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Abstract
The study focuses on constructing a mathematical housing market threatened by 
a major catastrophic event or crash. It incorporates the worst-case scenario port-
folio optimization problem as introduced in Korn and Wilmott (Int J Theor Appl 
Finance 5(02):171–187, 2002) into housing markets. The standard stochastic mod-
els for housing markets assume a geometric Brownian motion and neglect sudden 
housing price falls during crash times. However, the size, timing, and frequency of 
crashes have to be included in such models. By incorporating the worst-case port-
folio optimization problem into housing markets, this study introduces a methodol-
ogy to construct portfolios for large investors that are robust and resilient to extreme 
housing market conditions. The worst-case portfolio optimization approach can be 
used in housing markets to incorporate stress scenarios, minimize potential losses, 
utilize mathematical techniques, and manage housing investment risk effectively. 
This study provides valuable insights for large investors seeking to construct hous-
ing portfolios prioritizing downside protection and minimizing losses in extreme 
housing market conditions. Utilizing numerical illustrations, it provides insights 
into portfolio construction, demonstrating the effectiveness of adjusting portfolios to 
mitigate downside risks during housing market crises. The results highlight dynamic 
portfolio management’s significance in safeguarding wealth when housing prices 
undergo significant fluctuations.
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1  Introduction

The 2008 global financial crisis, triggered by the US housing market crash, 
caused a dramatic fall in the home-ownership rate in housing markets. Following 
the crisis, large investors, such as private equity firms, institutional investors, and 
real estate investment trusts, developed a new business type that relies on con-
structing a portfolio of single-family housing units for rental income purposes. 
These large investors are especially the biggest buyers in struggling local housing 
markets where, generally, housing prices increase faster than in healthy housing 
markets  Yilmaz et  al. (2023). Consequently, after the sub-prime mortgage cri-
sis, large investors have dominated local housing markets in return for benefiting 
from the leading edge of rising house prices and the rental income in their portfo-
lio Allen et al. (2018).

Modeling of housing price evolution is an essential research area in the lit-
erature on real estate and financial markets. Over the years, numerous modeling 
approaches have been developed to understand, predict, and forecast housing price 
evolution. These approaches can be broadly categorized into traditional econo-
metric models, machine learning techniques, and behavioral models. The tradi-
tional econometric models are based on economic theory and statistical methods. 
One widely used approach is the hedonic pricing model, which decomposes the 
house price into various attributes such as location, size, and amenities. Regres-
sion analysis is commonly employed in hedonic models to estimate the impact 
of each attribute on the housing price (see the review  Xiao and Xiao (2017)). 
Time-series models like autoregressive integrated moving average (ARIMA) and 
vector autoregression (VAR) are also used to capture the temporal dynamics of 
housing prices (e.g.,  Tse (1997); Chin and Fan (2005); Yilmaz (2020); Craw-
ford and Fratantoni (2003)). With the advent of big data and advancements in 
computing power, machine learning techniques have gained popularity in hous-
ing price modeling. Techniques like decision trees, random forests, support vec-
tor machines (SVM), and neural networks are used to analyze vast datasets and 
identify complex patterns and non-linear relationships affecting housing prices 
(e.g., Chen et al. (2017a, 2017b); Selim (2009)). These models can handle many 
variables and interactions, making them suitable for capturing intricate price 
movements. Behavioral models have introduced new perspectives into housing 
price modeling by considering the impact of psychological and behavioral fac-
tors on housing markets  Filatova (2015). Behavioral models aim to incorporate 
human biases and heuristics into price predictions, enhancing understanding 
housing market dynamics. Spatial and spatiotemporal models consider the spatial 
nature of housing markets, and spatial econometrics has emerged as a special-
ized field. Geographically weighted regression (GWR) and spatial autoregressive 
models rely on spatial heterogeneity and dependence on housing price changes 
(e.g.,  Fotheringham et  al. (2015); Huang et  al. (2010). Spatio-temporal models 
further extend these approaches by considering both spatial and temporal aspects 
to capture the evolution of housing prices over space and time. Hybrid mode-
ling approaches combine elements of different methodologies to exploit their 
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respective strengths (e.g.,  Pinter et  al. (2020); Zhan et  al. (2023). For instance, 
researchers may integrate econometric models with machine learning techniques 
to harness interpretability and predictive power. Hybrid models aim to compre-
hensively analyze housing price dynamics, incorporating both macroeconomic 
factors and micro-level attributes.

Even though many housing price modeling approaches have been developed, it 
becomes evident that despite advancements in financial theory and sophisticated 
portfolio optimization methods, there are inherent limitations when making edu-
cated investment decisions. Various unpredictable factors, including economic fluc-
tuations, geopolitical events, and local market dynamics, influence housing markets. 
While valuable in other asset classes, traditional portfolio optimization approaches 
struggle to capture the complexity and uncertainty that characterize housing markets 
fully. The illiquidity of real estate assets and the challenges in accurately assess-
ing future house prices further compound the limitations. While educated strate-
gies can mitigate risk, investors must recognize that no algorithm or mathematical 
model can shield them from housing markets’ inherent volatility and idiosyncrasies. 
Despite these, housing prices are assumed to follow a geometric Brownian motion 
in classical calendar times in many studies (e.g., Kau et  al. (1993, 1995); Yilmaz 
and Selcuk-Kestel (2018, 2019); Yilmaz et  al. (2023, 2022); Sharp et  al. (2009); 
Azevedo-Pereira et  al. (2003)). However, these studies neglect sudden price falls 
by an unknown factor during crash times. This unknown factor is assumed to be 
bounded by a known constant. However, the size of the crash, the time, and the 
number of crashes in a given time horizon are unknown and not included in the 
stochastic models in a probabilistic way. This framework allows to use the worst-
case scenario portfolio optimization approach and apply it to housing markets. This 
is the first study to apply the worst-case portfolio optimization problem to housing 
markets, which allows constructing robust and resilient portfolios to extreme market 
conditions. Large investors can make informed decisions and manage their portfo-
lio risk effectively by considering stress scenarios and utilizing mathematical tech-
niques such as convex optimization and semidefinite programming. This methodol-
ogy helps us to construct robust and resilient housing portfolios for extreme housing 
market conditions. More precisely, it can be applied to housing markets for the fol-
lowing purposes:

•	 Incorporating stress scenarios: Worst-case portfolio optimization can be used 
to construct portfolios that can withstand stress scenarios in housing markets. 
Investors can construct robust and resilient portfolios by considering worst-case 
scenarios, e.g., a housing market crash or a recession.

•	 Minimizing potential losses: The worst-case approach aims to minimize the 
maximum possible loss a portfolio can incur. This can be achieved in housing 
markets by constructing portfolios prioritizing downside protection and mini-
mizing potential losses in extreme housing market conditions.

•	 Utilizing mathematical techniques: The worst-case portfolio optimization uti-
lizes techniques such as convex optimization and semidefinite programming to 
compute the worst-case risk and construct optimal portfolios. These techniques 
can be applied constructing robust and resilient housing portfolios.
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•	 Managing risk effectively: By incorporating stress scenarios into the optimiza-
tion process, investors can make educated decisions and manage risk effectively 
in housing markets. The worst-case portfolio optimization offers a valuable per-
spective for investors who prioritize downside protection and seek to minimize 
potential losses in extreme housing market conditions.

 Korn and Menkens (2005) propose a new stochastic control approach to deter-
mine portfolio processes maximizing worst-case bounds for expected utility from 
final wealth in the presence of uncertain downward stock price jumps, particularly 
focusing on crash scenarios. Their analysis considers uncertain yet bounded crash 
occurrences and adjusts portfolio strategies to accommodate changing market coef-
ficients post-crash, utilizing solutions derived from nonlinear differential equations. 
This approach offers a novel investment strategy allowing indifference towards crash 
occurrences by diversifying investments between bonds and stocks. Rebonato and 
Denev (2014) emphasizes causal explanations over association-based measures like 
correlations in asset allocation under market distress or specific scenarios. Lever-
aging insights from choice theory under ambiguity aversion, Rebonato and Denev 
(2014) employs Bayesian-net methodology to derive stable allocation results, 
thereby enhancing the robustness of portfolio allocation strategies. Departing from 
traditional portfolio theories, Bernard et al. (2014) introduce a novel framework that 
accommodates additional constraints on final wealth in stressed financial markets, 
aligning with the diverse needs of investors. Their study not only enhances depend-
ence modeling by addressing full dependence between risks but also offers insights 
into better modeling portfolio losses under partial information, crucial for regulatory 
assessments like Solvency II. By developing strategies that mitigate losses without 
solely focusing on worst-case states,  Bernard et al. (2014) contribute to reducing 
systemic risk and enhancing diversification in tail-risk scenarios. The worst-case 
portfolio approach, proposed by Korn and Müller (2022), provides a robust frame-
work for modeling investment decision problems amidst stress scenarios, thereby 
inherently subjecting resulting portfolios to stress testing. Korn and Müller (2022) 
establish the efficacy of this approach in addressing severe yet plausible stress sce-
narios, which can significantly impact the balance sheets and solvency positions of 
insurance undertakings. Their work demonstrates the existence of a minimum con-
stant portfolio process optimal for multi-stress worst-case problems, alongside a 
verification theorem delineating conditions on Lagrange multipliers and nonlinear 
ordinary differential equations essential for constructing optimal worst-case portfo-
lio strategies.

Optimal portfolio allocations for large investors in housing markets under stress 
scenarios can be designed using various approaches. One approach is the worst-
case portfolio approach, which models investment decision problems that include 
stress scenarios and constructs stress test-prone portfolios Korn and Müller (2022). 
An alternative approach is to consider the emotional component of investors’ finan-
cial goals and incorporate financially efficient anxiety reduction into portfolio the-
ory  Sarpong (2019). Additionally, the optimal design of stress scenarios can be 
achieved by a risk-averse principal who seeks to learn about exposures of agents 
to risk factors and intervenes if excessive exposures are uncovered  Parlatore and 
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Philippon (2022). Furthermore, a customized scenario design based on historical 
data can be used to determine plausible market changes that would adversely impact 
portfolio performance Nagpal (2017). Finally, a framework that maintains the styl-
ized features of portfolio theory while considering the goal of security in stressed 
financial markets can be used to construct optimal strategies for investors Bernard 
et al. (2014). This study incorporates the worst-case scenario portfolio optimization 
problem introduced by  Korn and Müller (2022) into housing markets. This study 
departs from previous studies and traditional portfolio theories for housing mar-
kets concerning a framework that considers additional constraints on final wealth 
in stressed housing markets, addressing the needs of large investors. The study also 
contributes to dependence modeling by providing a way to cope with the problem 
of full dependence between risks, which are severe but plausible hypothetical situa-
tions that can adversely affect the total wealth, which represents the worst possible 
situation for portfolio loss. It assesses the impact of state-dependent preferences on 
trading decisions and constructs optimal strategies explicitly, showing their outper-
formance compared to traditional diversified strategies under worst-case scenarios.

In this study, introducing a new worst-case portfolio optimization approach is not 
our main concern. Instead, it analyzes optimal portfolios of large investors when 
the market is faced with a crash before the time horizon. The study aims to pre-
sent large investors with an educated investment in housing markets, which might be 
more profitable than investing all savings in the money market account. It presents 
a novel mathematical framework tailored for housing markets capable of enduring 
significant catastrophic events or crashes. This framework introduces the notion of 
worst-case scenario portfolio optimization, departing from conventional stochas-
tic models that typically neglect abrupt declines in housing prices during market 
crashes. To bridge this conceptual gap, the study integrates considerations of the 
timing, frequency, and severity of market crashes into housing market models. The 
objective is to develop portfolios that are both robust and resilient, particularly cater-
ing to the needs of large investors amidst extreme housing market conditions. Thus, 
rather than focusing solely on housing markets that consistently perform well, there 
is often an emphasis on identifying housing markets that performs poorly. Accord-
ingly, as Rotella Junior et al. (2023) emphasize, we incorporate the importance of 
incorporating worst-case housing market data into our model to attain robustness.

The study is organized as four sections. Section 2 introduces the housing market 
environment and the worst-case scenario method we consider in our empirical anal-
ysis. Section 3 presents scenarios and and empirical analysis by considering simu-
lated datasets, and Sect. 4 concludes the study and presents possible extension of the 
study.

2 � Housing Market Environment

This study classifies the investors into two groups, large and individual investors. 
However, it analyzes housing markets by considering only large investors. Here, the 
large investor corresponds to the investors who are assumed to use houses in their 
portfolios for only business purposes. More clearly, they are traders who intend to 



2858	 B. Yilmaz 

lease and resell houses in their portfolio without leasing or occupying them. The 
large investor context includes “corporate" as investors. On the other hand, individ-
ual investors are not corporations, and their legal mailing address appears for at least 
three transactions Mills et al. (2019). From now on, we will use “investors" instead 
of “large investors".

Consider a market that contains only two possible assets available to invest: a 
riskless asset and a risky asset corresponding to the housing vulnerable to housing 
market crashes (e.g., high-inflationary and low-interest rate business cycles, cata-
strophic events, etc.). Suppose we are given a complete filtered probability space 
(Ω,Ft, 𝔽 ,ℙ) in which the corresponding processes are defined and a fixed time 
horizon 0 < T < ∞ . In this probability space, let us denote the riskless asset by the 
standard money market account or bond formula given as

with a constant interest rate r.
Before introducing housing price dynamics and establishing the appropriate fil-

tration on the provided probability space, it is essential to introduce the concept of a 
stress scenario. By following Korn and Müller (2022); Seifried (2010), we propose a 
non-probabilistic model of crashes as stress scenarios as follows:

Definition 1  Let a housing market crash scenario be defined by z ∈ [0, 1) , where 
z ∈ ℝ is called stress. A pair (z, �) , consisting of a stress z and a stochastic process 
� ∈ [0, T] ∪ {∞} , where 0 < T < ∞ unless otherwise stated, is called a stress sce-
nario. We refer to � as the time of occurrence of stress z. We define {� = ∞} if the 
market does not face stress. We assign a jump process for stress scenario (z, �) given 
as

Without loosing generality, we assume that there are n number of stress scenar-
ios with tuples (z(1), �1),… , (z(n), �n) having jump processes Jj(t) ∶= Jzj (t) , where 
j = 1,… , n . Furthermore, assume that the filtered probability space we work in sat-
isfies the usual conditions and includes the filtration generated by Brownian motion 
W(t) and jump processes J1(t),… , Jn(t) . Also, we have to extend the filtration �  to 
[0, T] ∪ {∞} by assuming F∞ ∶= FT to include the no stress scenario �j = ∞ for 
j ∈ {1,… , n} . In this setting, �j are stopping times concerning the extended filtra-
tion. We denote the stopping times by �j ∈ Θ , where Θ is the set of all [0, T] ∪ {∞}

-valued stopping times.
Now, we can introduce the housing price process. Suppose housing price dynam-

ics are driven by a Brownian motion and a jump process, which obeys the stochastic 
differential equation (SDE) given as

(1)dB(t) = B(t)rdt, B(0) = 1

Jz(t) ∶= 1�≤t, t ∈ [0, T].

(2)dH(t) = H(t−)
(

(� + � − m)dt + �dW(t) −

n
∑

j=1

z(j)dJj(t)
)

, H(0) = h,
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where � is the change in the housing price and represents the average growth rate 
of housing prices in the market and it captures the tendency of housing prices to 
increase over time due to factors such as demand, population growth, economic 
conditions, and other market-specific influences. Hence, contributes to the overall 
drift term that drives the expected change in housing prices. The parameter 𝛿 > 0 
is the constant continuous rental income yield and reflects the income of the inves-
tor receives from renting out a property. The parameter m > 0 is the constant con-
tinuous maintenance cost yield and captures the ongoing costs associated with prop-
erty upkeep, repair, and maintenance. These costs are subtracted from the potential 
returns generated by the property’s rental income and price appreciation. The 
parameters 𝜎 > 0 is the volatility of the housing price, W(t) is a Brownian motion, 
z(j) denotes the stress scenarios, and H(0) = h > 0 is the initial housing price.

The housing market may face stress, and thus, we can observe jump Jj(t) , 
(j ∈ {1,… , n}) . However, investors have no information about the possibility of the 
appearance of the stress or jumps. More precisely, investors lack any information 
regarding the dynamic characteristics of the jump processes, including their poten-
tial intensities. In this study, for the sake of simplicity, each stress is allowed to occur 
at most once on the fixed time horizon [0, T].

The housing price evaluation process described in (2) has the potential for further 
extension by introducing additional parameters, as outlined in Remark 1. However, 
for the purposes of this study, the inclusion of the extra term is not being considered 
here but will be considered in a future study.

Remark 1  Suppose, the housing market satisfies the condition give in (2). Then, it 
can be extended further by considering an SDE for the dynamics of housing market 
that incorporates market liquidity as

where �(H(t), t) is the liquidity factor that captures the effect of market liquidity on 
housing price dynamics. It can be defined in different ways depending on the spe-
cific modeling assumptions and market conditions. For instance, one way to incor-
porate liquidity is to use the time on the market as a proxy for liquidity. The longer 
a house remains on the market, the lower its liquidity. In this case, the liquidity term 
can be defined as:

where �((H(t), t) is a liquidity factor that captures the sensitivity of housing price to 
time on the market, and T(t) is the average number of days properties spent on the 
market up to selling time t. A negative value of �((H(t), t) implies that the longer a 
house remains on the market, the lower its price.

Remark 2  During housing market booms, the rapid increase in housing prices 
attracts a larger number of investors to the market, including new investors seeking 
potentially high returns. Consequently, the liquidity of the housing market tends to 

dH(t) = H(t−)
(

(� + � − m)dt + �dW(t) −

n
∑

j=1

z(j)dJj(t),
)

+ �(H(t−), t)dt, H(0) = h,

�(H(t), t) = −�(H(t), t)T(t),
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deteriorate, especially as the market becomes increasingly dominated by less expe-
rienced investors. Such an influx of unsophisticated agents can lead to less efficient 
market dynamics and hinder liquidity. Several factors contribute to the degradation 
of market liquidity during housing market booms: 

1.	 Reduced time-on-market: Booms are associated with shorter property listing dura-
tion, indicative of faster property sales. This reduced time-on-market can lead 
to diminished market liquidity due to fewer available properties and heightened 
buyer competition.

2.	 Increased price dispersion: Booms often result in greater variability in housing 
prices, leading to higher price dispersion. This heightened dispersion can com-
plicate price negotiations between buyers and sellers, further impacting market 
liquidity.

3.	 Influx of new market participants: Booms attract a surge of individuals to the mar-
ket, including new agents seeking lucrative commissions. However, the increased 
presence of new agents does not necessarily translate to higher success rates. 
Studies suggest lower agent productivity in high-cost housing markets during 
booms, contributing to market inefficiencies and exacerbated liquidity challenges.

The housing market may experience stress, which results in jumps Jj(t) , where 
j ∈ {1,… , n} . However, investors lack information about potential occurrence of 
stress or jumps, including their dynamic characteristics and potential intensities. 
For simplicity, this study assumes that each stress can occur at most once within 
the fixed horizon [0, T].

Suppose the housing market contains enough housing units and an investor 
with an initial wealth of x > 0 willing to invest only in housing and the money 
market account. If the market faces a stress, the investor observes the stress 
scenario and adjust its portfolio accordingly after the occurrence of the stress. 
The investor has a self-financing portfolio process denoted by � ≥ 0 , which is 
the fraction of the investor’s wealth invested in housing. The portfolio process 
� assumed to be predictable to model a reallocation of holdings is not possible 
when the stress occurs. Nevertheless, adopting a prudent investment approach 
must also ensure protection against financial ruin. Consequently, let us reorganize 
the definition of admissible wealth process given in Korn and Müller (2022) and 
introduce the following definition.

Definition 2  Suppose an investor endowed with an initial wealth x > 0 at t ∈ [0, T] 
can observe a possible stress in the housing market and responses accordingly. Let 
the pairs (z(1), �1),… , (z(n), �n) be the possible stress scenarios in the housing market. 
Then, the set for s ∈ [t, T] the admissible portfolio process � corresponding to the 
investor’s initial wealth, denoted by �(t, x) satisfies 

	 (i)	 The investor’s wealth process X�(t) corresponding to the admissible portfolio 
process � is the unique solution of the wealth process SDE 
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	 (ii)	 The admissible portfolio process �(s) has a form 

 where �u(s) are predictable and right continuous with left lim-
its on a fixed time interval [0,  T], ∀u = (u1 … , un) ∈ {0, 1}n , and 
ū(s) = (ū1(s),… , ūn(s)) ∈ {0, 1}n . Here, ūi = 1 if and only if s ≤ �i for 
i ∈ {1,… , n}.

	 (iii)	 Moreover, the wealth process satisfies 

In Definition 2, observe that the portfolio process is valid during the crash. We 
can introduce the following remark to adjust the portfolio process after the crash.

Remark 3 

	 (i)	 If the market faces stress z(j) at stopping time �j ∈ Θ for j ∈ {1,… , n} and 
𝜉j < ∞ , X� changes at stress time �j with regard to Korn and Müller (2022) 

 The definition of the portfolio process ensures that a change to the appropri-
ate �u(⋅) sub-strategy follows right after the jump in the housing price.

	 (ii)	 The positivity condition, ensures that an investor does not suffer a total loss 
as a consequence of any stress. Namely, an admissible portfolio process � for 
n remaining stresses z(1),… , z(n) should satisfy the following 

	 (iii)	 For n stress scenarios, X� before the first stress has occurred often denoted by 
X�(1,…,1) . This holds special significance because our approach to solving the 
worst-case problem involves a recursive construction of the solution, begin-
ning with the established optimal portfolio process under the assumption of 
no crashes.

Now, suppose that the investor wants to maximize its expected terminal util-
ity under the worst-case scenario (z(1), �1),… , (z(n), �n) . Let U ∶ (0,∞) ↦ ℝ be the 

dX�(s) =X�(s−)
(

(r + �(s)[� + � − m − r])ds + �(s)�dW(s) −

n
∑

j=1

�(s)z(j)dJj(s)
)

,

X�(t) =x.

𝜋(s) =
∑

u∈{0,1}n

1{ū(s)=u}𝜋u(s)
,

X𝜋(s) >0, ∀s ∈ [t, T],

∫
T

t

𝜋2
u
(s)ds <∞, ℙ − a.s. for u ∈ {0, 1}n.

X�(�) =
(

1 − �(�j)z
(j)
)

X�(�−
j
).

max
{

𝜋(t)z(j) ∣ j = 1,… , n
}

< 1, t ∈ [0, T].
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utility function of the investor, which assumed to be strictly concave, increasing, and 
continuously differentiable. Then, the investor has an optimization problem organ-
ized as

where �(x) = �(0, x) , Θ is the set of stopping times, �0,x,(u1,…,,un)
 is the conditional 

expectation given that X�(t) = x , and uj ∈ {0, 1} , j = 1,… , n with uj = 1 if and only 
if �j ≥ t . However, we omit these indices if t = 0 or u1 = … = un = 0.

In the further analysis, the study considers a constant relative risk aversion 
(CRRA) utility function given as

where 𝛾 > 0 , and � ≠ 1.

2.1 � Deconstructing Terminal Utility: Analyzing the Post‑Stress Dilemma

Define �k = max{�1, �2} where 𝜉k < ∞ and focus on the optimal strategy after the 
last stress. Suppose the notation is denoted �(0) = �(0,0) for the admissible self-
financing portfolio � ∈ �(x) . Then, the post-stress problem becomes

yielding the standard Merton problem with random initial time �k.

Proposition 1  (Terminal utility decomposition Korn and Müller (2022)) Let z(1) and 
z(2) be two stresses with corresponding stopping times 𝜉1, 𝜉2 < ∞ . Then, for any 
� ∈ �(x) the investor has a decomposition

where

and Y� (�) = (Y
�

t (�))t∈[�k ,T] is an Ft-martingale that satisfies Y�

�k
(�) = 1.

Proof  The proof can be obtained using the change of measure device given by Theo-
rem 4.1 (Change-of-Measure Device) in Seifried (2010) and Theorem 3.1 in Korn 
and Müller (2022), respectively.

Remark 4  Proposition 1 illustrates that investing in housing in inflationary business 
cycle periods may not be favorable since the interest rate is usually high. However, if 

sup
�∈�(x)

inf
�1,…,�n∈Θ

�0,x,(u1,…,,un)
[U(X�(T))], u1 = … = un = 1,

U(x) =
1

1 − �
x1−� ,

(3)max
�∈�(�k ,x)

�
[

U(X�(T))
]

,

U(X�(T) = U(X�(�k))e
(1−�) ∫ T

�k
�� (�(t))dtY

�

T
(�)
,

�� (�) = r + �[� + � − m − r] −
1

2
��2�2
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central banks are slow to stabilize interest rates against inflation, investing in hous-
ing may be more favorable.

In a stress-free market environment, we have to solve the Merton problem with 
random initial time. The terminal wealth utility decomposition can solve this 
problem by maximizing the functional �� . For instance, an admissible portfolio 
process 𝜋̄ ∈ �(𝜉k, x) is optimal for the post-stress problem (3) if 𝜋̄(0) = 𝜋∗ , where

Notice that �∗ is constant independent of random time �k and initial wealth x Korn 
and Müller (2022).

Proposition 2  (Solution of the post-stress portfolio problem  Korn and Müller 
(2022)) Let �� as in Proposition 1. Then, the optimal portfolio strategy �∗ and the 
corresponding value function v(�k;x) in the post-stress problem (3) with random ini-
tial time �k ∈ Θ and 𝜉k < ∞ , are

and

respectively.

Proof  Using Itô’s lemma to CRRA utility function, the proof can be achieved using 
a similar method given in Korn and Menkens (2005).

Henceforth, to perceive a stress as a potential threat, we require

since the optimal portfolio process in a stress-free market should suffer a loss as a 
consequence of stress z.

Remark 5  Proposition  2 shows that the crash is unfavorable to the investor who 
decides to ignore the crash, and therefore, a priory, the crash is perceived as a threat.

The problem presented in  (3) reflects an extremely cautious approach to 
dealing with market uncertainty surrounding a crash. Specifically, the investor 
chooses not to assign numerical probabilities to the occurrence of a stress event. 
However, focusing on the worst-case scenario is a reasonable strategy when faced 
with catastrophic disasters that lack reliable mathematical and statistical models.

�∗ = argmax
�∈ℝ

�� (�).

�∗ =
1

��2
[� + � − m − r]

v(�k;x) =
x1−�

1 − �
e
(1−�) ∫ T

�k
�� (�∗)ds

,

(4)0 < 𝜋∗z, ∀z
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2.2 � The Worst‑Case Problem for One‑Stress

First, let us examine a portfolio problem under the most unfavorable conditions, 
where a single stress scenario (z, �) is considered. Additionally, let v0(t;x) repre-
sent the value function for the optimal portfolio problem after the stress period.

Definition 3  Let (z, �) and v0(t;x) be a single stress scenario and the value function 
for the optimal portfolio problem after the stress period, respectively. If there is an 
admissible portfolio process � ∈ �(x) such that the process satisfies the following 
condition

is a martingale for

where � ∈ �(x) is called an indifference strategy for the investor.

Proposition 3  (Indifference-optimality principle Korn and Müller (2022)) Let 𝜋̄ be 
an indifference strategy and suppose ∀� ∈ �(x) there is at least a single stress time 
𝜉 ∈ Θ satisfying

Then, the portfolio process 𝜋̄ is an optimal worst-case portfolio process.

Proposition 4  (Indifference frontier Korn and Müller (2022)) Let inequality (4) be 
valid and let � ∈ �(x) be an admissible portfolio process for the one-stress worst-
case portfolio problem with stress scenario (z, �) . Further, let 𝜋̄ be an indifference 
strategy. Define

and

Then, we have 𝜋̃ ∈ �(x) and the worst-case bound attained by 𝜋̃ is at least as big as 
that achieved by �.

Hence, only a portfolio process that does not exceed the indifference frontier 
of an indifference strategy 𝜋̄ , i.e., which does not exceed the indifference level 
𝜋̄(1)z for t ∈ [0, T] , can be a worst-case optimal portfolio process.

v0

(

t;(1 − �(1)(t)z)X
�(1) (t−)

)

, t ∈ [0, T] ∪ {∞}

v0

(

∞;(1 − �(1)(∞)z)X�(1)(∞
−)
)

= U(X�(1) (T)),

�
[

v0
(

t;
(

1 − 𝜋(1)(𝜉z)
)

X𝜋(1) (𝜉−)
)] ≤ �

[

v0
(

t;
(

1 − 𝜋̄(1)(𝜉)z
)

X𝜋̄(1) (𝜉−)
)]

.

𝜏 = inf
{

t ∶ 𝜋(1)(t)z > 𝜋̄(1)(t)z
}

,

𝜋̃(1)(t) = 𝜋(1)(t) if t < 𝜏 and 𝜋̃(1)(t) = 𝜋̄(1)(t) if t ≥ 𝜏.
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Theorem 1  (Solution of the one-stress worst-case problem Korn and Müller (2022)) 
Let (4) be satisfied and assume a single stress scenario (z, � . The optimal portfolio 
process is the indifference strategy 𝜋̄ , given by

where N(t) is the unique solution of the ODE

with final condition N(T) = 0 . The corresponding value function v1(t;x) is

for t ∈ [0, T] , where Θt denotes the class of [t, T] ∪ {∞}-valued stopping times.

Proof  The proof can be achieved by following Korn and Leoff (2019).

Lemma 1  (Decreasing wealth loss Korn and Müller (2022)) Assume a single stress 
scenario (z, �) and let 𝜋̄ be given as in Theorem 1. Then, we have

and as a consequence particularly (𝜋̄(1)z)� < 0 and (𝜋̄(1)z)�� < 0 , ∀t ∈ [0, T].

Proof  See Korn and Müller (2022).

3 � Empirical Analysis

In the housing market context, worst-case scenarios can include various factors 
affecting housing prices, such as natural catastrophes, economic downturns, inter-
est rate fluctuations, housing bubbles, and local economic decline. An economic 
downturn can lead to a decrease in demand for housing and a drop in prices. Nat-
ural catastrophes, such as hurricanes, earthquakes, and floods, can damage homes 
and infrastructure, leading to a decrease in demand and a drop in prices. A natu-
ral catastrophe can be severe and widespread, leading to a prolonged period of 
low demand and falling prices. The economic downturn can be severe, leading to 
a prolonged period of low demand and falling prices. Interest rate fluctuations can 
affect the affordability of mortgages and the demand for housing. Interest rates can 
rise sharply, leading to a decrease in demand and a price drop. A housing bubble 
occurs when prices rise rapidly and unsustainably, fueled by speculative behavior 
and unrealistic expectations. The housing bubble can burst, leading to a sudden and 

𝜋̄(1)(t) = 𝜋∗ −
z𝜋∗ − N(t)

z2𝜎−2
𝜎−2z,

N�(t) = −
1
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significant price drop. Changes in government policies, such as tax laws and regu-
lations, can affect housing markets significantly. In the worst-case scenario, policy 
changes can be unfavorable to the housing market, leading to a decrease in demand 
and a drop in prices. Local housing markets that are heavily dependent on a single 
industry or company can experience severe downturns if that industry or company 
faces financial troubles or closures. However, in this study, we avoid introducing a 
specific reason for the price decrease. We only consider a significant price change 
as a worst-case since the scenarios may trigger each other, and we assume that the 
market is faced with stress before the portfolio adjustment.

As a numerical illustration, the study presents simulations considering the mar-
ket parameters as � = 0.03 , � = 0.001 , m = 0.0009 , � = 0.09 , #ofstressscenerio = 1 , 
h = 80 , r = 0.02 , x = 100 , and T = 10 with a daily basis with a stress z = 0.04 . The 
simulations rely on an initial portfolio weight of � = 0.8 invested in the housing and 
the remaining wealth (1 − � = 0.20) invested in the bank account as a riskless asset. 
The investor considers a CRRA utility function with � = 2 , indicating increasing 
relative risk aversion. Hence, the investor becomes more risk-averse as its wealth 
increases.

Figure 1 illustrates the simulation of the worst-case portfolio effect on the wealth 
process with the above mentioned parameters. The figure comprises two panels: the 
upper panel depicts the evaluation of investor wealth, contrasting scenarios with 
and without adjustments following a market crash. The solid blue line represents 
the wealth trajectory when adjustments are made, while the dashed gray line illus-
trates the scenario without adjustments. Additionally, a horizontal dashed red line 
denotes the time of the market crash. In the lower panel, portfolio adjustments in 
response to the market crash are showcased. The dashed line represents the portfolio 
weight allocated to housing before and after the crash, while the blue line signifies 

Fig. 1   A numerical illustration of worst-case portfolio effect on housing market portfolio
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the adjusted portfolio weight. Initially, the housing investment constitutes 80% of 
the portfolio, but post-crash optimization leads to a revised optimal weight of 60% . 
Notably, the investor’s wealth remains unchanged before the crash for both adjusted 
and non-adjusted portfolios. However, a substantial disparity emerges between the 
portfolios’ performance post-crash. As the figure reveals, the investor’s wealth is 
decreasing after the crash occurred since house prices are decreasing. However, if 
the investor adjusts its portfolio considering the worst-case portfolio, the wealth loss 
is less than keeping the portfolio without any change. Hence, adjusting the portfolio 
after the crash makes it possible to protect against the portfolio’s downside risk. The 
figure also reveals the change in the weight of investment in housing. It is clear that 
when the market is faced with a crash, the investment in housing is decreasing. In 
Appendix 3, we present additional simulations, which indicate the benefit of using 
the worst-case scenario to protect our wealth against the downside risk.

Figures  2 and  3, showcase simulation results utilizing the parameters outlined 
previously. Figure 2 specifically delves into the impact of crash magnitude on inves-
tor portfolios. It elucidates that when the crash magnitude is relatively minor, its 
repercussions on portfolio wealth are likewise limited. However, regardless of the 
crash magnitude, adjusting the portfolio emerges as a superior strategy compared to 
adhering to the initial portfolio composition. Notably, this figure also underscores 
the versatility of our methodology, as it proves effective even in housing markets 
experiencing downturns, where property prices are declining. Contrastingly, Fig. 3 
presents a scenario where the crash occurs earlier compared to the preceding cases. 
Here, it becomes evident that if the crash transpires earlier, there exists a possibility 
of market recovery prior to the maturity T. Moreover, adjusting the portfolio post-
crash results in higher gains for the investor compared to maintaining the initial 

Fig. 2   Numerical illustration of worst-case portfolio effect on housing market portfolio (crash time= 8 , 
z=0.4)
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portfolio composition. Thus, the efficacy of portfolio adjustment in conjunction with 
worst-case scenario analysis is starkly evident, mitigating potential losses in investor 
wealth.

4 � Conclusion

This study has comprehensively examined the potential worst-case scenarios affect-
ing the housing market. By scrutinizing various factors, including economic down-
turns, natural catastrophes, interest rate fluctuations, housing bubbles, government 
policy changes, and localized economic decline, the study has laid a strong founda-
tion for understanding the risks housing market investors face.

The numerical illustration presented in this research demonstrates the real-world 
implications of worst-case scenarios on investor wealth, focusing on the importance 
of portfolio adjustments to mitigate these risks. We observed that reacting to these 
scenarios by adjusting one’s portfolio can effectively safeguard against the downside 
risk of housing market investments.

However, this study acknowledges that risk management in the housing market 
is a complex and ongoing challenge, particularly when considering an infinite time 
horizon. As wealth accumulates and evolves, the dynamics of risk aversion change, 
emphasizing the importance of continuous portfolio reassessment. Future work in 
this field should delve deeper into the dynamics of risk aversion over extended time 
horizons, exploring how investor behavior adapts and strategies evolve as wealth 
accumulates. Furthermore, it is essential to consider the interplay between these 
various worst-case scenarios. Future research can focus on assessing how these 

Fig. 3   Numerical illustration of worst-case portfolio effect on housing market portfolio (crash time= 5 , 
z=0.8)
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factors interact and amplify each other over extended periods. Additionally, examin-
ing more intricate portfolio adjustment strategies and investigating alternative asset 
classes that can act as hedges against housing market risks would be a valuable ave-
nue for further inquiry.
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