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Abstract
We present a branch-and-bound algorithm for globally solving parabolic optimal con-
trol problems with binary switches that have bounded variation and possibly need to
satisfy further combinatorial constraints. More precisely, for a given tolerance ε > 0,
we show how to compute in finite time an ε-optimal solution in function space, inde-
pendently of any prior discretization. The main ingredients in our approach are an
appropriate branching strategy in infinite dimension, an a posteriori error estimation
in order to obtain safe dual bounds, and an adaptive refinement strategy in order to
allow arbitrary switching points in the limit. The performance of our approach is
demonstrated by extensive experimental results.

Keywords PDE-constrained optimization · Switching time optimization · Global
optimization · Branch-and-bound

1 Introduction

Optimal control problems with discrete switches have recently become an increasing
focus of research. Most approaches presented in the literature, however, produce only
heuristic solutions without any quality guarantee. The well-known Sum-Up Rounding
approach [28, 33] computes binary switching patterns by first solving a convex relax-
ation of the problem and then approximating the resulting continuous switching by a
binary one. This approach often requires a large number of switchings when trying
to come close to the optimal continuous solution. In particular, it cannot deal with an
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explicit bound on the number of switchings, let alone with more complex combina-
torial constraints. If such constraints need to be satisfied, the Combinatorial Integral
Approximation approach [32] can be applied. Since the latter again tries to approxi-
mate a given continuous control by a feasible binary one, this approach does not lead
to optimal solutions to the original problem in general, even when a best-possible
approximation can be computed. Other approaches aim at optimizing the switching
times of the discrete switches directly [13, 14, 18, 25, 30, 31, 37], or use non-smooth
penalty techniques, partly in combination with convexification, to impose the switch-
ing structure, see, e.g., [9–12, 40] and the references therein. However, both strategies
in general lead to non-convex problems with potentially multiple local minima and
a convexifcation of the arising problems may destroy the switching structure of the
optimal solution.

In this paper,we present a branch-and-bound approach for solving parabolic optimal
control problems with combinatorial switching constraints to global optimality. More
precisely, we consider problems of the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min J (y, u) = 1
2 ‖y − yd‖2L2(Q)

+ α
2 ‖u − 1

2‖2L2(0,T )

s.t. ∂t y(t, x) − �y(t, x) = u(t) ψ(x) in Q := � × (0, T ),

y(t, x) = 0 on � := ∂� × (0, T ),

y(0, x) = y0(x) in �,

and u ∈ D .

(P)

Here T > 0 is a given final time and � ⊂ R
d , d ∈ N, is a bounded domain, i.e., a

bounded, open, and connected set, with Lipschitz boundary ∂� in the sense of [24,
Def. 1.2.2.1]. The form function ψ ∈ H−1(�) and the initial state y0 ∈ L2(�) are
given. Moreover, yd ∈ L2(Q) is a given desired state and α > 0 is a Tikhonov
parameter weighting the deviation from 1

2 . Finally,

D ⊆ BV (0, T ; {0, 1}) := {
u ∈ BV (0, T ) : u(t) ∈ {0, 1} f.a.a. t ∈ (0, T )

}

denotes the set of feasible switching controls and is supposed to satisfy the following
assumptions:

Dis a bounded set in BV (0, T ), (D1)

Dis closed in L p(0, T ) for some fixed p ∈ [1,∞). (D2)

Here BV (0, T ) denotes the set of all functions in L1(0, T ) with bounded variation,
equippedwith the norm ‖u‖BV (0,T ) := ‖u‖L1(0,T )+|u|BV (0,T ); see e.g., [1] for details
on the space of functions with bounded variation. For simplicity, we restrict ourselves
to the case of one binary switch in (P), but our main results are easily extended to the
case of multiple switches, i.e., to D ⊂ BV (0, T ; {0, 1}k) for some k ∈ N.
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Assumption (D1) is crucial in our context. Without this condition, it would be
possible to approximate any control u with u(t) ∈ [0, 1] f.a.a. t ∈ (0, T ) arbitrarily
well by binary switch es using an increasing number of switchings, e.g., by applying
the Sum-Up Rounding approach mentioned above. Indeed, for a given control u ∈
L2(0, T ; [0, 1]), there exists a sequence {un}n∈N of binary controls in BV (0, T ; {0, 1})
such that un convergesweakly in L2(0, T ) to u, and this weak convergence is sufficient
to pass to the limit in the state equation.Moreover, in our branch-and-bound algorithm,
the existence of a uniform bound on the variation is essential in order to ensure the
effectiveness of fixings.

The Tikhonov term ‖u − 1
2‖2L2(0,T )

in the objective function of (P) is constant
on D by construction, but not on the relaxations of D considered in the course of the
algorithm. In [6, 7], we present tailored convexifications of (P) and an outer approx-
imation approach to solve the resulting relaxations. The core of the approach is the
generation of linear cutting planes describing the closed convex hull of D in L p(0, T ).
While the overall approach is very general, the specific shape of the cutting planes is
problem-dependent. In particular, we devise results for the case of bounded total vari-
ation (without further constraints) and for the case where the switching points of the
control u must satisfy given linear constraints. The latter case comprises the so-called
mininum dwell time contraints [42].

Building on the results of [6, 7], our aim is thus to determine globally optimal
solutions for problems of type (P) that are independent of any prior discretization, using
a branch-and-bound approach. For this, we start from the convex relaxations of (P)
studied in [6]. These convex relaxations correspond to the root nodes in our branch-
and-bound algorithm. In order to extend this to a full branch-and-bound algorithm
for computing globally optimal solutions (at least in the limit), we have to overcome
several obstacles:

– Since we optimize in function space, fixing the value of the switch in finitely many
points (as is common in finite-dimensional branch-and-bound algorithms) has no
direct effect, or is not evenwell-defined.We thus have to take the bounded variation
into account in order to obtain implicit restrictions on the set of admissible controls
in the nodes of the branch-and-bound tree; see Sect. 3.

– The fixing of the switch at certain points in time leads to a non-closed set of
admissible controls in the nodes. Moreover, the closed convex hulls of these sets
are structurally different from the admissible controls arising in the root node. We
study the most important classes of these sets in Sect. 4.

– In [7], we devised a semi-smooth Newton method to solve the root relaxation.
However, with an increasing number of fixings, this method became less stable, so
that we now propose to solve all subproblems by the alternating direction method
of multipliers; see Sect. 5.

– In order to obtain globally optimal solutions, all dual bounds computed in the
nodes of the branch-and-bound tree must be safe. In particular, they need to take
discretization errors into account. In case the time-mesh independent dual bound
is too weak to cut off a node, wemay either have to branch or to refine the temporal
grid, depending on the relation between the current primal bound and the time-
mesh dependent dual bound. The sophisticated interplay between branching, error
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analysis, and adaptive refinement is at the core of our proposed approach, it is
discussed in Sect. 6.

The main contribution of this paper is to present solutions for the challenges listed
above. An extensive experimental evaluation presented in Sect. 7 shows that an effec-
tive and stable implementation of the resulting branch-and-bound approach is possible.

2 Preliminaries

We first collect some definitions and observations that are needed in the following
sections, concerning the solution mapping for the PDE in (P) as well as functions of
bounded variation and special switching constraints.

2.1 Solutionmapping

The assumptions on the optimal control problem (P) listed above guarantee that, for
every control u ∈ D ⊂ L2(0, T ), the PDE in (P) admits a unique weak solution

y ∈ W (0, T ) := H1(0, T ; H−1(�)) ∩ L2(0, T ; H1
0 (�));

see [38, Chapter 3]. To specify the associated solution operator

S : L2(0, T ) � u 	→ y ∈ W (0, T ),

we introduce the linear and continuous (and thus Fréchet differentiable) operator

	 : L2(0, T ) → L2(0, T ; H−1(�)), (	u)(t, x) = u(t)ψ(x)

as well as the solution operator 
 : L2(0, T ; H−1(�)) → W (0, T ) of the heat
equation with homogeneous initial condition, i.e., given w ∈ L2(0, T ; H−1(�)),
y = 
(w) solves

∂t y − �y = w in L2(0, T ; H−1(�)), y(0) = 0 in L2(�).

Moreover, we introduce the function ζ ∈ W (0, T ) as the solution for

∂tζ − �ζ = 0 in L2(0, T ; H−1(�)), ζ(0) = y0 in L2(�).

Then the solution operator S is given by S = 
 ◦ 	 + ζ . In particular, it is affine and
continuous. Using this solution operator, the problem (P) can be written as

{
min J (Su, u)

s.t. u ∈ D .
(P’)
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Parabolic optimal control problems with combinatorial… 653

2.2 Functions of bounded variation

Functions of bounded variation are of central importance in the following. In order
to deal with such functions, first recall that each function u ∈ BV (0, T ) admits a
right-continuous representative given by û(t) = c + μ((0, t]), t ∈ (0, T ), where μ is
the regular Borel measure on [0, T ] associated with the distributional derivative of u
and c ∈ R is a constant. Note that û is unique on (0, T ). Here and in the following,
with a slight abuse of notation, we denote this function by the same symbol as the
equivalence class in BV (0, T ) and, when it comes to pointwise evaluations, we always
refer to this representative function. In particular, we will often write constraints in the
form u(t) = b for b ∈ R. For t ∈ (0, T ), this is well-defined by the above reasoning,
it then means û(t) = b, while for t = 0, we use the same notation as shorthand
for limt↘0 û(t) = b.

In this paper, we will mostly deal with binary controls u ∈ BV (0, T ; {0, 1}). In
this case, the representative û can be parameterized through its switching points 0 ≤
t1 ≤ · · · ≤ tσ , where σ ≤ |u|BV (0,T ). More formally, if one already counts û(0) =
limt↘0 û(t) = 1 as one switching from 0 to 1, then the representative can be written
in the form

ut1,...,tσ (t) :=
{
0, if |{i ∈ {1, . . . , σ } : ti ≤ t}| is even,
1, if |{i ∈ {1, . . . , σ } : ti ≤ t}| is odd;

see [6] formore details. In the following, wewill always regard ut1,...,tσ (t) as a function
in BV (0, T ).

2.3 Examples of switching constraints

In [6, 7], we present tailored convexifications of (P’) and an outer approximation
algorithm to solve the resulting relaxations. In particular,we elaborate the details of this
approach for the following two relevant classes of constraints D. ByAssumption (D1),
the total number of switchings is bounded, and the first type of constraint arises when
this is the only restriction. More specifically, we restrict the total variation of the single
switch from above by σ > 0, so that the set of feasible controls is

D(σ ) := {u ∈ BV (0, T ) : u(t) ∈ {0, 1} f.a.a. t ∈ (0, T ), |u|BV (0,T ) ≤ σ }. (1)

The second type of constraint imposes affine linear relations between the positions of
the switching points of u. More precisely, for a given polytope P ⊆ R

σ+, we define

D(P) := {ut1,...,tσ : (t1, . . . , tσ ) ∈ P, 0 ≤ t1 ≤ · · · ≤ tσ < ∞}. (2)

An important special case are the so-called minimum dwell time constraints, defined
as

D(s) := {
ut1,...,tσ : ti − ti−1 ≥ s ∀ i = 2, . . . , σ, t1, . . . , tσ ≥ 0

}
(3)
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654 C. Buchheim et al.

for some given s > 0. In words, a minimum time span s is required between two
consecutive switchings of u.

All sets D(σ ) and D(P) defined here, and hence also D(s), satisfy the general
assumptions (D1) and (D2); see [6, Lemma 3.7 and Lemma 3.10]. We will investigate
these sets under fixings in Sect. 4 and use D(σ ) for our experiments presented in
Sect. 7.

3 Branch-and-bound algorithm

In finite-dimensional optimization, branch-and-bound is the standard approach for
solving non-convex optimization problems to global optimality. First, a dual bound is
computed for the original problem, corresponding to the root node of the branch-and-
bound tree. Often, this is done by solving a convex relaxation of the problem. In case
the optimal solution for the latter is infeasible for the original problem, a branching
is applied. In the most abstract form, this means that the set of feasible solutions is
subdivided into two (or more) subsets, corresponding to the child nodes of the root
node. Recursive application of the branching leads to the so-called branch-and-bound
tree. The bounding is now applied in order to reduce the number of nodes in this tree,
which leads to a finite algorithm in many cases: one first needs to obtain so-called
primal solutions, i.e., feasible solutions of the original problem. Each such solution
yields (in case of a minimization problem) a global upper bound on the optimal value
of the original problem. Now, if the dual bound obtained in some branch-and-bound
node is larger than the best known upper bound, it follows that this node cannot contain
any optimal solution, so that it can be pruned, i.e., the entire subtree rooted at this node
can be ignored in the enumeration.

The most natural branching strategy for finite-dimensional binary optimization
problems consists of picking a binary variable having a fractional value in the optimal
solution for the convex relaxation used for computing the dual bound, and then fixing
this variable to zero in the first child node and to one in the other. However, in the
infinite-dimensional setting considered here, the situation is more complicated: we
need to deal with infinitely many binary variables, suggesting that an infinite number
of function values has to be fixed in order to uniquely determine a solution for (P). In
fact, fixing a pointwise value of u has no direct effect (or is not even well-defined) in
the function space L p(0, T ). At this point, we can exploit Assumption (D1), which
yields a finite bound on the total number of switching points. The relevant restrictions
in a given node of the branch-and-bound tree are now a joint consequence of the
finitely many fixing decisions taken so far and of the constraint u ∈ D.

The main challenge is now to describe these resulting restrictions. Assume that our
branching strategy always picks appropriate time points τ ∈ (0, T ) and fixes u(τ ) =
0 in the first subproblem and u(τ ) = 1 in the second. Then all our subproblems,
corresponding to the nodes in the branch-and-bound tree, are problems in BV (0, T )

of the form ⎧
⎪⎨

⎪⎩

inf J (Su, u)

s.t. u ∈ D

u(τ j ) = c j ∀ j = 1, . . . , N

(SP)
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with (τ j , c j ) ∈ [0, T ) × {0, 1} for 1 ≤ j ≤ N ; see Sect. 2.2 for the precise meaning
of the fixing constraints. In the following, we denote the feasible set of (SP) by

D SP := {u ∈ D : u(τ j ) = c j ∀ j = 1, . . . , N },

where we always assume τ1 < · · · < τN . Note that the set D SP is not closed in
L p(0, T ) in general, and hence the subproblem (SP) does not necessarily admit a
global minimizer. However, this is no problem since we are only interested in the
optimal value of (SP) in our branch-and-bound framework. In fact, our approach will
produce a series of dual bounds by convexifying (SP) and these co nvexifications will
provide the same (primal) optimal value of (SP) in the limit; see Theorem 3.1 below.
We consider the convexification

{
inf J (Su, u)

s.t. u ∈ conv(D SP)
(SPC)

of the suproblem (SP) in L p(0, T ). Here and in the following, conv always denotes
the closed convex hull in L p(0, T ).

In a reasonable branching strategy, one may expect that an increasing number of
fixing decisions, taken along a path in the branch-and-bound tree starting at the root
node, leads to a unique solution in the limit. In particular, the dual bounds obtained in
the nodes and the optimal values subject to the corresponding fixings should converge
to each other. The next result shows that this is guaranteed in our infinite-dimensional
setting if the fixing positions are sufficiently well-distributed.

Theorem 3.1 For N ∈ N, let 0 ≤ τ N
1 < · · · < τ N

N < T and define

�τ N := max
j=1,...,N+1

|τ N
j − τ N

j−1|,

where τ N
0 := 0 and τ N

N+1 := T . If �τ N → 0 for N → ∞, then

(i) the diameters of the feasible sets of (SPC) and (SP) in L2(0, T ) vanish and
(ii) the optimal values of (SPC) and (SP) converge to each other.

Proof Let DN
SP := {u ∈ D : u(τ N

j ) = cNj ∀ j = 1, . . . , N } denote the feasible set

of (SP) for N ∈ N. Without loss of generality, we may assume DN
SP �= ∅ for N ∈ N,

since otherwise the feasible set of (SPC) is also empty and thus both optimal values
agree. We first claim that two controls u1, u2 ∈ DN

SP can only differ in at most σ of
the intervals (τ N

j−1, τ
N
j ) for 2 ≤ j ≤ N , where σ denotes the upper bound on the total

number of switchings guaranteed by Assumption (D1). Indeed, assume that u1 and u2
differ between τ N

j−1 and τ N
j . Since the values of u1 and u2 agree at τ

N
j−1 and τ N

j , either

one of the two functions has to switch at least twice in (τ N
j−1, τ

N
j ), if cNj−1 = cNj , or

both functions have to switch at least once, if cNj−1 �= cNj . Hence, for each interval
where u1 and u2 differ, both functions together have at least two switchings, but the
total number of their switchings is bounded by 2σ .
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Taking into account also the intervals (0, τ N
1 ) and (τ N

N , T ) and using that u1, u2 ∈
[0, 1] a.e. in (0, T ), we thus obtain

sup
u1,u2∈DN

SP

‖u1 − u2‖2L2(0,T )
≤ (σ + 2)�τ N

and consequently, for N → ∞, we get

sup
u1,u2∈conv(DN

SP)

‖u1 − u2‖L2(0,T ) = sup
u1,u2∈DN

SP

‖u1 − u2‖L2(0,T ) → 0, (4)

which shows assertion (i).
Since the solution operator S in (SP) is linear and bounded, the objective J : u 	→

J (Su, u) is continuous from L2(0, T ) to R. Together with (4), this implies that the
maximal difference of all objective values of feasible controls in (SPC) vanishes
for N → ∞. Since (SPC) is a relaxation of (SP), we obtain (ii). ��

As a consequence of Theorem 3.1 and its proof, we immediately obtain the follow-
ing.

Corollary 3.2 For each ε > 0 there exist N ∈ N and fixings (τ j , c j ) ∈ (0, T )×{0, 1},
j = 1, . . . , N, such that the optimal value of (SPC) differs by at most ε from the
optimal value of the original problem (P).

In other words, up to an arbitrary desired precision ε > 0, the optimal solution of (P)
can be approximated by (SPC) using a finite number of fixings. This is crucial for
the branch-and-bound algorithm we are going to present in the following. Clearly, the
number of necessary fixings depends on ε.

To solve the subproblems in the branch-and-bound algorithm, we will use the outer
approximation approach presented in [6, 7]. For this purpose, we need to discuss how
to deal with the resulting projections under fixings (see Sect. 4) and how to adapt the
outer approximation algorithm (see Sect. 5). For both tasks, first note that

conv(D SP) = conv(D SP),

again with all closures taken in L p(0, T ). While the inclusion “⊆” is obvious, it
suffices for the other direction to show that DSP is a subset of conv(DSP), as the latter
is closed and convex by definition. Now if u is the limit of a sequence {um}m∈N in DSP,
then um ∈ conv(DSP) for allm ∈ N and hence u ∈ conv(DSP). Problem (SPC) is thus
very similar to the problem without fixings addressed in [6, 7], except that D is now
replaced by themore complex set D SP. In an outer approximation approach, the impact
of the fixings is then implicitly modeled by the cutting planes describing conv(D SP).

However, the fixings may also directly determine significant parts of the switch-
ing pattern in such a way that u must be constant on some intervals [τ j−1, τ j ), i.e.,
u|[τ j−1,τ j ) ≡ c j−1 for all controls u ∈ D SP. Indeed, as shown by the proof of The-
orem 3.1, the non-fixed part of the time horizon vanishes under the assumptions of
Theorem 3.1 when N → ∞. In other words, the share of the time horizon (0, T ) on
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which u is completely determined by the branching decisions converges to one. In our
branch-and-bound algorithm, it is much more efficient to deal with these constraints
explicity, instead of modeling them by cutting planes describing conv(D SP).

Finally, note that it is also possible that the given fixings are inconsistent with the
constraint D, i.e., that the feasible set of (SP) is empty, which is easy to detect for
most choices of D. In this case, the subproblem is infeasible and the corresponding
node in the branch-and-bound tree can be pruned.

Example 3.3 Consider the setD(σ )defined in (1). Let N ′ = |{ j ∈ {2, . . . , N } : c j−1 �=
c j }|. If N ′ > σ , we have D(σ ) SP = ∅, since even the number of switchings enforced
by the fixing is too large for a feasible solution. The subproblem can thus be pruned.
If σ −1 ≤ N ′ ≤ σ , we can fix all intervals [τ j−1, τ j )with c j−1 = c j to the value c j−1,
since any other value in this interval would increase the number of switchings by two.
If σ − 1 ≤ N ′ ≤ σ and c j−1 �= c j , then no value of u in (τ j−1, τ j ) is fixed, but u
has to be monotone in [τ j−1, τ j ], which is modeled implicitly by cutting planes. The
same is true for all further restrictions resulting from the fixings. ��

Example 3.4 For the minimum dwell time constraints D(s) defined in (3), we can fix
an interval [τ j−1, τ j ) with c j−1 = c j to the value c j−1 if and only if τ j − τ j−1 ≤ s.
Otherwise, no direct fixing is possible, but the number of allowed switchingswithin the
interval (τ j−1, τ j ) reduces to �τ j−τ j−1/s�. An infeasible subproblem arises whenever u
is fixed to the same value at two time points having a distance of at most s, but fixed
to the other value at some point in between. ��

4 Convex hull under fixings

As already indicated, our aim is to fully describe the convex hull of feasible
switching patterns, i.e., the feasible set of (SPC), by cutting planes derived from
finite-dimensional projections, extending the approach proposed in [6] for the case
without fixings. For this, we project the set D SP to the finite-dimensional space R

M ,
by means of local averaging

� : BV (0, T ) � u 	→
(

1
λ(Ii )

∫

Ii
u(t) dt

)M

i=1
∈ R

M , (5)

where Ii ⊆ (0, T ) for i = 1, . . . , M are suitably chosen subintervals. Each projection
� then gives rise to a relaxation

conv(D SP) ⊆ {v ∈ L p(0, T ) : �(v) ∈ CD SP,�
}

of the feasible region [6, Lemma 3.4], where CD SP,�
:= conv{�(u) : u ∈ D SP}. By

a suitable construction of projections �k , with increasing dimension Mk , a complete
outer description of the finite-dimensional convex hullsCD SP,�

also yields a complete
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outer description of the convex hull of D SP in function space [6, Thm. 3.5], i.e.,

conv(D SP) =
⋂

k∈N
{v ∈ L p(0, T ) : �k(v) ∈ CD SP,�k

}.

In order to solve the convexified subproblem (SPC) by means of the outer approx-
imation algorithm presented in [7, Alg. 1], it is particularly desirable that the
sets CD SP,�

are polyhedra for which the separation problem is tractable, in order to

efficiently generate cuts of the form a��(u) ≤ b for u ∈ L p(0, T ), where a�w ≤ b,
a ∈ R

M , b ∈ R represents a valid inequality for CD SP,�
. For prominent examples

of D, it is shown in [6] that this is the case for the sets CD,�, i.e., when no fixings
are considered. However, it can be shown that the fixings may destroy this property in
general.

For the two classes of constraints D already discussed in [6] and defined in Sect. 2.3,
one can show with a similar reasoning as in [6] that the corresponding projection sets
CD(σ ) SP,�

andCD(P) SP,�
are still polyhedra for a fixed projection�. For convenience

of the reader, we include full proofs of both results in Appendix A. In the remainder
of this section, we focus on the tractability of the projection sets, since the latter is
crucial for the efficient computation of dual bounds by means of outer approximation
within our branch-and-bound algorithm. For this, we consider a fixed projection� and
assume that the intervals Ii , i = 1, . . . , M , are pairwise disjoint. Moreover, without
loss of generality, we may assume that the fixing points 0 ≤ τ1 < · · · < τN < T
satisfy τ j /∈ Ii for all j = 1, . . . , N and i = 1, . . . , M , since otherwise one can refine
the projection intervals and thus generate stronger cutting planes [7, Thm. 2.2].

4.1 Restricted total variation

In this section, we show that the separation problem for CD(σ ) SP,�
can be solved in

polynomial time. Without any fixings, i.e., when D(σ ) SP = D(σ ), it is shown in [6,
Thm. 3.8] that the separation problem for CD(σ ),� reduces to the separation problem
of

conv
{
v ∈ {0, 1}M :

M∑

l=2

|vl − vl−1| ≤ σ
}
.

For the slightly different setting where v1 is fixed to zero, it is shown in [8] that the
separation problem for the above set can be solved in polynomial time. It is easy
to see that the separation problem remains tractable also without this fixing, i.e., for
CD(σ ),�. Our aim is now to efficiently reduce the separation problem forCD(σ ) SP,�

to
the separation problem for CD(σ ),�. To this end, we extend the vector v by the fixings
c1, . . . , cN . More precisely, for all j ∈ {1, . . . , N }, let i j ∈ {0, . . . , M} be the index
such that bi j−1 ≤ τ j ≤ ai j holds, where b0 := 0 and Ii = (ai , bi ) for i = 1, . . . , M .
In addition, define E : R

M → R
M+N by

Ev = (v1, . . . , vi1 , c1, vi1+1, . . . , vi2 , c2, vi2+1, . . . , viN , cN , viN+1, . . . , vM )�.
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The desired reduction is now based on the fact that, analogously to [6, Thm. 3.8], one
can again show that CD(σ ) SP,�

is the convex hull of all projection vectors resulting
from feasible controls that are constant almost everywhere on each of the intervals
I1, . . . , IN , i.e., CD(σ ) SP,�

= conv(K ) with

K := {�(u) : u ∈ D(σ ) SP and for all i = 1, . . . , M there exists wi ∈ {0, 1}
with u(t) ≡ wi f.a.a. t ∈ Ii },

see Theorem A.1, and on the following:

Lemma 4.1 A vector v ∈ R
M belongs to K if and only if Ev belongs to

C :=
{
w ∈ {0, 1}M+N :

M+N∑

l=2

|wl − wl−1| ≤ σ
}
.

Proof For the first direction, let v = �(u) ∈ K for some u ∈ D(σ ) SP being con-
stant almost everywhere on each projection interval. Then there exists a sequence
{um}m∈N ⊆ D(σ ) SP with um → u in L p(0, T ) for m → ∞. For every m ∈ N, the
control um has at most σ switchings and satisfies um(τ j ) = c j for j = 1, . . . , N , so
that we have

M+N∑

l=2

|E�(um)l − E�(um)l−1| ≤ σ.

The continuity of � in L p(0, T ) yields v = �(u) = limm→∞ �(um) and hence

M+N∑

l=2

|Evl − Evl−1| ≤ lim
m→∞

M+N∑

l=2

|E�(um)l − E�(um)l−1| ≤ σ,

i.e., we have Ev ∈ C as desired.
We next show the opposite direction. So, let Ev ∈ C for some vector v ∈ R

M .
In addition, let 0 = z0 < z1 < · · · < zr = T include all endpoints of the intervals
I1 . . . , IM and the fixed positions τ1, . . . , τN . Construct functions um for m ∈ N such
that

um(t) = vi for t ∈ [ai + λ(Ii )
2m , bi − λ(Ii )

2m ) and i = 1, . . . , N ,

um(t) = c j for t ∈ [τ j , τ j + ε j
2m ) and j = 1, . . . , N ,

where ε j = min{|zi − τ j | : i ∈ {1, . . . , r}, zi �= τ j } > 0. For points in (0, T ) not
covered by the above intervals, we copy the value of the left neighboring interval.
The construction is illustrated in Fig. 1a. We have um(τ j ) = c j for every m ∈ N and
j = 1, . . . , N , hence all fixings are respected. Moreover, Ev ∈ C guarantees that um

switches at most σ times, i.e., we get um ∈ D(σ ) SP. By copying always the value of
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Fig. 1 Illustration of the second part of the proof of Lemma 4.1

the left neighboring interval, we guarantee that the control functions um converge in
L p(0, T ) to some function u; see Fig. 1b.

Moreover, by construction, the limit u is v1, . . . , vM almost everywhere on the
projection intervals I1, . . . , IM , respectively, and due to {um} ⊆ D(σ ) SP, we have
u ∈ D(σ ) SP. Therefore v = �(u) ∈ K . ��
Theorem 4.2 The separation problem for CD(σ ) SP,�

can be solved in polynomial time.

Proof Using Lemma 4.1 and CD(σ ) SP,�
= conv(K ), we obtain that v ∈ CD(σ ) SP,�

if
and only if Ev ∈ conv(C). The separation problem for CD(σ ) SP,�

thus reduces to the
separation problem for conv(C). ��
The separation algorithm used in the outer approximation approach devised in [6] even
computes the most violated cutting plane. The same can be done when considering
fixings: our aim is thus to find the most violated cutting plane (ā, b̄) ∈ R

M+1 in the
set

HD(σ ) SP,�
= {(a, b) ∈ [−1, 1]M × R : a�w ≤ b ∀w ∈ CD(σ ) SP,�

}

of all valid inequalities for CD(σ ) SP,�
, where a ∈ [−1, 1]M can be assumed without

loss of generality by scaling. It is easily verified that this aim can be achieved by first
computing the most violated cutting plane (a, b) ∈ R

M+N+1 for Ev in

HC = {(a, b) ∈ [−1, 1]M+N × R : a�w ≤ b ∀w ∈ C}
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and then replacing the (i j + j) th variable by the constant c j for all j = 1, . . . , N ,
i.e., ā results from a by deleting the (i j + j) th variables and b̄ = b− ∑N

j=1 ai j+ j c j .
The first task can again be reduced to the case without fixings.

4.2 Dwell time constraints

We now focus on the special case of dwell time constraints, as defined in (3). Here, a
minimum time span s > 0 between two switchings is required. For the case without
fixings, it is stated in [6, Thm. 3.13] that there exists a separation algorithm with
polynomial running time in M and in the implicit bound σ = � T

s � on the number of
allowed switchings. In the presence of fixings (τ j , c j ), 1 ≤ j ≤ N , we show in the
following that the separation problem for CD(s) SP,�

is still tractable. More precisely,
we claim that there exists a separation algorithm with polynomial time in M , σ , and
the number N of fixings.

We thus consider the set

D(s) SP := {
ut1,...,tσ : ti − ti−1 ≥ s ∀ i = 2, . . . , σ, t1, . . . , tσ ≥ 0,

ut1,...,tσ (τ j ) = c j ∀ j = 1, . . . , N
}

and first argue, similar to [6, Sect. 3.2], that it suffices to consider as switching points
the finitely many points in the set

S := [0, T ] ∩
(
Zs + ({0, T } ∪ {ai , bi : i = 1, . . . , M} ∪ {τ j : j = 1, . . . , N })

)

where Ii = (ai , bi ) for i = 1, . . . , M . The set S thus contains, as before, all end
points of the intervals I1, . . . , IM and [0, T ] shifted by arbitrary integer multiples
of s, as long as they are included in [0, T ]. In addition, we now need to consider all
fixing points τ1, . . . , τN and their corresponding shiftings. Clearly, we can compute S
in O((M + N )σ ) time.

Lemma 4.3 Let v be a vertex of CD(s) SP,�
. Then there exists u ∈ D(s) SP with�(u) =

v such that u switches only in S.

Proof The proof is similar to that of [6, Lemma 3.12], but one needs to pay attention
to the fixings when shifting switching points outside of S. The full proof can be found
in Appendix A.2. ��
We next show our main result that there exists an efficient separation algorithm
for CD(s) SP,�

by specifying an efficient optimization algorithm over CD(s) SP,�
.

Let ω1 . . . , ω|S| be the elements of S sorted in ascending order.

Theorem 4.4 One can optimize over CD(s) SP,�
(and hence also separate from

CD(s) SP,�
) in time polynomial in M, σ , and N.

Proof By Lemma 4.3, it suffices to optimize over the projections of all u ∈ D(s) SP
with switchings only in S. This can be done by a dynamic programming approach
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similar to the one presented in [6, Thm. 3.13]; we mainly need to change the recur-
sion formula for the fixing points τ1, . . . , τN . So assume that an arbitrary objective
function c ∈ R

M is given. Then we compute the optimal value

c∗(t, b) := min c��(u · χ[0,t]) s.t. u ∈ D(s) SP, u(t) = b if t < T

recursively for all t ∈ S as follows. Starting with c∗(ω1, b) = 0 if τ1 �= 0 and

c∗(ω1, b) =
{

∞, if c1 = 1 and b = 0

0, otherwise

otherwise, we obtain for k ∈ {2, . . . , |S|} with ωk ∈ S\{τ1, . . . , τN } that

c∗(ωk, b) = min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c∗(ωk−1, b) + c��(bχ[ωk−1,ωk ])
c∗(ωk − s, 1 − b)

+ c��((1 − b)χ[ωk−s,ωk ]),
if ωk ≥ s and

(ωk − s, ωk) ∩ τ(b) = ∅
c��((1 − b)χ[0,ωk ]), if ω j < s, b = 1 and

[0, ωk) ∩ τ(b) = ∅
where for b ∈ {0, 1} we define τ(b) := {τ j : c j = b, j = 1, . . . , N }. For k ∈
{2, . . . , |S|} with τ j = ωk ∈ S, i ∈ {1, . . . , N }, we get

c∗(τ j , c j ) = min

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c∗(ωk−1, c j ) + c��(c j χ[ωk−1,τ j ])
c∗(τ j − s, 1 − c j )

+ c��((1 − c j )χ[τ j−s,τ j ]),
if τ j ≥ s and

(τ j − s, τ j ) ∩ τ(c j ) = ∅
0, if τ j < s, c j = 1 and

[0, τ j ) ∩ τ(c j ) = ∅
and

c∗(τ j , 1 − c j ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, if τ j < s and c j = 0

∞, if τ j < s and c j = 1, or τ j ≥ s and
(τ j − s, τ j ) ∩ τ(1 − c j ) �= ∅

c∗(τ j − s, c j )
+ c��(c j χ[τ j−s,τ j ]),

otherwise.

The desired optimal value is min{c∗(T , 0), c∗(T , 1)} then, and a corresponding opti-
mal solution can be derived if this value is finite. Otherwise, the problem is infeasible
due to the fixings, i.e., the polytope CD(s) SP,�

is empty. ��
In the proof of Theorem 4.4, the recursion formula of the dynamic optimization

approach over CD(s) SP,�
is the same for the fixing points τ1, . . . , τN as for the points

in S\{τ1, . . . , τN }, as long as the fixings are respected. This is not surprising, since in
this case we do not know whether the control is already constantly c j before or after
τ j . However, if the fixing is not respected, then it is clear that the control has to be
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constantly c j on [τ j − s, τ j ) and one has to check whether this is possible taking the
other fixings and the start value zero into account. In particular, if τ1 = 0 and c1 = 1,
all controls in D(s) SP have to respect the fixing due to the start value zero, so that we
have c∗(0, 0) = ∞ in this case.

5 Computation of primal and dual bounds

The main task in every branch-and-bound algorithm is the fast computation of primal
and dual bounds. While primal bounds are often obtained by applying rather straight-
forward heuristics to the original problem (P), see Sect. 5.2, the computation of dual
bounds is a more complex task, see Sect. 5.1.

5.1 Dual bounds

Our goal is to obtain strong dual bounds by solving the convexified subproblems (SPC);
see Sect. 3. To this end, we can use the outer approximation algorithm developed in [7],
since conv(D SP) = conv(D SP) as already noted above. This approach is applicable
whenever we have a separation algorithm for conv(D SP) at hand; see Sect. 4. Within
the outer approximation algorithm, we thus need to repeatedly solve problems of the
form

⎧
⎪⎨

⎪⎩

min J (Su, u)

s.t. u ∈ [0, 1] a.e. in (0, T ),

Gu ≤ b ,

(SPCk)

where G : L2(0, T ) → R
k with (Gu)� = a�

� ��(u) for � = 1, . . . , k. The latter
constraints represent the cutting planes for the sets CD SP,�

that have been generated
so far.

As discussed in Sect. 3, our branching strategy will implicitly fix the control u on
certain subintervals of the time horizon [0, T ]; see Example 3.3 and Example 3.4.
Let A be the union of all such fixed intervals and set I := [0, T ] \ A. Denote the
restrictions to A and I by χA : L2(0, T ) → L2(A) and χI : L2(0, T ) → L2(I),
respectively, and letχ∗

A andχ∗
I be the respective extension-by-zero operators mapping

from L2(A) and L2(I) to L2(0, T ), respectively. Then we can restrict (SPCk) to the
unfixed control u|I , which leads to

⎧
⎪⎨

⎪⎩

min J (S(χ∗
Iu|I + χ∗

Au|A), χ∗
Iu|I + χ∗

Au|A) =: f (u|I)

s.t. u|I ∈ [0, 1] a.e. in I,

G(χ∗
Iu|I) ≤ b − G(χ∗

Au|A),

where u|A is fixed and implicitly given through the fixings. As a first attempt to
solve this problem, we applied the semi-smooth Newton method described in [7],
but, as the branching implicitly fixed larger parts of the switching structure, i.e., A
got larger, the semi-smooth Newton method matrix became singular. To overcome
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these numerical issues, we decided to replace the semi-smooth Newton method by the
alternating direction method of multipliers (ADMM), which was first mentioned in
[21] for nonlinear elliptic problems and is widely applied to elliptic control problems
[2, 4, 27]. Its convergence for convex optimization problems is well-studied, see, e.g.,
[15, 16, 20, 23]. Recently, [22] also addressed linear parabolic problems with state
constraints by the ADMM and proved its convergence without any assumptions on
the existence and regularity of the Lagrange multiplier.

We first need to rewrite our problem in the form

⎧
⎪⎨

⎪⎩

min f (u|I) + I(−∞,b̄](v) + I[0,1](w)

s.t. u|I − w = 0 a.e. in I,

G(χ∗
Iu|I) − v = 0 ,

(SPC′
k)

where b̄ := b − G(χ∗
Au|A) and

I(−∞,b̄](v) =
{
0, v ≤ b̄

∞, otherwise,
and I[0,1](w) =

{
0, w(t) ∈ [0, 1] f.a.a. t
∞, otherwise.

Note that (SPC′
k) is still a convex optimization problem, but no longer strictly convex.

Thefirst-order algorithmADMMis an alternatingminimization scheme for computing
a saddle point of the augmented Lagrangian

Lρ,β(u|I , v, w, λ, μ) = f (u|I) + I(−∞,b̄](v) + I[0,1](w)

+ λ�(G(χ∗
Iu|I) − v) + 〈μ, u|I − w〉L2(I),L2(I)

+ ρ
2 ‖G(χ∗

Iu|I) − v‖2 + β
2 ‖u|I − w‖2L2(I)

,

which differs from the Lagrangian by the penalty terms ρ
2 ‖G(χ∗

Iu|I) − v‖2 for the

cutting planes and β
2 ‖u|I − w‖2

L2(I)
for the box constraints, but has the same saddle

points as the Lagrangian [15]. First, the augmented Lagrangian is minimized with
respect to the unfixed control variables

u|I = argmin
u|I

Lρ,β(u|I , v, w, λ, μ),

then with respect to v and w, i.e.,

v = argmin
v

Lρ,β(u|I , v, w, λ, μ),

w = argmin
w

Lρ,β(u|I , v, w, λ, μ),

and finally, the dual variables λ and μ are updated by a gradient step as follows

λ = λ + γρρ ∂λLρ,β(u|I , v, w, λ, μ),

μ = μ + γββ ∂μLρ,β(u|I , v, w, λ, μ).
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For γρ, γβ ∈ (0, 1+√
5

2 ), the convergence of ADMM is guaranteed [19], but these
parameters and the penalty parameters influence the convergence performance and
numerical stability of the algorithm. For instance, the penalty parameter β should be
chosen close toα in order to balance the Tikhonov term α

2 ‖χ∗
Iu|I+χ∗

Au|A− 1
2‖L2(0,T )

and the penalty term of the box constraints in the augmented Lagrangian. Moreover,
the best choice for γρ and γβ generally seems to be one [19].We thus use γρ = γβ = 1
in the following.

With the solution mapping S = 
 ◦ 	 + ζ , as defined in Sect. 2, the reduced
objective in (SPC′

k) reads

f (u|I ) = 1
2 ‖
	(χ∗

Iu|I + χ∗
Au|A) + ζ − yd‖2L2(Q)

+ α
2 ‖χ∗

Iu|I + χ∗
Au|A − 1

2‖2L2(0,T )

such that, by the chain rule, its Fréchet derivative at u|I ∈ L2(I) is given by

f ′(u|I) = χI	∗
∗(
	(χ∗
Iu|I + χ∗

Au|A) + ζ − yd) + α
(
u|I − 1

2

) ∈ L2(I),

wherewe identified L2(I)with its dual using theRiesz representation theorem. For the
penalty term associated with the cutting planes, the Fréchet derivative at u|I ∈ L2(I)

is

ρ χIG∗(G(χ∗
Iu|I) − v

)
.

With the above Fréchet derivatives at hand, we are able to write down the ADMM
method for (SPC′

k). Algorithm 1 shows the procedure, wherem is the iteration counter.

Algorithm 1 ADMM method for (SPC′
k)

1: Choose v0, λ0 ∈ R
� , w0, μ0 ∈ L2(I) and set m = 0

2: repeat
3: Solve the equation

(	∗
∗
	 + (α + β)I + ρ G∗G)χ∗
Iu

m+1
|I = 	∗
∗(

yd − ζ − 
	χ∗
Au|A

) − μm + β wm

− G∗(
λm − ρ vm

) + α
2 a.e. in I

4: vm+1 = min{G(χ∗
Iu

m+1
|I ) + λm

ρ , b − G(χ∗
Au|A)}

5: wm+1 = max{min{um+1
|I + μm

β
, 1}, 0}

6: λm+1 = λm + ρ
(
G(χ∗

Iu
m+1
|I ) − vm+1)

7: μm+1 = μm + β
(
um+1

|I − wm+1)

8: m = m + 1
9: until stopping criterion satisfied
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The primal and dual residuals

rmP =
(
G(χ∗

Iu
m
|I) − vm

um|I − wm

)

, rmD = ρ χIG∗(vm−1 − vm) + β(wm−1 − wm)

of the optimality conditions for (SPC′
k) can be used to bound the primal objective

sub-optimality [5], i.e., f (um|I) − f (u�). More precisely, [5] derived sub-optimality
estimates for problems inR

n basedon their primal anddual residuals, but the arguments
readily carry over to our setting. We thus have

f (um|I) − f (u�) ≤ −(rmP )�
(

λm

μm

)

+ (um|I − u�
|I , rmD )L2(I)

so that we can estimate

f (um|I) − f (u�) ≤ −(rmP )�
(

λm

μm

)

+ √
T ‖rmD‖L2(I) =: em, (6)

since um|I , u�
|I ∈ {0, 1} a.e. in I ⊂ [0, T ]. As a reasonable stopping criterion, we

choose that the primal and dual residual must be small, as well as the primal objective
sub-optimality. As tolerances for the residuals, we may use an absolute and relative
criterion, such as

‖rmP ‖ ≤ (
√
k + 1)εabs + εrel max{‖G(χ∗

Iu
m
|I)‖2 + ‖um‖L2(I), ‖vm‖2 + ‖wm‖L2(I)}

‖rmD‖ ≤ εabs + εrel‖χIG�λm + μm‖L2(I)

where εabs > 0 is an absolute tolerance, whose scale depends on the scale of the
variable values, and εrel > 0 is a relative tolerance, which might be εrel = 10−3 or
εrel = 10−4. The factor

√
k accounts for the fact that (SPC′

k) contains k cutting plane
constraints. In addition, the absolute error em in the primal objective should be less
than a chosen tolerance εpr > 0.

When the algorithm stops, we obtain f (um|I)−em as a dual bound for the subprob-
lem (SP) of the branch-and-bound algorithm, and we can either proceed by calling
the separation algorithm again, in order to generate another violated cutting plane, if
possible, or by stopping the outer approximation algorithm.When proceeding with the
cutting plane algorithm, one has to solve another parabolic optimal control problem
of the form (SPCk) with an additional cutting plane k + 1 by Algorithm 1. The perfor-
mance of the algorithm can be improved by choosing the prior solution (u, v, λ,w,μ)

as initialization in Step 1, and setting the auxiliary variable to vk+1 = b−G(χ∗
Au|A)

as well as the dual variable to λk+1 = 0 for the new cutting plane, since the latter is
violated by u for sure.
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5.2 Primal bounds

Another crucial ingredient in the branch-and-bound framework are primal heuristics,
i.e., algorithms for computing good feasible solutions of the original problem (P),
which yield tight primal bounds. It is common to call such primal heuristics in each
subproblem, where the heuristic is often guided by the optimal solution for the convex-
ified problem being solved in this subproblem for obtaining a dual bound. In our case,
we can apply problem-specific rounding strategies from the literature to the solution
of (SPC′

k) found by the ADMMmethod, e.g., the Dwell Time Sum-up Rounding and
Dwell Time Next Force Rounding algorithms [42] for the case of a minimum time
span between two switchings, and the Adaptive Maximum Dwell Rounding strategy
[35] for the case of an upper bound on the total number of switchings.

Moreover, it is often possible to efficiently optimize a linear objective function over
the set CD,�, as shown in [6]. We can benefit from this as follows. First, we define an
appropriate objective function based on the solution u of (SPC′

k). Second, we can use
the resulting minimizer v� ∈ CD,� and construct a control u′ ∈ D with �(u′) = v�.
For the first task, one can consider the distance of u to 1

2 over the intervals Ii defining the
local averaging operators of the projection � and define the i-th objective coefficient
as

∫

Ii
( 12 − u) dt = λ(Ii )(

1
2 − �(u)i ). (7)

The intuition in this definition is that a bigger objective coefficient, i.e., a smaller
average value of u on Ii , will promote a smaller entry v�

i in the minimizer v�, and
vice versa. The minimizer v� will thus agree with �(u) as much as possible while
guaranteeing v� ∈ CD,�. In fact, if CD,� is a 0/1-polytope, then the minimization
problem

min
v∈CD,�

M∑

i=1

λ(Ii ) |vi − �(u)i | (8)

can be reformulated as a linear optimization problem overCD,�, which is equivalent to
the onewith the objective coefficients given in (7).Moreover, if the intervals I1, . . . , IM
agree with the given discretization, the minimization problem (8) is equivalent to the
CIA problem addressed in [26, 34], which tracks the average of the relaxed solution
over the given temporal grid of the discretization while respecting the considered
switching constraints.

Example 5.1 For D(σ ), the set CD(σ ),� is a 0/1-polytope by [6, Thm. 3.8], and any
linear objective function can be optimized in linear time over CD(σ ),� [8]. The mini-
mizer v� can thus be guaranteed to be binary and it can be computed very efficiently,
which even allows to choose as intervals I1, . . . , IM for the projection exactly the ones
given by the currently used discretization in time. In this case, the minimizer v� solves
the CIA problem over D(σ ) and it is trivial to find a control u′ with �(u′) = v�.
Indeed, on each interval Ii , we can set u′ constantly to v�

i . ��
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Example 5.2 The setCD(s),� of the minimum dwell time constraints is not necessarily
a 0/1-polytope, but one can optimize over CD(s),� in O(Mσ) time, and, by back-
tracking, one can reconstruct the corresponding solution u′ ∈ D(s) in O(Mσ) time;
see [6, Thm. 3.13]. ��

The implicit fixings of the control in a subproblem of the branch-and-bound algorithm
can also be considered explicitly in the optimization over CD,� by setting the corre-
sponding objective coefficients in (7) to∞ and−∞, respectively. More precisely, one
may use sufficiently large/small objective coefficients in this case.

In the above examples, a feasible control u ∈ D can be computed quickly. Never-
theless, in order to obtain the corresponding primal bound, one needs to first calculate
the resulting state y = S(u) and then to evaluate the objective function.

6 Discretization error and adaptive refinement

The dual bounds computed by the outer approximation algorithm described in the
previous section are safe bounds for (SPCk), as long as we do not take discretization
errors into account. However, our objective is to solve (P) in function space. This
implies that we need to (a) estimate the discretization error contained in these bounds
and (b) devise amethod to deal with situationswhere the discretization-dependent dual
bound allows to prune a subproblem but the discretization-independent dual bound
does not, i.e., where the current primal bound lies between the two dual bounds. In
the latter case, the only way out is the refinement of the discretization.

In order to address the first task, we will estimate the a posteriori error of the
discretization with respect to the cost functional. We use the dual weighted resid-
ual (DWR) method, which has already achieved good results in practice, and combine
the results from [29] and [39] to obtain an error analysis for the suproblems (SPCk ) aris-
ing in our branch-and-bound tree. First, we describe the finite element discretization
of the optimal control problems arising in the branch-and-bound algorithm (Sect. 6.1).
Then we discuss how to compute safe dual bounds (Sect. 6.2) as well as safe primal
bounds (Sect. 6.3). Finally, we describe our adaptive refinement strategy (Sect. 6.4).

6.1 Finite element discretization

To solve problems of the form (SPCk) in practice, we need to discretize the PDE
constraint given as

〈∂t y, ϕ〉L2(0,T ;H−1(�)),L2(0,T ;H1
0 (�)) + (∇ y,∇ϕ)L2(0,T ;L2(�)) + (y(0), ϕ(0))L2(�)

= (	(u), ϕ)L2(0,T ;L2(�)) + (y0, ϕ(0))L2(�) ∀ϕ ∈ W (0, T ) (9)

in its weak formulation, as well as the control function, so that we implicitly discretize
the Lagrangian L : W (0, T ) × L2(0, T ) × W (0, T ) × L2(0, T ) × L2(0, T ) × R

k

corresponding to (SPCk) given as
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L(y, u, p, μ+, μ−, λ) = J (y, u) − 〈∂t y, ϕ〉L2(0,T ;H−1(�)),L2(0,T ;H1
0 (�))

− (∇ y,∇ p)L2(0,T ;L2(�))

− (y(0) − y0, p(0))L2(�) + (	(u), p)L2(0,T ;L2(�))

+ (μ+, u − 1)L2(0,T ) − (μ−, u)L2(0,T ) + λ�(Gu − b).

By calculating the derivative of L w.r.t. y in arbitrary direction ϕ ∈ W (0, T ), as well as
applying interval-wise integration by parts to the equation, we get the adjoint equation

−〈y, ∂t p〉L2(0,T ;H1
0 (�)),L2(0,T ;H−1(�))+(∇ϕ,∇ p)L2(0,T ;L2(�))+(ϕ(T ), p(T ))L2(�)

= (ϕ, y − yd)L2(0,T ;L2(�)) ∀ϕ ∈ W (0, T ).

(10)

We use a discontinuous Galerkin element method for the time discretization of the
PDE constraint with piecewise constant functions. Let

J̄ = {0} ∪ J1 ∪ · · · ∪ JL−1 ∪ JL

be a partition of [0, T ] with half open subintervals Jl = (tl−1, tl ] of size sl = tl − tl−1
with time points 0 = t0 < t1 < · · · < tL−1 < tL = T . Define s := maxl=1,...,N sl as
themaximal length of a subinterval. The spatial discretization of the state equation uses
a standard Galerkin method with piecewise linear and continuous functions, where the
domain� is partitioned into disjoint subsets Ki of diameter hi := maxp,q∈Ki ‖p−q‖2
for i = 1, . . . , R, i.e., � = ∪R

i=1Ki . For the one-dimensional domain � used in our
experiments in Sect. 7, this means that we subdivide � into R disjoint intervals of
length hi . Set h := maxi=1,...,R hi and Kh = K1 ∪ · · · ∪ KR . We define the finite
element space

Vh := {v ∈ C(�̄) ∩ H1
0 (�) : v|K ∈ P1(K ), K ∈ Kh}

and associate with each time point tl a partition Kl
h of � and a corresponding finite

element space V l
h ⊂ H1

0 (�) which is used as spatial trial and test space in the time
interval Jl . Denote by P0(Jl , V l

h) the space of constant functions on Jl with values in
V l
h . Then we use as a trial and test space for the state equation in (P) the space

Xs,h = {vsh ∈ L2(I , L2(�)) : vsh |Jl ∈ P0(Jl , V
l
h), l = 1, . . . , L}.

By introducing the notation

y+
sh,l = lim

t↘0
ysh(tl + t),

y−
sh,l = lim

t↘0
ysh(tl − t) = ysh(tl), and

[ysh]l := y+
sh,l − y−

sh,l
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for the discontinuities of functions ysh ∈ Xsh in time, we obtain the following fully
discretized state equation: Find for a given ush ∈ L2(0, T ) a state ysh ∈ Xs,h such
that

L∑

l=1

〈∂t ysh, ϕ〉Jl +
L∑

l=1

(∇ ysh,∇ϕ)Jl +
L−1∑

l=1

([ysh]l , ϕ+
l ) + (y+

sh,0, ϕ
+
0 )

=
L∑

l=1

(	(ush), ϕ)Jl + (y0, ϕ
+
0 ) ∀ϕ ∈ Xs,h,

(11)

where 〈·, ·〉Jl := 〈·, ·〉L2(Jl ;H−1(�)),L2(Jl ;H1
0 (�)), (·, ·)Jl := (·, ·)L2(Jl ;�), and (·, ·) :=

(·, ·)L2(�). Note that, for piecewise constant states ysh ∈ Xs,h , the term 〈∂t ysh, ϕ〉Jl
in (11) is zero for all l = 1, . . . , L . We denote the discrete solution operator by
Ssh : L2(0, T ) → Xs,h , i.e., ysh = Ssh(ush) satisfies the discrete state equation (11)
for ush ∈ L2(0, T ). Finally, we use piecewise constant functions for the temporal
discretization of the control function on the same temporal grid as for the state equation,
i.e., we use the space

Qρ = {w ∈ L2(0, T ) : w|Jl = wl for all l = 1, . . . , L}.

Altogether, the discretization of (SPCk) is given as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min J (yρ, uρ)

s.t.

L∑

l=1

〈∂t yρ,ϕ〉Jl +
L∑

l=1

(∇ yρ,∇ϕ)Jl +
L−1∑

l=1

([yρ]l , ϕ+
l )

=
L∑

l=1

(	(uρ), ϕ)Jl + (y0 − y+
ρ,0, ϕ

+
0 ) ∀ϕ ∈ Xs,h ,

0 ≤ uρ |Jl ≤ 1 a.e. in Jl for all l = 1, . . . , L ,

Guρ ≤ b in R
k .

(SPCkρ)

Moreover, the Lagrangian L̃ : Xs,h × Qρ × Xs,h × Qρ × Qρ × R
k → R associated

with (SPCkρ) results as

L̃(yρ, uρ, pρ, μ+
ρ , μ−

ρ , λρ)

= J (yρ, uρ) −
L∑

l=1

〈∂t yρ, pρ〉Jl −
L∑

l=1

(∇ yρ, ∇ pρ)Jl

−
L−1∑

l=1

([yρ ]l , p+
ρ,l ) − (y+

ρ,0 − y0, p
+
ρ,0) +

L∑

l=1

(	(uρ), pρ)Jl

+
L∑

l=1

λ(Jl )(μ
+
ρ |Jl )�(uρ |Jl − 1) −

L∑

l=1

λ(Jl )(μ
−
ρ |Jl )�uρ |Jl + λ�

ρ (Guρ − b).
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Based on this, we will devise a posteriori error estimates for both primal and dual
bounds in the next sections.

6.2 A posteriori discretization error of dual bounds

Following the ideas of [29, 39], we now derive an a posteriori estimate for the error
term J (y, u) − J (yρ, uρ), where (y, u) ∈ W (0, T ) × L2(0, T ) denotes the optimizer
of (SPCk) and (yρ, uρ) ∈ Xs,h×Qρ the one of (SPCkρ). For this, let us write down the
first-order optimality conditions of (SPCk) and (SPCkρ) by means of the Lagrangian
L and L̃ , respectively. If (y, u) ∈ W (0, T ) × L2(0, T ) is optimal for (SPCk), then
there exist multipliers p ∈ W (0, T ), μ+ ∈ L2(0, T ), μ− ∈ L2(0, T ) and λ ∈ R

k

such that for χ := (y, u, p, μ+, μ−, λ), we have

L ′(χ)(δy, δu, δ p) = 0 ∀(δy, δu, δ p) ∈ W (0, T ) × L2(0, T ) × W (0, T )

(12a)

μ+ ≥ 0, μ+(u − 1) = 0, u ≤ 1 a.e. in (0, T ) (12b)

μ− ≥ 0, μ−u = 0, u ≥ 0 a.e. in (0, T ) (12c)

λ ≥ 0, λ�(Gu − b) = 0, Gu ≤ b (12d)

Analogously, if (yρ, uρ) ∈ Xs,h × Qρ is optimal for (SPCkρ), then there exist pρ ∈
Xs,h ,μ+

ρ ∈ Qρ ,μ−
ρ ∈ Qρ and λρ ∈ R

k such that for χρ := (yρ, uρ, pρ, μ+
ρ , μ−

ρ , λρ)

we have

L̃ ′(χρ)(δy, δu, δ p) = 0 ∀(δy, δu, δ p) ∈ Xs,h × Qρ × Xs,h (13a)

μ+
ρ |Jl ≥ 0, μ+

ρ |Jl (uρ |Jl − 1) = 0, uρ |Jl ≤ 1 ∀l = 1, . . . , L (13b)

μ−
ρ |Jl ≥ 0, μ−

ρ |Jl uρ |Jl = 0, uρ |Jl ≥ 0 ∀l = 1, . . . , L (13c)

λρ ≥ 0, λ�
ρ (Guρ − b) = 0, Guρ ≤ b (13d)

Using the shorthand notation

Y = W (0, T ) × L2(0, T ) × W (0, T ) × L2(0, T ) × L2(0, T ) × R
k and

Yρ = Xs,h × Qρ × Xs,h × Qρ × Qρ × R
k,

we have everything at hand to combine the results from [29] and [39] to obtain the
following a posteriori discretization error estimation.

Theorem 6.1 Let χ = (y, u, p, μ+, μ−, λ) ∈ Y fulfill the first-order necessary opti-
mality conditions (12a)–(12d) for (SPCk) and χρ = (yρ, uρ, pρ, μ+

ρ , μ−
ρ , λρ) ∈ Yρ

the first-order necessary optimality conditions (13a)–(13d) for the discretized prob-
lem (SPCkρ). Then
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J (y, u) − J (yρ, uρ) = 1
2 L̃

′(χ)(χ − χρ) + 1
2 L̃

′(χρ)(χ − χρ)

= 1
2

(
L̃ ′
y(χρ)(y − yρ) + L̃ ′

p(χρ)(p − pρ) + L̃ ′
u(χρ)(u − uρ)

+ L̃ ′
μ+(χ)(μ+ − μ+

ρ ) + L̃ ′
μ−(χ)(μ− − μ−

ρ ) + L̃ ′
λ(χ)(λ − λρ)

+ L̃ ′
μ+(χρ)(μ+ − μ+

ρ ) + L̃ ′
μ−(χρ)(μ− − μ−

ρ ) + L̃ ′
λ(χρ)(λ − λρ)

)
.

Proof The main arguments of the following proof are taken from the proofs of [29,
Thm. 4.1] and [39, Thm. 4.2]. From the first-order optimality system (12a)–(12d) of
χ ∈ Y for (SPCk) we obtain J (y, u) = L(χ). Analogously, the first-order condi-
tions (13a)–(13d) of χρ ∈ Yρ for (SPCkρ) lead to J (yρ, uρ) = L̃(χρ). Moreover, it
holds L(χ) = L̃(χ) since the continuous embedding W (0, T ) ↪→ C([0, T ]; L2(�))

[41, Prop. 23.23] guarantees y ∈ W (0, T ) to be continuous in time such that the
additional jump terms in L̃ compared to L vanish. We thus obtain

J (y, u) − J (yρ, uρ) = L̃(χ) − L̃(χρ) =
∫ 1

0
L̃ ′(χρ + s(χ − χρ))(χ − χρ) ds.

Evaluation of the integral by the trapezoidal rule leads to

L̃(χ) − L̃(χρ) = 1
2 L̃

′(χ)(χ − χρ) + 1
2 L̃

′(χρ)(χ − χρ) + R (14)

with the residual

R = 1
2

∫ 1

0
L̃ ′′′(χ + ζ(χ − χρ))(χ − χρ, χ − χρ, χ − χρ)ζ(ζ − 1) dζ.

Since the PDE contained in (SPCk) as well as the control constraints in u are linear,
and the objective is quadratic in y and u, respectively, we have R = 0.

We now have a closer look at the different error terms arising in (14). First, we have

L̃ ′(χ)(χ − χρ) = L̃ ′
μ+(χ)(μ+ − μ+

ρ ) + L̃ ′
μ−(χ)(μ− − μ−

ρ ) + L̃ ′
λ(χ)(λ − λρ),

because the other terms are zero thanks to the condition (12a), which can be seen as fol-
lows: since y ∈ W (0, T ) is continuous in time due to W (0, T ) ↪→ C([0, T ]; L2(�))

by [41, Prop. 23.23], the additional terms in L̃ ′
y compared to L ′

y and L̃ ′
p compared

to L ′
p, respectively, vanish, so that (12a) immediately yields L̃ ′

y(χ)(y) = 0 and

L̃ ′
p(χ)(p) = 0. Moreover, the continuity of y in time implies that L̃ ′

p(χ)(pρ) = 0
can equivalently be expressed as

L∑

l=1

〈∂t y, pρ〉Jl +
L∑

l=1

(∇ y,∇ pρ)Jl + (y+
0 , p+

ρ,0) =
L∑

l=1

(	(u), pρ)Jl + (y0, p
+
ρ,0).
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For the continuous state y, the state equation (9) implies that (ϕ, y(0)) = (ϕ, y0) holds
for all ϕ ∈ L2(�), so that the term (y+

0 , p+
ρ,0) containing y(0) = y+

0 cancels out with

(y0, p
+
ρ,0), as p+

ρ,0 ∈ L2(�), and it remains to ensure

〈∂t y, pρ〉L2(0,T ;H−1(�)),L2(Jl ;H1
0 (�))

+ (∇ y,∇ pρ)L2(0,T ;L2(�)) = (	(u), pρ)L2(0,T ;L2(�)).

Again from the continuous state equation (9), the latter equation is satisfied by y such
that we obtain L̃ ′

p(χ)(pρ) = 0, as desired. It remains to prove L̃ ′
y(χ)(yρ) = 0. To this

end, note that p ∈ W (0, T ) is continuous with respect to time by [41, Prop. 23.23], so
that we can rewrite L̃ ′

y(χ)(yρ) = 0 after interval-wise integration by parts inW (0, T )

[17] as

−
L∑

l=1

〈∂t p, yρ〉Jl +
L∑

l=1

(∇ yρ,∇ p)Jl + (y−
ρ,L , p−

L ) =
L∑

l=1

(yρ, y − yd)Jl .

Using p−
L = p(T ) = 0 for the adjoint p ∈ W (0, T ), the above equation becomes

−
L∑

l=1

〈∂t p, yρ〉Jl +
L∑

l=1

(∇ yρ,∇ p)Jl =
L∑

l=1

(yρ, y − yd)Jl .

By the adjoint equation (10) and the density ofW (0, T ) in L2(0, T ; H1
0 (�)), the equa-

tion is satisfied by yρ ∈ L2(0, T ; H1
0 (�)). We thus get L̃ ′

y(χ)(yρ) = 0. Finally, (12a)

directly yields L̃ ′
u(χ)(u − uρ) = 0 because of (u − uρ) ∈ L2(0, T ). The second term

in (14) is given as

L̃ ′(χρ)(χ − χρ) = L̃ ′
y(χρ)(y − yρ) + L̃ ′

p(χρ)(p − pρ) + L̃ ′
u(χρ)(u − uρ)

+ L̃ ′
μ+ (χρ)(μ+ − μ+

ρ ) + L̃ ′
μ−(χρ)(μ− − μ−

ρ ) + L̃ ′
λ(χρ)(λ − λρ),

which completes the proof. ��
Weneed to further specify the estimation of the a posteriori error given in Theorem 6.1,
since it contains the unknown solution χ ∈ Y . A common approach in the context
of the DWR method is to use higher-order approximations, which work satisfacto-
rily in practice; see, e.g., [3]. Since our control function can only vary over time and
the novelty of our approach lies primarily in the determination of the finitely many
switching points, we assume for simplicity that there is no error caused by the spatial
discretization of the state equation to keep the discussion concise. Thus, we only use
a higher-order interpolation in time. For that, we introduce the piecewise linear inter-
polation operator I (1)

s in time and map the computed solutions to the approximations
of the interpolation errors

y − yρ ≈ I (1)
s yρ − yρ and p − pρ ≈ I (1)

s pρ − pρ.
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Then we obtain the approximations

L̃ ′
y(χρ)(y − yρ) ≈ L̃ ′

y(χρ)(I (1)
s yρ − yρ),

L̃ ′
p(χρ)(p − pρ) ≈ L̃ ′

p(χρ)(I (1)
s pρ − pρ).

Since the space of the Lagrange multiplier λ of the cutting planes is finite-dimensional
and thus not implicitly discretized by the discretization of the control space, we may
choose λρ as higher-order interpolating and consequently neglect the error terms in λ,
i.e.,

L̃ ′
λ(χ)(λ − λρ) + L̃ ′

λ(χρ)(λ − λρ) ≈ 0.

Finally, asmentioned in [39], the controlu typically does not possess sufficient smooth-
ness, due to the box and cutting plane constraints. We thus suggest, as in [39], based
on the gradient equation

L ′
u(χ) = α(u − 1

2 ) + 	� p + μ+ − μ− + G�λ = 0

and the resulting projection formula

u = min{max{− 1
α
(	� p + G�λ) + 1

2 , 0}, 1},

the choice of

ũ = min{max{− 1
α
(	� I (1)

s pρ + G�λρ) + 1
2 , 0}, 1}

and

μ̃ = −α(ũ − 1
2 ) − 	� I (1)

s pρ − G�λρ =: μ̃+ − μ̃−

with μ̃+, μ̃− ≥ 0 a.e. on (0, T ). The computable error estimate is thus given as

η := J (y, u) − J (yρ, uρ)

≈ 1
2

[
L̃ ′
y(χρ)(I (1)

s yρ − yρ) + L̃ ′
p(χρ)(I (1)

s pρ − pρ) + L̃ ′
u(χρ)(ũ − uρ)

+ L̃ ′
μ+(χ̃)(μ̃+ − μ+

ρ ) + L̃ ′
μ−(χ̃)(μ̃− − μ−

ρ )

+ L̃ ′
μ+(χρ)(μ̃+ − μ+

ρ ) + L̃ ′
μ−(χρ)(μ̃− − μ−

ρ )
]

(Eη)

with χ̃ = (I (1)
s yρ, ũ, I (1)

s pρ, μ̃+, μ̃−, λρ).
As in [29], one could split the error J (y, u) − J (yρ, uρ) into (a) the error caused

by the semi-discretization of the state equation in time, (b) the error caused by the
additional spatial discretization of the state equation, which wewould consider as zero
again, and (c) the error caused by the control space discretization. This would allow
to choose different time grids for the state equation and the control space, where the
former has to be at least as fine as the latter [29]. Since we are mostly interested in the
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combinatorial switching constraints, so that our focus is on the controls, we decided
not to split the error and thus not to consider a finer temporal grid for the state.

As discussed in Sect. 3, the given fixings may determine parts of the switching
pattern of u in (SPCk). In this case, we need to calculate the a posteriori error (Eη) only
on the unfixed control variables u|I , as well as on the Lagrange multipliers μ+, μ− ∈
L2(I) corresponding to the box constraints, since we explicitly eliminated the fixed
control variables from the problem (SPCk). Then, it is clear that the terms L̃ ′

u(χρ)(ũ−
uρ), L̃ ′

μ+(χ̃)(μ̃+−μ+
ρ ), L̃ ′

μ−(χ̃)(μ̃−−μ−
ρ ), L̃ ′

μ+(χρ)(μ̃+−μ+
ρ ), and L̃ ′

μ−(χρ)(μ̃−−
μ−

ρ ) in the error estimator (Eη) tend to zero for an increasing number of fixings
satisfying the assumptions of Theorem 3.1, since the non-fixed part of the time horizon
vanishes in this case. On the other hand, the error terms L̃ ′

y(χρ)(I (1)
s yρ − yρ) and

L̃ ′
p(χρ)(I (1)

s pρ − pρ) reflect the error J (Suρ, uρ) − J (yρ, uρ) in the cost functional
caused by calculating the discretized state yρ = Ssh(uρ) rather than Suρ . This error
is also taken into account in the primal bounds throughout our branch-and-bound
scheme; see Sect. 6.3 below.

In summary, in order to numerically compute a safe dual bound for the subprob-
lem (SP), we first calculate a solution uρ of the fully discretized problem (SPCkρ) with
objective value J (yρ, uρ) by means of the ADMM method, as described in Sect. 5.1.
Second, we use J (yρ, uρ)− e+η as a dual bound, where e denotes the absolute error
in the primal objective caused by the ADMM algorithm, see (6), and η the a posteriori
error of the discretization of (SPCk); compare (Eη).

6.3 A posteriori discretization error of primal bounds

Every feasible solutionu ∈ D, e.g., obtainedby applyingprimal heuristics as described
in Sect. 5.2, leads to a primal bound J (Su, u) for the original problem (P). However,
this bound is again subject to discretization errors. To estimate the latter, we first need
to solve the fully discretized equation (11) to get a state ysh = Ssh(u) and then to
estimate the a posteriori error ν := J (Su, u) − J (Sshu, u) in the cost functional.
For the latter, we can again use the DWR method, which was originally invented to
estimate the error in the cost function caused by the discretization of the state equation,
see, e.g., [3]. We may directly apply [3, Prop. 2.4] to get the approximation

ν ≈ py(ysh , u, psh)(p − psh) := −
L∑

l=1

(∇ ysh , p − psh)Jl −
L−1∑

l=1

([ysh]l , p+
l − p+

sh,l )

− (y+
sh,0 − y0, p

+
0 − p+

sh,0) +
L∑

l=1

(	(u), p − psh)Jl ,

with 〈∂t ysh, psh〉Jl = 0 for l = 1, . . . , L , where p = S∗(y) and psh = S∗
sh(ysh)

denotes the adjoint corresponding to the state y = S(u) and ysh = Ssh(u), respectively.
Assuming again that there is no error caused by the spatial discretization, we may use
the piecewise linear interpolation I (1)

s psh of psh in time to obtain the computable a
posteriori error
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ν ≈ py(ysh, u, psh)(I
(1)
s psh − psh).

Then J (Sshu, u) + ν is a safe primal bound for (P).

6.4 Adaptive refinement strategy

The central feature of our branch-and-bound algorithm is the approximate computa-
tion of an optimal solution for (P) in function space. In the limit, this solution does not
depend on any predetermined discretization of the time horizon. However, in practice,
we need to discretize our subproblems (SP) in order to numerically compute dual
bounds, as described in Sect. 6.2. The main idea of our approach is to use a coarse
temporal grid at the beginning, when the branchings have not yet determined a sig-
nificant part of the switching structure, and then to refine the subintervals (only) if
necessary.

More specifically, as long as the time-mesh dependent dual bound J (yρ, uρ) − e
for (SP) is below the best known primal bound, we proceed with the given discretiza-
tion. Otherwise, we cannot find a better solution for (SP) for the given discretization.
We then must decide whether better solutions for (SP) may potentially exist when
using a finer temporal grid. This is the case if and only if the time-mesh independent
bound J (yρ, uρ) − e + η is still below the primal bound PB. We thus have to refine
the grid whenever

J (yρ, uρ) − e + η ≤ PB < J (yρ, uρ) − e.

If even J (yρ, uρ) − e + η exceeds the primal bound, we can prune the subproblem.
Indeed, in this case we cannot find better solutions for the subproblem even in function
space.

The adaptive refinement of the temporal grid is guided by the a posteriori error
estimation of the discretization proposed in Sect. 6.2. The error estimator (Eη) can be
easily split into its contribution on each subinterval Jl , i.e.,

η =
L∑

l=1

ηl ,

with the local error contributions ηl on Jl for l = 1, . . . , L. Note that this splitting
is directly possible since we assumed that there is no error caused by the spatial
discretization of the state equation, and thus no further localization on each spatial
mesh is needed. A popular strategy for mesh adaptation is to order the subintervals
according to the absolute values of their error indicators in descending order, i.e., to
find a permutation � of {1, . . . , L} such that |η�(1)| ≥ · · · ≥ |η�(L)|, and then to refine
the subintervals which make up a certain percentage γ > 0 of the total absolute error,
i.e., the subintervals J�(1), . . . , J�(Lγ ) with
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Lγ := min
{
j ∈ {1, . . . , L} :

j∑

l=1

|η�(l)| > γ

L∑

l=1

|ηl |
}
.

The resulting subproblem (SPCkρ) with respect to the refined discretization again
has to be solved by Algorithm 1. As a reoptimization strategy, the values of the prior
discretized solution (uρ, vρ, λρ,wρ, μρ) returned by Algorithm 1 can be used to
initialize the variables in Step 1. More precisely, the values of (uρ,wρ, μρ) can be
duplicated according to the refinement of the subintervals and (vρ, λρ) can be kept
unchanged. In this way, we produce a primal feasible solution (uρ, vρ,wρ) for the
new subproblem (SPCkρ), but note that (λρ, μρ) is not feasible for the corresponding
dual problem.

7 Numerical experiments

We now report the results of an extensive numerical evaluation of our branch-and-
bound algorithm presented in the previous sections. The overall branch-and-bound
method has been implemented in C++, using the DUNE-library [36] for the dis-
cretization of the PDE. The source code can be downloaded at https://github.com/
agruetering/dune-bnb. For all experiments, we discretize the problems as described in
Sect. 6.1. This means that the spatial discretization uses a standard Galerkin method
with continuous and piecewise linear functionals, while the temporal discretization
for the control, the state, and the desired state yd uses piecewise constant functionals
in time. The spatial integrals in the weak formulation of the state equation (9) and the
adjoint equation (10), respectively, are approximated by a Gauss-Legendre rule with
order 3. This means that all spatial integrals except for the one containing the form
function ϕ are calculated exactly. The discretized systems, arising from the discretiza-
tion of the state and adjoint equation, are solved by a sequential conjugate gradient
solver preconditioned with AMG smoothed by SSOR. All computations have been
performed on a 64bit Linux system with an Intel Xeon E5-2640 CPU@ 2.5 GHz and
32 GB RAM.

7.1 Algorithmic framework

We start the branch-and-bound algorithm with an equidistant time grid with 20 nodes
and, if necessary,we refine the subintervals that account for γ = 50%of the total error;
see Sect. 6.4. The choice of the time point τ for the branching is crucial for the practical
performance of the algorithm, since the implicit restrictions on the controls are highly
influenced by the branching points; seeExample 3.3 andExample 3.4. Thus, the quality
of the dual bounds of each node in the branch-and-bound tree strongly depends on
the branching decisions. As already mentioned in Sect. 3, it is natural to take the last
computed relaxed control of the outer approximation algorithm into account, which
we know up to a discretization of (0, T ); see Sect. 6.1. As a branching point, we choose
the point of the time grid where the control has the highest deviation from 0/1, i.e.,
where the distance to {0, 1} multiplied by the length of the corresponding grid cell
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is maximal. This branching strategy corresponds to the choice of the variable with
the most fractional value in finite-dimensional integer optimization. Finally, we use
breadth-first search as an enumeration strategy since our computed primal bounds track
the average of the relaxed solution over the given temporal grid of the discretization,
i.e., solve the CIA problem over D(σ ); compare Example 5.1. In depth-first search,
the shape of the computed relaxed controls for the subproblems hardly changed, so
that our primal heuristic always produced the same feasible solution and good primal
bounds were found late. As a result, many nodes had to be examined before pruning.
This effect is avoided by breadth-first search.

The results presented in [7] suggest to add only a few cutting planes before resorting
to branching, because a significant increase in the dual bound was mostly obtained
in the first cutting plane iterations. Moreover, we observed that the dual bounds got
better with a decreasing Tikhonov parameter α, but the time needed to compute them
increased with decreasing α. Thus, we investigate in Sect. 7.3 whether a good quality
or a quick computation of the dual bounds have a greater influence on the overall
performance.

The parabolic optimal control problems arising in each iteration of the outer approx-
imation algorithm are solved by the ADMM algorithm; see Algorithm 1 in Sect. 5.1.
As tolerances for the primal and dual residuals in the ADMM algorithm, we chose
εrel = εabs = 10−3 and required the absolute error of the discretization of (SPC′

k) to
be less than εpr = 10−5. In order to guarantee the numerical stability of the ADMM

algorithm, the penalty parameter of the cutting planes was set to ρ = 1+√
5

2 . The best
choice of the penalty term β of the box constraints depending on the Tikhonov term
α is investigated in Sect. 7.3. The resulting linear system in Step 3 of Algorithm 1 is
solved by the conjugate gradient method, preconditioned with P = (α+β)I +ρG�G.

7.2 Instances

In all experiments, we focus on the case of an upper bound σ on the number of
switchings, i.e., we consider the feasible set

D(σ ) = {
u ∈ BV (0, T ) : u(t) ∈ {0, 1} f.a.a. t ∈ (0, T ), |u|BV (0,T ) ≤ σ

}

as defined in Sect. 2.3. However, we assume that u is fixed to zero before the time
horizon, so that we already count it as one switching if u is 1 at the beginning. Notwith-
standing this slight modification, the most violated cutting plane for a given vector
v /∈ CD(σ ) SP,� can be computed in O(M+N ) time as discussed in Sect. 4.1, using the
separation algorithm presented in [8]. This separation algorithm is thus fast enough
to allow to choose the intervals for the projection exactly as the intervals given by the
discretization in time; compare Sect. 6.1.

We created instances of (P) with� = (0, 1), T = 1, andψ(x) = exp(x) sin(π x)+
0.5. In order to obtain challenging instances, we produced the desired state yd
as follows: we first generated a control ud : [0, T ] → {0, 1} with a total varia-
tion |ud|BV (0,T ) = θ and chose the desired state ydasS(ud), such that ud is the optimal
solution for Problem (P) if we allow θ switchings. More specifically, we randomly
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Table 1 Influence of the Tikhonov parameter α and the penalty term β of the box constraints on the
branch-and-bound algorithm

α β Subs Cuts ADMM ∅ FixPoints ∅ FixIndices (%) Time

0.01 0.01 3309 6610 23,489 16.07 91.65 41.91

0.005 3253 6519 19,907 15.83 91.56 35.59

0.001 2948 5905 18,889 16.52 91.25 30.84

0.005 0.01 1961 4187 17727 15.51 89.37 26.99

0.005 1839 3896 13,588 15.06 87.45 18.33

0.001 1764 3882 17,582 16.16 87.27 21.17

0.001 0.01 1784 5076 20283 17.65 87.13 22.52

0.005 1066 3400 9999 14.25 81.60 10.05

0.001 1147 3426 13,779 13.63 81.65 13.22

chose θ jump points 0 < t1 < · · · < tθ < T on the equidistant time grid with 320
nodes. Then, we chose ud : [0, T ] → {0, 1} as the binary control starting in zero and
having the switching points t1, . . . , tθ . In this way, we generated non-trivial instances,
where the constraint D(σ ) strongly affects the optimal solution of (P) in case σ " θ .

7.3 Parameter tuning

Before testing the potential of our approach, we investigate the influence of some
parameters on the overall performance. We first consider the Tikhonov term α and
the penalty term β of the box constraints; see Sect. 5.1. Afterwards, we investigate
how time-consuming it is to solve the subproblems arising in the branch-and-bound
algorithm, depending on when we stop the outer approximation algorithm for each
subproblem (SP). Here, we resort to branching if the relative change of the bound is
less than a certain percentage (RED) in three successive iterations. Finally, we vary the
allowed relative deviation (TOL) of the objective value of the returned solution from
the optimal value of (P); a subproblem in the branch-and-bound node is pruned when
the remaining gap between primal and dual bound falls below this relative threshold.
We start with RED=TOL=1%.

For all results presented in this subsection, we have chosen the same instance with
θ = 8 jump points and allowed σ = 3 switchings, since we observed the typical
behavior of the algorithm with these settings. We always report the overall number
of investigated subproblems (Subs), of cutting plane iterations (Cuts), and of ADMM
iterations (ADMM). Moreover, the average number of fixings (∅ FixPoints) and the
average percentage of control variables that are implicitly fixed (∅ FixIndices) are
reported, where both averages are taken over all pruned subproblems. We also provide
the overall run time (Time) in CPU hours.

The results for different values of α and β can be found in Table 1. The main
message of Table 1 is that a small value of α is generally favorable for the branch-
and-bound algorithm, since a smaller value of α leads to stronger dual bounds and
consequently, fewer fixings are needed on average to prune a subproblem. So, as long
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Table 2 Impact of the ratio between branching and cutting plane iterations on the branch-and-bound algo-
rithm

RED (%) Subs Cuts ADMM ∅ FixPoints ∅ FixIndices (%) Time

10 1816 3610 11872 15.43 88.47 17.05

5 1821 3647 11750 15.39 88.99 16.87

2 1670 3443 11940 14.31 87.91 16.86

1 1839 3896 13588 15.06 87.45 18.33

0.5 1857 4107 14592 15.00 87.44 29.25

as no numerical issues arise with the ADMM algorithm and the DWR error estimator,
one should choose α = 0.001. But, with smaller value of α it becomes more likely
that the higher-order approximation of the unknown quantities (see Sect. 6.3) is too
imprecise to estimate the error in the cost functional, so that the branch-and-bound
algorithm returns wrong solutions. This was also observed in our experiments: in
many instances, the obtained solutions for α ∈ {0.01, 0.005} switched three times
and had very similar switching times for all values of β. In contrast, the obtained
solutions for α = 0.001 frequently switched only twice and differed enormously
from the others. By recalculating the objective on such a fine grid that all returned
solutions are piecewise constant on it, it turned out that the solutions obtained for
α ∈ {0.01, 0.005} were indeed better than the ones for α = 0.001. Moreover, the
primal heuristic even produced some of the better solutions within the branch-and-
bound scheme for α = 0.001, but due to the DWR error estimator, their time-mesh
independent objective values were worse. For that reason, we choose α = β = 0.005
in all subsequent experiments.

We next investigate the interplay between branching and outer approximation.
Table 2 demonstrates that a good balance is important: a stronger focus on the outer
approximation leads to fewer branching decisions needed to cut off a subproblem.
However, this does not necessarily imply that fewer fixings are needed to prune a
subproblem, since the branching points strongly depend on the shape of the relaxed
solutions.Moreover, it is more time-consuming to solve each node due to the increased
number of cutting plane iterations. On the other hand, it is also not beneficial to resort
to branching too early because more subproblems need to be investigated then. We
thus use RED = 2% in the following.

Finally, the impact of the relative allowed deviation from the optimal objective
value on the performance of the branch-and-bound algorithm is shown in Table 3.
As expected, a higher tolerance leads to an earlier pruning of the subproblems, as
indicated by the number of fixings required to prune a subproblem, and the running
time decreases significantly. At the same time, however, the best known primal bound
(Obj) found by the algorithm obviously increases, so that ultimately the user has to
decide which deviation is still acceptable. We choose TOL = 2% in the following,
which we think is a reasonable optimality tolerance.
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Table 3 Influence of the relative allowed deviation (TOL) from the optimum on the branch-and-bound
algorithm

TOL (%) Subs Cuts ADMM ∅ FixPoints ∅ FixIndices (%) Obj Time

5 433 1123 6286 9.55 73.29 0.137512 5.53

2 860 1953 8644 11.66 81.62 0.135436 8.18

1 1670 3443 11,940 14.31 87.91 0.135326 16.86

0.5 3456 7437 18,145 17.79 93.09 0.135214 50.65

Fig. 2 Complete branch-and-bound tree of an instance generated with θ = 3 jump points and with σ = 1
allowed switchings. The path of the optimal solution is marked in bold and the branching decisions along
the optimal path are listed. In the case of a single child node, the temporal discretization of the subproblem
has been refined

7.4 Performance of the algorithm

Before reporting running times and other key performance indicators of our algorithm,
we first illustrate the interplay between branching and adaptive refinement by an
example. Figure2 shows the complete branch-and-bound tree obtained for an instance
with θ = 3 jump points and only one allowed switching, i.e., σ = 1. Whenever a
node has a single child node in the illustration, the discretization of the subproblem
has been refined. The branch-and-bound tree shows that a large part of the generated
subproblems can already be pruned without any refinement. Moreover, in relatively
few branches the subproblems need to be refined multiple times in order to decide
whether a solution of desired quality can be found in these branches. The branching
decisions taken along the path leading to the returned solution illustrate that, e.g.,
the generated subproblem 16 was refined in order to choose the sixth fixing point
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Table 4 Performance of the branch-and-bound algorithm for instances generated with θ switching points,
allowing σ switchings

σ 1 2
θ Subs Cuts Time Refine Ratio (%) Subs Cuts Time Refine Ratio (%)

1 27.6 51.4 0.10 3.6 7.89

2 33.2 71.8 0.23 4.8 9.27 157.6 292.0 0.74 6.6 3.59

3 32.4 69.6 0.22 3.8 5.53 132.2 274.2 1.04 4.4 9.14

4 29.0 65.2 0.22 4.0 30.75 167.2 326.0 1.02 6.8 4.45

5 36.4 79.2 0.20 4.2 8.58 147.6 319.4 1.04 4.6 6.46

6 18.6 49.0 0.19 1.0 64.04 202.6 410.0 1.30 5.6 2.67

7 32.2 75.6 0.19 2.2 25.48 247.2 518.2 1.63 4.4 2.82

8 27.0 65.6 0.23 3.0 27.88 206.2 460.2 1.49 4.6 2.99

σ 3 4
θ Subs Cuts Time Refine Ratio (%) Subs Cuts Time Refine Ratio (%)

3 956.6 1848.4 8.90 7.4 1.86

4 976.0 2128.2 8.79 7.2 1.28 5572.8 11055.6 44.29 8.0 2.09

5 974.0 1861.6 6.75 7.2 6.32 4949.4 9194.0 43.97 7.4 2.71

6 1061.8 2278.0 10.22 7.2 1.35 6255.8 12360.8 65.06 8.0 2.44

7 1239.0 2496.2 11.15 7.2 2.41 6144.6 12095.8 62.73 7.4 1.73

8 1557.2 3123.2 13.70 6.4 1.45 6379.8 13005.4 66.68 7.8 5.53

For each combination of θ and σ with σ ≤ θ , five instances are solved and the average of the number
of generated subproblems (Subs), the total cutting plane iterations (Cuts), the total run time in CPU hours
(Time), and the maximal number of refinements of a grid cell (Refine) are reported. Moreover, we state the
percentage of subproblems (Ratio) whose grid mesh size equals the finest grid mesh size considered

as τ6 = 0.225. This was not possible with the previous discretization of the problem.
In particular, the fourth and fifth fixing point together have limited the switching point
to be in the interval (0.2, 0.25]. The last branching decision in this tree serves to
determine t = 0.2375 as the switching point of the returned solution.

Table 4 shows the performance of the branch-and-bound algorithm for various
instances generated with θ ∈ {1, . . . , 8} and σ ∈ {1, . . . , 4} for the total number of
switching points. We were able to solve problems with up to four allowed switchings,
but, as could be expected, the number of generated subproblems strongly increases
in σ . However, we note that the ratio between generated subproblems and total cutting
plane iterations is not affected by σ . While the branch-and-bound algorithm is able to
solve problems with σ = 3 within 14 CPU hours, the algorithm does not terminate
within 60 CPU hours for most instances with σ = 4 allowed switchings. However, the
results of Table 4 show that the average number of subproblems in the branch-and-
bound-tree remains relatively small for all instances, showing that the dual bounds
computed by our algorithm are rather tight, and that the main challenge in terms of
running times is the fast computation of these dual bounds.

Moreover, the reported results show that our approach to globally solve parabolic
optimal control problemswith dynamic switches bymeans of branch-and-bound, com-
bined with an adaptive refinement strategy, works in practice. Whenever the maximal
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number of refinements of a grid cell within the branch-and-bound algorithmwas larger
than 4 in our experiments, a grid cell was refined this often in less than 10% of the
subproblems. Here, the finest grid mesh size decreases with the number of allowed
switching points. This means that, if more switchings are allowed, a finer temporal
discretization is needed to detect the optimal positions of the switching points.

In summary, our proposed branch-and-boundmethod is an effective and robust algo-
rithm to globally solve control problems of the form (P). A few pointwise fixings of the
controls suffice to significantly truncate the set of feasible switching patterns. More-
over, thanks to the computation of tight dual bounds by means of outer approximation,
relatively few subproblems need to be inspected and refined within the branch-and-
bound algorithm.

Finite-dimensional convex hulls under fixings

A.1 Restricted total variation

We show that if we restrict the total variation of a single switch to be less than σ > 0,
i.e., the set of feasible switching patterns is given by

D(σ ) = {u ∈ BV (0, T ) : u(t) ∈ {0, 1} a.e. in (0, T ), |u|BV (0,T ) ≤ σ },
then the convex hull CD(σ ) SP,�

of the finite dimensional projections {�(u) : u ∈
D(σ ) SP} under arbitrary fixings is a 0/1 polytope.
Theorem A.1 The set CD(σ ) SP,�

is a 0/1 polytope.

Proof The proof is similar to the one of Theorem 3.8 in [6], where no fixings have
been considered. We claim that CD(σ ) SP,�

= conv(K ), where

K := {�(u) : u ∈ D(σ ) SP and for all i = 1, . . . , M there exists wi ∈ {0, 1}
with u(t) ≡ wi f.a.a. t ∈ Ii }.

From this, the result follows directly, as K ⊆ {0, 1}M holds by definition.
Since K is a subset of {�(u) : u ∈ D(σ ) SP}, the direction “⊇” is trivial. It thus

remains to show “⊆”. For this, let u ∈ D(σ ) SP. We need to prove that �(u) can
be written as a convex combination of vectors in K . Let l ∈ {0, . . . , M} denote the
number of intervals in which the switch u is switched at least once. We prove the
assertion by means of complete induction over the number l. For l = 0, we clearly
have �(u) ∈ K ⊆ conv(K ). So let l > 0 and choose an index � ∈ {1, . . . , M} such
that u switches at least once in I�. For k = 0, 1, define the function uk as follows:

uk(t) :=
{
k, if t ∈ I�
u(t), otherwise.

Then, by construction, �(u)� = λ�(u1)� + (1 − λ)�(u0)� for λ := �(u)� ∈ [0, 1]
and uk has at most as many switching as u.
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We next show that the controls u0 and u1 belong to D(σ ) SP. So let k ∈ {0, 1} be
arbitrary. Due to u ∈ D(σ ) SP, there exists a sequence {vm}m∈N ∈ D(σ ) SP such that
vm → u in L p(0, T ) for m → ∞. In particular, there exists a subsequence, which
we denote by the same symbol for simplicity, with vm(t) → u(t) f.a.a. t ∈ (0, T ) for
m → ∞. Since u switches at least once in the interval I� and vm converges pointwise
almost everywhere to u, there exists m0 ∈ N such that for all m ≥ m0 the controls vm

also switch at least once in I�. When constructing a sequence in D(σ ) SP converging
to uk with the help of {vm}m∈N, we need to consider that fixing points τ j may coincide
with the interval limits of I� = (a�, b�) so that we are only able to change the values
in the inner of I�. Thus, we define

wm
k (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k, t ∈ [a� + λ(I�)
2m , b� − λ(I�)

2m )

vm(a�), t ∈ [a�, a� + λ(I�)
2m )

vm(b�), t ∈ [b� − λ(I�)
2m , b�)

vm(t), otherwise.

Due to vm ∈ {0, 1} a.e. in (0, T ), also wm
k (t) ∈ {0, 1} holds f.a.a. t ∈ (0, T ). By our

general assumption, we have τ j /∈ (a�, b�) for all j = 1, . . . , N , so that wm
k (τ j ) =

vm(τ j ) = c j follows with vm ∈ D(σ ) SP. Furthermore, for m ≥ m0, wm
k has at most

as many switchings as vm in total and we thus obtain wm
k ∈ D(σ ) SP for m ≥ m0. It

is easy to see that wm
k → uk in L p(0, T ) for m → ∞, so that we get uk ∈ D(σ ) SP,

as claimed.
By the induction hypothesis, the vectors �(uk) can thus be written as convex

combinations of vectors in K and consequently, also �(u) is a convex combination
of vectors in K . ��

A.2 Switching point constraints

In the following, we show that the finite-dimensional convex hulls of switching point
constraints

D(P) := {ut1,...,tσ : (t1, . . . , tσ ) ∈ P, 0 ≤ t1 ≤ · · · ≤ tσ < ∞},

where P ⊆ R
σ+ is a given polytope, under fixings are still polytopes. Moreover, we

prove some auxiliary results for Theorem4.4 in Sect. 4.2, stating that the corresponding
separation problems are tractable in the case of P = {t ∈ R

σ+ : ti − ti−1 ≥ s ∀i =
1, . . . , σ } for some s > 0.

For this purpose, let −1 = z0 < z1 < · · · zr−1 < zr = ∞ include all end points
of the intervals I1, . . . , IM defining � and the fixing points τ j , j = 1, . . . , N . In
addition, let Z be the set of all maps ϕ : {1, . . . , σ } → {1, . . . , r} which assign each
switching point to an interval [zϕ(i)−1, zϕ(i)] such that an even number of switching
points is assigned to (τ j−1, τ j ] if c j−1 = c j and an odd number otherwise, for all
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j = 1, . . . , N , where τ0 := −1 and c0 := 0. Define

Qϕ := {(t1, . . . , tσ ) ∈ P : t1 ≤ · · · ≤ tσ , zϕ(i)−1 ≤ ti ≤ zϕ(i) ∀i = 1, . . . , σ,

zϕ(i)−1 < ti ∀i ∈ J }
for all ϕ ∈ Z , where Jϕ := {i ∈ {1, . . . , σ } : ∃ j ∈ {1, . . . , N } s.t. zϕ(i)−1 = τ j } as
above, and

Vϕ := {ut1,...,tσ | (t1, . . . , tσ ) ∈ Qϕ}.

Then the following holds true.

Lemma 1

D(P) SP =
⋃

ϕ∈Z
Vϕ.

Proof Let u = ut1,...,tσ ∈ D(P) SP with (t1, . . . , tσ ) ∈ P . Define ϕ̄ : {1, . . . , σ } →
{1, . . . , r} such that zϕ̄(i)−1 < ti ≤ zϕ̄(i) holds for i = 1, . . . , σ . Due to ut1,...,tσ (τ1) =
c1, the other fixings ut1,...,tσ (τ j ) = c j , 2 ≤ j ≤ N , can only be satisfied if the number
of switching points in (τ j−1, τ j ] is even in the case c j−1 = c j and odd, otherwise. If
c1 = 0, then ut1,...,tσ (τ1) = 0 only holds if an even number of switching points is less
or equal to τ1, and in the other case c1 = 1, this number must be odd. Consequently,
we obtain ϕ̄ ∈ Z and u ∈ Vϕ̄ .

For the reverse inclusion, let u ∈ Vϕ for some ϕ ∈ Z . Then there exists
(t1, . . . , tσ ) ∈ Qϕ such that u = ut1,...,tσ . With Qϕ ⊆ P it follows that u ∈ D(P).
Since ϕ ∈ Z , we know that the correct number of switching points is assigned between
τ j−1 and τ j in order to respect the given fixings in D(P) SP.Moreover, the last require-
ment in the definition of Qϕ ensures that no switching point assigned to the right
neighboring interval of τ j is equal to τ j , so the given fixings ut1,...,tσ (τ j ) = c j are
indeed satisfied for all j ∈ {1, . . . , N }, which completes the proof. ��
To show that the convex hull of all projection vectors from controls u ∈ D(P) SP is a
polytope, we can use that D(P) SP = ⋃

ϕ∈Z Vϕ holds, thanks to Lemma 1 and the fact

that Z is finite. Consequently, we essentially need that �(Vϕ) is a polytope for every
ϕ to deduce the polyhedricity of CD(P) SP,�

. For this, we now prove that we simply

need to consider the closure of the sets Qϕ in R
σ to obtain Vϕ , with the help of the

following auxiliary result:

Lemma 2 If there exists a sequence {utm1 ,...,tmσ }m∈N with utm1 ,...,tmσ → u in L p(0, T ) for
some u ∈ L p(0, T ) and tm := (tm1 , . . . , tmσ ) → t̄ in R

σ , then u = ut̄1,...,t̄σ .

Proof The assertion is proven in [6, Lemma 3.10] and is based on the continuity of
the mapping R

σ � (t1, . . . , tσ ) 	→ ut1,...,tσ ∈ L p(0, T ). ��
Lemma 4

Vϕ = {ut1,...,tσ : (t1, . . . , tσ ) ∈ Qϕ}
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Proof First, let u ∈ Vϕ and consider a sequence {um}m∈N in Vϕ with um = utm1 ,...,tmσ →
u in L p(0, T ), where tm = (tm1 , . . . , tmσ ) ∈ Qϕ . The strong convergence in L p implies
that there is a subsequence, denoted by the same symbol for convenience, which
converges pointwise almost everywhere in (0, T ) to u. Furthermore, as a polytope, P
is bounded by definition, so that Qϕ is bounded as well and thus there is yet another
subsequence such that tm converges to t̄ ∈ Qϕ . With Lemma 2, we may conclude that
ut̄1,...,t̄σ = u and, thanks to t̄ ∈ Qϕ , this finishes the proof of the first inclusion.

For the reverse inclusion, consider ut1,...,tσ with switching points t = (t1, . . . , tσ ) ∈
Qϕ . Since t ∈ Qϕ , there exists a sequence tm = (tm1 , . . . , tmσ ) ∈ Qϕ with tm → t
in R

σ . Again thanks to the continuity of the mapping (t1, . . . , tσ ) 	→ ut1,...,tσ [6,
Lemma 3.10], the sequence {utm1 ,...,tmσ }m∈N ⊆ Vϕ converges to ut1,...,tσ in L p(0, T ),
so that the latter belongs to the closure of Vϕ in L p(0, T ). ��
We have everything at hand to prove the polyhedricity of CD(P) SP,�

.

Theorem A.5 The set CD(P) SP,�
is a polytope.

Proof We have �(D(P) SP) = ⋃
ϕ∈Z �(Vϕ) due to Lemma 1 and the fact that Z

is finite. Since P is a polytope, also Qϕ is a polytope. Moreover, analogously to
Theorem 3.11 in [6], one obtains that the function Qϕ � (t1, . . . , tσ ) 	→ �(ut1,...,tσ ) ∈
R

M is linear for every ϕ ∈ Z , so that�(Vϕ) is a polytope using Lemma 4. In summary,
we obtain that�(D(P) SP) is a finite union of polytopes and consequentlyCD(P) SP,�,
as the convex hull of a finite union of polytopes, is a polytope as well. ��

Besides the fact thatCD(P) SP,�
is a polytope, it is also crucial for our approach that

there exists an efficient separation algorithm for this set. Indeed, for the special case

D(s) SP := {
ut1,...,tσ : ti − ti−1 ≥ s ∀ i = 2, . . . , σ, t1, . . . , tσ ≥ 0,

ut1,...,tσ (τ j ) = c j ∀ j = 1, . . . , N
}

of dwell time constraints with fixings (τ j , c j ) ∈ [0, T ) × {0, 1}, 1 ≤ j ≤ N , the
separation problem is polynomially solvable in the number M of projection intervals,
the number σ of allowed switchings, and the number N of fixings, as claimed in
Theorem 4.4. For the proof of the latter result, it remains to show the following lemma,
using the definition of S given in Sect. 4.2.

Lemma A.6 Let v be a vertex of CD(s) SP,�
. Then there exists u ∈ D(s) SP with�(u) =

v such that u switches only in S.

Proof Choose c ∈ R
M such that v is the unique minimizer of c�v subject to v ∈

CD(s) SP,�
. Moreover, choose any u ∈ D(s) SP with �(u) = v as well as a sequence

{um}m∈N ⊂ D(s) SP such that um → u in L p(0, T ). Let tm1 , . . . , tmσ be the switching
points of um for m ∈ N, i.e., let 0 ≤ tm1 ≤ · · · ≤ tmσ < ∞ such that utm1 ,...,tmσ = um .
Then there exists a subsequence of tm := (tm1 , . . . , tmσ ) that converges to some t ∈ R

σ

with 0 ≤ t1 ≤ · · · ≤ tσ < ∞ and, thanks to Lemma 2, we have ut1,...,tσ = u. For the
following, for j = 1, . . . , σ and m ∈ N ∪ {∞}, we define

Smj := {tm� : � ∈ {1, . . . , σ }, tm� − tmj = s(� − j)},
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where we set t∞ := t . The set Smj thus contains all switching points in tm that have
the minimal possible distance to tmj .

Assumefirst that t j ∈ (ai , bi )\S for some i ∈ {1, . . . , M} and some j ∈ {1, . . . , σ }.
Due to tm → t in R

σ , we deduce for m sufficiently large that tmj ∈ (t j − ε
2 , t j + ε

2 ),
where ε > 0 is given by ε := minq∈S |t j − q| > 0. Then tmj /∈ S and Smj ∩ S = ∅
by definition of S. Now all points in Smj can be shifted by some 0 < δ < ε

2 , in
both directions, maintaining feasibility with respect to D(s) SP, since none of these
points is shifted to one of the fixing points τ1, . . . , τN . Consequently, all points in
S∞
j can be slightly shifted simultaneously in both directions, maintaining feasibility

with respect to D(s) SP and without any of these points leaving or entering any of
the intervals I1, . . . , IM or [0, T ]. This shifting changes the value of c��(u) linearly,
compare [6, Thm. 3.11], which is a contradiction to unique optimality of v.

We have thus shown that all switching points of u are either in S or outside of any
interval Ii . Let t j /∈ S be any switching point of u not belonging to any interval Ii .
Then, for sufficiently large m, we have tmj /∈ S and tmj /∈ Ii for any i ∈ {1, . . . , M}.
The idea is, as in the proof of [6, Lemma 3.12], to shift the switching point tmj /∈ S
for each m to the next point on the left belonging to S, but if this point belongs to
[0, T ] ∩ (Zs + ({τ j : j = 1, . . . , N })), we can only shift tmj arbitrarily close to the
latter point in order to maintain feasibility in D(s) SP. For small enough δ > 0, we
thus shift all switching points in Smj simultaneously to the left until

dist(Smj , S) := min
p∈Smj ,q∈S

|p − q| = δ, (15)

taking into account that the set Smj may increase when tmj decreases. Consequently,
for all δ, we obtain another sequence {umδ }m∈N. By construction, no switching point is
moved beyond the next point in S to the left of its original position and no switching
point is moved to any of the fixing points τ1, . . . , τN , so that we conclude umδ (τ j ) = c j
for j = 1, . . . , N and thus umδ ∈ D(s) SP. In particular, none of the switching points
being moved enters any of the intervals Ii , so that we derive

�(umδ ) = �(um) → �(u) = v for m → ∞ (16)

by the continuity of the projection �. We know that {umδ }m∈N is a bounded sequence
in BV (0, T ) and hence by [1, Thm. 10.1.3 and Thm. 10.1.4] there exists a strongly
convergent subsequence, which we again denote by {umδ }m∈N, such that umδ → uδ ∈
D(s) SP for m → ∞. By (16) and the continuity of�, we obtain�(uδ) = v for δ > 0.
Now {uδ : δ > 0} ⊂ D(s) SP is bounded in BV (0, T ) as well, so that it contains an
accumulation point u′ ∈ D(s) SP and, again by the continuity of the projections, we
have �(u′) = v. Thanks to (15), u′ then has at least one switching point more in S
than u, but still satisfies �(u′) = v. By repeatedly applying the same modification,
we eventually obtain a function projecting to v with all switching points in S. ��
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