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Abstract
The development and convergence analysis of a quasi-Newtonmethod for the solution
of systems of nonlinear underdetermined equations is investigated. These equations
arise in many application fields, e.g., supervised learning of large overparameterised
neural networks, which require the development of efficient methods with guaranteed
convergence. In this paper, a new approach for the computation of the Moore–Penrose
inverse of the approximate Jacobian coming from the Broyden update is presented
and a semi-local convergence result for a damped quasi-Newton method is proved.
The theoretical results are illustrated in detail for the case of systems of multidimen-
sional quadratic equations, and validated in the context of eigenvalue problems and
supervised learning of overparameterised neural networks.

Keywords Systems of nonlinear underdetermined equations · Nonlinear root-finding
problems · Quasi-Newton methods · Least change secant update · Supervised
learning

Mathematics Subject Classification 49M15 · 65H04 · 65H10 · 90C30

1 Introduction

This work is concerned with the solution of systems of nonlinear underdetermined
equations represented by F(x) = 0, where F : Rn → R

m , m ≤ n. In the literature,
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974 N. Vater, A. Borzì

the problem of determining x∗ ∈ R
n such that F(x∗) = 0 is also referred to as a root-

finding problem. These kind of problems are relevant in several application fields such
as nonlinear eigenvalue problems [22], homotopy or continuation methods [24], and
data fitting tasks [4] by means of supervised learning of overparameterised artificial
neural networks [1, 16, 23].

The purpose of this work is to contribute to the field of methods for solving sys-
tems of nonlinear underdetermined equations by presenting an update scheme for
the Moore–Penrose inverse of the approximated Jacobians coming from the Broyden
update and investigating the convergence of the corresponding quasi-Newton method.
Specifically,we prove a new semi-local convergence result for a damped quasi-Newton
method, whose update schemes satisfies a bounded deterioration principle. From this
theorem, we conclude the convergence of our quasi-Newtonmethodwith update of the
approximation of the Moore–Penrose inverse of the Jacobian. In contrast to previous
works, we state explicit assumptions on the residual function F at the starting point
x0 of the quasi-Newton iteration that can be easily checked for a given problem. We
illustrate our results for the quadratic case and further specialise them in the case of
supervised learning of overparameterised shallow neural networks. In the latter case,
we also provide sufficient conditions on the number of the unknown parameters of the
network for the convergence of our method to a root of an exact data fitting problem.
We successfully validate our theoretical findings by results of numerical experiments,
that showcase the potential of our method for the computation of eigenpairs in eigen-
value problems and for the supervised training of a multilayer neural network for the
classification of the Iris data set.

Some review work on the solvability of systems of nonlinear equations is given
in [12, 13, 15]. These surveys cover a large amount of results for the case where the
number of equations is at least as large as the number of unknowns, that is, m ≥ n. In
contrast, results for nonlinear underdetermined problems are much more scattered in
the literature. For this latter case, the question of solvability is explicitly addressed in
[19, 20], where it is shown that a sequence generated by aNewton-typemethod starting
at a given starting vector converges to a root. To show convergence of the sequence,
local properties of the residual function F in a ball around the starting vector are
exploited whilst showing that all iterates stay in this ball. In particular, convergence
of the iterative sequence is shown without an a priori assumption of existence of or
proximity to a root. In contrast to local convergence results in which the existence of an
(isolated) root is assumed, the theoretical statements without an a priori assumption on
the existence of a root are called semi-local convergence results. Early works applying
this Kantorovich-type analysis are [11, 19].

There exist several iterativemethods for the solution of nonlinear root-finding prob-
lems, especially in the casem = n. In this case, a canonical choice isNewton’smethod,
where each iteration requires assembling and solving a linear system of equations. To
reduce the computational effort for each iteration, approximate versions of thismethod
are developed [3, 8, 10],which can be roughly classified as being either a quasi-Newton
method or an inexact Newton method. This categorisation refers to the part of the cal-
culation that is being approximated, that is, the construction or the solution of the linear
equation system, respectively. In this work, we consider quasi-Newton methods.
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Convergence of a quasi-Newton method... 975

In the nonlinear underdetermined case, similar Newton-like approaches have been
investigated in the literature. We refer to this scheme as Newton method also in the
underdetermined case. Inexact methods are considered in, e.g., [22] and quasi-Newton
methodswith least change secant update are analysed in [14, 24]. Both kinds of approx-
imate Newton methods are discussed in [2], where they are viewed as approximate
Gauss-Newtonmethods to solve the related least squares problemminx∈Rn

1
2 ‖F(x)‖2.

To avoid the computation of the minimal-norm solution of a linear system of equa-
tions, we present an update scheme for the Moore–Penrose inverse of the approximate
Jacobians obtained by the Broyden update, which is an example of a least change
secant update.

While the convergence results for quasi-Newton methods in [14] are local in the
sense that the existence of a root is assumed, in [2, 22, 24] semi-local convergence
results for an inexact Newton method and a quasi-Newton method are proven. These
results show that there exist parameters, which describe the properties of a function in a
ball around the start value, such that the iterates obtained by themethod staywithin this
ball and converge to a root. In our work, we prove a semi-local convergence result for
the damped version of a quasi-Newton method in which we give explicit conditions on
the residual function F , the start value x0, and the approximation of the Jacobian that
guarantee convergence of the method. The inclusion of a damping parameter allows
us to obtain convergence for a larger set of starting values compared to the approach
without damping. To emphasise that the update direction is multiplied with such a
step size, we refer to the resulting schemes as damped Newton and quasi-Newton
methods, respectively. Using the approximation quality of the Broyden update, we
provide sufficient conditions on the residual function and on the starting value in order
to prove convergence to a root for our corresponding quasi-Newton method. With
this result at hand, we also demonstrate that we can obtain a convergence sequence
also without including a damping factor by imposing stricter assumptions on the start
value.

Recently, semi-local convergence results for gradient-type methods were consid-
ered in the context of supervised trainingof overparameterised shallowneural networks
[17, 23], where the start parameters are typically generated randomly. In particular, in
these works it is shown that the assumptions that are required for proving the given
semi-local convergence results are satisfied with high probability for a random choice
of the initial approximation of the network’s parameters provided that the shallow
network is wide enough. Motivated by these findings, we provide similar conditions
on the width of the network to claim convergence of our quasi-Newton iteration.

In the next section, we discuss existence of solutions to systems of nonlinear under-
determined equations and illustrate our assumptions for the case where the residual
functions are quadratic. In Sect. 3, we introduce damped quasi-Newton methods and
our quasi-Newton scheme which uses updates of the Moore–Penrose inverse of the
approximation of the Jacobians obtained by Broyden’s method. In Sect. 4, we prove
a semi-local convergence result for the damped method and conclude convergence
of our quasi-Newton method without damping. The specific case of problems aris-
ing in the context of supervised training of shallow neural networks is treated in
Sect. 5. In Sect. 6, we validate our theoretical findings by showing results of numerical
experiments. To this end, we consider the cases of quadratic residual functions and
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976 N. Vater, A. Borzì

of supervised training of shallow artificial neural networks, which are also discussed
theoretically. Additionally, we include the computation of eigenpairs in an eigenvalue
problem and the supervised training of larger networks to illustrate the potential of
our quasi-Newton method. A section of conclusion completes our work.

2 Problem setting and characterisation of the solution

We consider the underdetermined root-finding problem:

Find x∗ ∈ R
n such that F(x) = 0, (1)

with a nonlinear function F : Rn → R
m , n ≥ m. We call F the residual function of

the problem and assume that F satisfies the following assumption:

Assumption 1 Let � ⊆ R
n be closed and convex. Assume that F is differentiable in

� and the Jacobian of F is Lipschitz continuous in � with Lipschitz constant γ > 0,
that is, it holds

∥
∥F ′(x) − F ′(y)

∥
∥ ≤ γ ‖x − y‖ for x, y ∈ �. (2)

The existence of a root of the residual function F in � can be proved based on
properties of the function F in a neighbourhood of a suitable initial approximation
(guess) x0 ∈ � of the solution. Let ‖·‖ denote the Euclidean norm of a vector or the
spectral norm of a matrix. Let N (x0, �) := {x ∈ R

n | ‖x − x0‖ ≤ �} denote the ball
of radius � > 0 around x0. Specifically, we have the following result [21].

Theorem 1 Assume that the residual function F satisfies Assumption 1 in a closed and
convex region � ⊆ R

n.
Let x0 ∈ � and μ > 0 be such that

∥
∥F ′(x0)
h

∥
∥ ≥ 2

μ
‖h‖ , h ∈ R

m, and

N
(

x0,
1

μγ

)

⊆ �. Assume that it holds

‖F(x0)‖ <
1

μ2γ
. (3)

Then there exists a solution x∗ of problem (1) with x∗ ∈ N (x0, μ ‖F(x0)‖).
The assumption on the Jacobian F ′(x0) implies that this matrix has full rank and

the largest singular value of its Moore–Penrose inverse F ′(x0)† is bounded by μ
2 . The

Lipschitz continuity of the Jacobian function F ′ together with the full rank assumption
implies that the Jacobian F ′(x) has full rank for all values x in a neighbourhood of the
guess x0. By bounding the size of this neighbourhood, we obtain a bound on the largest
singular value of the Moore–Penrose inverse for all values x in this neighbourhood as
follows:

Remark 1 Assume that the residual function F satisfies Assumption 1 in a closed and
convex region � ⊆ R

n .
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Convergence of a quasi-Newton method... 977

Let x0 ∈ R
n and μ > 0 be such that

∥
∥F ′(x0)
h

∥
∥ ≥ 2

μ
‖h‖, h ∈ R

m , and � ∈
(

0, 2
μγ

)

. Then, for x ∈ N (x0, �), it holds

∥
∥
∥F ′(x)
h

∥
∥
∥ ≥

∥
∥
∥F ′(x0)
h

∥
∥
∥ −

∥
∥
∥(F ′(x0) − F ′(x))
h

∥
∥
∥ ≥ 2

μ
‖h‖ − γ � ‖h‖

=
(
2

μ
− γ �

)

‖h‖ . (4)

Hence, for the specific choice � = 1
μγ

we have

∥
∥
∥F ′(x)
h

∥
∥
∥ ≥ 1

μ
‖h‖ , h ∈ R

m

for all x ∈ N
(

x0,
1

γμ

)

, that is, it holds
∥
∥F ′(x)†

∥
∥ ≤ μ for all x ∈ N

(

x0,
1

γμ

)

.

Using this property, the proof of Theorem 1 is based on a semi-local conver-
gence result for a damped Newton method with iterates defined by xk+1 = xk −
ηF ′(xk)†F(xk) starting at x0. It is shown in [21] that it is possible to choose the step
size η > 0 small enough such that all iterates stay inside the ball N (x0, �), � = 1

μγ
,

and ‖F(xk+1)‖ ≤ q ‖F(xk)‖ for q ∈ (0, 1). Thus, the sequence (xk) converges to a
root of F . We use a similar approach to show convergence of a damped quasi-Newton
method in Sect. 4.

To illustrate the application of Theorem 1, we consider the case where each com-
ponent Fi of the residual function F is quadratic; see also [21].
Quadratic case Let the residual function be defined component-wise by

Fi (x) := 1

2
(Ai x, x) + (bi , x) + ci , i = 1, . . . ,m, (5)

with symmetric matrices Ai = A

i ∈ R

n×n , vectors bi ∈ R
n and scalar values ci ∈ R

for i = 1, . . . ,m.
The gradients of these quadratic functions are given by

∇Fi (x) = Ai x + bi , i = 1, . . . ,m. (6)

Thus, the Jacobian has the form

F ′(x) =
⎛

⎜
⎝

x
A1 + b

1

...

x
Am + b

m

⎞

⎟
⎠ ∈ R

m×n, (7)
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978 N. Vater, A. Borzì

which is Lipschitz continuous on any closed and convex set � ⊆ R
n with Lipschitz

constant given by [18]

γ =
√
√
√
√

m
∑

i=1

‖Ai‖2. (8)

For x0 = 0, it holds ‖F(x0)‖ = ‖c‖, where c ∈ R
m is the vector with entries ci , and

F ′(x0) = B, where B ∈ R
m×n with the rows given by the vectors b1, . . . , bm . If B

has full rank with
∥
∥B
h

∥
∥ ≥ 2

μ
‖h‖, h ∈ R

m , and ‖c‖ < 1
μ2γ

, then the corresponding
root-finding problem has a solution according to Theorem 1.

As a specific problem of this form, we consider F : R3 → R
2 defined by

F(x) =
(

x21 + (x2 − 1)2 + x23 − 15
16

(x1 − 1)2 + x22 + x23 − 1

)

, (9)

where A1 = A2 = 2I ∈ R
3×3, with I denoting the identity matrix, and

b1 = (0,−2, 0)
, b2 = (−2, 0, 0)
, c1 = 1

16
, and c2 = 0.

For this case, we have γ =
√

‖A1‖2 + ‖A2‖2 = 2
√
2,

F ′(0) = B =
(

0 −2 0
−2 0 0

)

, and ‖F(0)‖ = ‖c‖ = 1

16
.

The smallest singular value of B is 2, hence
∥
∥B
h

∥
∥ ≥ 2

μ
‖h‖, h ∈ R

2, holds with
μ = 1.

It holds ‖F(0)‖ = 1
16 < 1

2
√
2

= 1
μ2γ

. Thus, there exists a solution x∗ of the

root-finding problem with ‖x∗‖ < 1
16 = μ ‖F(0)‖ according to Theorem 1. In fact,

the problem has a root x∗ =
(
31−√

959
64 , 33−√

959
64 , 0

)

with ‖x∗‖ <

√
10
64 < 1

16 =
μ ‖F(0)‖.

Next, we introduce damped quasi-Newton methods and present an update scheme
for the Moore–Penrose inverse of the approximate Jacobians coming from the Broy-
den update. Further, we investigate their convergence to a solution of our system of
nonlinear underdetermined equations. Specifically, we prove a semi-local convergence
result for damped quasi-Newton methods with similar assumptions on the problem as
in Theorem 1 and give sufficient conditions for the convergence of the quasi-Newton
method corresponding to our update scheme of the Moore–Penrose inverse of the
approximate Jacobians.

3 Damped quasi-Newtonmethods

The iterative method which is employed in [19] is a damped Newton method with
iterates xk+1 = xk − ηF ′(xk)†F(xk), which is also called normal flow algorithm.
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This iteration corresponds to Newton’s method in the case m = n and η = 1. For
both the normal flow algorithm and Newton’s method, it is necessary to compute the
Jacobian F ′ and the solution of a linear system of equations in each iteration. For large
problems, these computations are rather expensive, and in quasi-Newton methods the
computation of the Jacobian F ′(xk) is replaced by a suitable approximation Bk in
each iteration, which should be cheaper to compute than the Jacobian. Let B0 ∈ R

m×n

be an approximation of the Jacobian F ′(x0) at the start value x0 ∈ R
n . An effective

way to obtain an approximation to F ′(xk) is by computing the approximation Bk as a
low-rank update of the predecessor Bk−1. We can write such an algorithm as follows:

xk+1 = xk − η B†
k F(xk), Bk+1 = U (xk, xk+1, Bk), (10)

where U : R
n × R

n × R
m×n → R

m×n is an update function and η > 0 is the
damping factor.We say that (xk , Bk) is the sequence of iterates obtained by the damped
quasi-Newton method (10).

For the case m = n, there exist a variety of algorithms of this type; see, e.g., [9].
Notice that the popular updates BFGS and SR1 are not suitable to update our rectangu-
lar matrix Bk as they apply only to square symmetric matrices. For underdetermined
problems mainly quasi-Newton methods with least change secant updates are dis-
cussed; see, e.g., [14, 24]. We introduce least change secant updates in Appendix A.
Several generalisations of well-known quasi-Newton methods for the root finding
problem with m = n have been considered for the underdetermined case [14]. How-
ever, the convergence results proven for these methods are local in the sense that they
assume the existence of a root and proximity of the start value to the root. In [24], in
addition to quasi-Newton methods for underdetermined root-finding problems, also
approaches tailored to problems arising in homotopy or continuation methods are dis-
cussed. In these cases, semi-local convergence results are provided for both the general
and the problem-specific quasi-Newton method by assuming that the update function
U satisfies a bounded deterioration property. For our new result for the damped ver-
sion of the quasi-Newton method, we assume that our update function U satisfies a
variation of the bounded deterioration principle used in [24] as follows:

Assumption 2 Let � ⊆ R
n be closed and convex. Assume that the update function

U : � × � × R
m×n → R

m×n satisfies the bounded deterioration property [24] with
a constant α > 0, that is,

∥
∥U (x, x + s, B) − F ′(x + s)

∥
∥ ≤ ∥

∥B − F ′(x)
∥
∥ + α ‖s‖ , (11)

for x ∈ �, B ∈ R
m×n and s ∈ R(B
) such that x + s ∈ �.

The iterative application of this property with sk = −ηB†
k F(xk) allows us to bound∥

∥Bk − F ′(xk)
∥
∥ by the sum of the initial deterioration

∥
∥B0 − F ′(x0)

∥
∥ and the sum

over ‖s�‖, � = 0, . . . , k − 1. If F ′(xk) has full rank and this bound is small enough,
we can conclude that Bk has full rank as well. This reasoning will be crucial in our
convergence proof.

As a specific update scheme suitable for rectangular matrices in the class of least
change secant updates, we consider the first Broydenmethod introduced in [14], where
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980 N. Vater, A. Borzì

U (x, x + s, B) := B + (F(x+s)−F(x)−Bs)s

s
s . We have

Bk+1 = Bk + (yk − Bksk)s

k

s

k sk

, (12)

where sk = xk+1 − xk and yk = F(xk+1) − F(xk).
If we store and update the matrices Bk , we have to solve a system of equations

of size m × n in every iteration to obtain the update direction B†
k F(xk). Instead, we

follow the common approach to store and update the inverse of the approximation
matrix, which is in our case the Moore–Penrose inverse Hk := B†

k . Having Hk at

hand, the update direction B†
k F(xk) = HkF(xk) can be computed by a matrix–vector

multiplication instead of solving a linear system of equations. Similar to the update
of Hk in the case m = n, see [7], we find that the update formula for Hk is given by

Hk+1 = Hk + (sk − Hk yk) s

k Hk

s

k Hk yk

, (13)

where H0 = B†
0 , see Appendix B. Hence, our quasi-Newton method with Broyden

update and step size η = 1 reads as follows:

xk+1 = xk − HkF(xk), Hk+1 = Hk + (sk − Hk yk) s

k Hk

s

k Hk yk

, (14)

where sk = xk+1−xk and yk = F(xk+1)−F(xk).We say that (xk, Hk) is the sequence
of iterates obtained by the quasi-Newton method with Broyden update. Similar to our
quasi-Newton method with arbitrary update function from (10) a step size η 
= 1 can
be used in the method to obtain a damped scheme. In the next section, we show that
for a given starting vector x0 ∈ R

n , satisfying certain assumptions, we can find a range
(0, η) such that the damped quasi-Newton scheme with step size η ∈ (0, η) converges.
Additionally, in Corollary 1, we demonstrate, that if we fix η = 1, then the starting
vector needs to satisfy stronger assumptions in order to guarantee convergence of the
quasi-Newton scheme.

4 Semi-local convergence of the quasi-Newtonmethod

In this section, we discuss the convergence of our damped quasi-Newton method to a
root of our nonlinear residual function. The solutions of such underdetermined systems
of equations are not necessarily isolated.Hence,we cannot single out a specific solution
as the limit of our iterative sequence. Instead of assuming proximity of our starting
point to a solution, we assume that our starting point x0 has properties similar to the
assumptions for x0 in Theorem 1, that is, it holds ‖F(x0)‖ < ε and

∥
∥F ′(x0)
h

∥
∥ ≥

2
μ

‖h‖, h ∈ R
m for some specific ε > 0. While the proof of Theorem 1 is based

on showing the convergence of a damped Newton method, we extend this result to
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obtain convergence of our damped quasi-Newton method. To this end, we assume
that the initial approximation B0 is sufficiently close to the Jacobian F ′(x0), that
is

∥
∥B0 − F ′(x0)

∥
∥ = δ < 1

4μ and that the update function satisfies the bounded
deterioration property given inAssumption 2.Ourmain result is the following theorem.

Theorem 2 Assume that there exists a closed and convex set � ⊆ R
n such that F and

U satisfy Assumption 1 with γ > 0 and Assumption 2 with α > 0 in �.
Let x0 ∈ � and μ > 0 such that

∥
∥F ′(x0)
h

∥
∥ ≥ 2

μ
‖h‖, h ∈ R

m, N (x0, �) ⊆ �,

where � = 1
γμ

, and choose B0 ∈ R
m×n such that

∥
∥B0 − F ′(x0)

∥
∥ =: δ < 1

4μ . Assume
that it holds

‖F(x0)‖ <
1

2μ2 min

{
1

γ
,
1 − 4μδ

4α

}

. (15)

Let (xk, Bk) be generated by the damped quasi-Newton method (10) starting at
(x0, B0) with update function U and step size η ∈ (0, η), where

η = min

{
3

2
,

(

1 − 2μ2 ‖F(x0)‖max

{

γ,
4α

1 − 4μδ

})
3

4γμ2 ‖F(x0)‖
}

. (16)

Then it holds xk ∈ N (x0, �) and F(limk→∞ xk) = 0.

Proof By induction, we prove that the iterates (x�, B�) satisfy the following properties

x� ∈ N (x0, �) , (17)
∥
∥B� − F ′(x�)

∥
∥ <

1

4μ
, (18)

‖F(x�)‖ ≤ q� ‖F(x0)‖ with q := 1 − η

(
2

3
− 8

9
ηγμ2 ‖F(x0)‖

)

. (19)

From the bound on ‖F(x0)‖ in (15), we have η < 3
4γμ2‖F(x0)‖ . Hence, it holds

2
3 − 8

9ηγμ2 ‖F(x0)‖ ∈ (

0, 2
3

)

. These bounds together with (15) immediately imply
q < 1 and with η < η̄ ≤ 2

3 , it holds q > 1 − 2
3η > 0. Thus, we have q ∈ (0, 1), that

is, the sequence (‖F(xk)‖) is monotonically decreasing in the sense that ‖F(x�)‖ ≤
q� ‖F(x0)‖ can be shown to hold for all � = 0, 1, . . ..

From the assumptions above, we know that (x0, B0) satisfies properties (17), (18),
and (19). Let k ∈ N and assume the properties (17), (18), and (19) hold for all
� = 0, . . . , k. We show that these properties hold also for � = k + 1.

For � = 0, . . . , k, we have

∥
∥
∥B


� h
∥
∥
∥ ≥

∥
∥
∥F ′(x�)


h
∥
∥
∥ −

∥
∥
∥(F ′(x�) − B�)


h
∥
∥
∥

≥
∥
∥
∥F ′(x0)
h

∥
∥
∥ −

∥
∥
∥(F ′(x0) − F ′(x�))


h
∥
∥
∥ − 1

4μ
‖h‖

≥
(
2

μ
− γ � − 1

4μ

)

‖h‖ = 3

4μ
‖h‖ , (20)
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where we have used the triangle inequality to obtain the first inequality, the triangle
inequality and (18) to reach the second inequality, and the bound

∥
∥F ′(x0)
h

∥
∥ ≥ 2

μ
‖h‖

together with the Lipschitz continuity of F ′ and x� ∈ N (x0, �) to obtain the last
inequality. Finally, the choice � = 1

γμ
gives the last expression. Thus, we obtain

∥
∥
∥B†

� F(x�)

∥
∥
∥ ≤ 4μ

3 ‖F(x�)‖ for � = 0, . . . , k.

Additionally, for η ∈ (0, η) and the choice of η in (16), it holds

η

1 − q
= 1

2
3 − 8

9ηγμ2 ‖F(x0)‖
<

1
2
3 − 8

9ηγμ2 ‖F(x0)‖
= 1

2
3 − 2

3

(

1 − 2μ2 ‖F(x0)‖max
{

γ, 4α
1−4μδ

})

= 3

4μ2 ‖F(x0)‖ min

{
1

γ
,
1 − 4μδ

4α

}

. (21)

By using
∥
∥
∥B†

� F(x�)

∥
∥
∥ ≤ 4μ

3 ‖F(x�)‖ for � ≤ k combined with (19), the closed form

of the geometric series
∑∞

�=0 q
� = 1

1−q , and the upper bound (21), we obtain

k
∑

�=0

‖x�+1 − x�‖ ≤
k

∑

�=0

η

∥
∥
∥B†

� F(x�)

∥
∥
∥ ≤

k
∑

�=0

η
4μ

3
q� ‖F(x0)‖ ≤ 4ημ ‖F(x0)‖

3(1 − q)

<
1

μ
min

{
1

γ
,
1 − 4μδ

4α

}

. (22)

We use this upper bound to prove xk+1 ∈ N (x0, �) and
∥
∥Bk+1 − F ′(xk+1)

∥
∥ < 1

4μ .
To show xk+1 ∈ N (x0, �), we compute

‖xk+1 − x0‖ ≤
k

∑

�=0

‖x�+1 − x�‖ <
1

μ
min

{
1

γ
,
1 − 4μδ

4α

}

≤ 1

μγ
= �,

by using the triangle inequality and (22).
From the bounded deterioration principle (11), we have

∥
∥B�+1 − F ′(x�+1)

∥
∥ ≤ ∥

∥B� − F ′(x�)
∥
∥ + α ‖x�+1 − x�‖ ,

for � = 0, . . . , k. Thus, by repeated application of this principle and the bound (22),
for Bk+1, we have

∥
∥Bk+1 − F ′(xk+1)

∥
∥ ≤ ∥

∥B0 − F ′(x0)
∥
∥ + α

k
∑

�=0

‖x�+1 − x�‖

< δ + α

μ
min

{
1

γ
,
1 − 4μδ

4α

}

≤ δ + 1 − 4μδ

4μ
= 1

4μ
.
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Finally, it holds

∥
∥F(xk+1)

∥
∥ =

∥
∥
∥
∥
∥
F(xk) +

∫ 1

0
F ′(xk + t(xk+1 − xk))(xk+1 − xk)dt

∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥
F(xk) − ηBk B

†
k F(xk) −

∫ 1

0
(F ′(xk + t(xk+1 − xk)) − Bk)ηB

†
k F(xk)dt

∥
∥
∥
∥
∥

≤
∥
∥
∥F(xk) − ηBk B

†
k F(xk)

∥
∥
∥

+
∥
∥
∥
∥
∥

∫ 1

0
(F ′(xk + t(xk+1 − xk)) − F ′(xk) + F ′(xk) − Bk)ηB

†
k F(xk)dt

∥
∥
∥
∥
∥

≤ (1 − η) ‖F(xk)‖ + η

∫ 1

0

∥
∥F ′(xk + t(xk+1 − xk)) − F ′(xk)

∥
∥

∥
∥
∥B†

k F(xk)
∥
∥
∥ dt

+ η

∫ 1

0

∥
∥F ′(xk) − Bk

∥
∥

∥
∥
∥B†

k F(xk)
∥
∥
∥ dt

≤ (1 − η) ‖F(xk)‖ + η

∫ 1

0
γ t

∥
∥xk+1 − xk

∥
∥

∥
∥
∥B†

k F(xk)
∥
∥
∥ dt

+ η

∫ 1

0

∥
∥F ′(xk) − Bk

∥
∥

∥
∥
∥B†

k F(xk)
∥
∥
∥ dt

≤ (1 − η) ‖F(xk)‖ + η2γ

2

∥
∥
∥B†

k F(xk)
∥
∥
∥

2 + η
1

4μ

4μ

3
‖F(xk)‖

≤
(

1 − 2

3
η

)

‖F(xk)‖ + 8

9
η2γμ2 ‖F(xk)‖2 ,

where we used Bk B
†
k = I , the update formula yielding ‖xk+1 − xk‖ = η

∥
∥
∥B†

k F(xk)
∥
∥
∥,

the Lipschitz continuity of F ′, the bounds
∥
∥
∥B†

k F(xk)
∥
∥
∥ ≤ 4μ

3 ‖F(xk)‖, and (18).

From ‖F(xk)‖ ≤ qk ‖F(x0)‖ and q ∈ (0, 1), we have ‖F(xk)‖ ≤ ‖F(x0)‖.
Hence, this computation shows ‖F(xk+1)‖ ≤ qk+1 ‖F(x0)‖ with q = 1 −
η
( 2
3 − 8

9ηγμ2 ‖F(x0)‖
)

.
Thus, it holds limk→∞ ‖F(xk)‖ = 0, and from (20) we obtain

‖xk+1 − xk‖ = η

∥
∥
∥B†

k F(xk)
∥
∥
∥ ≤ η

4μ

3
‖F(xk)‖ ,

which implies that (xk) is a Cauchy sequence. Therefore, the claim follows from the
continuity of the mapping x �→ ‖F(x)‖ in �. ��

In Theorem 2, the bound (15) on the norm of the residual ‖F(x0)‖ at the starting
point ensures that a step size η > 0 can be chosen such that all iterates stay in a
neighbourhood of x0 and that the deterioration of the Jacobian approximation Bk to
the Jacobian F ′(xk) is bounded.

Having this semi-local convergence theorem at hand, we consider a specific choice
of a least change secant update, the first Broyden update for underdetermined systems
introduced in [5]. We show that our quasi-Newton scheme with Broyden update from
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984 N. Vater, A. Borzì

(14) converges to a root if the start value x0 ∈ R
n results in a small residual and

the Jacobian of the residual function has full rank. Specifically, we show that, for a
suitably chosen starting vector x0, the bound (16) on the damping parameter satisfies
η > 1 and thus the convergence of the scheme without damping, that is, η = 1 can be
concluded from Theorem 2 since η = 1 ∈ (0, η). Hence, our quasi-Newton scheme
with Broyden update (14) converges.

Corollary 1 Assume that there exists a closed and convex� ⊆ R
n such that F satisfies

Assumption 1 in �.
Let x0 ∈ � and μ > 0 such that

∥
∥F ′(x0)
h

∥
∥ ≥ 2

μ
‖h‖, h ∈ R

m, and N (x0, �) ⊆
�, where � = 1

γμ
. Assume that it holds

‖F(x0)‖ <
3

16μ2γ
. (23)

Let (xk, Hk) be generated by the quasi-Newton method with Broyden update as in
(14) startingwith (x0, F ′(x0)†). Then, it holds xk ∈ N (x0, �)and F(limk→∞ xk) = 0.

Proof By definition of Hk , we have Hk = B†
k with Bk obtained by the Broyden update

(12). As shown in [24], the update function U satisfies Assumption 2 with α = γ
2 .

Thus, the assumptions of Theorem 2 holdwith δ = 0 since it holds ‖F(x0)‖ < 1
4γμ2 =

1
2μ2 min

{
1
γ
, 1
4α

}

.

Thus, the damped quasi-Newton method converges for any η ∈ (0, η) with

η =
(

1 − 4μ2 ‖F(x0)‖ γ
) 3

4γμ2 ‖F(x0)‖ = 3

4γμ2 ‖F(x0)‖ − 3 > 1,

using (23). ��
Quadratic case Consider the case where all functions Fi are quadratic as in (5).

In this case, the quasi-Newton method with Broyden update starting at x0 = 0 ∈ R
n

and B0 = F ′(x0) = B converges if B has full rank with
∥
∥B
h

∥
∥ ≥ 2

μ
‖h‖, h ∈ R

2,

and ‖c‖ < 3
16μ2γ

.

For the specific problem (9), it holds ‖F(0)‖ = 1
16 < 3

2
√
2

1
16 = 3

16μ2γ
. Hence, the

quasi-Newton method with Broyden update starting at x0 = 0 ∈ R
n and B0 = F ′(x0)

converges to a root of this problem.

5 Application to a data fitting problem

A specific class of systems of nonlinear underdetermined equations corresponds to
data fitting tasks, which are known as supervised learning problems in the context of
artificial neural networks. Let X = {(ξ�, ζ �) | � = 1, . . . , |X |} ⊆ R

nin × R
nout be

a set of given data points and g(x, ·) : Rnin → R
nout be a parameterised model. Our

goal is to find the values of the network’s parameters x ∈ R
n such that g(x, ξ �) = ζ �
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for � = 1, . . . , |X |, that is, we are interested in a solution of (1) with the residual
function F : Rn → R

|X |nout defined element-wise by

Fi (x) :=
(

ζ �
j − g j (x, ξ

�)
)

for i = nout (� − 1) + j . (24)

To simplify the notation, let � ∈ R
|X |×nin denote the matrix holding the input data

vectors ξ1, . . . , ξ |X | ∈ R
nin as rows and Z ∈ R

|X |×nout denote the matrix holding the
output data vectors ζ 1, . . . , ζ |X | ∈ R

nout as rows.
We consider a shallow neural network model of the form g(x, ξ �) =

∑nh
i=1 viφ(w


i ξ�) ∈ R with parameters x = (w

1 , w


2 , . . . , w

nh )


 ∈ R
nhnin , fixed

hidden-to-output weights v ∈ R
nh and element-wise applied activation function

φ : R → R. Now, working in the framework of artificial networks, we adopt the
terms from this context and refer to nh as the width of the shallow neural network g.

The settingwhere the activation function φ satisfies 0 < m ≤ ∣
∣φ′(z)

∣
∣ and

∣
∣φ′′(z)

∣
∣ ≤

M for z ∈ R is discussed in [16, 21] for specific choices of the weights v. From [16]
we have the following result.

Lemma 1 Let F : R
n → R

|X | be defined element-wise by (24) with g(x, ξ �) =
∑nh

i=1 viφ(w

i ξ�) with parameters x = (w


1 , w

2 , . . . , w


nh )

 ∈ R

nhnin . Assume that
there exist constants m, M > 0 such that m ≤ ∣

∣φ′(z)
∣
∣ and M ≥ ∣

∣φ′′(z)
∣
∣ for any z ∈ R.

Then, for any closed and convex set� ⊆ R
n the Jacobian F ′ is Lipschitz continuous

with γ = M ‖v‖ ‖�‖2,∞ ‖�‖ and
∥
∥F ′(x0)
h

∥
∥ ≥ 2

μ
‖h‖, h ∈ R

|X |, holds for any
x0 ∈ � with μ = 2

m‖v‖σmin(�)
, where σmin(�) is the smallest singular value of the

matrix � ∈ R
|X |×nin and ‖�‖2,∞ denotes the largest Euclidean norm of the rows of

the matrix �.

As a direct consequence of this property and Corollary 1, we have

Corollary 2 Let F : Rn → R
|X | be defined as in Lemma 1.

Let x0 ∈ R
nhnin satisfy

‖F(x0)‖ <
3m2 ‖v‖ σmin(�)2

64M ‖�‖2,∞ ‖�‖ , (25)

and let (xk, Hk) be the iterates obtained by the quasi-Newton method with Broyden
update and H0 := F ′(x0)†. Then the sequence (xk) converges to a root of F.

For activation functions such as the logistic sigmoid function φ(z) = 1
1+exp(−z) or

the softplus function φ(z) = log(1 + exp(z)), which are typically used in artificial
neural network models, there is no lower bound m > 0 of the derivative. In [16], it
is suggested to add a small linear term, that is, to consider φt (z) := (1 − t)φ(z) + t z
for some activation function φ. A different approach is discussed in [17], where this
assumption is relaxed. Instead, in order to show that

∥
∥F ′(x0)
h

∥
∥ ≥ 2

μ
‖h‖, h ∈ R

|X |,
holds for someμ > 0, results from randomised numerical linear algebra are employed
to prove that this bound is satisfied up to a given probability if the start value is obtained
randomly and the network is sufficiently wide. Specifically, we have the following
result [17].
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Lemma 2 Assume that there exists an M > 0 such that sup{supz∈R
∣
∣φ′(z)

∣
∣ ,

supz∈R
∣
∣φ′′(z)

∣
∣} ≤ M, and the input data ξ� is normalised, that is, it holds

∥
∥ξ�

∥
∥ = 1

for � = 1, . . . , |X |. Define g : Rnh×nin ×R
nin by g(x, ξ �) = v
φ(xξ�) for the vector

v ∈ R
nh defined by

vi :=

⎧

⎪⎪⎨

⎪⎪⎩

− ‖Z‖√
nh |X | i = 1, . . . ,

⌈ nh
2

⌉

,

‖Z‖√
nh |X | i = ⌈ nh

2

⌉ + 1, . . . , 2
⌈ nh

2

⌉

,

0 else.

Let F : Rnh×nin → R
|X | be the residual function defined in (24). Then the Jacobian

F ′ is Lipschitz continuous with constant γ > 0.
Let x0 ∈ R

nh×nin with entries i.i.d. from N (0, 1) and c > 0. Assume that the
problem is large enough, that is for δ > 0 it holds

√
nhnin ≥ 8

c
M(1 + (1 + δ)M) |X | κ̃(�) with κ̃(�)

:=
√

nin|X | ‖�‖
(Eg∼N (0,1)[gφ′(g)])2σ 2

min(� ∗ �)
, (26)

where ∗ denotes the Khatri-Rao product of matrices as defined in [17] and σmin

refers to the smallest singular value of the matrix. Then with probability at least

1 − 1
|X | − exp

(

−δ2
|X |

2‖�‖2
)

we have
∥
∥F ′(x0)
h

∥
∥ ≥ 2

μ
‖h‖, h ∈ R

|X |, and

‖F(x0)‖ < c
1

μ2γ
. (27)

Corollary 3 Let X ⊆ R
nin ×R be a given data set and let F be defined as in Lemma 2.

Assume nh is large enough such that (26) is satisfied with c = 3
16 . Let x0 be generated

randomly with entries i.i.d. from N (0, 1). Then the quasi-Newton method (14) with
Broyden update starting with (x0, F ′(x0)†) converges to a root of F with probability

at least 1 − 1
|X | − exp

(

−δ2
|X |

2‖�‖2
)

.

We report results of experiments for training shallow neural networks with varying
number of parameters ninnh in the next section.

6 Numerical experiments

In this section, we show results of experiments for solving the quadratic problem (9)
with varying ‖c‖ and root-finding problems arising in the context of training shallow
neural networkswith varying sizewith our quasi-NewtonmethodwithBroyden update
from (14). To showcase the potential of ourmethod, we also include results concerning
the computation of eigenpairs of an eigenvalue problem and the supervised training
of a multilayer neural network for the classification of the Iris data set.
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Fig. 1 Norm of residual ‖F(xk )‖ per iteration for Newton and quasi-Newton method with Broyden update
for solving the quadratic root-finding problem (9) with different values of ‖c‖

First, we apply the quasi-Newton method with Broyden update starting with
(0, F ′(0)†) to solve the quadratic problem (9) with varying values of ‖c‖. As spe-
cific choices, we consider c ∈ {(1, 0)
, (0.5, 0)
, (0.1, 0)
}; see the discussion at the
end of Sect. 4. While the quasi-Newton method does not converge for c = (1, 0)
, it
converges to a root of the system in less than 10 iterations for the choices of c with
smaller norm, see Fig. 1. For a comparison, we have included the results of applying
the Newton method with update xk+1 = xk − F ′(xk)†F(xk) which shows a similar
convergence behaviour.

As a second test problem, we consider the computation of eigenpairs of an eigen-
value problem as an underdetermined root-finding problem. Given a symmetric matrix
A ∈ R

n×n , we define the residual function F : Rn+1 → R
n by

F(x) = F(λ, u) = (A − λIn)u, (28)

where λ ∈ R is the first element of x ∈ R
n+1 and u ∈ R

n consists of the remaining
elements of the parameter vector x , that is, x = (λ, u). We assume that A has distinct
eigenvalues. In this case, the Jacobian F ′(λ, u) = (−u, A − λI

)

has full rank. We
investigate the convergence properties of Newton’s method and of our quasi-Newton
method with Broyden update for the following two matrices with dimension n = 10:

1. The systemmatrix arising from the finite difference discretisation of the 1d Poisson
problemwith zero boundary conditions, which is a tridiagonalmatrixwith elements
Aii = 2, i = 1, . . . , n, and Ai,i−1 = Ai−1,i = −1, i = 2, . . . , n. The eigenvalues

of this matrix are given by μ j = 4 sin2
(

jπ
2(n+1)

)

, j = 1, . . . , n [6].

2. A matrix with eigenvalues μ j = j , j = 1, . . . , 10, and randomly generated
eigenvectors obtained as rows from an orthogonal matrix U ∈ R

10×10, that is
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988 N. Vater, A. Borzì

Fig. 2 First element (xK )1 of the final iterates versus different start values with λ0 = (x0)1 as the first
element obtained by the Newton method (left) and our quasi-Newton method with Broyden update (right)
for the Poissonmatrix (top) and the randomly generated matrix (bottom). Red cross (x) marks results, where
(xK )i = 0, i = 2, . . . , n + 1 (Color figure online)

A = UMU
, with M ∈ R
10×10 being the diagonal matrix with values Mj j = μ j ,

j = 1, . . . , 10.

We test our methods for starting vectors that differ only in the first element λ0 = (x0)1,
corresponding to the eigenvalue, and stop the iteration when the iterate xk satisfies the
following condition ‖F(xk)‖ < 10−15. We denote the final iterate by xK . We initialise
the part of the starting vector corresponding to the eigenvector as follows:

1. as (x0)i = 1√
n
, i = 2, . . . , n + 1, in the case of the Poisson matrix, and

2. as (x0)i = 1, i = 2, . . . , n + 1, in the case of the randomly generated matrix.

We observe that for some start values λ0 the methods converge to solutions with
(xK )i = 0, i = 2, . . . , n + 1, which do not represent eigenvectors. These results
are marked by a red cross (x) in Fig. 2 that shows the eigenvalue approximations
(xK )1 for different choices of the first entry of the starting vector λ0 = (x0)1. These
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results suggest that our quasi-Newton method could be extended in order to solve
eigenvalue problems if a normalisation condition on the vector (xk)i , i = 2, . . . , n+1,
is appropriately included in the algorithm. While we do not consider this extension in
this work, we expect that this normalisation can be implemented by 1) augmenting the
residual function with an additional entry F(λ, u)n+1 = ‖u‖ − 1, or 2) normalising
the quasi-Newton update at every step in order to enforce that the part of the solution
corresponding to the eigenvector has norm 1, that is, in a way similar to the power
iteration.

Both iterative methods, the Newton method and our quasi-Newton method, find
several distinct eigenpairs of the problems. With proper initialisation, all eigenvalues
of the randomly generated matrix can be obtained together with the corresponding
eigenvectors. For the Poisson matrix the methods are able to find five of the ten
distinct eigenvalues and corresponding eigenvectors.

Next, we consider the supervised training of shallowneural networks. To investigate
the relation between the convergence of the quasi-Newton method and the width of
the shallow neural network in a data fitting problem, we consider a setting similar to
the experiments in [17]. Specifically, we consider a randomly generated data set with
|X | = 100 samples and vary the number of hidden nodes nh and input dimension
nin . To this end, each input sample is drawn element-wise from the standard normal

distribution and normalised, that is (ξ̂ �)i ∼ N (0, 1), i = 1, . . . , nin , and ξ� = ξ̂ �
∥
∥
∥ξ̂ �

∥
∥
∥

,

� = 1, . . . , |X |. Similarly, the output values ζ� ∈ R are generated from the standard
normal distribution, that is ζ � ∼ N (0, 1), � = 1, . . . , |X |. As a shallow neural network
model, we consider the setting from Lemma 2 with activation function the softplus
function defined by φ(z) := log(1+exp(z)). We apply the quasi-Newtonmethod with
Broyden update from (14) starting from (x0, F ′(x0)†) with x0 randomly generated as
in Lemma 2. We stop after 30 iterations or when the Euclidean norm of the residual
function falls below 10−6. This choice provides a reasonable bound since we run the
experiments in Python using the pytorch frameworkwith single precision floating
point values according to IEEE754 standard, hence the values have a precision of about
7 decimal digits. Thus, we cannot expect to obtain a smaller error. To account for the
random generation of the data set and start value, we perform 10 independent runs per
combination of number of hidden nodes and input dimension.

Figure 3 shows the number of successful runs (red) out of 10, that is, the number
of runs for which the quasi-Newton method reduced the norm of the residual ‖F(xk)‖
below 10−6. Similar to the results in [17] for the gradient method, we can observe
a phase transition between successful and non-successful settings depending on the
number of parameters nhnin . However, the phase transition for the quasi-Newton
method is less strict than those for the gradient method shown in [17].

Next, we compare the decrease of the norm of the residual ‖F(xk)‖ for iterates
obtained by the quasi-Newton method with Broyden update, the gradient method
xk+1 = xk − ηF ′(xk)
F(xk) applied to minimise the least squares objective function
1
2 ‖F(x)‖2 with η = 0.15 similar to [17], and the Newton method xk+1 = xk −
F ′(xk)†F(xk). To this end, we consider the training of a shallow network with softplus
activation with 50 hidden nodes and input dimension nin = 50. The residual norm per
iteration and per time is shown in Fig. 4. As expected, the Newton method converges
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Fig. 3 Number of successful runs (encoded by colour) of quasi-Newton method with first Broyden update
from (14) from a random initialisation for varying problem size. Red corresponds to 10 successful runs out
of 10 (Color figure online)

Fig. 4 Training of a shallow neural network with softplus activation and 50 hidden nodes to fit |X | = 100
randomly generated data samples with input dimension nin = 50. Comparison of gradient method with
step size η = 0.15, quasi-Newton method and Newton method. The pictures depict the values of the norm
of the residuals per iteration and with respect to CPU time. Markers at every 10 iterations

in the least number of iterations and the quasi-Newton method is almost as good while
the gradient method shows a rather slow decrease of the norm of the residual. On the
other hand, in terms of CPU time, the quasi-Newton method is considerably faster
than the Newton method.

As a final test problem, we consider the training of a multilayer neural network
to perform classification of a real data set to demonstrate the potential of our quasi-
Newton algorithm for networkswithmore than one hidden layer,which are not covered
by the theoretical results in Sect. 5. We define the computation of a multilayer neural
network with weightsW (�) ∈ R

n�×n�−1 , � = 1, . . . , L+1, and bias values b(�) ∈ R
n� ,
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� = 1, . . . , L , recursively by

γ (0) = ξ,

γ (�) = φ
(

W (�)γ (�−1) + b(�)
)

, � = 1, . . . , L,

γ (L+1) = W (L+1)γ (L), (29)

where n� ∈ N is the width of the �-th layer, γ (�) ∈ R
n� is the activation of the nodes

in the �-th layer. We obtain the corresponding model function g : R
n × R

nin →
R
nout with parameters x = (vec(W (1)), b(1), . . . , vec(W (L+1))) ∈ R

n collecting all
weights and bias terms, by setting g(x, ξ) = γ (L+1), the output of the multilayer
neural network with parameters x for input ξ . The total number of parameters is
given by n = ∑L

�=1 n�(n�−1 + 1) + nL+1nL . In our experiment, we choose L = 4,
ni = 30, i = 1, . . . , 4, and use the hyperbolic tangent as element-wise activation
function, that is, let φ(z) = tanh(z). Our goal is to find a set of parameters of the
network that correctly classifies the species in the Iris data set with input-label pairs
(ξ�, ζ �) ∈ R

4 × {0, 1, 2}, where the integer labels represent the type of the iris plant,
that is, either Iris Setosa, Iris Versiolour, or Iris Virginica. To this end, we aim to solve
the equations g(x, ξ �) − ζ � = 0, where ζ � ∈ {0, 1, 2} is the label indicating the true
species. To illustrate the generalisation properties of the trained network, we select
10 data points of each species randomly as test data and use only the remaining 120
data points for training. That is, our problem has m = 120 equations and n = 3900
unknowns.

To obtain a suitable start value x0, we apply 100 (or 200) iterations of an inexact
dampedNewtonmethod, where the iterates are computed as xk+1 = xk−ηdk with η =
10−1.5 and the direction dk being an approximate solution of F ′(xk)dk = F(xk) com-
puted by the torch.linalg.lstsq algorithm with parameters rcond=1e-5,
driver=’gelsd’. Notice that the model with parameters obtained from 200 iter-
ations of this method reaches already an accuracy of 100% on the training data. We
compare a damped version of our quasi-Newton method with Broyden update, that
is, the iterates are defined by xk+1 = xk − ηHkF(xk) with η = 0.1, with the damped
Newton method with the same step size, and the gradient method applied to minimise
1
2 ‖F(x)‖2 with step size η = 10−6.

Both the damped quasi-Newton method and the damped Newton method outper-
form the gradient method with respect to the norm of the residual. Compared to the
damped Newton method our damped quasi-Newton method shows a similar perfor-
mance for the first 50 iterations and reaches a slightly higher objective value in later
iterations.

We determine the predicted label for a given input as the element from
{0, 1, 2}, which is closest to the output of the network, that is, p(x, ξ) =
argmint∈{0,1,2} |t − g(x, ξ)| gives the label obtained by the network with parame-
ters x for the input ξ . Then, the accuracy of the network with parameters x is given
by 1

|X | |{� ∈ {1, . . . , |X |} | h(x, ξ �) = ζ �}, where X is either the training data set
consisting of 120 samples or the test data set consisting of 30 samples. All methods
find parameters such that the corresponding model classifies all data from the training
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Fig. 5 Results from training of a multilayer neural network with L = 4 hidden layers with 30 nodes
each and tanh activation to fit the Iris data set. Comparison of the damped Newton method, the damped
quasi-Newton method with Broyden update with step size η = 0.1 each, and the gradient method with step
size η = 10−6. Least squares objective function and accuracy versus iteration (top) with markers at every
10 iterations. Confusion matrix for data from test set with 30 samples (bottom) showing the number of
instances of a true class t which are predicted as class p by the model with parameters obtained by each of
the algorithms for each combination of true and predicted classes (t, p)

data set correctly. On the test set, the model with parameters obtained by the gra-
dient method gives a slightly higher accuracy (93.33%) compared to those obtained
from our quasi-Newton method and the Newton scheme (86.67% each), see bottom of
Fig. 5. The confusion tables for the models obtained by the three methods break down
the number of instances of a specific class versus the number of predicted instances,
that is, in the field true class t and predicted class p, the number of instances with
label t which are classified as class p is given. Notably, all samples of type Setosa
in the test set are correctly classified by each of the models obtained by the three
tested algorithms, while some of the instances of type Versicolour and Virginica are
mistaken.

7 Conclusion

The convergence of a quasi-Newton method for the solution of systems of nonlinear
underdetermined equations was investigated. In particular, a new approach for the
computation of the Moore–Penrose inverse of the approximate Jacobian coming from
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the Broyden update was presented and a semi-local convergence result for a damped
quasi-Newton method with least change secant update was shown. These theoretical
results were illustrated for the case of systems of quadratic equations, and validated
in the context of eigenvalue problems. Further, the potential of the proposed quasi-
Newtonmethodwas showcased for the supervised trainingof overparameterisedneural
networks on synthetic data and for the classification of the Iris data set by a multilayer
neural network.

A Least-change secant update

Given an approximation Bk to F ′(xk), secant information in form of vectors y ∈ R
m

and s ∈ R
n , such as y = F(xk+1)− F(xk) and s = xk+1 − xk , and an affine subspace

B ⊆ R
m×n , the least change secant update of Bk in B with respect to s, y and a norm

|||·||| is the unique solution Bk+1 of

min
B∈M(B,Q(y,s))

|||B − Bk |||,

where Q(y, s) = {B ∈ R
m×n | Bs = y} and

M(B, Q(y, s)) =
{

B Q(y, s) = ∅
argminB∈B minB∈Q(y,s)

∣
∣
∣
∣
∣
∣B − B

∣
∣
∣
∣
∣
∣ Q(y, s) 
= ∅,

see, e.g., [24]. Hence in this setting, the update function is specified by
U (xk, xk+1, B) = minB∈M(B,Q(y,s)) |||B − Bk |||. Several specific choices of B, s, y
and the norm ‖·‖ for rectangular matrices are discussed in [5]. In particular, we con-
sider the first Broyden update in (12) for which B = R

m×n , y = F(xk+1) − F(xk),
s = xk+1 − xk and |||·||| = ‖·‖F , the Frobenius norm.

B Moore–Penrose inverse of Broyden update

To show the update formula for theMoore–Penrose inverse of the first Broyden update,
we show a slightly more general result assuming s ∈ R(B
) and allowing for an arbi-
trary y ∈ R

n . For the specific choice s = xk+1 − xk = −ηB†
k F(xk), we immediately

have s ∈ R(B

k ). Hence, we can use the update formula in (13) for the update of the

Moore–Penrose inverse of the first Broyden update.

Lemma 3 Let Bk ∈ R
m×n, m ≤ n have full row rank, and s ∈ R(B


k ) and y ∈ R
n.

Let Bk+1 = Bk + (y−Bks)s

s
s ∈ R

m×n. Then

Hk+1 = B†
k + (s − B†

k y)s

B†

k

s
B†
k y

, (30)

is the Moore–Penrose inverse of Bk+1.
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Proof We show that Hk+1 satisfies the properties of a Moore–Penrose inverse, that is,
it holds

Bk+1Hk+1Bk+1 = Bk+1, Hk+1Bk+1Hk+1 = Hk+1,

(Bk+1Hk+1)

 = Bk+1Hk+1, (Hk+1Bk+1)


 = Hk+1Bk+1.
(*)

To this end, we first note that it holds Bk B
†
k = Im since Bk has full row rank. Thus,

we have

Bk+1Hk+1 =
(

Bk + (y − Bks)s


s
s

)(

B†
k + (s − B†

k y)s

B†

k

s
B†
k y

)

= Bk B
†
k + (y − Bks)s
B†

k

s
s
+ Bk(s − B†

k y)s

B†

k

s
B†
k y

+ (y − Bks)s


s
s
(s − B†

k y)s

B†

k

s
B†
k y

= Im + (y − Bks)s
B†
k

s
s
+ (Bks − Bk B

†
k y)s


B†
k

s
B†
k y

+ (y − Bks)s
B†
k

s
B†
k y

− (y − Bks)s
B†
k

s
s

= Im − (y − Bks)s
B†
k

s
B†
k y

+ (y − Bks)s
B†
k

s
B†
k y

= Im,

by expanding the product to obtain the second equality, expanding the last fraction
and using Bk B

†
k = Im to obtain the third equality, and exploiting the cancellation of

terms in the last equalities.
This property immediately shows the first three conditions in (*). It remains to

check (Hk+1Bk+1)

 = Hk+1Bk+1. As above, we start with expanding the product

Hk+1Bk+1, that is, we have

Hk+1Bk+1 =
(

B†
k + (s − B†

k y)s

B†

k

s
B†
k y

)(

Bk + (y − Bks)s


s
s

)

= B†
k Bk + B†

k (y − Bks)s


s
s
+ (s − B†

k y)s

B†

k Bk

s
B†
k y

+ (s − B†
k y)s


B†
k (y − Bks)s


s
B†
k ys


s
.
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Since B†
k is the Moore–Penrose inverse of Bk , it holds (B†

k Bk)

 = B†

k Bk . From

s ∈ R(B

k ) we have B†

k Bks = s and thus s
B†
k Bk = ((B†

k Bk)

s)
 = s
. By using

these properties, we obtain

Hk+1Bk+1 = B†
k Bk + (B†

k y − B†
k Bks)s


s
s
+ (s − B†

k y)s



s
B†
k y

+ (s − B†
k y)s




s
s

− (s − B†
k y)s




s
B†
k y

= B†
k Bk + (B†

k y − s)s


s
s
+ (s − B†

k y)s



s
s
= B†

k Bk .

Hence, we have (Hk+1Bk+1)

 = (B†

k Bk)

 = B†

k Bk = Hk+1Bk+1, which shows the
remaining property. Thus, Hk+1 is the Moore–Penrose inverse of Bk+1. ��
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