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Abstract
Since shape optimization methods have been proven useful for identifying interfaces
in models governed by partial differential equations, we show how shape optimization
techniques can also be applied to an interface identification problem constrained by a
nonlocal Dirichlet problem. Here, we focus on deriving the second shape derivative
of the corresponding reduced functional and we further investigate a second-order
optimization algorithm.

Keywords Shape optimization · Second shape derivative · Nonlocal
convection-diffusion

1 Introduction

Nonlocal operators are typically integral operators and therefore allow interactions
between two distinct points in space. Moreover, the solution of a nonlocal problem
in general needs to satisfy less regularity requirements compared to the solution of a
system of partial differential equations. Thus, some physical phenomena like fracture
propagation in continuummechanics [1, 2] or anomalous diffusion effects [3, 4] can be
modeledmore accurately by nonlocal equations compared to their ‘classic’ description
by partial differential equations. Moreover, nonlocal models have been successfully
applied to image denoising [5, 6], neural networks [7, 8] or stochastic processes [9,
10], just to name a few.

Shape optimization techniques are mostly developed in the context of PDE-
constrained optimization problems and have been investigated in areas like aero-
dynamics [11, 12], acoustics [13–15], fluid dynamics [16, 17] and many more. In
[18], we havealready formulated the first shape derivative of an interface identifica-
tion problem that is governed by a nonlocal Dirichlet problem and we additionally
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1034 M. Schuster, V. Schulz

investigated a first-order shape optimization algorithm. In this work, we continue by
deriving a second shape derivative, which is then used in a Newton-like second-order
shape optimization approach.

The first-order shape derivative method of [18] was also employed for interface
identification constrained by an energy-based Local-to-Nonlocal coupling in [19].
Moreover, in the context of Peridynamics, a machine-learning approach to detect an
interface was tested in [20]. Here, Nader et. al. made use of finite differences to solve
a one-dimensional variable horizon Local-to-Nonlocal coupling, and a convolutional
neural network was trained to assign domain affiliations to nodes.

In the next section, we start by introducing nonlocal Dirichlet problems and shortly
discuss the well-posedness of the corresponding weak formulation. In Sect. 3, we
present the necessary basics of shape optimization. Then, we define an interface identi-
fication problem that is constrained by a nonlocal Dirichlet problem in Sect. 4 followed
by a description of the averaged adjoint method(AAM) in Sect. 5, which we will use
to compute the second shape derivative of the reduced functional corresponding to the
constrained interface identification problem. After that, we show in Sect. 6, that, under
natural assumptions, the prerequisites of AAM are satisfied. Lastly, we introduce in
Sect. 7 a second-order optimization approach that is partly a consequence of AAM
and which is employed in Sect. 8 in two numerical experiments.

2 Nonlocal terminology and framework

Let� ⊂ R
d with d ∈ N be a nonempty, open, bounded and simply connected domain.

In this work, we consider the nonlocal convection-diffusion operator

−Lu(x) :=
∫
Rd

u(x)γ (x, y) − u(y)γ (y, x) dy. (1)

Here, the function γ : Rd ×R
d → [0,∞) is the so-called kernel, which plays a vital

role in the nonlocal theory. Moreover, problems involving the nonlocal operator (1)
have been extensively studied in the literature (see, e.g., [21, 22]). Further, we define
a nonlocal steady-state nonhomogeneous Dirichlet problem as

Find a function u s.t.

−Lu = f on �

u = g on I,

(2)

where we set the so-called nonlocal boundary (or nonlocal interaction domain) I as

I := {y ∈ R
d \ � :

∫
�

γ (x, y) + γ (y, x) dx > 0},

which contains all points outside of the domain � that interact with at least one point
inside of � through the kernel γ . In this section, we will recall the basic theory on
problems of type (2). We start by deriving a weak formulation of problem (2). Given
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Second order shape optimization for an interface identification… 1035

appropriate spaces V (� ∪ I) and Vc(� ∪ I), which are defined later in this section,
we multiply the first equation of (2), where we assume u ∈ V (� ∪ I), with a test
vector v ∈ Vc(� ∪ I) and then integrate over �, which yields

∫
�

∫
�∪I

v(x) (u(x)γ (x, y) − u(y)γ (y, x)) dydx =
∫

�

f (x)v(x) dx.

Here, we can rewrite the left-hand side by using v = 0 on I and by applying Fubini’s
theorem as follows

∫
�

∫
�∪I

v(x) (u(x)γ (x, y) − u(y)γ (y, x)) dydx

= 1

2

∫
�∪I

∫
�∪I

(v(x) − v(y)) (u(x)γ (x, y) − u(y)γ (y, x)) dydx.

This reformulation is numerically more stable for singular symmetric kernels, which
will be introduced later in this section. Now, before we present the definition of a weak
solution to (2), we define the bilinear form

A(u, v) := = 1

2

∫∫

(�∪I)2

(v(x) − v(y)) (u(x)γ (x, y) − u(y)γ (y, x)) dydx

and the linear functional

F(v) :=
∫

�

f (x)v(x) dx.

Then, we set the (semi-)norm ||| · ||| as

|||u||| := √
A(u, u).

Additionally, we define the nonlocal energy space V (�∪I) and the nonlocal volume-
constrained energy space Vc(� ∪ I) in the following way:

V (� ∪ I) := {u ∈ L2(� ∪ I) : ‖u‖V (�∪I) := |||u||| + ‖u‖L2(�∪I) < ∞} and
Vc(� ∪ I) := {u ∈ V (� ∪ I) : u = 0 on I}.

Definition 1 (Weak Solution of aNonlocal Dirichlet Problem) Given f ∈ L2(�) and
g ∈ V (� ∪ I), if ũ ∈ Vc(� ∪ I) satisfies

A(̃u, v) =F(v) − A(g, v) for all v ∈ Vc(� ∪ I),

then we call u := ũ + g ∈ V (� ∪ I) weak solution of the nonlocal Dirichlet problem
(2).
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1036 M. Schuster, V. Schulz

For δ > 0 we set Bδ(x) := {y ∈ R
d : ‖x − y‖2 < δ}. Then, in this work, every

kernel γ is assumed to satisfy:

(K1) There exists a constant δ > 0 and a function ϕ : Rd × R
d → [0,∞) such that

γ (x, y) = ϕ(x, y)χBδ(x)(y).

(K2) There exist constants ε ∈ (0, δ) and γ > 0 with

γ (x, y) ≥ γ for all x ∈ � and y ∈ Bε(x).

Further, we consider two types of kernel classes:

• Integrable Kernels Set γ s(x, y) := 1
2 (γ (x, y) + γ (y, x)) and γ a(x, y) :=

1
2 (γ (x, y) − γ (y, x)). Then, γ = γ s + γ a holds and we call γ integrable, if the
following requirements are satisfied:

(1) There exist constants γ s, γ s > 0 such that

γ s = inf
x∈�

∫
�∪I

γ s(x, y) dy < ∞ and sup
x∈�

∫
�∪I

(γ s(x, y))2 dy = (γ s)2.

(2) There exists constants γ a ∈ R and γ a ≥ 0 with

γ a = inf
x∈�

∫
�∪I

γ a(x, y) dy and sup
x∈�

∫
�∪I

|γ a(x, y)| dy = γ a .

(3) The lower boundaries γ s and γ a satisfy

γ s + γ a > 0.

• Singular Symmetric Kernels
There exist positive constants 0 < γ∗ ≤ γ ∗ < ∞ and s ∈ (0, 1) such that

γ∗ ≤ γ (x, y)‖x − y‖d+2s
2 ≤ γ ∗ for all x ∈ � and y ∈ Bδ(x). (3)

Furthermore, the kernel γ is symmetric.

In [21, 22], it is shown that ||| · ||| = √
A(·, ·) is indeed a norm on Vc(� ∪ I) and

that there is a unique weak solution to the Dirichlet problem (2) if the corresponding
kernel satisfies (K1) and (K2) and additionally fits into one of those two categories.

Remark 1 In the volume-constrained space Vc(�∪I) the norms ‖·‖L2(�∪I) and |||·|||
are equivalent if we have chosen an integrable kernel. Thus, it holds that

u ∈ (Vc(� ∪ I), ||| · |||) ⇔ u ∈ (L2
c(� ∪ I), ‖ · ‖L2(�∪I)),
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Second order shape optimization for an interface identification… 1037

where L2
c(� ∪ I) := {u ∈ L2(� ∪ I) : u = 0 on I}. On the other hand, if γ meets

the requirements of a singular symmetric kernel, we get norm equivalence between
||| · ||| and | · |Hs (�∪I) on Vc(� ∪ I) and

u ∈ (Vc(� ∪ I), ||| · |||) ⇔ u ∈ (Hs
c (� ∪ I), | · |Hs (�∪I)),

where the norm | · |Hs (�∪I) and the volume-constrained fractional Sobolev space
Hs
c (� ∪ I) are defined as

Hs
c (� ∪ I) := {u ∈ L2

c(� ∪ I) : |u|Hs (�∪I) < ∞} with

|u|2Hs (�∪I) :=
∫∫

(�∪I)2

(u(x) − u(y))2

‖x − y‖d+2s
2

dydx.

FOR the proof of these assertions, we refer again to [21, 22].

3 Basics of shape optimization

Here, we present basic notions of shape optimization and we refer to [23–27] for a
thorough introduction. In this work, only shapes that are elements of the following set
are considered:

Definition 2 (Set of Admissible Shapes) Given a nonempty, Lipschitz open domain
�̂ ⊂ �, then we set �0 := ∂�̂ and define the corresponding set of admissible shapes
A(�0) as

A(�0) := {T(�0)| T : � → � invertible,T and T−1 are Lipschitz continuous}.

Next, the notion of a shape optimization problem can be introduced:

Definition 3 (ShapeOptimization Problem) LetA be a subset ofA(�0) as formulated
in Definition 2 and let J : A → R be a so-called shape functional, then we refer to

min
�∈A

J (�)

as a shape optimization problem.

To define shape derivatives, wemake use of a family ofmappings {Ft }t∈[0,T ], where
Ft : � → R

d , F0(x) = x for x ∈ � and T > 0 is supposed to be sufficiently small.
In this work, we apply the perturbation of identity:

Definition 4 (Perturbation of Identity) Given a vector field V ∈ Ck
0 (�,Rd), k ∈ N

and t ≥ 0, the perturbation of identity is defined as

FV
t : � → R

d , FV
t (x) := x + tV(x),

where Ck
0 (�,Rd) := {V ∈ Ck(�,Rd) : V vanishes at the boundary}.
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1038 M. Schuster, V. Schulz

Here, V ∈ Ck(�,Rd) vanishes at the boundary, if the set {x ∈ � : |∂αV(x)| ≥ ε} is
compact for all ε > 0 and partial derivatives ∂α := ∂

α1
x1 ∂

α2
x2 . . . ∂

αd
xd w.r.t. multi-indices

α ∈ N
d
0 with 0 ≤ |α| ≤ k. If T is chosen small enough such that ‖tV‖W 1,∞(�,Rd ) < 1

for all t ∈ [0, T ], then the function FV
t : � → � is a bijective function where FV

t
as well as the corresponding inverse (FV

t )−1 are both Lipschitz continuous (see [25,
28, 29]). Now, we continue by formulating the definition of the first and second shape
derivative:

Definition 5 (First Shape Derivative) The Eulerian derivative of a shape functional
J at � ∈ A(�0) in the direction V ∈ Ck

0 (�,Rd), where k ∈ N, is defined as the
directional derivative

DJ (�)[V] := lim
t↘0

J (FV
t (�)) − J (�)

t
.

If DJ (�)[V] exists for all vector fields V ∈ Ck
0 (�,Rd) and if the function

DJ (�) : Ck
0 (�,Rd) → R, V �→ DJ (�)[V]

is linear and continuous, then we refer to DJ (�)[V] as the shape derivative at � in
direction V.

Definition 6 (Second Shape Derivative) Let k ∈ N. If for all V,W ∈ Ck
0 (�,Rd) the

semi-derivative

D2 J (�)[V,W] := lim
t↘0

DJ (FW
t (�))[V] − DJ (�)[V]

t

exists and the function

D2 J (�) : Ck
0 (�,Rd) × Ck

0 (�,Rd) → R, (V,W) �→ D2 J (�)[V,W]

is bilinear and continuous, then D2 J (�)[V,W] is called the second shape derivative
at � in the direction (V,W).

The second shape derivative can also be characterized as

D2 J (�)[V,W] = d

dt

∣∣∣∣
t2↘0

d

dt

∣∣∣∣
t1↘0

J
(
FV
t1(F

W
t2 (�))

)
,

which indicates that the second shape derivative is computed by differentiating a
functional where the shape � is first perturbed along the vector fieldW and afterwards
along V as described in Definition 4.

Remark 2 In the literature, the second shape derivative D2 J (�) is sometimes called
the shape Hessian at � (see, e.g., [30–32]).
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Second order shape optimization for an interface identification… 1039

In this work, as mentioned before, we only employ the perturbation of identity,
which is invertible if t > 0 is small enough. As shown in [31], interpreting shape
optimization as optimizing on a subset of {T|T : � → �} yields the linear second
shape derivative

J ′′(�)[V,W] := d

dt

∣∣∣∣
t2↘0

d

dt

∣∣∣∣
t1↘0

J ((Id+t2W + t1V)(�)), (4)

which is symmetric, provides the basis of a Taylor series and thus justifies convergence
properties of shape Newton methods. In [30, 33, 34] and [23, Section 6.5], it is proven
that the classical shape derivative D2 J (�)[V,W] can be expressed as

D2 J (�)[V,W] = J ′′(�)[V,W] + DJ (�)[(DV)W]. (5)

Here, the second term DJ (�)[(DV)W] is only symmetric if (DV)W = (DW)V
holds. In Sect. 6, we first derive the classical shape derivative D2 J (�)[V,W] by
making use of the so-called averaged adjoint method. By omitting the possibly
nonsymmetric part DJ (�)[(DV)W], we will then obtain the linear second shape
derivative, which we utilize in a Newton-like algorithm to solve the constrained
interface identification problem (6) introduced in the next section.

Remark 3 In this work, the nonlocal boundary I will not be deformed since the
interface � is supposed to be a subset of �. Thus, we extend every vector field
V ∈ Ck

0 (�,Rd) by zero to a function defined on the domain � ∪ I, i.e., we only
consider vector fields that are elements of the set

Ck
0 (� ∪ I,Rd) := {V ∈ Ck(� ∪ I,Rd) : V = 0 on I and V|� ∈ Ck

0 (�,Rd)}.

As a consequence, the associated perturbation of identity FV
t : � ∪ I → � ∪ I is

again a diffeomorphism since FV
t = Id on I and FV

t

∣∣
�

: � → � is a diffeomorphism.
Furthermore, V ∈ C2

0 (� ∪ I,Rd) is sufficient for the calculations in this work.

4 Interface identification constrained by nonlocal models

PDE-constrained interface identification is awell-researched shape optimization prob-
lem (see, e.g., [23, 27]) and in the following, wewill investigate interface identification
governed by nonlocal models.

Here, as illustrated in Fig. 1, we assume � to be the boundary of a nonempty,
Lipschitz open domain �1 ⊂ �. Consequently, � is decomposed by � into two open
sets �1 and �2 := � \ (�1 ∪ �). Further, we suppose that �1 and �2 are connected.
Then, we call � interface and we denote by �(�) that � is decomposed according to
�, i.e., � = (�1∪̇�∪̇�2)

◦.
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1040 M. Schuster, V. Schulz

Fig. 1 The interface �

decomposes the domain � into
the blue subdomain �1 and the
gray subdomain �2. Further,
note that the nonlocal boundary
I is depicted in red.

Now, given u ∈ H2(�), we define interface identification governed by a nonlocal
Dirichlet problem as follows:

min
u∈Vc(�(�)∪I),�∈A(�0)

J (u, �)

s.t. − L�u = f� on �,

u =0 on I,
(6)

where

J (u, �) := j(u) + α jper (�) with j(u) :=
∫
�

1

2
(u − u)2 dx and jper (�) :=

∫
�
1 ds,

−L�u(x) :=
∫
Rd

u(x)γ�(x, y) − u(y)γ�(y, x) dy with kernel (7)

γ� :=
∑

i, j=1,2

γi jχ�i×� j +
∑
i=1,2

γiIχ�i×I . (8)

Here, γi j , γiI : Rd×R
d → [0,∞) are also called subkernels. For ease of presentation,

we only consider homogeneous Dirichlet problems. Therefore, we do not need any
assumptions on the behavior of γ� on I × � and we can choose w.l.o.g. γ� = 0
on

(
R
d × R

d
) \ (� × (� ∪ I)) in (8). However, the nonhomogeneous case can be

handled analogously. As we can see in (7) and (8), the operator −L� is dependent
on the interface since the choice of kernel γ�(x, y) varies depending on the location
of x and y. Furthermore, we suppose that the forcing term can be expressed as f� =
f1χ�1+ f2χ�2 ,where f1, f2 ∈ H2(�). Then,wedenote the corresponding variational
formulation of the Dirichlet problem (6) as

A�(u, v) = F�(v) for all v ∈ Vc(� ∪ I), (9)

where the subscripts highlight that the kernel as well as the forcing term are dependent
on the decomposition imposed by the interface �. The objective functional consists of
two terms: The first one, which we refer to as j , is a tracking-type functional since we
aim to find the interface � such that the solution to (9) approximates the given data u
as well as possible. The second integral of the objective function, which we denote by
jper , is called perimeter regularization, which is often used to avoid ill-posedness of
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Second order shape optimization for an interface identification… 1041

the problem (see [35]). Previously, as mentioned above, first-order shape optimization
algorithms for the interface identification problem (6) have already been investigated
in [18].

Remark 4 The first and second shape derivative of the perimeter regularization jper
can be formulated as

Djper (�)[V] =
∫
�
div� V ds =

∫
�
divV − n�DVn ds and

D2 jper (�)[V,W] =
∫
�
div� V div� W − tr (D�VD�W) + 〈(D�V)� n, (D�W)� n〉 ds,

where div� V := divV − n�DVn is the tangential divergence and
D�V := DV − DVnn� the tangential Jacobian. The formula for Djper (�)[V] fol-
lows directly from [11, Lemma 3.3.4]. The derivation of D2 jper (�)[V,W] can be
found in [36, Section 3.1]. For ease of presentation, we exclude jper (�), Djper (�)[V]
and D2 jper (�)[V,W] in the calculations of Sect. 6.

5 Second shape derivative via the averaged adjoint method

Since for every suitable interface � the nonlocal Dirichlet problem has a unique solu-
tion, the interface identification problem constrained by nonlocal models (6) can be
written as a reduced optimization problem

min
�∈A(�0)

Jred(�) (10)

where Jred(�) := J (u(�), �) and u(�) solves the variational formulation (9). In [18]
it was shown how the first shape derivative of (10) can be computed via the averaged
adjoint method(AAM) of [26, 37, 38]. Therefore, we refer for the first derivative to
[18] and continue by introducing the averaged adjoint method for a system of state
equations of [26], which we apply to develop a formula for the second shape derivative
of (10). The steps to develop the second shape derivative are quite similar to the steps
to compute the first shape derivative. Note that there also exist alternative approaches
to get a second shape derivative associated with problem (6) like, e.g., a material
derivative method [31, 36, 39, 40].

As proven in [18], we can express the first shape derivative of the reduced functional
at the shape �W

t := FW
t (�) in the direction V ∈ C2

0 (� ∪ I,Rd) as

DJred(�W
t )[V] = J�W

t
(u(�W

t )) − F�W
t

(v(�W
t )) + A�W

t
(u(�W

t ), v(�W
t )),

where the three components are the derivatives of the objective functional, the forcing
term and the bilinear form. Formulas for these derivatives are derived from (26) and
(27) of [18] with respect to �W

t and can be found below. Here, the functions u(�W
t )
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1042 M. Schuster, V. Schulz

and v(�W
t ) satisfy the equations

A�W
t

(u(�W
t ), ψ) = F�W

t
(ψ) for all ψ ∈ Vc(FW

t (�) ∪ I) and

A�W
t

(ϕ, v(�W
t )) = F̃�W

t
(u(�W

t ), ϕ) for all ϕ ∈ Vc(FW
t (�) ∪ I),

where F̃�W
t

(u, ϕ) := − ∫
FWt (�) (u − u) ϕ dx. Notice that v(�W

t ) is the adjoint of the

first shape derivative at �W
t (see [18]). Additionally, we setV(x, y) := (V(x),V(y))�

as well as

�1
�W
t ,V

(x, y) := ∇ γ
�W
t

(x, y)�V(x, y) and �2
�W
t ,V

(x, y) := γ
�W
t

(x, y)(divV(x) + divV(y)), (11)

where ∇ γ�W
t

=
(
∇x γ�W

t
,∇y γ�W

t

)�
. Therefore, the three derivatives of objective,

forcing term and bilinear form are formulated in the following way:

J
�W
t

(u) :=
∫
FWt (�)

−(u(x) − u(x)) ∇ u(x)�V(x) + 1

2
(u(x) − u(x))2 divV(x) dx,

F
�W
t

(v) :=
∫
FWt (�)

v(x) ∇ f (x)�V(x) + f (x)v(x) divV(x) dx and

A
�W
t

(u, v) := 1

2

∫∫
(FWt (�∪I))2

(v(x) − v(y))
(
u(x)�1

�W
t ,V

(x, y) − u(y)�1
�W
t ,V

(y, x)
)

dydx

+ 1

2

∫∫
(FWt (�∪I))2

(v(x) − v(y))
(
u(x)�2

�W
t ,V

(x, y) − u(y)�2
�W
t ,V

(y, x)
)

dydx.

Then, we set the corresponding Lagrangian as

L(t, u, v, ψ, ϕ) := J�W
t

(u) − F�W
t

(v) + A�W
t

(u, v) + A�W
t

(u, ψ) − F�W
t

(ψ)

+ A�W
t

(ϕ, v) − F̃�W
t

(u, ϕ).

Thus, for the first shape derivative of the reduced functional holds

DJred(�W
t )[V] = L(t, u(�W

t ), v(�W
t ), ψ, ϕ) for any ψ, ϕ ∈ Vc(�(�W

t ) ∪ I).

In order to avoid computing derivatives of u, v, ψ or ϕ to derive the second shape
derivative, we use the perturbation of identity, which is a diffeomorphism, as a so-
called pull-back function. Due to this characteristic of the perturbation of identity,
we can find for any function u ∈ Vc(�(�W

t ) ∪ I) a unique ũ ∈ Vc(� ∪ I) with
u = ũ ◦ (FW

t )−1. Consequently, we can define an alternative Lagrangian as

G : [0, T ] × Vc(� ∪ I)4 → R,

G(t, u, v, ψ, ϕ) := L(t, u ◦ (FW
t )−1, v ◦ (FW

t )−1, ψ ◦ (FW
t )−1, ϕ ◦ (FW

t )−1).
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Another advantage of this function space parametrization is that the function spaces
for u, v, ψ and ϕ do not depend on t anymore. Further, we set

J : [0, T ] × Vc(� ∪ I) → R, J(t, u) := J�W
t

(u ◦ (FW
t )−1),

F : [0, T ] × Vc(� ∪ I) → R, F(t, u) := F�W
t

(v ◦ (FW
t )−1),

A : [0, T ] × Vc(� ∪ I)2 → R, A(t, u, v) := A�W
t

(u ◦ (FW
t )−1, v ◦ (FW

t )−1),

A : [0, T ] × Vc(� ∪ I)2 → R, A(t, u, v) := A�W
t

(u ◦ (FW
t )−1, v ◦ (FW

t )−1),

F : [0, T ] × Vc(� ∪ I) → R, F(t, ψ) := F�W
t

(ψ ◦ (FW
t )−1),

F̃ : [0, T ] × Vc(� ∪ I)2 → R, F̃(t, u, ϕ) := F̃�W
t

(u ◦ (FW
t )−1, ϕ ◦ (FW

t )−1).

Additionally, we denote the directional derivative of G w.r.t. u or v as follows

DuG(t, u, v, ψ, ϕ)[̃u] := lim
s↘0

G(t, u + sũ, v, ψ, ϕ) − G(t, u, v, ψ, ϕ)

s
and

DvG(t, u, v, ψ, ϕ)[̃v] := lim
s↘0

G(t, u, v + sṽ, ψ, ϕ) − G(t, u, v, ψ, ϕ)

s
.

In order to apply AAM, the following assumptions need to be satisfied:
Assumptions:

(D0) For all t ∈ [0, T ] and u, ũ, û, v, ṽ, v̂, ψ, ϕ ∈ Vc(� ∪ I) we assume

(i) G1 : [0, 1] → R, s �→ G(t, u + sũ, v, ψ, ϕ) and G2 : [0, 1] → R, s �→
G(t, u, v + sṽ, ψ, ϕ) are absolutely continuous.

(ii) [0, 1] � s �→ DuG(t, u + sû, v, ψ, ϕ)[̃u] and [0, 1] � s �→ DvG(t, u, v +
sv̂, ψ, ϕ)[̃v] belong to L1((0, 1)).

(iii) ψ �→ G(t, u, v, ψ, ϕ) and ϕ �→ G(t, u, v, ψ, ϕ) are affine-linear.

(D1) For all u, v, ψ, ϕ ∈ Vc(� ∪ I) the function

[0, T ] → R, t �→ G(t, u, v, ψ, ϕ)

is differentiable.
(D2) For all t ∈ [0, T ] we suppose that

– There exist unique solutions ut , vt ∈ Vc(� ∪ I) to the (state) equations

A(t, ut , ψ) = F(t, ψ) for all ψ ∈ Vc(� ∪ I), (12)

A(t, ϕ, vt ) = F̃(t, ut , ϕ) for all ϕ ∈ Vc(� ∪ I). (13)

– There exist unique solutionsψ t , ϕt ∈ Vc(�∪I) to the averaged adjoint equations

∫ 1

0
DuG(t, sut + (1 − s)u0, vt , ψ t , ϕt )[̃u] ds = 0 for all ũ ∈ Vc(� ∪ I),

(14)
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1044 M. Schuster, V. Schulz

∫ 1

0
DvG(t, u0, svt + (1 − s)v0, ψ t , ϕt )[̃v] ds = 0 for all ṽ ∈ Vc(� ∪ I).

(15)

(D3) For every sequence (sn)n∈N ∈ [0, T ]N with limn→∞ sn = 0, there exists a
subsequence (snk )k∈N such that

lim
k→∞,t↘0

∂tG(t, u0, v0, ψ snk , ϕsnk ) = ∂tG(0, u0, v0, ψ0, ϕ0).

Theorem 1 (Averaged Adjoint Method for a System of State Equations) If the
Assumptions (D0)-(D3) are satisfied, we get for any ψ, ϕ ∈ Vc(� ∪ I) that

d

dt

∣∣∣∣
t↘0

G(t, ut , vt , ψ, ϕ) = ∂tG(0, u0, v0, ψ0, ϕ0).

Proof See [26, Theorem 4.5]. ��
Corollary 2 If Assumptions (D0)-(D3) hold, the second shape derivative of the reduced
functional can be computed via

D2 Jred(�)[V,W] = ∂tG(0, u0, v0, ψ0, ϕ0).

Finally, we would like to highlight the fact that the solutions u0 and v0 to the
state equations (12) and (13) for t = 0 are independent of V. However, since the
adjoint equations (14) and (15) involve the shape derivative at � in the directionV, the
functions ψ0 and ϕ0 need to be computed for every V separately. Therefore, we write
ψ(�,V) and ϕ(�,V) in Sect. 7 to explicitly express which adjoints are calculated
during the presented algorithm.

6 Deriving the second shape derivative for the reduced objective
function

Before we actually calculate the second shape derivative, we need to prove that the
Assumptions (D0)-(D3) hold.

Remark 5 In the following, we use the abbreviations

ut (x) := u(FW
t (x)), ∇ ut (x) := (∇ u)(FW

t (x)),

f t (x) := f�W
t

(FW
t (x)), ∇ f t (x) := (∇ f )(FW

t (x)),

γ t (x, y) := γ�W
t

(FW
t (x),FW

t (y)), ∇ γ t (x, y) := (∇ γ�W
t

)(FW
t (x),FW

t (y)),

Vt (x) := V(FW
t (x)), Vt (x, y) := (Vt (x),Vt (y))�,

W(x, y) := (W(x),W(y))�, ξ t (x) := det DFW
t (x),

� t
1(x, y) := ∇ γ t (x, y)�Vt (x, y) and
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Second order shape optimization for an interface identification… 1045

� t
2(x, y) := γ t (x, y)(divVt (x) + divVt (y)) for V,W ∈ C2

0 (� ∪ I,Rd).

As a result,� t
i (x, y) = � i

�W
t ,Vt (F

W
t (x),FW

t (y)) holds for all x, y ∈ �∪I and i = 1, 2.

Analogously, we set

Hess(u)t (x) := Hess(u)(FW
t (x)), Hess( f )t (x) := Hess( f )(FW

t (x)) and

Hess(γ )t (x, y) := Hess(γ )(FW
t (x),FW

t (y)).

Lemma 3 Given any t ∈ [0, T ] and u, ũ, û, v, ṽ, v̂, ψ, ϕ ∈ Vc(� ∪ I), Assumption
(D0) is satisfied.

Proof (i) By using the linearity of A andA regarding the second and third argument,
we get

G′
1(s) =DuG(t, u + sũ, v, ψ, ϕ)[̃u]

=DuJ(t, u + sũ)[̃u] + A(t, ũ, v) + A(t, ũ, ψ) − Du F̃(t, u + sũ, ϕ)[̃u],
G′

2(s) =DvG(t, u, v + sṽ, ψ, ϕ)[̃v] = −F(t, ṽ) + A(t, u, ṽ) + A(t, ϕ, ṽ),

where F is also linear in the second argument and where we have

Du F̃(t, u, ϕ)[̃u] = −
∫

�

ũϕξ t dx and

DuJ(t, u)[̃u] =
∫

�

−ũ(∇ ut )�Vtξ t + (u − ut )̃u divVtξ t dx.

Thus, G1 and G2 are continuously differentiable and therefore absolutely con-
tinuous. Lastly, note that Du F̃(t, u, ϕ)[̃u] is independent of the choice of
u.

(ii) By examining the computations in 1., we directly see that G′
2 is constant on

(0, 1). Further, the variable s can be found in only one integral ofG′
1 and we get

as a consequence of Fubini’s theorem

∫ 1

0
DuG1(t, u + sû, v, ψ, ϕ)[̃u] ds =

∫
�

(
u + 1

2
û − ut

)
ũ divVt ξ t − ũ(∇ ut )�Vt ξ t dx

+ A(t, ũ, v) + A(t, ũ, ψ) − Du F̃(t, u, v)[̃u]
= DuJ(t, u + 1

2
û)[̃u] + A(t, ũ, v) + A(t, ũ, ψ) − Du F̃(t, u, v)[̃u].

(iii) Direct consequence of the linearity of A, F and F̃ in the corresponding argument.
��

Corollary 4 As seen in the proof of Lemma 3, the averaged adjoint equations (14) and
(15) can be formulated as

Find ψ t , ϕt ∈ Vc(� ∪ I) such that
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1046 M. Schuster, V. Schulz

A(t, ũ, ψ t ) = − DuJ(t,
1

2
(ut + u0))[̃u] − A(t, ũ, vt ) + Du F̃(t, u0, ϕt )[̃u] (16)

for all ũ ∈ Vc(� ∪ I) and

A(t, ϕt , ṽ) =F(t, ṽ) − A(t, u0, ṽ) for all ṽ ∈ Vc(� ∪ I). (17)

Typically, (16) and (17) can each be interpreted as a variational formulation of a
nonlocal Dirichlet problem. Therefore, the operator A(t, ·, ·) needs to be continuous,
which is proven in Lemma 6 below. The remaining requirements of Theorem 1 are
satisfied if the following assumptions hold:

Assumption (S0):

(i) For every t ∈ [0, T ], there exist unique solutions ut , vt ∈ Vc(� ∪ I) to the state
equations (12) and (13). Moreover, there are unique functions ψ t , ϕt that solve
(16) and (17), i.e., Assumption (D2) is satisfied.

(ii) • If γ� is an integrable kernel, we assume that there exists a constant C > 0
such that

A(t, u, u) ≥ C‖u‖2L2(�∪I)
for all t ∈ [0, T ] and u ∈ Vc(� ∪ I).

• If γ� is a singular symmetric kernel, we suppose that there exists a constant
C > 0 such that

A(t, u, u) ≥ C |u|2Hs (�∪I) for all t ∈ [0, T ] and u ∈ Vc(� ∪ I).

Assumption (S1):
Each of the two kernel classes has to meet additional conditions:

• For integrable kernels it is assumed to hold

γi j ∈ W 2,∞(� × �,R), γiI ∈ W 2,∞(� × I,R) for all i, j = 1, 2.

• For n ∈ N, define

DR
d×R

d

n := {(x, y) ∈ R
d × R

d : ‖x − y‖2 ≥ 1

n
}.

Then, for a singular symmetric kernel we assume γi j , γiI ∈ W 2,∞(DR
d×R

d

n ) for
i, j = 1, 2 and n ∈ N. Additionally, we suppose that there exists a constantC > 0
such that

|γi j (x, y)|‖x − y‖d+2s
2 < C, | ∇ γi j (x, y)�V(x, y)|‖x − y‖d+2s

2 < C,

|γiI(x, y)|‖x − y‖d+2s
2 < C, | ∇x γiI(x, y)�V(x)|‖x − y‖d+2s

2 < C,

|V(x, y)� Hess(γi j )(x, y)W(x, y)|‖x − y‖d+2s
2 < C and

|V(x)
∂2

∂x∂x
γiI(x, y)W(x)|‖x − y‖d+2s

2 < C

hold for n ∈ N, i, j = 1, 2 and almost every (x, y) ∈ (� ∪ I)2.
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In the following, we also consider the sets Dn := DR
d×R

d

n ∩(�∪I)2 for n ∈ N. As we
will see in Lemma 5, Assumption (S1) yields the well-posedness of certain integrals,
which are components of the second shape derivative. Moreover, the fact that vector
fields V and W vanish on I is already incorporated into the conditions w.r.t. γiI in
(S1) in the case of singular symmetric kernels, i.e., we only have to differentiate γiI
regarding x.

Remark 6 Let γ� be an integrable kernel and let (S1) be satisfied. Since the indicator
function is in general not weakly differentiable, we cannot conclude that

γ�W
t

(x, y) =
∑

i, j=1,2

γi j (x, y)χFWt (�i )×FWt (� j )
(x, y) +

∑
i=1,2

γiI(x, y)χFWt (�i )×I(x, y)

is (twice) weakly differentiable with weak derivatives in L∞((� ∪ I)2). How-
ever, we derive γ�W

t
∈ W 2,∞(FW

t (�i ) × FW
t (� j )) and γ�W

t
∈ W 2,∞(FW

t (�i ) × I)

for i, j = 1, 2. If γ� is a singular symmetric kernel and (S1) holds, we get
γ�W

t
∈ W 2,∞(Dn ∩ (FW

t (�i ) × FW
t (� j ))) and γ�W

t
∈ W 2,∞(Dn ∩ (FW

t (�i ) × I))

for i, j = 1, 2 and n ∈ N. For ease of presentation, ∇ γ�W
t

and Hess(γ�W
t

) are
understood as the weak first and second derivatives of the kernel on those subdomains
and we do not decompose integrals on (� ∪ I)2 or Dn into the sum of integrals
on these subdomains in the following. The same convention will be also applied to
f�W

t
∈ H2(FW

t (�i )), where i = 1, 2.

We now examine a popular example of a singular symmetric kernel and show that
(S1) is satisfied under some additional assumptions:

Example 1 Let a symmetric function σ� := ∑
i, j=1,2 σi jχ�i×� j + ∑

i=1,2 σiIχ�i×I
be given, where σi j : R

d × R
d → [0,∞) and σiI : R

d × R
d → [0,∞) for

i, j = 1, 2. Here, the functions σi i are supposed to be symmetric for i = 1, 2 and we
consider σ12(x, y) = σ21(y, x) to hold for (x, y) ∈ �×�. Additionally, we assume the
existence of constants 0 < σ∗ ≤ σ ∗ < ∞ such thatσ∗ ≤ σi j ≤ σ ∗ andσ∗ ≤ σiI ≤ σ ∗
on Rd ×R

d for all i, j = 1, 2. Then, a popular choice of a singular symmetric kernel
is the function

γ�(x, y) := σ�(x, y)

‖x − y‖d+2s
2

χBδ(x)(y).

Due to the boundedness of σi j and σiI from below and above as described before,
Assumption (S0)(1) is already satisfied since condition (3) also holds for perturbed
domains �(�W

t ) ∪ I. Assumption (S0)(2) can also be easily proven. We now show
that Assumption (S1) is also valid if σi j , σiI ∈ W 2,∞(Rd × R

d ,R) and if σi j and
σiI are translation invariant for i, j = 1, 2. Therefore, we set γ̃ (x, y) := 1

‖x−y‖d+2s
2

,

c1 := −(d + 2s) and c2 := 2(d + 2s) + (d + 2s)2. For γ̃ we derive

∂

∂x
γ̃ (x, y) = c1γ̃ (x, y)

x − y

‖x − y‖22
and

∂

∂y
γ̃ (x, y) = − ∂

∂x
γ̃ (x, y).
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1048 M. Schuster, V. Schulz

Moreover, the second partial derivatives of γ̃ can be expressed as

∂2

∂x∂x
γ̃ (x, y) = c1γ̃ (x, y)

I

‖x − y‖22
+ c2γ̃ (x, y)

(x − y)(x − y)�

‖x − y‖42
,

∂2

∂x∂y
γ̃ (x, y) = ∂2

∂y∂x
γ̃ (x, y) = − ∂2

∂x∂x
γ̃ (x, y) and

∂2

∂y∂y
γ̃ (x, y) = ∂2

∂x∂x
γ̃ (x, y).

Since σi j is translation invariant, γi j = σi j γ̃ and due to the Lipschitz continuity of V
and W, we can conclude

∣∣∣∇ γi j (x, y)�V(x, y)
∣∣∣ ‖x − y‖d+2s

2

≤
∣∣∣∣∣c1σi j (x, y)

(x − y)�(V(x) − V(y))

‖x − y‖22

∣∣∣∣∣ +
∣∣∣∇ σi j (x, y)�V(x, y)

∣∣∣ < C < ∞ and

∣∣∣V(x, y)� Hess(γi j )(x, y)W(x, y)
∣∣∣ ‖x − y‖d+2s

2

=
∣∣∣∣∣(V(x) − V(y))�

(
σi j (x, y)

(
c1

I

‖x − y‖22
+ c2

(x − y)(x − y)�

‖x − y‖42

)

+ 2
∂

∂x
σi j (x, y)

x − y

‖x − y‖22
+ ∂2

∂x∂x
σi j (x, y)

)
(W(x) − W(y))

∣∣∣∣ < C < ∞,

for almost every (x, y) ∈ � × � and for some constant C > 0. The remaining
conditions on γiI also hold, which can be proven analogously.

We continue by illustrating that the remaining requirements hold if Assumptions (S0)
and (S1) are satisfied. In particular, the existence of ∂tG(t, u, v, ψ, ϕ) is shown in
Lemma 5. In the case of a singular symmetric kernel, the following remark is helpful
to illustrate that integrals involving γ t , ∇ γ t or Hess(γ )t of ∂tG(t, u, v, ψ, ϕ) are
finite:

Remark 7 Let γ� be a singular symmetric kernel with |γi j (x, y)|‖x − y‖d+2s
2 < γ ∗

for x, y ∈ � and |γiI(x, y)|‖x − y‖d+2s
2 < γ ∗ for (x, y) ∈ � × I for some constant

γ ∗ > 0.
Since V ∈ C2

0 (� ∪ I,Rd), there exists a Lipschitz constant LV > 0 such that

‖x − y‖2 ≤ ‖x − y + t(V(x) − V(y))‖2 + t‖V(x) − V(y)‖2
≤ ‖FV

t (x) − FV
t (y)‖2 + t LV‖x − y‖2 for x, y ∈ � ∪ I.

Let T > 0 be sufficiently small such that 1 − T LV > 0. Then, we obtain

‖FV
t (x) − FV

t (y)‖2 ≥ (1 − T LV)‖x − y‖2 for x, y ∈ � ∪ I and t ∈ [0, T ].
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With L := 1
1−T LV

, we derive for t ∈ [0, T ] and almost every (x, y) ∈ Dn that

γ t (x, y) = γ�t (F
V
t (x),FV

t (x)) ≤ γ ∗

‖FV
t (x) − FV

t (y)‖d+2s
2

≤ Lγ ∗

‖x − y‖d+2s
2

< Lγ ∗nd+2s .

As a result, we obtain

|γ t (x, y)|‖x − y‖d+2s
2 < Lγ ∗ for every t ∈ [0, T ] and almost every (x, y) ∈ (� ∪ I)2.

If Assumption (S1) holds, it can be shown in a similar way that there exists a constant
C > 0 with

| ∇ γ t (x, y)�V(x, y)|‖x − y‖d+2s
2 < C and

|V(x, y)� Hess(γ )t (x, y)W(x, y)|‖x − y‖d+2s
2 < C

for almost every (x, y) ∈ (� ∪ I)2 and for all t ∈ [0, T ]. Note that ξ t (x) is bounded
from above for t ∈ [0, T ] and x ∈ � ∪ I. Thus, integrals like, e.g.,

∫∫

(�∪I)2

(u(x) − u(y))(v(x) − v(y))γ t (x, y)ξ t (x)ξ t (y) dydx or

∗
∫∫

(�∪I)2

(u(x) − u(y))(v(x) − v(y))∇ γ t (x, y)�V(x, y)ξ t (x)ξ t (y) dydx

are well-defined for functions u, v ∈ Hs
c (� ∪ I).

Lemma 5 If Assumption (S1) holds, then for any u, v, ψ, ϕ ∈ Vc(�∪I) and t ∈ [0, T ]
the derivative ∂tG(t, u, v, ψ, ϕ) exists, i.e., (D1) is satisfied.

Proof Since the proof is quite lengthy, it can be found in Appendix A.1. ��
In order to prove the weak convergences ϕt⇀ϕ0 and ψ t⇀ψ0 in Lemma 7, which

are helpful to show that Assumption (D3) is satisfied, wemake use of the boundedness
of A:

Lemma 6 Let Assumption (S1) hold.

• If γ� is an integrable kernel, then there exists a constant C > 0 such that

|A(t, u, v)| ≤ C‖u‖L2(�∪I)‖v‖L2(�∪I) for t ∈ [0, T ] and u, v ∈ Vc(� ∪ I).

• If γ� is a singular symmetric kernel, then there exists a constant C > 0 such that

|A(t, u, v)| ≤ C |u|Hs (�∪I)|v|Hs (�∪I) for t ∈ [0, T ] and u, v ∈ Vc(� ∪ I).
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Proof By utilizing the triangle inequality, we can directly deduce that

|A(t, u, v)|
≤

∑
i=1,2

∣∣∣∣
∫∫

(�∪I)2
(v(x) − v(y))(u(x)� t

i (x, y) − u(y)� t
i (y, x))ξ

t (x)ξ t (y) dydx

∣∣∣∣ .

Case 1: Integrable Kernel
First, we denote that ξ t and divVt are continuous and bounded on � ∪ I and

therefore

� t
2(x, y)ξ

t (x)ξ t (y) = γ t (x, y)(divVt (x) + divVt (y))ξ t (x)ξ t (y)

is bounded by a constant C̃1 > 0 for all t ∈ [0, T ] and for almost every (x, y) ∈
(� ∪ I)2 due to Assumption (S1). Then, we can conclude the existence of a constant
C1 > 0 such that for the term regarding �2 holds

∣∣∣∣
∫∫

(�∪I)2
(v(x) − v(y))(u(x)� t

2(x, y) − u(y)� t
2(y, x))ξ

t (x)ξ t (y) dydx

∣∣∣∣
≤ C̃1

∫∫
(�∪I)2

|(v(x) − v(y))u(x)| + |(v(x) − v(y))u(y)| dydx
≤ C1‖u‖L2(�∪I)‖v‖L2(�∪I).

Since also ∇ γ t is essentially bounded for all t ∈ [0, T ], the term

� t
1(x, y)ξ

t (x)ξ t (y) = ∇ γ t (x, y)�Vt (x, y)ξ t (x)ξ t (y)

is essentially bounded by a constant C̃2 > 0 for all t ∈ [0, T ] and for almost every
(x, y) ∈ (� ∪ I)2. Consequently, we get for some C2 > 0 that

∣∣∣∣
∫∫

(�∪I)2
(v(x) − v(y))(u(x)� t

1(x, y) − u(y)� t
1(y, x))ξ

t (x)ξ t (y) dydx

∣∣∣∣
≤

∫∫
(�∪I)2

C̃2|(v(x) − v(y))u(x)| + C̃2|(v(x) − v(y))u(y)| dydx
≤ C2‖u‖L2(�∪I)‖v‖L2(�∪I).

Case 2: Singular Symmetric Kernel
Here, we can directly conclude the existence of a constant C1 > 0 with

|� t
2(x, y)ξ

t (x)ξ t (y)| ≤ C1

‖x − y‖d+2s
2

χBδ(x)(y) =: γ̃ (x, y)
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for almost every (x, y) ∈ (� ∪ I)2 and for all t ∈ [0, T ] due to Assumption (S1)
(see also Remark 7) and the boundedness of V, divV and ξ t on � ∪ I. Therefore, we
derive

∣∣∣∣
∫∫

(�∪I)2
(v(x) − v(y))(u(x) − u(y))�t

2(x, y)ξ
t (x)ξ t (y) dydx

∣∣∣∣
≤

∫∫
(�∪I)2

|(v(x) − v(y))(u(x) − u(y))| γ̃ (x, y) dydx

≤
(∫∫

(�∪I)2
(v(x) − v(y))2γ̃ (x, y) dydx

) 1
2

(∫∫
(�∪I)2

(u(x) − u(y))2γ̃ (x, y) dydx
) 1

2

≤ C1|u|Hs (�∪I)|v|Hs (�∪I),

where we obtain the last step by dropping χBδ(x). From Assumption
(S1), as indicated in Remark 7, follows the existence of a constant
C2 > 0 with |� t

1(x, y)ξ
t (x)ξ t (y)| ≤ C2

‖x−y‖d+2s
2

χBδ(x)(y) =: γ (x, y) for almost every

(x, y) ∈ (� ∪ I)2 and for all t ∈ [0, T ]. Accordingly, we derive
∣∣∣∣
∫∫

(�∪I)2
(v(x) − v(y))(u(x) − u(y))�t

1(x, y)ξ
t (x)ξ t (y) dydx

∣∣∣∣

≤
(∫∫

(�∪I)2
(v(x) − v(y))2γ (x, y) dydx

) 1
2

(∫∫
(�∪I)2

(u(x) − u(y))2γ (x, y) dydx
) 1

2

≤ C2|u|Hs (�∪I)|v|Hs (�∪I),

where we again omitted the truncation χBδ(x) in the last step. ��
Before we prove that the conditions of (D3) are met under some natural assumptions,
we need the following weak convergence results.

Lemma 7 Suppose that Assumptions (S0) and (S1) hold. Then, we derive:
If γ� is an integrable kernel, we obtain that the families of functions {ut }t∈[0,T ],

{vt }t∈[0,T ], {ψ t }t∈[0,T ] and {ϕt }t∈[0,T ] are bounded with respect to ‖ · ‖L2(�∪I).
Moreover,

ut⇀u0, vt⇀v0, ψ t⇀ψ0 and ϕt⇀ϕ0 for t ↘ 0 in (L2
c(� ∪ I), 〈·, ·〉L2(�∪I)).

If γ� is a singular symmetric kernel, we get that the families of functions {ut }t∈[0,T ],
{vt }t∈[0,T ], {ψ t }t∈[0,T ] and {ϕt }t∈[0,T ] are bounded regarding | · |Hs (�∪I) and ‖ ·
‖L2(�∪I). Additionally,

ut⇀u0, vt⇀v0, ψ t⇀ψ0 and ϕt⇀ϕ0 for t ↘ 0 in (Hs
c (� ∪ I), 〈·, ·〉Hs (�∪I)).

Proof Due to its length, the proof has been moved to Appendix A.2. ��
Lemma 8 If Assumptions (S0) and (S1) are satisfied, Assumption (D3) of the AAM
holds.
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Proof Since the proof is quite lengthy, it can be found in Appendix A.3. ��
Now, we express D2 Jred(�)[V,W] according to the decomposition (5) as the sum
of the linear second shape derivative (Jred)′′(�)[V,W] and of the shape derivative
DJred(�)[(DV)W]. First, note that (∇ divV)�W = div((DV)W) − tr(DVDW)

(see, e.g., [31]). Additionally, we can formulate the terms ∇(� i
�,V(x, y))�W(x, y) as

a sum of two parts. Therefore, we set

T 1
lin(x, y) =V(x, y)� Hess(γ�)(x, y)W(x, y),

T 1
der (x, y) = ∇ γ �

� (x, y)(DV(x, y))W(x, y),

T 2
lin(x, y) =(divV(x) + divV(y))∇ γ�(x, y)�W(x, y)

− γ�(x, y)(tr(DV(x)DW(x)) + tr(DV(y)DW(y))) and

T 2
der (x, y) =γ�(x, y)(div((DV(x))W(x)) + div((DV(y))W(y))).

Consequently, we derive

(∇ �1
�,V(x, y))�W(x, y) = T 1

lin(x, y) + T 1
der (x, y) and

(∇ �2
�,V(x, y))�W(x, y) = T 2

lin(x, y) + T 2
der (x, y).

(18)

Corollary 9 (Second Shape Derivative of the Reduced Functional) Let the functions
u0, v0 solve (12) and (13). Further, suppose that the functionsψ0, ϕ0 are the solutions
to (16) and (17). Additionally, the functions �1

�,V and �2
�,V are defined as in (11) and

their gradient terms can be written as indicated in (18). Then, the second shape
derivative of the reduced functional can be expressed as

D2 Jred(�)[V,W](= ∂tG(0, u0, v0, ψ0, ϕ0)) = J ′′(�)[V,W] + DJ (�)[(DV)W],

where the first component is the linear second shape derivative

J ′′(�)[V,W]
=

∫
�

∇ u�W∇ u�V − (u0 − u)
(
V� Hess(u)W + ∇ u�V divW

)
dx

+
∫
�

−(u0 − u) ∇ u�W divV + 1

2

(
u0 − u

)2
(− tr(DVDW) + divV divW) dx

+
∫
�
V� Hess( f�)Wv0 + ∇ f �

� Vv0 divW dx

+
∫
�

∇ f �
� Wv0 divV + f�v0 (− tr(DVDW) + divV divW) dx

+
2∑

i=1

1

2

(∫∫
(�∪I)2

(v0(x) − v0(y))(u0(x)T i
lin(x, y) − u0(y)T i

lin(y, x)) dydx

+
∫∫

(�∪I)2

(v0(x) − v0(y))(u0(x)�i
�,V(x, y) − u0(y)�i

�,V(y, x))(divW(x) + divW(y)) dydx

⎞
⎟⎠

123



Second order shape optimization for an interface identification… 1053

+
2∑

i=1

1

2

(∫∫
(�∪I)2

(ψ0(x) − ψ0(y))(u0(x)�i
�,W(x, y) − u0(y)�i

�,W(y, x)) dydx
)

+
2∑

i=1

1

2

(∫∫
(�∪I)2

(v0(x) − v0(y))(ϕ0(x)�i
�,W(x, y) − ϕ0(y)�i

�,W(y, x)) dydx
)

−
∫
�

∇ f �
� Wψ0 + f�ψ0 divW dx +

∫
�

(u0 − u)ϕ0 divW − ∇ u�Wϕ0 dx

and where the second term is the shape derivative at � in direction (DV)W, which
can be written as

DJ (�)[(DV)W] =
∫
�

−
(
u0 − u

)
∇ u�(DV)W + 1

2
(u0 − u)2 div((DV)W) dx

+
∫
�

∇ f �
� (DV)Wv0 + f�v0 div((DV)W) dx

+
2∑

i=1

1

2

∫∫
(�∪I)2

(v0(x) − v0(y))(u0(x)T i
der (x, y) − u0(y)T i

der (y, x)) dydx.

We now continue by putting the derived formula for (Jred)′′(�)[V,W] into numerical
practice.

7 Second order shape optimization algorithm

Second-order shape optimization methods have already been introduced and investi-
gated in, e.g., [30–32, 41, 42].

Here, we present a second order shape optimization algorithm where we follow
a Newton-like approach that incorporates first and second shape derivatives of the
reduced objective functional, which are derived by the averaged adjoint method.

As mentioned before, we follow [31] and optimize on a suitable subset of {T |T :
� → �}. Therefore, we omit the possibly nonsymmetric part of the second shape
derivative and only utilize (Jred)′′(�)[V,W]. Here, the objective functional also
includes the perimeter regularization jper , whose shape derivatives can be found in
Remark 4. Moreover, we apply the finite element method and approximate functions
by a linear combination of continuous, piecewise linear basis functions. In particular,
in every iteration k we will search for a deformation Wk,h

ε in the space of such linear
combinations of d-dimensional CG ansatz functions, which we denote as CGd . For a
detailed description of how the finite element framework can be implemented in order
to solve nonlocal Dirichlet problems, we refer to [43].

However, if V = 0 on �, we derive FV
t (�) = � for t ∈ [0, T ] and, consequently,

DJred(�)[V] = 0. Therefore, deformations inside of �1 and �2 do not result in
a change of the objective functional value. Additionally, (Jred)′′(�)[V,W] = 0 if
V = 0 on � or W = 0 on � (see (4)) such that the linear second shape derivative
(Jred)′′(�)[V,W] has a huge null space, is not invertible and thus the corresponding
stiffness matrix in the finite element method is not positive definite. As a remedy, we
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set

jreg(V,W) :=
∫

�

〈V,W〉2 + 〈DV, DW〉F dx

and apply a Newton-like approach by solving the following problem in every iteration
for a given constant ε > 0:

Find Wk,h
ε ∈ CGd subject to

(Jred)′′(�k)[Vh,Wk,h
ε ] + ε jreg(Vh,Wk,h

ε ) = −DJred(�k)[Vh] for all Vh ∈ CGd .

(19)

Then, there exists a unique solution to problem (19) and the associated finite element
stiffness matrix is positive definite. As shown in [31, Theorem 3.5], if ε ↘ 0 the
corresponding solutions Wk,h

ε converge to a solution that is derived by solving the
unperturbed problem (19) with ε = 0 by a Newton method based on the Moore-
Penrose pseudoinverse.

The complete optimization procedure is illustrated in Algorithm 1. Recall that in
order to compute DJred(�k)[Vh] and (Jred)′′(�k)[Vh,Wh], we need to solve (12)
and (13) once in every iteration. However, the solutions ψ(�k,V) and ϕ(�k,V) to
(16) and (17) are calculated for every basis vector field of CGd .

Algorithm 1 Second Order Shape Optimization Algorithm

while k ≤ maxiter and ‖Wk,h
ε ‖ > tol do

Interpolate u onto current finite element mesh �k .
u(�k ), v(�k ) ← Solve state and adjoint equation.
Assemble shape derivative DJred (�k )[Vh ] for all basis functions Vh of CGd .
Set DJred (�k )[Vh ] = 0 if supp(Vh) ∩ �k = ∅.
ψ(�k ,Vh), ϕ(�k ,Vh) ← Solve (16) and (17) for all basis functions Vh of CGd .
Assemble linear second shape derivative (Jreg)′′(�k )[Vh ,Wh ] for all basis functions Vh ,Wh of

CGd .
Wk,h

ε ← Get deformation by solving

(Jred )′′(�k )[Vh ,Wk,h
ε ] + ε jreg(Vh ,Wk,h

ε ) = −DJred (�k )[Vh ]
for all Vh ∈ CGd .

Update mesh:

�k+1 = (Id+Wk,h
ε )(�k )

k = k + 1
end while

8 Numerical experiments

We now describe the implementation of the optimization procedure introduced in the
previous Sect. 7 and discuss two numerical examples.
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Fig. 2 Example 1: Here we can see snapshots of the domains in different stages of the algorithm, where the
domain � is decomposed in the blue area �1 and the gray region �2. The nonlocal boundary is colored in
red. Additionally, the black circle can be interpreted as the target shape, i.e., we solve the nonlocal Dirichlet
problem given the integrable kernel γ1, the parameters chosen as described in the text and the decomposition
of � in �1 and �2 according to the black circle. The solution is then used as the data u in the interface
identification problem where we start with the blue square as the initial shape of �1. After 29 iterations the
algorithm ends successfully.

As mentioned before, we apply the finite element method. For our experiments, the
underlying mesh is generated by Gmsh [44] and we assemble the stiffness matrix for
the bilinear nonlocal form A� with the Python package nlfem [45]. Moreover, the first
and second derivatives of the nonlocal bilinear form A� , which are components of the
first or the linear second shape derivative, are built by a customized version of nlfem.
The regularization function, the forcing term vector and the objective functional along
with their derivative are constructed by legacy FEniCS [46, 47].

For the first example, we choose an integrable kernel γ1 as follows

γ1(x, y) =

⎧⎪⎨
⎪⎩
0.1c1χBδ(x)(y) if x, y ∈ �1,

10c1χBδ(x)(y) if x, y ∈ �2,

c1χBδ(x)(y) else,

where c1 := 1
δ4
. Additionally, we set � = (0, 1)2, δ = 0.1, ε = 0.3, α = 2 · 10−3,

g = 0 as boundary data and f� = 10χ�1 − 10χ�2 in the forcing term. The set-up
and the results are shown in Fig. 2. In our experiments, the data u, which we would
like to approximate as well as possible, is computed by solving the nonlocal Dirichlet
problem where � is the black circle that can be seen in all the pictures, i.e., �1 is
inside and �2 outside of �. Then, we start in a set-up where �1 is a square (see Fig.
2) and ideally this blue area should be deformed to a blue disk in the course of the
shape optimization algorithm. We stop after 50 iterations or if the L2(�,R2)-norm
of the deformation Wk,h

ε is smaller than 5 · 10−5, which we again compute by using
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Fig. 3 Example 2: In this picture, we can see snapshots of the domains at different points of the algorithm.
Here,�1 is the blue and�2 is the gray area. The nonlocal boundary I is depicted in red. The black circle is
the shape that we try to reach. The given data u is the solution of the nonlocal Dirichlet problem where the
interface � is the black circle and where we apply the singular symmetric kernel γ2. Note that the algorithm
terminates successfully after 22 iterations.

FEniCS. As we can observe in Fig. 2, we derive roughly a circle after 15 iterations
and the algorithm terminates after 29 iterations.

In the second example, we apply the singular symmetric kernel

γ2(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

10.0 c2
‖x−y‖2+2s

2
χBδ(x)(y) if x, y ∈ �1

1.0 c2
‖x−y‖2+2s

2
χBδ(x)(y) if x, y ∈ �2

5.0 c2
‖x−y‖2+2s

2
χBδ(x)(y) else,

where c2 := 2−2s
πδ2+2s and s = 0.6. Further, we set ε = 0.02, α = 2 · 10−4 and δ = 0.1.

Again we have f� = 10χ�1 − 10χ�2 in the forcing term and g = 0 on the boundary.
The termination criteria as well as the target shape are also the same as in the first
experiment. The results are shown in Fig. 3, where we now start from a different shape
�. In this case, �1 has roughly the shape of the black circle after 5 iterations and the
algorithm ends after 22 iterations.

The development of the objective functional values are illustrated in Fig. 4 and the
history of the deformationWk,h

ε in the L2(�,R2)-norm is depicted in Fig. 5. Here, we
also tested the integrable kernel γ1 with the same parameters as in the first example on
the second set-up. Analogously, we also used the singular kernel γ2 with the presented
parameters on the starting domain of the first experiment.

We would like to point out that Algorithm 1 is computationally costly since
ψ(�,Vh) and ϕ(�,Vh) are calculated for all basis functions Vh ∈ CGd . Thus,
we recommend using L-BFGS as in [18]. However, there are certainly some ways
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Fig. 4 Development of the objective functional values for both kernels starting on both initial shapes.

Fig. 5 Development of ‖Wk,h
ε ‖2

during the experiments.

to improve and speed up Algorithm 1. Moreover, note that in our experiments, no
remeshing techniques were employed.

9 Conclusion

In this work, we investigated interface identification governed by a nonlocal Dirichlet
problem. Further, we developed the (linear) second shape derivative of the reduced
functional, which corresponds to this constrained interface identification problem, by
applying a version of the averaged adjoint method. The linear second shape derivative
was then used in a Newton-like second-order shape optimization algorithm, which
was successfully applied to two numerical examples in the previous section. Thus,
to the best knowledge of the authors, this is the first study of the numerical usage of
linear second shape derivatives for nonlocal problems.
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Appendix A: Proofs

Here, we first list some useful lemmata and remarks that are
utilized in the proofs of Lemmata 5, 7 and 8.

Lemma 10 (After [24, Proposition 2.32]) Suppose that V ∈ C1
0(�,Rd) and

f ∈ W 1,k(�,R) with k ∈ N. Moreover, let T > 0 be sufficiently small such that the
perturbation of identity FV

t : � → � is bijective for all t ∈ [0, T ]. Then, t �→ f ◦FV
t

is differentiable in Lk(�) with

(
d

dt

∣∣∣∣
t=r

(
f ◦ FV

t

))
(x) = ∇ f (FV

r (x))�V(x) for r ∈ [0, T ].

Proof See proof of [48, Lemma 3.2.11]. ��
Moreover, we make use of the following “product rules” for Fréchet derivatives:

Lemma 11 The following differentiation rules hold:

(i) Let f1 : [0, T ] → L2(�), t �→ f1(t, ·) and f2 : [0, T ] → L2(�), t �→ f2(t, ·)
be Fréchet differentiable in L2(�) with derivatives f ′

1(t, ·) and f ′
2(t, ·). Then,

the product t �→ f1(t, ·) f2(t, ·) is Fréchet differentiable in L1(�) with

( f1 f2)
′(t, ·) = f1(t, ·) f ′

2(t, ·) + f ′
1(t, ·) f2(t, ·).

(ii) Given k ∈ N, let f1 : [0, T ] → Lk(�), t �→ f1(t, ·) be Fréchet differentiable
in Lk(�) with derivative f ′

1(t, ·) and let f2 : [0, T ] → L∞(�), t �→ f2(t, ·) be
Fréchet differentiable in Lk(�). Then, the product t �→ f1(t, ·) f2(t, ·) is Fréchet
differentiable in Lk(�) with

( f1 f2)
′(t, ·) = f1(t, ·) f ′

2(t, ·) + f ′
1(t, ·) f2(t, ·).

Proof See proof of [48, Lemma 3.2.9].
��

Remark 8 Let f ∈ W 1,1(�) and h ∈ C1
0(�), then f h is weakly differentiable with

derivative ∂α( f h) = (∂α f )h + f (∂αh) for a multi-index α ∈ N
d
0 with |α| = 1

since there exists a sequence {hn}n∈N ∈ C∞(�)N with hn → h uniformly (see [49,
Appendix C Theorem 7]) such that for every ϕ ∈ C∞

c (�) we derive

∫
�

(∂α f )hnϕ dx = −
∫

�

f ∂α(hnϕ) dx = −
∫

�

f (∂αhn)ϕ dx −
∫

�

f hn(∂
αϕ) dx.

As a consequence, ∇ f �V and f divV are weakly differentiable if f ∈ H2(�) and
V ∈ C2

0 (� ∪ I,Rd).

In order to show Assumption (D3) we further make use of the following lemma and
the subsequent remark in the proofs of Lemmas 7 and 8:
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Lemma 12 (After [23, Chapter 10.2.4 Lemma 2.1]) Let V ∈ C1
0(�,Rd) and n ∈ N.

Then, for f̃ ∈ L2(�,Rn), we get

‖ f̃ ◦ FV
t − f̃ ‖L2(�,Rn) → 0 and ‖ f̃ ◦ (FV

t )−1 − f̃ ‖L2(�,Rn) → 0 for t ↘ 0.

Proof See proof of [48, Lemma 3.2.20].
��

Remark 9 Let a sequence {tn}n∈N ∈ [0, T ]N with limn→∞ tn = 0 be given. Moreover,
assume two families of functions { f tn }n∈N and {htn }n∈N with f tn , htn ∈ L2(�) such
that f tn → f 0 and htn⇀h0 in L2(�) for n → ∞. Further, we suppose that the family
{htn }n∈N is bounded w.r.t. ‖ · ‖L2(�). Then, we derive

lim
n→∞

∫
�

htn f tn dx =
∫

�

h0 f 0 dx. (20)

Of course, if htn → h0 in L2(�), then (20) also holds. Now, let p ∈ N and two families
of functions { f t }t∈[0,T ] and {ht }t∈[0,T ] with h ∈ L∞([0, T ] × �) and f t ∈ L p(�)

for t ∈ [0, T ] be given. Further, we assume f t → f 0 and ht → h0 in L p(�). Then,
we obtain

f t ht → f 0h0 in L p(�) for t ↘ 0. (21)

In the following, (21) will mainly be used to show that products involving ξ t ∈ L∞(�)

or ∂
∂r

∣∣
r=t (ξ

r ) ∈ L∞(�) still converge in L1(�) or L2(�). Note that ξ t converges

uniformly to ξ0(= 1) and ∂
∂r

∣∣
r=t (ξ

r ) is also uniform convergent to divV for t ↘ 0,
which follows from the Leibniz rule for determinants and V ∈ C2

0 (� ∪ I,Rd).

A.1 Proof of Lemma 5

Proof For the proof of the differentiability of A(t, u, ψ), A(t, ϕ, v) and F(t, ψ)

regarding t , we refer to [18]. It remains to show that ∂t F̃(t, u, ϕ), ∂tJ(t, u), ∂tF(t, v)

and ∂tA(t, u, v) exist. Because u ∈ H2(�) and ξ t = det DFW
t is continuously differ-

entiable in t on � as shown in, e.g., [26, Lemma 2.14], we get by applying Lemma 10
and Lemma 11 that

∂t F̃(t, u, ϕ) =
∫

�

(∇ ut )�Wϕξ t − (u − ut )ϕ
d

dr

∣∣∣∣
r=t

(ξ r ) dx.

Additionally, since f t ∈ H2(�i ) for i = 1, 2 and V ∈ C2
0 (� ∪ I,Rd), we can

conclude by making use of Lemma 10 and by applying Lemma 11 that
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∂tJ(t, u, v) =
∫
�

(∇ ut )�W(∇ ut )�Vt ξ t dx

−
∫
�

(u − ut )

(
(Vt )� Hess(u)tWξ t + (∇ ut )�DVtWξ t + (∇ ut )�Vt d

dr

∣∣∣∣
r=t

(ξr )

)
dx

+
∫
�

−(u − ut )(∇ ut )�W divVt ξ t

+ 1

2

(
u − ut

)2 (
(∇ divVt )�Wξ t + divVt d

dr

∣∣∣∣
r=t

(
ξr

))
dx and

∂tF(t, v) =
∫
�

(Vt )� Hess( f t )Wvξ t + (∇ f t )�DVtWvξ t + (∇ f t )�Vtv
d

dr

∣∣∣∣
r=t

(ξr ) dx

+
∫
�

(∇ f t )�Wv divVt ξ t + f tv(∇ divVt )�Wξ t + f tv divVt d

dr

∣∣∣∣
r=t

(
ξr

)
dx.

Case 1: Integrable Kernel
Since we assume V ∈ C2

0 (� ∪ I,Rd) and γ�W
t

∈ W 2,∞(FW
t (�i ) ×

FW
t (� j )) and γ�W

t
∈ W 2,∞(FW

t (�i ) × I) as a consequence of Assumption (S1),

we conclude by employing Remark 8 that �1
�W
t ,V

∈ W 1,∞(FW
t (�i ) × FW

t (� j ))

and �1
�W
t ,V

∈ W 1,∞(FW
t (�i ) × I) with ∇ �1

�W
t ,V

= Hess(γ�W
t

)V + (∇ γ �
�W
t
DV)�.

Similarly, we get the weak derivatives

∇ �2
�W
t ,V

(x, y) = (divV(x) + divV(y))∇ γ�W
t

(x, y)

+ γ�W
t

(x, y)(∇ divV(x) + ∇ divV(y)).

Recall that � t
k(x, y) = �k

�W
t ,Vt (F

W
t (x),FW

t (y)) and thus t �→ � t
k(x, y) is Fréchet

differentiable in L2(�i × � j ) and in L2(�i × I) due to 10 for i, j, k = 1, 2 with
essentially bounded derivatives. Consequently, we derive by utilizing Lemma 11 that
the partial derivative regarding the nonlocal operator can be expressed as

∂tA(t, u, v)

= 1

2

∫∫
(�∪I)2

(v(x) − v(y))
(
u(x)∇ � t

1(x, y)
�W(x, y)

−u(y)∇ � t
1(y, x)

�W(y, x)
)

ξ t (x)ξ t (y)

+ (v(x) − v(y))(u(x)� t
1(x, y) − u(y)� t

1(y, x))
d

dr

∣∣∣∣
r=t

(ξ r (x)ξ r (y)) dydx

+ 1

2

∫∫
(�∪I)2

(v(x) − v(y))
(
u(x)∇ � t

2(x, y)
�W(x, y)

−u(y)∇ � t
2(y, x)

�W(y, x)
)

ξ t (x)ξ t (y)

+ (v(x) − v(y))(u(x)� t
2(x, y) − u(y)� t

2(y, x))
d

dr

∣∣∣∣
r=t

(ξ r (x)ξ r (y)) dydx.

Case 2: Singular Symmetric Kernel
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We start by proving Fréchet differentiability of terms involving the subkernels γi j
and γiI . Therefore, for i, j = 1, 2 we set

h1i j (x, y) := ∇ γi j (x, y)�V(x, y), h1iI(x, y) := ∇ γiI(x, y)�V(x, y),

h2i j (x, y) := (divV(x) + divV(y))γi j (x, y) and

h2iI(x, y) := (divV(x) + divV(y))γiI(x, y).

Note, that for k = 1, 2, we can now express

�t
k(x, y) =

∑
i, j=1,2

hki j (F
W
t (x),FWt (y))χ�i×� j (x, y) +

∑
i=1,2

hkiI (FWt (x), y)χ�i×I (x, y).

Stein’s extension theorem [50, Theorem 5.24] combined with Remark 8 yields
h1i j , h

2
i j ∈ W 1,p(Dn) for n ∈ N with weak derivatives

∇ h1i j (x, y) = Hess(γi j )(x, y)V(x, y) + (∇ γ �
i j (x, y)DV(x, y))� and

∇ h2i j (x, y) = (divV(x) + divV(y))∇ γi j (x, y) + γi j (x, y)(∇ divV(x) + ∇ divV(y)).

For every n ∈ N, it can be shown that there exists an integer n1 ∈ N such
that (FW

t (x),FW
t (y)) ∈ Dn1 for all (x, y) ∈ Dn and t ∈ [0, T ]. Further, we set

F̃W
t (x, y) := (

FW
t (x),FW

t (y)
)
. Then, by utilizing Stein’s extension theorem [50,

Theorem 5.24] and Lemma 10 the function [0, T ] � t �→ hki j ◦ F̃W
t is Fréchet dif-

ferentiable in L p(Dn). Analogously, it can be shown that t �→ hiI ◦ F̃W
t is

Fréchet differentiable in L p(Dn). Thus, we obtain the Fréchet differentiability of
t �→ � t

k(x, y) in L2(Dn ∩ (�i × � j )) and L2(Dn ∩ (�i × I)) for i, j, k = 1, 2.
Note that these Fréchet derivatives are again essentially bounded on the subdomains
[0, T ]× (

Dn ∩ (�i × � j )
)
and [0, T ]× (Dn ∩ (�i × I)) as illustrated in Remark 7.

By making use of Lemma 11 multiple times and due to Assumption (S1), which also
ensures the well-posedness of the integrals, we get the differentiability ofA regarding
t with

∂

∂r

∣∣∣∣
r=t

A(t, u, v)

∗ = lim
n→∞

d

dr

∣∣∣∣
r=t

1

2

∫∫

Dn

(v(x) − v(y))(u(x) − u(y))�r
1(x, y)ξ

t (x)ξ t (y) dydx

∗ + lim
n→∞

d

dr

∣∣∣∣
r=t

1

2

∫∫

Dn

(v(x) − v(y))(u(x) − u(y))�r
2(x, y)ξ

t (x)ξ t (y) dydx

= 1

2

∫∫

(�∪I)2

(v(x) − v(y))(u(x) − u(y))∇ �t
1(x, y)

�W(x, y)ξ t (x)ξ t (y)

∗ + (v(x) − v(y))(u(x) − u(y))�t
1(x, y)

∂

∂r

∣∣∣∣
r=t

(ξr (x)ξr (y)) dydx
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1062 M. Schuster, V. Schulz

+ 1

2

∫∫

(�∪I)2

(v(x) − v(y))(u(x) − u(y))∇ �t
2(x, y)

�W(x, y)ξ t (x)ξ t (y)

+ (v(x) − v(y))(u(x) − u(y))�t
2(x, y)

∂

∂r

∣∣∣∣
r=t

(ξr (x)ξr (y)) dydx.

��

A.2 Proof of Lemma 7

Proof The proof for both assertions regarding {ut }t∈[0,T ] as well as {vt }t∈[0,T ] can
be found in [18]. We follow the same approach in order to show the statements for
{ϕt }t∈[0,T ] and {ψ t }t∈[0,T ]. Thus, for both kernel classes, we first prove the bounded-
ness with respect to the above-mentioned norm and then use these results to show the
corresponding weak convergences.

For ease of presentation, we denote every subsequence of a sequence (tn)n∈N ∈
[0, T ]N by (tnk )k∈N in the remaining part of this proof. However, technically they
could be different subsequences or a subsequence of a subsequence.

Case 1: Integrable Kernel
First, let γ� be an integrable kernel that additionally satisfies Assumptions (S0) and

(S1). Then, we derive the existence of constants C1,C2 > 0 with

‖ϕt‖2L2(�∪I)
≤ C1|A(t, ϕt , ϕt )| = C1|F(t, ϕt ) − A(t, u0, ϕt )|

≤ C2

⎛
⎝ ∑

i=1,2

(‖ f t‖L2(�i )
+ ‖∇ f t‖L2(�i )

) + ‖u0‖L2(�)

⎞
⎠ ‖ϕt‖L2(�∪I) as follows:

We apply in the first step Assumption (S0) (2) and in the second that ϕt solves
the averaged adjoint equation (17). Additionally, we used that there exists a
Ĉ > 0 with |A(t, u0, ϕt )| ≤ Ĉ‖u0‖L2(�∪I)‖ϕt‖L2(�∪I) (see Lemma 6) and
|F(t, ϕt )| ≤ Ĉ

∑
i=1,2

(‖ f t‖L2(�i )
+ ‖∇ f t‖L2(�i )

) ‖ϕt‖L2(�∪I) due to the bound-
edness of ξ t as well as Vt ∈ C2

0 (� ∪ I,Rd) and by utilizing the Cauchy-Schwarz
inequality for L2-functions. Combined with f t → f 0 in L2(�i ) and ∇ f t → ∇ f 0

in L2(�i ,R
d) due to Lemma 12, we get ‖ f t‖L2(�i )

, ‖∇ f t‖L2(�i )
< C̃ for i = 1, 2

for some constant C̃ > 0. Therefore, we can conclude that {‖ϕt‖L2(�∪I)}t∈[0,T ] is
bounded.

The boundedness of {‖ψ t‖L2(�∪I)}t∈[0,T ] can be proven analogously. Conse-
quently, we obtain for every sequence (tn)n∈N ∈ [0, T ]N with limn→∞ tn = 0 the
existence of a subsequence {tnk }k∈N and functions q1, q2 ∈ L2

c(� ∪ I) with ϕtnk ⇀q1
and ψ tnk ⇀q2 for k → ∞. We now show that q1 = ϕ0 and q2 = ψ0. Therefore, we
need several convergences (see (22)). For the proof of A(tnk , ϕ

tnk , ṽ) → A(0, q1, ṽ)

and A(tnk , ũ, ψ tnk ) → A(0, ũ, q2) for k → ∞ we refer to [18]. Here, we show the
remaining convergences by making use of similar arguments.
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Since ((∇ f t )�Vt + divVt f t )ξ t → ∇ f �
� V + divV f� in L2(�) due to Lemma

12 and observation (21), we obtain by utilizing (20) that

F(tnk , ṽ) =
∫

�

(
(∇ f tnk )�Vtnk ξ tnk + divVtnk f tnk ξ tnk

)
ṽ dx

→
∫

�

(
∇ f �

� V + divV f�
)

ṽ dx = F(0, ṽ) for k → ∞.

We now prove limk→∞ A(tnk , u
0, ṽ) = A(0, u0, ṽ). First, we recall that γ t and ∇ γ t

are essentially bounded by a constant independent of t ∈ [0, T ]. Hence, from Lemma
12 and observation (21) follows

� t
1(x, y)ξ

t (x)ξ t (y) = ∇ γ t (x, y)�Vt (x, y)ξ t (x)ξ t (y)

→ ∇ γ 0(x, y)�V0(x, y) = �0
1 (x, y)

in L2((� ∪ I)2) for t ↘ 0. Then, for every sequence (tn)n∈N[0, T ]N with

limn→∞ tn = 0 there exists a subsequence (tnk )k∈N such that �
tnk
1 → �0

1 almost
everywhere on (� ∪ I)2. As a consequence of the dominated convergence theorem,
we get

1

2

∫∫

(�∪I)2

(̃v(x) − ṽ(y))(u0(x)�
tnk
1 (x, y) − u0(y)�

tnk
1 (y, x))ξ tnk (x)ξ tnk (y) dydx

∗ → 1

2

∫∫

(�∪I)2

(̃v(x)−ṽ(y))(u0(x)�0
1 (x, y) − u0(y)�0

1 (y, x)) dydx.

Moreover, Lemma 12 and (21) yield

� t
2(x, y)ξ

t (x)ξ t (y) = γ t (x, y)(divVt (x) + divVt (y))ξ t (x)ξ t (y)

→ γ 0(x, y)(divV0(x) + divV0(y)) = �0
2 (x, y) in L2((� ∪ I)2).

By making use of the same argumentation as before, we conclude

1

2

∫∫

(�∪I)2

(̃v(x) − ṽ(y))(u0(x)�
tnk
2 (x, y) − u0(y)�

tnk
2 (y, x))ξ tnk (x)ξ tnk (y) dydx

→ 1

2

∫∫

(�∪I)2

(̃v(x)−ṽ(y))(u0(x)�0
2 (x, y) − u0(y)�0

2 (y, x)) dydx.

Consequently, we get limk→∞ A(tnk , u
0, ṽ) = A(0, u0, ṽ) and therefore q1 = ϕ0

since the function q1 is the unique solution to the averaged adjoint equation (15) for
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1064 M. Schuster, V. Schulz

t = 0 due to

A(0, q1, ṽ) = lim
k→∞ A(tnk , ϕ

tnk , ṽ) = lim
k→∞F(tnk , ṽ) − A(tnk , u

tnk , ṽ)

= F(0, ṽ) − A(0, u0, ṽ). (22)

Thus, we conclude ϕt⇀ϕ0 for t ↘ 0. Case 2: Singular Symmetric Kernel
If γ� is a singular symmetric kernel that satisfies Assumptions (S0) and (S1), we

similarly derive for some C1,C2,C3 > 0 that

|ϕt |2Hs (�∪I) ≤ C1
∣∣A(t, ϕt , ϕ)

∣∣

≤ C2

⎛
⎝ ∑
i=1,2

(
‖ f t‖L2(�i )

+ ‖ ∇ f t‖L2(�i )

)
+ |u0|Hs (�∪I)

⎞
⎠ |ϕt |Hs (�∪I) ≤ C3|ϕt |Hs (�∪I)

where we again used Assumption (S0) (2) for the first and Lemma 6 in the second step.
Thus, |ϕt |Hs (�∪I) ≤ C3 for all t ∈ [0, T ]. As a result of [21, Lemma 4.2 and Lemma
4.3], we also draw the conclusion ‖ϕt‖L2(�∪I) ≤ C̃ |ϕt |Hs (�∪I) ≤ C for appropriate
constants C̃,C > 0, i.e., the family {ϕt }t∈[0,T ] is bounded with respect to ‖·‖Hs (�∪I).

Note that the boundedness of {‖ψ t‖Hs (�∪I)}t∈[0,T ] can be shown analogously.
Consequently, we derive for every sequence (tn)n∈N ∈ [0, T ]N with limn→∞ tn =

0 a subsequence {tnk }k∈N and functions q1, q2 ∈ Hs
c (� ∪ I) with ϕtnk ⇀q1 and

ψ tnk ⇀q2 for k → ∞. As in Case 1, we need to show some convergences.
For the proof of A(tnk , ϕ

tnk , ṽ) → A(0, q1, ṽ) and A(tnk , ũ, ψ tnk ) → A(0, ũ, q2)
for k → ∞ we again refer to [18]. The convergence limk→∞ F(tnk , ṽ) = F(0, ṽ) can
be found in the proof of Case 1. In the following, we prove limk→∞ A(tnk , u

0, ṽ) =
A(0, u0, ṽ).

On every set Dn the kernel γ t and the corresponding gradient (∇ γ t )�V are essen-
tially bounded by a constant independent of t ∈ [0, T ] due to Assumption (S1) as
explained in Remark 7. Consequently, there exists a constant Ĉ > 0 such that for
t ∈ [0, T ] and almost every (x, y) ∈ Dn we obtain

� t
1(x, y)ξ

t (x)ξ t (y) = (∇ γ t (x, y))�Vt (x, y)ξ t (x)ξ t (y) < Ĉ and

� t
2(x, y)ξ

t (x)ξ t (y) = γ t (x, y)(divVt (x) + divVt (y))ξ t (x)ξ t (y) < Ĉ .

With the same argumentation as in the case of integrable kernels, we derive for every
sequence (tn)n∈N ∈ [0, T ]N with limn→∞ tn = 0 the existence of a subsequence
(tnk )k∈N and

lim
k→∞ �

tnk
i (x, y)ξ tnk (x)ξ tnk (y) = �0

i (x, y)

pointwise for almost every (x, y) ∈ Dn and for i = 1, 2. Then, by utilizing the domi-
nated convergence theorem in the second and the last step of the following calculation,
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we get

lim
k→∞

∑
i=1,2

1

2

∫∫

(�∪I)2

(u0(x) − u0(y))(̃v(x) − ṽ(y))�
tnk
i (x, y)ξ tnk (x)ξ tnk (y) dydx

= lim
k,n→∞

∑
i=1,2

1

2

∫∫

Dn

(u0(x) − u0(y))(̃v(x) − ṽ(y))�
tnk
i (x, y)ξ tnk (x)ξ tnk (y) dydx

= lim
n→∞

1

2

∫∫

Dn

(u0(x) − u0(y))(̃v(x) − ṽ(y))(�0
1 (x, y) + �0

2 (x, y)) dydx

= 1

2

∫∫

(�∪I)2

(u0(x) − u0(y))(̃v(x) − ṽ(y))(�0
1 (x, y) + �0

2 (x, y)) dydx.

Thus, limk→∞ A(tnk , u
0, ṽ) = A(0, u0, ṽ) and equation (22) also holds for singular

symmetric kernels which results in q1 = ϕ0.
For both kernel cases, it can be shown quite analogously that q2 = ψ0 and therefore

ψ t⇀ψ0 for t ↘ 0. However, for the convergence limt↘0 A(t, ũ, vt ) = A(0, ũ, v0)

we additionally have to make use of vt⇀v0 and observation (20). ��

A.3 Proof of Lemma 8

Proof We show the statement by proving the convergence of each term

lim
k→∞,t↘0

∂tG(t, u0, v0, ψ snk , ϕsnk )

= lim
k→∞,t↘0

∂tJ(t, u0) − ∂tF(t, v0) + ∂tA(t, u0, v0)

+ ∂t A(t, u0, ψ snk ) − ∂t F(t, ψ snk ) + ∂t A(t, ϕsnk , v0) − ∂t F̃(t, u0, ϕsnk ).

The convergences

lim
k→∞,t↘0

∂t A(t, u0, ψ snk ) = ∂t A(0, u0, ψ0) and lim
k→∞,t↘0

∂t F(t, ψ snk ) = ∂t F(0, ψ0)

have alreadybeen shown in [18].Then, limk→∞,t↘0 ∂t A(t, ϕsnk , v0) = ∂t A(0, ϕ0, v0)

can be illustrated in a similar way. We start by showing the convergence for
∂t F̃(t, u0, ϕsnk ). Here, Lemma 12 and observation (21) yield ξ t ∇ ut → ∇ u in
L2(�,Rd) and ut ∂

∂r

∣∣
r=t ξ

r → u divW in L2(�) for t ↘ 0. Furthermore, due to the

boundedness of W, we have ξ t (∇ ut )�W → ∇ u�W in L2(�). Thus, by (20) we
conclude

lim
k→∞,t↘0

∂t F̃(t, u0, ϕsnk ) = lim
k→∞,t↘0

∫
�

(∇ ut )�Wϕ
snk ξ t − (u0 − ut )ϕsnk

∂

∂r

∣∣∣∣
r=t

ξr dx

=
∫
�

∇ u�Wϕ0 − (u0 − u)ϕ0 divW dx = ∂t F̃(t, u0, ϕ0).
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Now, we continue by proving the convergence with respect to ∂tJ(t, u0). Since
V ∈ C2

0 (� ∪ I,Rd) and u ∈ H2(�), we have (∇ ut )�Vt → (∇ u)�V in L2(�)

as well as (∇ ut )�DVt → (∇ u)�DV and Hess(u)tVt → Hess(u)V in L2(�,Rd)

as a result of Lemma 12. Combined with the boundedness of W ∈ C2
0 (� ∪ I,Rd)

we get (Vt )� Hess(u)tW → V� Hess(u)W and (∇ ut )�DVtW → (∇ u)�(DV)W
in L2(�). Further, notice that the functions (t, x) �→ (∇ divVt (x))�W(x)ξ t (x) and
(t, x) �→ divVt (x) ∂

∂r

∣∣
r=t ξ

r (x) are bounded on [0, T ] × � and converge in L2(�)

for t ↘ 0. Consequently, by applying (20) and (21), we have

lim
t↘0

∂tJ(t, u0) = lim
t↘0

∫
�

(∇ ut )�W(∇ ut )�Vtξ t dx

∗ −
∫

�

(u0 − ut )

(
(Vt )� Hess(u)tWξ t

+(∇ ut )�(DVt )Wξ t + (∇ ut )�Vt ∂

∂r

∣∣∣∣
r=t

(ξ r )

)
dx

∗ +
∫

�

−(u0 − ut )(∇ ut )�W divVtξ t

∗ + 1

2

(
u0 − ut

)2 (
(∇ divVt )�Wξ t + divVt ∂

∂r

∣∣∣∣
r=t

ξ r
)

dx

=
∫

�

∇ u�W∇ u�V dx

∗ −
∫

�

(u0 − u)
(
V� Hess(u)W + ∇ u�(DV)W + ∇ u�V divW

)
dx

∗ +
∫

�

−(u0 − u)∇ u�W divV + 1

2

(
u0 − u

)2 (
(∇ divV)�W + divV divW

)
dx

Further, f� ∈ H2(�i ) for i = 1, 2 and with the same arguments as before, we derive

lim
t↘0

∂tF(t, v0)

∗ = lim
t↘0

∫
�

(Vt )� Hess( f )tWv0ξ t

+ (∇ f t )�(DVt )Wv0ξ t + (∇ f t )�Vtv0
∂

∂r

∣∣∣∣
r=t

(ξr ) dx

+
∫
�

(∇ f t )�Wv0 divVt ξ t + f tv0
(

∇(divVt )�Wξ t + divVt ∂

∂r

∣∣∣∣
r=t

(
ξr

))
dx

=
∫
�
V� Hess( f�)Wv0 + ∇ f �

� (DV)Wv0 + ∇ f �
� Vv0 divW + ∇ f �

� Wv0 divV

∗ + f�v0
(
(∇ divV)�W + divV divW

)
dx

it remains to show ∂tA(t, u0, v0) → ∂tA(0, u0, v0) for t ↘ 0.
Case 1: Integrable Kernel
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First, we denote that the term

∇ �t
1(x, y)

�W(x, y)ξ t (x)ξ t (y) =Vt (x, y)� Hess(γ )t (x, y)W(x, y)ξ t (x)ξ t (y)

∗ + ∇ γ t (x, y)�(DVt (x, y))W(x, y)ξ t (x)ξ t (y)

is essentially bounded for t ∈ [0, T ] and (x, y) ∈ (� ∪ I)2. Moreover, observation
(21) and Lemma 12 yield

∇ �t
1(x, y)ξ

t (x)ξ t (y) → ∇ �0
1 (x, y) in L2((� ∪ I)2,Rd ) and

�t
1(x, y)ξ

t (x)ξ t (y) = ∇ γ t (x, y)�Vt (x, y)ξ t (x)ξ t (y) → ∇ γ 0(x, y)�V0(x, y) = �0
1 (x, y)

in L2((� ∪ I)2,R).
Thus, for every sequence {tn}n∈N ∈ [0, T ]N with limn→∞ tn = 0 there

exists a subsequence {tnk }k∈N such that �
tnk
1 (x, y)ξ tnk (x)ξ tnk (y) → �0

1 (x, y) and

∇ �
tnk
1 (x, y)ξ tnk (x)ξ tnk (y) → ∇ �0

1 (x, y) pointwise almost everywhere. By making
use of the dominated convergence theorem we derive

∫∫

(�∪I)2

(v0(x) − v0(y))(u0(x)∇ �
tnk
1 (x, y)�W(x, y)

∗ − u0(y)∇ �
tnk
1 (y, x)�W(y, x))ξ tnk (x)ξ tnk (y) dydx

→
∫∫

(�∪I)2

(v0(x) − v0(y))(u0(x)∇ �0
1 (x, y)

�W(x, y)

− u0(y)∇ �0
1 (y, x)W(y, x)) dydx for k → ∞.

Moreover, since ξ t is continuously differentiable, the derivative ∂
∂r

∣∣
r=t ξ

r is also
essentially bounded and divVt → divV pointwise as a composition of continuous
functions. Combined with arguments from above, the following integrands are essen-
tially bounded by a constant independent of t ∈ [0, T ] and again for every sequence
{tn}n∈N ∈ [0, T ]N with limn→∞ tn = 0 there exists a subsequence {tnk }k∈N such that
the integrands converge pointwise almost everywhere. Thus, dominated convergence
yields

∫∫

(�∪I)2

(v0(x) − v0(y))
(
u0(x)�

tnk
1 (x, y)

−u0(y)�
tnk
1 (y, x)

) ∂

∂r

∣∣∣∣
r=tnk

(ξr (x)ξr (y)) dydx

→
∫∫

(�∪I)2

(v0(x) − v0(y))(u0(x)�0
1 (x, y) − u0(y)�0

1 (y, x))(divW(x) + divW(y)) dydx
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and we also conclude

∫∫

(�∪I)2

(v0(x) − v0(y))(u0(x) ∇ �
tnk
2 (x, y)�W(x, y)

− u0(y) ∇ �
tnk
2 (y, x)�W(y, x))ξ tnk (x)ξ tnk (y) dydx

→
∫∫

(�∪I)2

(v0(x) − v0(y))(u0(x) ∇ �0
2 (x, y)�W(x, y) − u0(y)∇ �0

2 (y, x)�W(y, x)) dydx.

For the last term, we derive by applying the dominated convergence theorem

∫∫

(�∪I)2

(v0(x) − v0(y))(u0(x)�
tnk
2 (x, y) − u0(y)�

tnk
2 (y, x))

∂

∂r

∣∣∣∣
r=tnk

(ξr (x)ξr (y)) dydx

→
∫∫

(�∪I)2

(v0(x) − v0(y))(u0(x)�0
2 (x, y) − u0(y)�0

2 (y, x))(divW(x) + divW(y)) dydx.

As a result, we obtain ∂tA(tnk , u
0, v0) → ∂tA(0, u0, v0) for k → ∞ and

∂tA(t, u0, v0) → ∂tA(0, u0, v0) for t ↘ 0.

Case 2: Singular Symmetric Kernel
On the sets [0, T ] × Dn the functions

a1(t, x, y) := ∇ �t
1(x, y)

�W(x, y)ξ t (x)ξ t (y)

=
(
Vt (x, y)� Hess(γ )t (x, y) + ∇ γ t (x, y)�DVt (x, y)

)
W(x, y)ξ t (x)ξ t (y),

a2(t, x, y) := �t
1(x, y)

∂

∂r

∣∣∣∣
r=t

(
ξ t (x)ξ t (y)

) = ∇ γ t (x, y)�Vt (x, y)
∂

∂r

∣∣∣∣
r=t

(
ξ t (x)ξ t (y)

)

a3(t, x, y) := ∇ �t
2(x, y)

�W(x, y)ξ t (x)ξ t (y)

= (divVt (x) + divVt (y))∇ γ t (x, y)�W(x, y)ξ t (x)ξ t (y)

+ γ t (x, y)(∇ divVt (x) + ∇ divVt (y))�W(x, y)ξ t (x)ξ t (y) and

a4(t, x, y) := �t
2(x, y)

∂

∂r

∣∣∣∣
r=t

(
ξr (x)ξr (y)

)

= γ t (x, y)(divVt (x) + divVt (y))
∂

∂r

∣∣∣∣
r=t

(
ξr (x)ξr (y)

)

are essentially bounded as a result of Assumption (S1) (see also Remark 7). With
the same argumentation as in the case of integrable kernels, for every sequence
(tn)n∈N ∈ [0, T ]N with limn→∞ tn = 0 there exists a subsequence (tnk )k∈N such that
ai (tnk , x, y) → ai (0, x, y) pointwise almost everywhere on Dn for i = 1, ..., 4. Thus,
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we derive by making use of the dominated convergence theorem

4∑
i=1

lim
k→∞

∫∫

(�∪I)2

(v0(x) − v0(y))(u0(x) − u0(y))ai (tnk , x, y) dydx

=
4∑

i=1

lim
k,n→∞

∫∫

Dn

(v0(x) − v0(y))(u0(x) − u0(y))ai (tnk , x, y) dydx

=
4∑

i=1

lim
n→∞

∫∫

Dn

(v0(x) − v0(y))(u0(x) − u0(y))ai (0, x, y) dydx

=
4∑

i=1

∫∫

(�∪I)2

(v0(x) − v0(y))(u0(x) − u0(y))ai (0, x, y) dydx.

Consequently, we get ∂tA(tnk , u
0, v0) → ∂tA(0, u0, v0) for k → ∞ and thus

∂tA(t, u0, v0) → ∂tA(0, u0, v0) for t ↘ 0.
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