specifically, we address (i) the
choice between different packaging machine setups, (ii) the
choice of carton sizes, and (iii) the packing of goods into car-
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Fig. 2 Alternatives to blocking machines. Left: Setup machine X7TM of Packsize requiring setups for carton size switches (Source: Packsize).
Right: Parallel packing machines connected by a conveyor system (Source: Rovema)

tons. Finally, we also discuss (iv) other scheduling problems
with a similar problem structure.

(i) Choice of packaging machine setups: Based on numer-
ous site visits to e-commerce warehouses, a thorough
evaluation of packaging machine manufacturers’ web-
sites, and discussions with managers and consultants in
the field, the authors are aware of two alternatives to
blocking machines. Setup machines (see Fig. 2(left)) are
equipped with an automated carton switching device.
They automatically load the currently required carton
size into the carton feeding shaft of their single packag-
ing device and remove the old one. The resulting setups
cannibalize packaging capacity and, thus, also create
a waste–performance tradeoff. Since high-speed setups
are mandatory for economical application of automated
packaging,wewere told that they are a common source of
errors that require a lot of machine maintenance. On the
positive side, setup machines do not require redundant
hardware. To completely avoid the waste–performance
tradeoff, multiple independent packagingmachines, each
dedicated to a specific carton size, can be used in paral-
lel. These machines are accessed via switches from the
main conveyor (see Fig. 2(right)). Independent machines
without carton size switches, however, require a high
investment. Blocking machines can be seen as a compro-
mise between these two alternatives. They use dedicated
packaging deviceswithout setups, but allow reuse of parts
of the hardware. The price for this is a blocking loss if
products and their demanded carton sizes are not properly
sequenced in the infeed. In our research, we only address
blockingmachines and leave amore comprehensive eval-
uation of all different setups to future research.

(ii) Choice of carton sizes: To achieve economies of scale
in purchasing and to limit handling effort, retailers can-
not provide a perfectly fitting carton for every product
(or multi-piece order). Therefore, the number of carton
sizes used is reduced to a few dozen at most. Typically,

automated packaging demands an even smaller portfolio
of carton sizes than manual packaging due to the higher
flexibility of human work. Once the number of differ-
ent carton sizes to be used is determined, choosing the
specific sizes that minimize packaging waste for a given
set of orders an optimization problem by itself. Heuristics
based on clusteringmethods (Liu et al., 2013;Brinker and
Gündüz, 2016) and genetic algorithms (Singh and Ard-
jmand, 2020) have been introduced. For our operational
scheduling problem, we assume that the set of available
carton sizes has already been decided in a previous (long-
term) decision task. However, for our evaluation of the
waste–performance tradeoff, we also determine the min-
imum waste carton sizes for a given set of orders to be
packed (see Sect. 7.1). To do so, we apply a straightfor-
ward DP approach, similar to the one proposed by Lee
et al. (2015), which optimizes the height of crates in the
chemical industry to accommodate a given set of goods.

(iii) Packing of goods into cartons: The question of how to
pack the goods of multi-piece orders into boxes is closely
related to the bin packing problem. Surveys on this clas-
sic of the operations research domain are provided, for
example, by Delorme et al. (2016) (exact algorithms)
and Coffman et al. (2013) (heuristics). However, unlike
bin packing, where all bins are the same size and the
number of bins to pack all products must be minimized,
e-commerce retailers have boxes of different sizes. Their
choice is to determine the best box for each order jointly
with the packing task, minimizing packaging waste and
add-on volume. Fontaine andMinner (2023) proposes an
efficient branch-and-repair method for this decision. For
our scheduling problem,we assume that the choice of car-
ton size into which each order is to be packed is already
given. Recall that most orders for which automated pack-
aging is applied are single-piece orders anyway, where
the choice of the best-fitting carton size is trivial.

(iv) Related schedulingproblems:There is scheduling research
formanufacturers of packagingmachinery (e.g., (Adler et
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al., 1993)) and for manufacturers of packaging materials
(e.g., (Li et al., 2018)). However, we are not aware of any
scientific scheduling research that specifically addresses
e-commerce retailers and their use of packaging machin-
ery to package their own goods. For setup machines,
minimizing setup loss for a given order set on a single
machine is a special case of the well-known traveling
salesman problem (Burkard et al., 1998). For blocking
machines, where the sizes of goods of each packaging
batch must be properly ordered according to the sub-
sequent packaging devices, such that the total number
of packaging batches is minimized, this transformation
is not available. Furthermore, unlike traditional machine
scheduling, where the sequence in which orders are pro-
cessed is typically unrestricted, e-commerce packaging
machines are involved in a multi-stage process (e.g.,
including picking and order consolidation (Boysen et al.,
2019)). The resulting material flow between these stages
often relies on a batchwise transport (see Sect. 3.1), so
the flexibility to sequence the inflow of goods is lim-
ited (i.e., only the sequence of batches and the order
sequence per batch can be changed). Extensions of tra-
ditional machine scheduling to account for such limited
flexibility in order sequencing are known as group tech-
nology. Machine scheduling adaptations for this type
of inflow have been studied, for example, by Ng et al.
(2005), Janiak et al. (2005), andLi et al. (2011).However,
due to our completely different objective function these
previous scheduling problems are not directly applicable.

We conclude that our PMSP and its influence on the waste–
performance tradeoff of packaging machines has not been
addressed before.

3 Problem description

To ease understanding of the variants of PMSP treated in this
paper, we start with a verbal problem characterization, exam-
ples, and the discussion of our basic assumptions in Sect. 3.1.
Afterward, we provide a precise mathematical problem def-
inition in Sect. 3.2.

3.1 Problem characterization, examples, and
assumptions

The basic decision task of the PMSP is the sequence in which
orders to be processed by the packaging machine are placed
onto the machine’s infeed conveyor. Each order demands a
specific carton size to be properly packed, which are pro-
vided by multiple subsequent packaging devices, arranged
back-to-back along the conveyor. Since orders cannot over-

take each other on the conveyor, it may occur that orders
block each other. A blocking occurs whenever a preceding
order demands a carton size provided by an anterior (or the
same) packaging device, so that a subsequent order cannot
reach its dedicated, yet blocked position along the belt. Thus,
one or multiple packaging slots in a packaging batch (i.e., the
set of orders concurrently packed by all parallel packaging
devices) remain empty and a blocking loss occurs. A suitable
sequencing of orders within the infeed sequence can reduce
the blocking loss and thus improve the throughput perfor-
mance of a blocking machine. The PMSP aims to minimize
the number of packaging batches that are required to process
all orders.
Since packing is part of a multi-stage order fulfillment pro-
cess, we are typically not completely free in the sequence
orders are loaded into the packaging machine’s infeed
sequence. Depending on the type of inbound stream, we face
different levels of flexibility how to manipulate the infeed
sequence. Many warehouses apply multi-bin picking carts,
as depicted in Fig. 3. Such a picking cart either accompanies
a human picker during a picker-to-parts process. Each bin
of a cart is then associated with a specific customer order,
so that the picker can directly place each demanded prod-
uct into the right customer bin in a sort-while-pick process
(De Koster et al., 2007). Alternatively, picking carts are also
applied to deliver orders from the consolidation stage, where
products get sorted after picking in a sort-after-pick process
(Boysen et al., 2019). In both cases, orders (each stored in a
separate bin) arrive in picking carts at the infeed station of the
packaging machine, where order after order is placed onto
the infeed conveyor (either manually or by an automated
solution). Based on this basic process, we differentiate the
following types of inbound streams:

• (a)Given cart sequence:The sequence in which the pick-
ing carts are processed at the infeed station can be given.
This is, for instance, the result when processing the carts
after the widespread first-come-first-served rule. Hence,
only the sequence in which the orders of each subsequent
cart are placed onto the conveyor is the lever to alter the
packagingmachine’s infeed sequence.Note that each cart
must be completely processed before the next one can be
started.

• (b) Arbitrary cart sequence: Alternatively, next to the
order sequence per cart also the sequence in which a
given set of picking carts, waiting at the loading sta-
tion, are processed can be part of the decision. Once the
cart sequence is determined, again, each cart must be
completely processed before the next one can be started.
Nevertheless, this leaves more flexibility to improve the
infeed sequence.

• (c) Arbitrary infeed sequence: Finally, the largest flexi-
bility is at hand if all orders of the given order set can
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Fig. 3 Picking carts in a
warehouse (Source: Lightning
Pick)

be brought into an arbitrary infeed sequence. This case
arises if the current planning run only has to decide on
the order sequence of a single picking cart or if incom-
ing goods have been intermediately stored in a random
access buffer (e.g., in an ASRS, see Boysen and Stephan,
2016).

Note that other warehouses do not apply picking carts to
deliver orders to packaging machines. If only single-piece
orders are picked, then all demanded products can be placed
into the same large bin. Order consolidation is not necessary,
because it is known that each product refers to its own order.
These bins with single-piece orders can also arrive at the
infeed station, e.g., delivered by forklifts, AGVs, or on a con-
veyor. In relation to the cart-based process elaborated above,
bins correspond to carts and products to orders. Although the
physical process is different, it can be modeled by the same
three types of inbound streams as elaborated above.Note, fur-
thermore, that a fixed and given infeed sequence of orders,
which cannot be altered (e.g., because it directly arrives
from the picking area on a conveyor), leaves no optimization
problem and is thus not considered in our problem differ-
entiation. These alternative inbound streams offer different
levels of flexibility to alter the infeed sequence. Exploring
the impact of these flexibility levels (also including a fixed
infeed sequence) on the waste–performance tradeoff is part
of our computational study in Sect. 7.

Example 1 The basic input data of the example instance
depicted in Fig. 4a are four picking carts, denoted A, B, C,
and D, each filled with two different orders. Each order’s
demanded carton size is given by the white number within
the respective gray order square. We have demanded car-
ton sizes from 1 to 5, so that our packaging machine also
has five back-to-back packaging devices each servicing one
of the sizes. On the right side, we see two different infeed
sequences (b) and (c). A given cart sequence leads to three
packaging batches and a blocking loss of seven (see solution
(b)). The relationship among these two performance mea-
sures is as follows:Wehave three batcheswith five packaging
devices. This leads to 15 slots, among which eight are used

by the given orders, whereas seven remain unused and consti-
tute blocking loss. If the cart sequence is part of the decision,
then optimal solution (c) leads to only two packaging batches
and a blocking loss of 2 · 5 − 8 = 2.

Example 2 Now, we consider the same situation as in Exam-
ple 1, where, however, the managerial decision has been
made to merely provide two carton sizes of size 3 and 5.
Figure5d indicates the modified input data, where the actual
sizes of the orders, which are equal to the sizes of Example
1, are indicated by the white subscripts within the gray order
squares. Their assignment to the next larger available carton
size is given by the (normal-sized)white numbers in the order
squares. This induces a packagingwaste of six, due to putting
orders into cartons of larger size than is actually required.
An optimal solution of PMSP, which does not improve if
the cart sequence can be altered, is depicted in (e). Because
we only have two carton sizes, we only require two back-to-
back packaging devices, which reduces the investment cost
for the blocking machine. This, however, also implies less
packaging capacity, so that we need five packaging batches
(and thus have to accept a longermakespan until all orders are
completed). Two packaging devices and five batches directly
imply a blocking loss of 2 ·5−8 = 2 slots that remain empty,
which is however no improvement compared to solution (c)
of Example 1. We can deduce two issues for these two exam-
ples: (i) More sequencing flexibility (i.e., if the cart sequence
is part of the decision and not given) as well as (ii) fewer car-
ton sizes can but need not reduce the throughput loss.

Before, we continue with a precise problem definition of our
PMSP variants, we discuss the (simplifying) assumptions
made in this paper to derive the PMSP in its very basic form:

• We consider only a single packaging machine with fixed
order assignments. When multiple parallel packaging
machines are available, the order assignment is another
relevant decision. Our solution methods can be applied
to evaluate different order-machine assignments, but we
leave the evaluation of such a decomposition approach
to future research.
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Fig. 4 Example 1 of PMSP with and without given cart sequence

Fig. 5 Example 2 of PMSP with fewer carton sizes

• For convenience, we neglect the potential impact of pre-
vious planning runs. That is, we neglect the possibility
that the last orders of the preceding planning run could
potentially share a packing batch with the first orders of
the subsequent planning run. It is easy to relax this sim-
plification, but we have chosen to stick with the simplest
problem setup.

• Weassume that variable-speed conveyor segments ensure
that orders arrive in the infeed sequence without gaps. Of
course, the scheduling of packaging machines is partic-
ularly important when packaging is a bottleneck stage.
In this case, gaps degrade the throughput of a bottleneck
resource. Therefore, we assume that a retailer interested
in PMSP has already eliminated this obvious source of
wasted bottleneck capacity. If gaps exist, they could result
in additional blocking loss despite properly sequenced
orders approaching a blocking machine. We leave the
consideration of gaps to future research.

• We assume that each order requires a specific carton size.
The additional flexibility provided by hierarchical com-
patibility, which allows orders to be packed in larger
cartons than necessary to reduce throughput loss at the
cost of additional waste, is thus neglected and left for
future research.

• Finally, we assume that all input data is known with
certainty. Note that for a reliable automated packag-
ing process, detailed size information about the arriving
products must be available anyway, so this assumption
does not seem to be a severe constraint in our case.

Given this decision context, our PMSP is precisely defined
in the following section.

3.2 Problem definition

We consider a given set J of orders, where each order j ∈ J
has a (carton) size s j ∈ {1, . . . , S} and a cart (number) c j ∈
{1, . . . ,C}. Here, S is the number of distinct sizes and C is
the number of carts. We assume that each size in {1, . . . , S}
and each cart in {1, . . . ,C} is related to at least one order
(otherwise, we can reduce the number of sizes or the number
of carts). Note that both, S and C , are implied by J and,
thus, are given, as well. We denote the set of orders with cart
number c as Jc and will say that order j is in cart c if j ∈ Jc.
A solution is a permutation σ of orders in J . We denote the
k-th order in σ by σ(k). A solution σ is feasible if and only
if for each pair of carts c and c′ with c < c′ either all orders
with cart number c precede all orders with cart number c′
in σ or the other way around (if cart sequencing is part of
the decision). Feasibility of a solution σ , thus, implies that
orders appear clustered by cart numbers in σ .
To evaluate a solution, we denote by �(σ) = |{k | k =
1, . . . , |J | − 1, sσ(k) ≤ sσ(k+1)}| the number of packaging
batches of a solution, which equals the number of orders
followed immediately by an order of larger or equal size in
σ ).We say that there is a break between positions k and k+1,
if sσ(k) ≤ sσ(k+1), that is, if a new batch starts in position
k + 1. Because each packaging batch takes constant time for
packing the orders at the subsequent packaging devices in
parallel, we, then, associate�(σ)with the makespan, that is,

Cmax(σ ) = �(σ).

The PSMP is to determine a solution that minimizesCmax(σ )

among all feasible solutions.
While the special case of PSMP with C = 1 covers the
setting with an arbitrary infeed sequence (see Sect. 3.1), the
setting with a given infeed sequence is not covered by a spe-
cial case of PSMP. Therefore, we define a variant of PSMP,
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namely PSMP-fixed, to formalize this problem. PSMP-fixed
has the same input as PSMP, the same solution space, and
the same evaluation of solutions. A solution is considered
feasible, however, if and only if for each pair of carts c and c′
with c < c′ all orders with cart number c precede all orders
with cart number c′ in σ . We, thus, require that the given
cart sequence has carts in increasing order of their numbers.
The PSMP-fixed is to determine a solution that minimizes
Cmax(σ ) among all feasible solutions.

4 Analysis of computational complexity

This section provides an in-depth analysis of computational
complexity for PSMP and PSMP-fixed. For the former prob-
lem, we distinguish cases where the given number of carts
is either C = 1, C is fixed to a given constant, or C is part
of the input. For both problems, the given number of carton
sizes S can either be fixed or is part of the input. Thus, we
consider eight problem variants in total.
We start with PSMP-fixed. We consider the greedy style
algorithm sketched in the following. We assign orders in
J one by one to positions in the permutation in ascending
order. For each position k, an order is assignable if it has not
been assigned to a previous position yet and its cart number
refers to the cart currently processed according to the given
sequence. Let s be the size of the order in position k − 1 if
k > 1, and s = ∞ otherwise. Let, furthermore, J ′ be the set
of available orders with sizes smaller than s. If J ′ = ∅, then
we choose an order with maximum carton size among all
available orders for position k. This implies a break between
positions k − 1 and k, if k > 1. If J ′ �= ∅, then we choose
an order with maximum size among orders in J ′ for position
k. This implies no break between positions k − 1 and k, if
k > 1. We refer to this algorithm as GREEDY and introduce
the following lemma related to it.

Lemma 1 GREEDYachieves anoptimumsolution forPSMP-
fixed.

Proof Consider an optimum solution σ ∗ and a further solu-
tion σ obtained byGREEDY. Let k < |J | be the first position
where σ ∗ and σ differ. Note that if there is no such position
σ is optimum. Obviously, cσ ∗(k) = cσ(k). We distinguish two
cases regarding the sizes of σ ∗(k) and σ(k).

• If sσ ∗(k) = sσ(k), then we can simply switch σ ∗(k) and
σ(k) in σ ∗ and obtain an optimum solution that equals σ

up to position k.
• If sσ ∗(k) �= sσ(k), we modify σ ∗ as follows. Let k′ be the

position where σ(k) is assigned to according to σ ∗, that
is σ ∗(k′) = σ(k). Note that k′ > k. We move σ ∗(k′) to
position k and delay all orders in positions k to k′ − 1
by one position. We refer to the modified solution as σ ′.

Note that positions 1 to k − 1 and k′ + 1 to |J | are not
modified. Furthermore, between positions k + 2 and k′
orders in σ ′ are in the same relative order as in σ ∗. Hence,
the total number of breaks immediately before the jobs
in these positions is not higher in σ ′ than in σ ∗. For the
consideration of positions k and k+1 we distinguish two
cases in the following

– If sσ ∗(k) > sσ(k), then a break occurs in σ ∗ between
k−1 and k but no break occurs in σ between k−1 and
k, because sσ(k) ismaximumamong orders in J ′. This
holds true if J ′ �= ∅ and among all available orders if
J ′ = ∅. Hence, there is no break in σ ′ between k − 1
and k. However, there is a break in σ ′ between k and
k + 1, because there is one in σ ∗ between k − 1 and
k and sσ ′(k) < sσ ∗(k). So, the total number of breaks
between k − 1 and k and between k and k + 1 is 1 in
both, σ ∗ and σ ′.

– If sσ ∗(k) < sσ(k), then a break occurs in σ ∗ between
k − 1 and k and a break occurs in σ between k − 1
and k, because GREEDY arranges a break only if
J ′ = ∅. Then, there is a break in σ ′ between k − 1
and k because there is one inσ . There is no break inσ ′
between k and k + 1, because sσ ′(k) > sσ ∗(k). Hence,
again the total number of breaks between k − 1 and
k and between k and k + 1 is 1 in both, σ ∗ and σ ′.

Hence, in both cases σ ′ is optimum, as well.

Concluding, there is an optimum solution coinciding with σ

up to position k and, by applying the argument in an iterative
manner, σ is optimum. 	

Now, we are able to easily verify that the infeed sequence in
Fig. 4b is indeed optimum for given cart sequence 〈A,B,C,D],
because it is the output of GREEDY. Regarding the compu-
tational complexity, the following theorem follows.

Theorem 1 PSMP with a fixed number of carts and PSMP-
fixed can be solved in polynomial time.

Proof Wecanevaluate each sequenceof carts usingGREEDY
according to Lemma 1. It is easy to see that GREEDY runs
in polynomial time and there is a fixed number C ! of cart
sequences and, hence, this procedure runs in polynomial
time. 	

Recall that the caseC = 1 corresponds to an arbitrary infeed
sequence as mentioned in Sect. 3.1. Hence, PSMP with an
arbitrary infeed sequence can be solved in polynomial time.
Finally, we consider PSMP with a fixed number of carton
sizes S. We start with the basic idea of the approach, which
is to separate the decisions about breaks between orders of
the same cart and those of consecutive carts in a solution. We
refer to these types as internal breaks and external breaks.We
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do so, by guessing the number Cs,s′ of carts with first order’s
size s and last order’s size s′ for each pair (s, s′) of sizes in
an optimum solution. We refer to a set of such numbers (one
number for each pair (s, s′)) as a size profile.
Example 1 (cont.): The size profiles corresponding to the
solution depicted in Fig. 4b and c, respectively, are specified
as

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 2 0 0
0 1 0 0 0

⎞
⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
1 0 0 0 1
0 0 0 0 0
0 0 2 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

.

For example, we have C4,3 = 2, because in both solutions
there are two carts with first order’s size 4 and last order’s size
3. However, while the solution in Fig. 4b has a cart with first
order’s size 5 and last order’s size 2 and, thus, C5,2 = 1, the
solution in Fig. 4c has no such cart. Thus, we have C5,2 = 0.
We determine (i) the sequence of orders within each cart,
such that there are exactly Cs,s′ carts with first order’s size
s and last order’s size s′ and (ii) the sequence of carts, then,
for each size profile. Note that both decisions together imply
a feasible solution. Note, furthermore, that for taking the
second decision only first order’s size and last order’s size
of a cart are relevant. Hence, we can take the first decision
irrespective of the second.
The procedure, which we dub SIZE_PROFILE, enumer-
ates all size profiles and determines (i) the sequence of
orders within each cart and (ii) the sequence of carts as
detailed below. We restrict ourselves to size profiles with∑

(s,s′)∈S×S Cs,s′ = C .

1. To determine the sequence of orders within the each cart,
we first determine theminimumnumber of internal breaks
�c,s,s′ between orders of cart c, if the first order’s size is
s and the last orders size is s′. We can use a straightfor-
ward adaption of GREEDY with C = 1, where we have
no freedom to decide the first and the last position and
the corresponding orders are eliminated from the set of
available orders. We refrain from giving a formal proof,
because it is essentially the same as the proof for Lemma 1
(note that additionally k′ < |J | for the variant at hand).
Hence, we can determine all �c,s,s′ values in polynomial
time.
Having determined�c,s,s′ for each cart c and pair of sizes
(s, s′), we now consider a bipartite graph G = (V ,U , E)

where nodes in V = {1, . . . ,C} correspond to carts and
nodes in U correspond to pairs of sizes. Exactly Cs,s′
nodes in U correspond to pair (s, s′). An edge between
node c ∈ V and a node in U corresponding to the pair of
sizes (s, s′) reflects cart c to have first order’s size s and
last order’s size s′ (and exists only if c can havefirst order’s

Table 1 �c,s,s′ for each cart c
and pair of sizes (s, s′) in
Example 1

(s, s′) A B C D

(1, 2) – – – 1

(2, 1) – – – 0

(3, 4) – 1 1 –

(4, 3) – 0 0 –

(2, 5) 1 – – –

(5, 2) 0 – – –

size s and last order’s size s′). Choosing this edge in the
following corresponds to choosing the sequence of orders
for cart c implying �c,s,s′ internal breaks determined by
the adaption of GREEDY. Consequently, an edge between
c ∈ V and anode inU corresponding topair of sizes (s, s′)
has weight �c,s,s′ , and we determine a minimum weight
perfect matching G. Such a matching implies a choice of
a sequence of orders for each cart, which is in line with the
given size profile and has a minimum number of internal
breaks between orders of the same cart.
Example 1 (cont.): Table 1 outlines �c,s,s′ for each cart
c and each pair (s, s′) of sizes of the instance depicted
in Fig. 4a. A numerical value is given only if c can have
first order’s size s and last order’s size s′. Moreover, Fig. 6
depicts bipartite graphs and highlights minimum weight
perfect matchings for two size profiles of this instance
instance.

2. To determine the sequence of carts, we propose a DP
approach, where we construct the sequence by adding
carts one by one to an existing sequence of carts. A state
(�k, l) specifies the number ks,s′ of carts scheduled so far
with first order’s size s and last order’s size s′ for each
pair (s, s′) and the size l of the last order in the sequence.
We have a transition from state (�k, l) to state ( �k′, l ′), if
and only if exactly one number k′

s,s′ is increased by one
as compared to ks,s′ , the others are identical, and the last
size indicator l ′ = s′ reflects that a cart corresponding
to pair (s, s′) has been added to the sequence. Transition
costs are in {0, 1} and reflect whether or not an external
break occurs before the first order of the newly added cart.
Note that this is implied by l and the first order’s size s.
Note, furthermore, that the DP approach does not differ-
entiate carts with the same pair of first order’s size and last
order’s size (as determined above). Each state is evaluated
by the number of external breaks between carts so far.

Theorem 2 PSMP can be solved in polynomial time, if the
number of carton sizes is fixed.

Proof SIZE_PROFILE evaluates each size profile following
the above points 1. and 2. The number of size profiles is in
O(CS2) and, thus, polynomial (for fixed S). For each size
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Fig. 6 Examples for bipartite graph and minimum weight perfect matching

profile, first, �c,s,s′ for each cart c and pair of sizes (s, s′)
is determined by running the adaption of GREEDY O(CS2)
times. Recall that GREEDY runs in polynomial time accord-
ing toLemma1. Second, aminimumweight perfectmatching
in bipartite graph G is determined, which can also be done in
polynomial time. Third, in the above DP approach we have
O(SCS2) states and O(S2) transitions starting from each of
them. Each transition can be evaluated in O(1) time and,
thus, the overall complexity is O(S3CS2) and, thus, polyno-
mial (for fixed S). 	


The above complexity results (and the open case, we were
not able to resolve in this paper) are summarized in Table 2.
We draw the following conclusion from our analysis of
computational complexity. The long-term decision for the
number of carton sizes S is mandatory to setup a packag-
ing machine and is thus already made when the operational
scheduling decisions targeted in this paper arise. Thus, the
number of available carton sizes is fixed from the perspec-
tive of operational scheduling, and we can solve our PSMP
in polynomial time. What is even more, the typical number
of available carton sizes in the warehouses we have visited
has never exceeded a handful and according to our contacts
to packaging machine manufacturers is definitely below a
dozen. Hence, our PSMP can efficiently be solved to opti-
mality in real-world warehouses. This, however, requires an
evaluation of all cart sequences (see Theorem 1) and of all
pairs of size profiles (see Theorem 2), which can still take
some time for real-world settings. In the following section,
we streamline this optimization task significantly be intro-
ducing a DP procedure.

5 Solving PSMP

In this section, we propose solution methods for PSMP. We
start by developing optimality properties in Sect. 5.1, which
are then exploited in the DP approach presented in Sect. 5.2.

5.1 Properties of optimal solutions

First, we focus on the sequences of orders of the same cart.
We will see that only a small fraction of all orders needs to
be considered in most cases. Let�c be the minimum number
of internal breaks we can achieve for cart c.

Lemma 2 There is an optimum solution, where

• the number of internal breaks is at most �c + 1 for each
cart c,

• the first and the last cart c, respectively, has �c internal
breaks, and

• for each cart c with �c + 1 internal breaks, there is no
external break between c and its predecessor cart or its
successor cart.

Proof We address the bullet points in the lemma one by one.

• Consider an optimum solution and a cart cwithmore than
�c+1 internal breaks. By choosing a sequence of orders
of cwith�c internal breaks instead and keeping all other
orders in their positions, we reduce the number of internal
breaks by at least 2 and increase the number of external
breaks by at most 2 (potentially adding external breaks
between c and its predecessor cart and between c and its
successor). Hence, the resulting solution is optimum, as
well.

• Consider an optimum solution where the first (or the last)
cart c has more than �c internal breaks. By choosing
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Table 2 Computational
complexity of PSMP and
PSMP-fixed

S fix S Part of the input

PSMP C = 1 In P (Theorems 1 and 2) In P (Theorem 1)

C fix In P (Theorems 1 and 2) In P (Theorem 1)

C part of the input In P (Theorem 2) Open

PSMP-fixed In P (Theorem 1) In P (Theorem 1)

a sequence of orders of c with �c internal breaks and
keeping all other orders in their positions, we reduce the
number of internal breaks by at least 1 and add atmost one
external break between c and its successor (or between
c and its predecessor). Hence, the resulting solution is
optimum, as well.

• Consider an optimum solution and a cart c with �c + 1
internal breaks as well as an external break between c and
its predecessor cart (or an external break between c and
its successor cart). By choosing a sequence of orders of
c with �c internal breaks and keeping all other orders in
their positions, we reduce the number of internal breaks
by at least 1 and add at most one external break between
c and its successor cart (or between c and its predecessor
cart). Hence, the resulting solution is optimum, as well.

	

After establishing that we can restrict ourselves to sequences
of orders for each cart with a small number of internal breaks,
we aim at reducing the number of orders we need to consider
explicitly. Let ns,c be the number of orders in cart c with
size s and let nmax

c = max{ns,c | s = 1, . . . , S}}. We define
the reduced cart c̄ corresponding to c, which contains those
orders in Jc with a size that is required nmax

c times by cart c.
Hence, c̄ contains the subset J̄c ⊆ Jc of orders in c that have
one of the sizesmost common in c.We refer to a size required
by an order J̄c as a popular size of c and denote the largest
popular size of c by s∗

c . We will see in the following that
there is a close relation between cart c and its reduced cart
c̄. Therefore, we can restrict ourselves to consider reduced
carts only.

Example 3 We consider two carts 1 and 2 with J1 =
{ j11 , . . . , j16 } and J2 = { j21 , . . . , j29 }. For simplicity rea-
sons, we identify each order by its size only, that is we say
J1 = {1, 2, 2, 2, 3, 3} and J2 = {4, 5, 5, 6, 6, 6, 7, 7, 7}. For
the reduced carts 1̄ and 2̄, we then have J̄1 = J1̄ = {2, 2, 2}
and J̄2 = J2̄ = {6, 6, 6, 7, 7, 7}.
Lemma 3 For each sequence of orders in c̄ with b internal
breaks, first order’s size s, and last order’s size s′, there is
sequence of orders in c with b internal breaks, first order’s
size s, and last order’s size s′.

Proof Consider an arbitrary sequence π̄ of orders in c̄ with
b internal breaks, first order’s size s, and last order’s size s′.

Let k1, . . . , knmax
c

be the positions of orders with the largest
popular size s ∗̄

c in c̄. For each size s that occurs in c less
than nmax

c times and, hence, is not represented in c̄ and π̄ , we
can insert an order j ∈ Jc \ Jc̄ with s j = s in between two
consecutive occurrences of s∗. Inserting these orders such
that their sizes are strictly decreasing, we do not increase
the number of internal breaks. Because there are nmax

c − 1
gaps between consecutive occurrences of s∗ and each size of
orders in Jc \ Jc̄ occurs at most nmax

c − 1 times, those gaps
suffice to host all orders in Jc \ Jc̄. 	


Lemma 3 states that each sequence of orders in reduced cart
c̄ can be interpreted as a sequence of orders in cart c with
the same first and last orders’ sizes and the same number of
internal breaks. It can, therefore, adequately represent such
sequences of orders in cart c, because they have the same
contribution to the objective function by internal breaks and
they have the same prerequisites for external breaks.
Example 3 (cont.): We consider sequences π̄1 = (2, 2, 2)
and π̄2 = (7, 6, 6, 7, 7, 6) for reduced carts 1̄ and 2̄, where
a size is underlined if there is an internal break between its
immediate predecessor and itself. Because cart 1 has only
one popular size, there is only one sequence. Recall that we
identify orders by their size only). Sequence π̄2 for reduced
cart 2̄, however, is not unique. Positions of orders with the
largest popular size are 1, 2, and 3 in π̄1 and 1, 4, and 5 in π̄2.
The sequences can be interpreted as π1 = (2, 1, 3, 2, 3, 2)
and π2 = (7, 6, 5, 4, 6, 7, 5, 7, 6) by inserting non-popular
sizes in between these positions without causing any addi-
tional internal breaks. Note that different orders (and sizes)
give rise to a break in π̄1 and π1, but the total number does
not change. Contrarily, the same orders (and sizes) give rise
to a break in π̄2 and π2, because there are no larger sizes than
any popular size to be inserted.
It remains to be seen, however, if it suffices to consider
reduced carts because all relevant sequences of orders in cart
c are represented by sequences of orders in reduced cart c̄.
In the next step, we identify a set of dominant sequences of
orders in c, which we will later show to be represented by
sequences of orders in reduced cart c̄.

Lemma 4 For each sequence of orders in c with b internal
breaks, first order’s size s, and last order’s size s′, there is a
sequence of orders in c
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• with at most b internal breaks, first order’s size s′′ ≤ s,
and last order’s size s′′′ ≥ s′,

• with atmost b−1 internal breaks, first order’s size s′′ ≤ s,
and last order’s size s′′′ < s′,

• with atmost b−1 internal breaks, first order’s size s′′ > s,
and last order’s size s′′′ ≥ s′, or

• with atmost b−2 internal breaks, first order’s size s′′ > s,
and last order’s size s′′′ < s′,

where s′′ and s′′′ are popular.

Proof Consider an arbitrary sequence π of orders in c with
b internal breaks, first order’s size s, and last order’s size
s′. Let s′′ and s′′′ be the first and last popular size occurring
in π , respectively. Note that s and s′′ as well as s′ and s′′′
may coincide. We proceed in two steps in order to derive a
sequence π ′ with first order’s size s′′ and last order’s size
s′′′. First, we delete orders in Jc \ Jc̄ from the sequence,
which leaves only orders in Jc̄ in the same order as in π .
Note that this step reduces the number of internal breaks by
at least one, if s′′ ≤ s and s′′′ < s′, it reduces the number of
internal breaks by at least one, if s′′ > s and s′′′ ≥ s′, and
it reduces the number of internal breaks by at least two, if
s′′ > s and s′′′ < s′. Second, we insert orders in Jc \ Jc̄ into
gaps between orders with the largest popular size s ∗̄

c , using
the same procedure as in the proof of Lemma 3. We obtain
sequence π ′ of orders in c with first order size s′′, last order
size s′′′, where s′′ and s′′′ are popular. Since the procedure
for reinserting orders in Jc \ Jc̄ does not increase the number
of internal breaks, as is shown in the proof of Lemma 3,
sequence π ′ has one of the alternative properties listed in the
lemma. 	


Lemma 4 states that there is a set of dominant sequences
with popular sizes as first and last orders’ size. Sequence
π ′ is dominant in the following sense: Starting with a larger
order’s size or ending with a smaller order’s size bears the
risk of an additional external break before or after the cart (as
compared toπ ).However, for each potentially added external
break π ′ has one internal break less.
Example3 (cont.):Weconsider sequencesπ1 = (3, 1, 2, 2, 3, 2)
and π2 = (5, 7, 6, 6, 7, 5, 7, 6, 4) for carts 1 and 2. Sequence
π1 starts with a non-popular size and ends with a popular
size, while π2 does neither start nor end with a popular size.
Removing orders in J1\J1̄ and J2\J2̄, respectively, yields
π̄1 = (2, 2, 2) and π̄2 = (7, 6, 6, 7, 7, 6). Note that the
number of internal breaks is reduced by one in both cases.
In the case of π2 and π̄2, this is due to the fact that π̄2

starts with a larger size than π2. As seen in the example for
Lemma 3, we obtain sequences π ′

1 = (2, 1, 3, 2, 3, 2) and
π ′
2 = (7, 6, 5, 4, 6, 7, 5, 7, 6), which have one of the alterna-

tive properties (i.e., π ′
1 has the first one and π ′

2 has the third
one).

Finally, we show that all these dominant sequences of orders
in c are represented by sequences of orders in c̄

Lemma 5 For each sequence of orders in c with b internal
breaks, first order’s size s, and last order’s size s′, where s
and s′ are popular, there is a sequence of orders in c̄ with at
most b internal breaks, first order’s size s, and last order’s
size s′.

Proof Consider an arbitrary sequence π of orders in c with
b internal breaks, first order’s size s, and last order’s size s′,
where s and s′ are popular. We derive a sequence π̄ of orders
in c̄with at most b internal breaks, first order’s size s, and last
order’s size s′ by simply removing all orders in Jc \ Jc̄. This
procedure does not increase the number of internal breaks. 	

Example 3 (cont.): Starting from π ′

1 = (2, 1, 3, 2, 3, 2)
and π ′

2 = (7, 6, 5, 4, 6, 7, 5, 7, 6), as obtained in the exam-
ple for Lemma 4, we derive π̄1 = (2, 2, 2) and π̄2 =
(7, 6, 6, 7, 7, 6).
Lemma 5 establishes that each sequence of orders in c in
the dominant set according to Lemma 4 is represented by a
sequence of orders in c̄. Note that when interpreting sequence
π ′, as obtained in the proof of Lemma 5, using the procedure
in the proof of Lemma 3, we do not necessarily obtain π ,
but a sequence π ′′, which is equal with respect to relevant
features (i.e., its number of internal breaks, first order’s size,
and last order’s size).
We concludeLemma3, Lemma4, andLemma5 as follows. It
suffices to consider reduced cart c̄ in any solution approach,
because a dominant subset of sequences of orders in c is
represented by sequences of orders in c̄. After determining
a solution for reduced carts, we can interpret it as a solution
for original carts with the same objective value.
From this point on, we will consider reduced carts instead
of carts. We will now derive that for reduced carts, too, only
a subset of order sequences need to be considered. It is not
hard to see that the only sequence π�c̄ for c̄ achieving a
minimum number of internal breaks is the one consisting of
nmax
c subsequences, with each size occurring exactly once in

each subsequence and orders sorted in decreasing sizes. It
achieves �c̄ = �c = nmax

c − 1 internal breaks.
Due to Lemma 2 it suffices to consider, in addition to π�c̄ ,
sequences implying�c̄+1 = nmax

c internal breaks. They are
considered next. Let s+ be the next larger popular size to s,
if s �= s ∗̄

c .

Lemma 6 Each sequence of orders in c̄ with at most �c̄ + 1
internal breaks and first order’s size s �= s ∗̄

c has a last order’s
size of at most s+.

Proof A sequence not starting with an order with the largest
popular size cannot achieve �c̄ internal breaks, because π�c̄

is the only sequence doing so and it starts with the largest
popular size. Hence, each occurrence of the largest popular
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size gives rise to an internal break and no other order does
so. Thus, each size occurs in gaps between occurrences of
the largest popular size exactly once, and only sizes smaller
s occur after the initial order and before the first occurrence
of the largest popular size. Hence, sizes larger s and smaller
the largest popular size occur after the last occurrence of the
largest popular size. 	

We observe that for each reduced cart c̄ and each of its pop-
ular sizes s, which is not the largest popular size, we can
actually achieve a sequence of orders with exactly �c̄ + 1
internal breaks, first order’s size s, and last order’s size s+.
We construct such a sequence modifying π�c̄ by taking the
first S′ orders and move them to the end keeping their rela-
tive order. Here, S′ is a number smaller than the number of
popular sizes. We refer to the sequence obtained by having
size s first as π�c̄ (s). If s = s ∗̄

c , then π�c̄ (s) = π�c̄ . Note
that π�c̄ (s) = π�c̄ dominates all other sequences starting
with size s, because for give size s it achieves the minimum
number of internal breaks and among those sequences it ends
with the maximum order’s size (minimizing potential for a
following external break). We denote by

�c = {
π�c̄ (s) | s is a popular size in c}

the set of dominant sequences for reduced cart c̄.
Example 3 (cont.): For carts 1 and 2, we obtain

�1 = {
(2, 2, 2)

}
and

�2 = {
(7, 6, 7, 6, 7, 6), (6, 7, 6, 7, 6, 7)

}
.

We conclude Lemma 2 to Lemma 6 in Theorem 3.

Theorem 3 There is an optimum solution to each instance of
PSMP, where the sequence of each cart c corresponds to a
sequence in �c.

Our solutionmethodswill determine explicitly only sequences
for reduced carts in addition to the sequence of carts them-
selves. Theorem 3 implies that we can restrict ourselves to
sequences in �c for each cart c. In particular, this means
that there is only one sequence to be considered, if c has
only one popular size. Furthermore, we can see that there is
tradeoff between first order’s size and last order’s size in �c.
For sequences in �c with �c + 1 internal breaks, the first
order’ size is lower (which reduces potential for a preced-
ing external break), if and only if last order’ size is lower
(which increases potential for a succeeding external break).
Sequence π�c̄ maximizes the potential for both, a preceding
external break and a succeeding external break, but simulta-
neously has one internal break less. We, thus, cannot identify
any pairwise dominances between sequences in �c without
further information. However, depending on the last order’s
size in the preceding cart, we can see that we can restrict

ourselves to at most two sequences for each cart c as the
following theorem states.

Theorem 4 There is an optimum solution to each instance of
PSMP, where for each cart c (but the first one) sequence π�c̄

or sequenceπ�c̄ (s) is chosenwith s being the largest popular
size of c smaller than the last order’s size in the preceding
cart.

Proof Consider an optimum solution σ and the first cart c
with neitherπ�c̄ or sequenceπ�c̄ (s) as sequence of orders. If
there is an external break preceding c, we can replace its order
sequence byπ�c̄ .We reduce the number of internal breaks by
one, which compensates for a potential new external break
succeeding c. If there is no external break preceding c, we
can replace its order sequence by π�c̄ (s). We still have no
external break preceding c, the number of internal breaks
does not increase (because π�c̄ was not chosen for c), and
the last order’s size of c does not decrease (avoiding a new
external break succeeding c). 	


Theorem 5 There exists an optimum solution where cart c
precedes cart c′, c < c′, in the cart sequence if c and c′
coincide in their popular sizes.

Proof Consider an optimum solution σ where c′ precedes
cart c. Note that potentially �c �= �c′ . Nevertheless, we can
simply exchange c and c′ if sequences for c and c′ correspond-
ing to π�c̄ (s) and π�

c̄′ (s) for one popular size s have been
chosen. This is due to the fact that both sequences coincide
in their first sizes and in their last sizes. Exchanging c and
c′ keeping their respective sequences, hence, does not add
any external breaks. Now assume that sequences for c and c′
corresponding to π�c̄ (s) and π�

c̄′ (s
′) for one popular sizes s

and s′ with s �= s′ have been chosen. We, then, modify σ as
follows. We choose sequences for c and c′ corresponding to
π�c̄ (s

′) and π�
c̄′ (s) and switch c and c

′ in the cart sequence.
No external break has been added since the sequence for c (c′)
after the modification starts and ends with same sizes as the
sequence for c′ (c) did before the modification. If sequences
π�c̄ (s) and π�

c̄′ (s) have the same number of internal breaks,
then the number of internal breaks remained the same for both
carts after the modification. If sequences π�c̄ (s) and π�

c̄′ (s)
have different numbers of internal breaks, then those num-
bers differ by one and π�c̄ (s) and π�

c̄′ (s) have numbers of
internal breaks differing by one, as well. The cart having one
internal break less in σ has one internal break more in the
modified solution, but the overall number of internal breaks
remains the same. 	


These structural properties of optimal solutions allow us to
solve PSMP with a compact DP, which we elaborate in the
following section.
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5.2 An exact DP approach

Based on the groundwork of Sect. 5.1, we provide an efficient
DP approach for solving PSMP to optimality. The basic idea
of thisDP is to attach carts one by one at the end of a sequence
of already added carts. We propose to employ states (C, s)
with

• C ⊆ {1, . . . ,C} representing the carts already attached
and

• s ∈ {1, . . . , S} representing the last order’s size of the
last cart in the cart sequence.

Recall that we restrict ourselves to reduced carts due to The-
orem 3. Hence, we have O(2C · S̄) states, where S̄ is the
number of sizes that are popular in any cart. The minimum
number of (internal and external) breaks corresponding to
state (C, s) is represented by f (C, s). The initial state is (∅, ·),
with f (∅, S + 1) = 0 and dummy size S + 1.
A transition reflects the attachment of a single cart not yet in
C to the sequence. More specifically, a transition from state
(C, s) to state (C ∪ {c}, s′) for order c /∈ C and popular size
s′ of c represents adding c̄ using sequence π�c̄ (ŝ) ∈ �c with
ŝ+ = s′, that is the sequence in �c that ends with size s′.
Recall that restricting ourselves to sequences in�c is justified
by Theorem 3. Due to Theorem 4, we consider a transition
from state (C, s) to state (C ∪ {c}, s′) only if ŝ is the largest
popular size in c or if ŝ is the largest popular size in c smaller
than the last order’s size s in the preceding cart.
Cost c(C, s, c, s′) associated with this transition amount
to the number of internal breaks associated with π�c̄ (ŝ),
increased by one if ŝ ≥ s, that is if there is an external break
before c.
Finally, we formulate the Bellman function as

f (C, s) = min
{
f (C \ {c}, s′) + c(C \ {c}, s′, c, s) |

the transition from (C \ {c}, s′) to (C, s) is considered
}
.

Solving PSMP, then, corresponds to determining
min { f ({1, . . . ,C}, s) | s is a popular size}. We haveO(2C ·
S̄) states and O(2C · C · S̄2) transitions and, thus, can deter-
mine the optimum solution in O(2C · C · S̄2) time.
Example 1 (cont.): Fig. 7 depicts the DP graph for Example
1 introduced in Fig. 4a). Note that only states resulting from
Theorem 2 are depicted. Furthermore, no states are created,
in which cart C is scheduled before cart B, due to Theorem 5.
The optimal solution depicted in Fig. 4c corresponds to the
bold path from (∅, ·) to ({A, B,C, D}, 1).
To further speed the DP up, we extend it to a bounded DP
by integrating a state-specific lower bound and beam search
heuristic for determining a quick upper bound (e.g., see Flied-
ner et al. 2011). For each state (C, s), we determine a simple

lower bound on the number of breaks, assuming that no exter-
nal breaks occur. In this way, we obtain

LB(C,s) = f (C, s) +
∑

c̄∈C\C
�c̄.

In our beam search approach, we consider only the B states
having the smallest lower bounds at each stage of the DP
graph (i.e., a stage consists of all DP states having the same
number of carts already serviced) for further exploration. All
other states are deleted. In this way, a first heuristic solution
is obtained. Depending on the choice of steering parameter
B, beam search consumes not much computational time. We
execute it before running the DP in order to determine an
upper bound and consequently do not further explore states
with a lower bound greater or equal than the upper bound
obtained by beam search.

6 Computational performance

This section examines the performance of our solution meth-
ods. First,wedescribe our test instances inSect. 6.1. Then,we
examine the computational performance of the DP approach
for PSMP in Sect. 6.2.

6.1 Test instances

Our computational tests are performed on different types
of order data. We use (i) generated data, mainly for per-
formance testing, to have a controlled environment where
all influencing parameters can be systematically explored.
Furthermore, we use (ii) a real dataset from a Brazilian e-
commerce retailer, mainly to investigate managerial issues
on representative order data.

(i) To derive generated data, we vary the following param-
eters that are the input to our data generator: cart
capacity |Jc| ∈ {10, 20, 50, 100}, number of carts C ∈
{10, 15, 20}, and number of available carton sizes S ∈
{5, 10, 15}. For each parameter setting, we derive two
types of instances, where the sizes are either uniformly
distributed across all orders or follow a triangular distri-
bution. For the former, we draw the size of each order
uniformly distributed between 1 and S. For the latter, the
size of each order is drawn from a triangular distribution
with parameters a = 1, b = S, and c = 0.1 · S. This
distribution results in smaller sizes being selected more
often, mimicking a warehouse scenario where smaller
products (e.g., paperbacks) are ordered more often than
larger ones (e.g., coffee table books). For each combi-
nation of parameters, we generate 375 instances, so we
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Fig. 7 DP graph for Example 1

have a total of 4 ·3 ·3 ·2 ·375 = 27, 000 instances in this
dataset.

(ii) Real-world data: Further computational tests are based
on real-world data from the e-commerce retailer Olist
(2019). Their assortment for the years 2016 to 2018 con-
sists of about 32, 000 products, whose detailed size infor-
mation are publicly available. To generate 20 instances
from this data, we do the following: For each instance,
we randomly sample 300 products with a width between
8 and 40cm. Each of these products represents a single-
piece order, which we randomly partition amongC = 20
carts, each with a capacity of |Jc| = 15 orders. Finally,
the carton size of each product is determined by rounding
up to the next available carton size of the instance.

All tests were performed on a PC running Ubuntu 22.04 with
an Intel Core i7-12700K CPU with 5 GHz clock speed and
64 GB RAM. Preliminary tests, the results of which are not
reported in this paper, have shown that choosing a beamwidth
B = 20 ·C provides a good compromise between quality and
solution time for deriving the initial upper bound of DP. All
algorithms and our data generator were coded in Java 18.

6.2 Performance results

This section reports on the computational performance of our
solution methods based on the generated dataset.
First, we consider PSMP-fixed where the sequence of carts
is given. Recall that this version of the problem can be solved
in polynomial time by GREEDY (see Sect. 4). Even for the
largest instances (i.e., with |Jc| = 100, C = 20, and S = 15,
which should exceed the instance sizes of most warehouses
using automated packing), the runtime is barely measurable.

Table 3 Runtimes of DP in CPU seconds

S (triangular) S (uniform)

C |Jc| 5 10 15 5 10 15

10 10 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

20 <0.01 0.01 0.01 0.01 0.01 0.01

50 <0.01 <0.01 0.01 0.01 0.01 0.01

100 <0.01 <0.01 0.01 0.00 0.01 0.01

15 10 0.16 0.29 0.39 0.25 0.42 0.49

20 0.12 0.24 0.32 0.23 0.36 0.44

50 0.09 0.20 0.26 0.22 0.31 0.37

100 0.07 0.17 0.22 0.20 0.27 0.31

20 10 9.68 19.19 27.13 15.53 28.97 36.20

20 7.19 15.44 22.26 14.64 25.29 32.86

50 5.05 12.13 17.38 13.70 22.60 28.44

100 4.01 10.28 14.31 12.95 20.36 25.05

Thus, solving PSMPwith a given cart sequence to optimality
for even the largest warehouses is easily possible.

If determining the cart sequence is part of the problem, we
apply the DP of Sect. 5.2 to solve PSMP to proven optimality.
The runtimes, summarized in Table 3, suggest the following
findings:

• Highest impact of cart number C : In linewith our theoret-
ical runtime analysis of DP, the solution time increases
exponentially in C . However, since C = 20 carts (or
bins, see Sect. 3.1) should definitely be at the top of what
can be expected in real-world warehouses, runtimes well
belowoneminute should not limit the use ofDP in typical
warehouses.
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Fig. 8 Runtime of DP in CPU seconds depending on the number of
popular sizes S and the number of jobs per cart |Jc|

• High impact of the number of popular sizes S: The other
influencing factor of the runtime of DP according to our
theoretical analysis (see Sect. 5.2) is the number of pop-
ular sizes S. Recall that only the (popular) sizes with the
most orders per cart need to be considered. According to
our computational results, their number increases, obvi-
ously, if we have more sizes S (i.e., more sizes increase
the probability that more of them are popular), the size
distribution is uniform (i.e., the triangular distribution
produces a few highly demanded sizes, so that just a few
become popular), and have small order capacity |Jc| per
cart. Especially, the later effect seems to counter intuition,
becausemore orders (and thus larger instance sizes) seem
to induce shorter runtimes.

The latter effect is further analyzed in Fig. 8. Here, the run-
times for instanceswithC = 20 carts and S = 15 carton sizes
are depicted as a function of the jobs per cart |Jc| and the total
number of popular sizes S over all carts. Note that the lower
bound on S is C , if each cart has exactly one popular size.
In Fig. 8, we restrict ourselves to values of S = 25, . . . , 34,
because values out of this range are rare. Instances resulting
in the same number of popular sizes S are connected. In line
with our theoretical runtime analysis of DP, we can observe
that the runtimes remain (rather) stable for a constant num-
ber of popular sizes S, irrespective of the number of jobs per
cart |Jc|. As expected, the runtimes seem to increase almost
linearly with an increase of popular sizes S.
Therefore, we can conclude that the counterintuitive result
of Table 3 (i.e., larger cart capacities |Jc| decrease runtime)
can thus be explained by the fact that more orders with their
respective sizes tend to decrease the amount of popular carton
sizes S of an instance. More random size selections for more
orders on larger carts during data generation increases the
probability that only a few of them will receive the highest
demand and thus be popular. With only a few size selections,

it is more likely that all sizes will have low demand andmany
of them will then be popular.
We conclude that, consistentwith our theoretical analysis, the
runtime of DP for solving PSMPwith arbitrary cart sequence
is mainly driven by the number of carts C and the number of
popular sizes S. However, even for warehouses where these
numbers take their maximum value, the runtime of DP is
small. Thus, DP seems well suited to solve even large PSMP
instances of real-world size to proven optimality.

7 Managerial issues

This section is devoted to management issues. Specifically,
we investigate the following three research tasks: (i) Once
it has been decided how many different carton sizes should
be available, the specific carton sizes need to be determined.
To decide this important long-term issue, we use another DP
approach to minimize the packaging waste for a given order
set. Packaging waste arises by putting products into larger
cartons than necessary to save on the number of employed
carton sizes. With the DP, we can determine the packaging
waste as a function of the number of available carton sizes.
(ii) The complete waste–performance tradeoff of blocking
machines is evaluated in Sect. 7.2. Here, we investigate to
what extent more carton sizes reduce packaging waste but
increase the performance loss (and vice versa). We quantify
the performance loss by the blocking loss defined in Sect. 3,
which counts the number of empty packing slots unused due
to blocked packaging devices. (iii) Finally, Sect. 7.3 exam-
ines the value of sequencing flexibility. The two extremes are
either no flexibility or full flexibility. In the former case, a
fixed sequence of orders approaches the packaging machine
without the possibility of changing it. Full flexibility (i.e.,
the given set of orders can be put into an arbitrary infeed
sequence), on the other hand, promises the least performance
loss, and inbound processes based on picking carts (with
either a given or arbitrary cart sequence) lie somewhere in
between the two extremes. We examine how switching to
either of these inbound processes affects the throughput per-
formance of a packaging machine.

7.1 What carton sizes to select?

Prior to operational scheduling, which is the main focus of
this paper, long-term decisions must be made regarding the
available carton sizes. The design of the blocking machine
(and the resulting investment cost) is mainly influenced by
the number of carton sizes to be provided, since each addi-
tional carton size requires another packaging device. We
provide decision support on the right number of carton sizes
in Sect. 7.2. There, we explore the waste–performance trade-
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Fig. 9 Packaging machine during the carton folding process (Source:
Sparck Technologies)

off that is mainly driven by the number of available carton
sizes.

This section is dedicated to the choice of specific car-
ton sizes, once the decision on the number of carton sizes
to provide has already been made. If—based, for instance,
on historical data—reliable information on the sizes of the
orders to be packed and the frequency, in which each order
size occurs, is available, then we can optimize the specific
carton sizes, such that the total packaging waste gets mini-
mized. Packaging machines fold the carton over the goods to
be packed (see Fig. 9) and cutting of the carton at a suit-
able position ensures that in flow direction no packaging
waste occurs. Across the flow direction, however, packag-
ing waste arises whenever a good is packed into a carton of
excessive width. This reduces the min-waste problem to a
one-dimensional problem that only decides on the width of
the cartons to be provided. Once the orientation of the orders
to be packed is given, the resulting optimization problem can
easily be solved by a straightforward DP. Recall that a sim-
ilar DP has already been introduced by Lee et al. (2015) for
optimizing the height of crates in the chemical industry (see
Sect. 2). The DP proceeds as follows.
We employ states (s, k), which define that carton size s ∈
{1, . . . , S} is selected as the k-th carton size to be provided.
For a given number of total carton sizes K to select, we thus
have O(|S| · K ) states. We consider potential carton sizes
from S to 1. As a result, we have a single starting state (S, 1)
and a single dummy end state (0, K + 1). A transition from
state (s, k) to (s′, k′), with s′ < s and k′ = k+1, reflects that
all order sizes having order size s ≥ s j > s′ get assigned to
carton size s. For each of those orders, a packaging waste of
s − s j occurs. As a result, the cost c(s, s′), associated with
the transition, equal the sum of the resulting waste.
Finally, we formulate the Bellman function as f (s, k) =
min

{
f (s′, k − 1) + c(s′, s) | s′ > s

}
. Clearly, thisDPdeter-

Fig. 10 Example for the DP solving the min-waste policy

Fig. 11 Packaging waste per number of carton sizes for the real-world
dataset

mines theminimumpackagingwaste for the given order sizes
in polynomial time.

Example 4 Based on the order data given in Example 1,
Fig. 10a presents the resulting input data for the min-waste
policy. The resulting DP graph, if K = 2 carton sizes are to
be provided, is given in Fig. 10b. The bold-marked optimal
solution leads to two carton sizes of size 5 and 3, with a total
waste of 6, which equals the situation in Example 2.

Given this optimization approach, we can quantify the
packaging waste for our real-world dataset (see Sect. 6.1)
depending on the number of carton sizes that are provided.
The results are plotted in Fig. 11. The performance metric
reported here denotes the minimumwaste determined by DP
for the respective number of available carton sizes in relation
to the waste if only a single one-size-fits-all carton is applied
in %. The run times for applying the min-waste DP are near
zero for every tested value of K , while it takes between 1.86s
(K = 1) and 16.79s (K = 10) on average to apply the min-
waste DP followed by solving the resulting instance by DP.
These results lead us to our first managerial takeaway.
Finding 1: More carton sizes can significantly reduce the
amount of packaging waste. However, the positive impact
of additional carton sizes quickly diminishes. Adding a sec-
ond carton size more than halves the amount of packaging
waste, but adding an additional carton size when more than
a handful are already available hardly contributes to any fur-
ther significant reduction. This is good news for packaging
machine users: There is no need to have an excessive num-
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ber of carton sizes. With just a handful of sizes, most of the
possible waste reduction can be achieved.

7.2 The waste–performance tradeoff

This section completes the picture on thewaste–performance
tradeoff and also includes the performance impact of the
number of available carton sizes. Recall that more carton
sizes tend to make it harder to properly sort the inbound
orders according to demanded carton sizes on the infeed con-
veyor. Thus, more carton sizes not only promise a reduction
of packaging waste—as the previous section has shown—
but also tend to increase the blocking loss, where capacity is
wasted and packaging slots must remain empty. More carton
sizes come along with more back-to-back packaging devices
that need to be installed along the infeed conveyor. Thus,
more available carton sizes induce higher investment cost for
the blocking machine and an increase of packaging capacity
per packaging batch. To evaluate these expected coherences
in our real-world data (i.e., solved with DP for the optimized
carton sizes), Fig. 12 relates the number of available car-
ton sizes to the performance side of the waste–performance
tradeoff.
Specifically, these results relate to the following three basic
performance metrics and how they are impacted by the num-
ber of available carton sizes, namely: (a) the makespan (i.e.,
defined by the number of packaging batches that are required
to pack all orders), (b) the total blocking loss (i.e., defined
by the total packaging capacity, obtained by multiplying the
batches with the number of packaging devices, minus the
number of orders), and (c) the blocking loss per packag-
ing device (i.e., total blocking loss divided by the number
of packaging devices). These results suggest the following
findings:

(a) Makespan: More carton sizes to choose from requires
more back-to-back packing devices, each dedicated to
a specific size. More devices increase the packaging
capacity, so we can validate the expected effect that the
makespan for processing the orders of the real-world
dataset decreases with more carton sizes (see Fig. 12a).
However, their positive effect is diminishing, which is an
indicator of the increasing difficulty of actually using the
additional packaging capacity.

(b) Total blocking loss:The increase in total blocking loss the
more carton sizes are available is visualized in Fig. 12b.
Obviously, more and more packaging slots must remain
empty because even our exact DP algorithm cannot prop-
erly sort the infeed sequence by carton size.

(c) Blocking loss per packaging device: Each additional
packaging device added by another carton size causes an
additional amount of blocking loss per device, as shown
in Fig. 12c. We can see that the first additional carton

sizes in particular lead to a significant increase in this
performance metric. However, once a certain number of
carton sizes are already available, each additional packag-
ing device tends to add a fluctuating amount of blocking
loss per device without a clear trend.

By relating these performancemetrics to the packagingwaste
examined in the previous section, the full waste–performance
tradeoff can be visualized using Fig. 13. Here, we show the
efficient frontier for different numbers of available carton
sizes in terms of both dimensions (i.e., waste and perfor-
mance). Of course, the final choice of an appropriate number
of carton sizes depends not only on these two dimensions,
but also on the total cost of ownership of any additional pack-
aging device. Because cost information varies widely among
packagingmachinemanufacturers and can change over time,
we will not include cost in our analysis. Instead, we end this
section with the following take-home message:
Finding 2: More carton sizes reduce packaging waste, but
also lead to more blocking loss, where more and more pack-
aging slots must remain empty because the back-to-back
packaging devices cannot receive orders properly sequenced
by size. However, both effects diminish quickly, so intro-
ducing just a few (i.e., a handful in our data) carton sizes
can provide a good compromise in the waste–performance
tradeoff. This is good news for e-commerce retailers because
it helps keep the necessary investment in back-to-back pack-
aging equipment at a manageable level.

7.3 The impact of sequencing flexibility

Packing is just one stage of the complete order fulfillment
process of warehouses and distribution centers. Before an
order can be packed into a suitable carton, the ordered
products must be retrieved either by a picker-to-parts or a
parts-to-picker process (see De Koster et al. 2007, Lee et
al. 2019). Depending on how these previous stages are con-
nected to the infeed conveyor of a packaging machine, our
PSMPfaces different levels of sequencingflexibility (see also
Sect. 3.1). Basically, there are the following alternatives:

(i) Fixed infeed sequence: No sequencing flexibility for our
PSMP is available, if the preceding stages are directly
connected by a conveyor that is fixedly attached to the
infeed of the packaging machine. In this case, the infeed
sequence equals the processing sequence of the previ-
ous stages, which is typically not optimized according
to the needs of the packaging stage. We emulate this
case by determining ten random order sequences for
each instance of our real-world dataset, which cannot
be altered by our PSMP. Their results are averaged.

(ii) Given cart sequence: The order transport between the
preceding stages and packaging can also be organized in

123



118 Journal of Scheduling (2025) 28:101–120

Fig. 12 Performance impact of different number of available carton sizes

a batchwise manner, e.g., via picking carts or bins. If the
arrival sequence of these transport batches is given, the
PSMP with given cart sequence is to be solved, and there
remains the flexibility to optimize the infeed sequence of
orders per cart. The add sequencing flexibility promises
less blocking loss compared to (i) but comes at the price
of double handling. The orders must be retrieved in a spe-
cific sequence from their batches to properly place them
on the infeed conveyor. This produces extra search effort
and manual handling. We emulate this case by draw-
ing ten random cart sequences per instance, solving each
of the resulting PSMP-fixed instances with GREEDY to
optimality, and averaging the results.

(iii) Arbitrary cart sequence: Evenmore flexibility is offered,
if also the sequences in which the batches (carts) are pro-
cessed is part of the optimization by solving PSMP with
arbitrary cart sequence. On top of the double handling,
this also increases the demand for shop floor space for
the intermediate storage of the batches. We emulate this
case by solving PSMP with arbitrary cart sequence for
each real-world instance.

(iv) Perfect infeed sequence: Finally, blocking loss can be
avoided to the largest possible extent, if a random access
on the complete order set is possible at the infeed station
of the packaging machine. This either requires additional
hardware (e.g., an automated storage and retrieval system
(ASRS)) or excessive manual labor to retrieve the orders
in arbitrary sequence from various batches. We emulate
this case, by adding all orders to a single cart and solving
the resulting instance with GREEDY (see Sect. 4).

Since it seems almost impossible to quantify the cost of these
alternatives in an objective and generalizable way, we focus

Fig. 13 Efficient frontier of different numbers of available carton sizes
and their impact on packing waste and blocking loss

only on the performance impact of additional sequencing
flexibility. In Fig. 14, we relate the makespan of alternatives
(i), (ii), and (iii) to that of alternative (iv) and denote this per-
formance metric ’increase in makespan in %’. The run times
for (i), (ii), (iii) and (iv) are 0.17s, 0.28s, 17.6s and 0.6s on
average. The average results for our real-world dataset show
that a fixed infeed sequence that does not account for block-
ing loss of the packaging machine wastes a lot of packaging
capacity and leads to an increase in makespan of more than
200% compared to the perfect infeed sequence. The perfor-
mance loss of a batch transport to the packaging stage ismuch
smaller, which leads us to the final managerial takeaway of
this paper.
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Fig. 14 Performance impact of sequencing flexibility

Finding 3: Batch transport of orders to the packing stage
promises a good compromise between the higher investment
cost of more sophisticated solutions based on random order
access on all orders and the excessive blocking loss of given
infeed sequences. Especially if the transport batches are not
too small, this is still true if the batches are processed on a
first-come, first-served basis based on a given cart sequence.

8 Conclusions

This paper focuses on the scheduling of e-commerce pack-
aging machines. Specifically, we are the first to address the
peculiarities of blocking machines, where multiple back-to-
back packaging devices provide access to packaging cartons
of different sizes. For various types of inflows, this paper
defines the resulting order scheduling problem such that
blocking loss (i.e., wasted packaging slots that cannot be uti-
lized because the orders to be packed are not properly ordered
according to carton sizes on the infeed conveyor) is mini-
mized. We provide an in-depth analysis of the computational
complexity and provide exact solution methods that provide
optimal solutions in a runtime polynomial in the number of
orders.Our performance analysis shows that these algorithms
can solve even largest instances of real-world size to proven
optimality in less than a minute. In addition, we investigate
management issues and summarize the results into threemain
management takeaways.
Froma theoretical perspective, future research should address
the open case and resolve the complexity status of PSMPwith
arbitrary cart sequence when the number of carton sizes is
part of the input. From a practical perspective, future research
should systematically compare blockingmachineswith other
types of packaging machines (e.g., setup machines) in terms
of the waste–performance tradeoff. The latter, in particular,
could make a valuable contribution to successfully reducing

the environmental burden of excessive packaging waste in
e-commerce.
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