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Abstract
Current quantum computers can only solve optimization problems of a very limited
size. For larger problems, decomposition methods are required in which the original
problem is broken down into several smaller sub-problems. These are then solved
on the quantum computer and their solutions are recombined into a final solution for
the original problem. Often, these decomposition methods do not take the specific
problem structure into account. In this paper, we present a tailored method using a
divide-and-conquer strategy to solve the 2-way Number partitioning problem (NPP)
with a large number of variables. The idea is to perform a specialized decomposition
into smaller NPPs, which are solved on a quantum computer, and then recombine
the results into another small auxiliary NPP. Solving this auxiliary problem yields an
approximate solution of the original larger problem. We experimentally verify that
our method allows to solve NPPs with over a thousand variables using the D-Wave
Advantage quantum annealer (Advantage_system6.4).

Keywords Number partitioning problem · Quantum optimization · Quantum
annealing · Decomposition approach

1 Introduction

The current D-WaveAdvantage quantum annealer (D-Wave Systems Inc 2020, 2024a)
can be used to solve optimization problems with binary variables and a quadratic
objective function. For this purpose, each optimization variable is captured by one
qubit and the dynamics of the system are controlled by the properties of the objective
function such that the solution of a problem instance can be determined from the
measurement of the final quantum state (Albash and Lidar 2018; Rajak et al. 2022;
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Yulianti and Surendro 2022). However, there is no guarantee that a solution obtained
in this way is actually an optimal solution, as quantum tunneling could result in a
non-optimal result even on an ideal device. In addition, technical imperfections of
the currently available Noisy Intermediate-Scale Quantum (NISQ) hardware (Preskill
2018) may lead to significant uncertainties. Therefore, quantum annealing is typically
treated as a heuristic algorithm for which the solution is extracted from a large number
of measurements.

The Advantage system (Advantage_system6.4) possesses 5000 qubits that can be
used simultaneously to solve optimization problems. In practice, however, the number
of optimization variables that can be concurrently encoded on such a device is typically
much less than 5000. The reason is the limited connectivity of the hardware. For
Quantum Annealing (QA), those qubits must interact with each other for which there
is a correlation in the objective function. However, due to technical limitations, the
hardware can only realize interactions between certain qubits. From a mathematical
point of view, the connectivity of the hardware can be represented as a so-called
“hardware graph”, in which the qubits represent the nodes and the edges represent the
possible interactions. The hardware graph of the Advantage_system6.4 used in this
work has the Pegasus topology, which is an improvement in connectivity compared to
the prior Chimera topology, but still far from being fully connected D-Wave Systems
Inc (2021). Similarly, a problem instance can be represented as a “problem graph”
in which the optimization variables represent the nodes and the edges represent non-
vanishing correlations. A necessary classical pre-processing step before the actual QA
process is to find feasible “minor embedding” of the problem graph in the hardware
graph, which is by itself a NP-hard problem (Matoušek and Thomas 1992). However,
efficient algorithms exist tofindminor embeddings onD-Wavehardware topologies for
practical applications (see Robertson and Seymour (1995) for a general algorithm and
Cai et al. (2014); Boothby et al. (2016) for algorithms adapted to D-Wave hardware).
For this purpose, the effective hardware connectivity can be increased by joining
several qubits into a strongly correlated chain. This method is required to overcome
the hardware limitations for sufficiently complex problems, but it is not always reliable
and can therefore introduce additional uncertainties.

In practice, the difficulty of finding a minor embedding on a given hardware graph
depends heavily on the nature of the problem. For problem graphs that are a sub-graph
of the hardware graph, finding a minor embedding is trivial. On the other hand, it may
be very difficult or even impossible to find a feasible embedding for a sufficiently
large, densely connected graph (resulting from strongly correlated variables).

Hybrid quantum-classical decomposition methods offer a fallback option in such
cases. They utilize both classical resources (for the decomposition of the original prob-
lem into smaller sub-problems with an easier to find minor embedding) and quantum
resources (for the solution of the sub-problems with QA) in a possibly iterative way.
Hybrid decomposition methods are an important cornerstone for the practical use of
NISQ annealers. The hybrid decomposition solver qbsolv (QB) (Booth et al. 2017)
is based on a heuristic general-purpose strategy. Aimed at improving this method,
the work in Okada et al. (2019) further exploits the connectivity within problems to
accommodate larger sub-problems. As also observed in Atobe et al. (2022), Osaba
et al. (2021), Raymond et al. (2023), and Shaydulin et al. (2019), the current decom-
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positionmethods are designed for compatibility with as many distinct problem species
as possible and thus problem-agnostic, although Bass et al. (2021) states that QB is in
general still the best choice for large problems as of 2021.

Problem dependent decomposition methods have been presented in Pelofske et al.
(2019), Pelofske et al. (2021) focusing on graph problems. In Pelofske et al. (2022),
Ottaviani and Amendola (2018), algorithms for the factorization of matrizes are pre-
sented.

In this paper, we propose a novel problem-oriented hybrid decomposition method,
which is specifically designed to solve the optimization version of the NPP, which is
also called partition problem and constitutes one of Karp’s 21 NP-complete problems
(Karp 1972). An NPP is defined as follows. Given a finite multiset

W := {w1, . . . , wn} (1)

of n ≥ 1 elements wi ∈ N for all i ∈ [n] := {1, . . . , n}, the goal is to solve

min
A⊆W

E(W , A) (2)

with the objective

E(W , A) :=
∣
∣
∣
∣
∣
∣

∑

w∈A

w −
∑

w′∈W\A
w′

∣
∣
∣
∣
∣
∣

, (3)

which represents the error (or energy) of the solution A to the NPP generated by W .
Practical applications of NPP (or its extension to more than 2 sets known as multi-way
NPP) include scheduling with multiple identical machines, as exemplified in Coffman
et al. (1993) and Pinedo (2012).

As mentioned before, the NP-hardness of this problem has been established in
Karp (1972). Furthermore, it has been demonstrated that both exact cover and knap-
sack problems are linearly reducible (in terms of problem size) to NPPs without any
constraints in Karp (1972). This implies that solving the NPP also addresses these
other NP-hard problems. Early exact algorithms with an exponential runtime are, for
example, described in Horowitz and Sahni (1974); Schroeppel and Shamir (1981).

Classical heuristics for NPP include methods such as the Largest Differencing
Method (LDM) introduced by Karmarkar and Karp (1983), and the Greedy Algorithm
(GR) as described in Mertens (2005). The LDM is considered to perform well on an
average basis as a polynomial-time heuristic, as analyzed in Boettcher and Mertens
(2008) and Michiels et al. (2007). Based on LDM, Korf (1998) proposed an exact
anytime algorithm for general l-way NPPs, which requires exponential time to obtain
an optimal solution in the worst case. Alternatively, Krasecki et al. (2023) studies a
hybrid approach using molecular computers for an instance of 5 elements.

In this study, we do not aim to solve the NPP on a classical device, but want to
investigate to what extent quantum annealers can find a solution. Solving optimization
problems with the help of quantum computers is a highly relevant research topic with
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various opportunities and challenges. A more general discussion of this subject would
go far beyond the scope of this paper. For a comprehensive review of this topic, we
refer to Abbas et al. (2023).

To solve an NPP on a quantum annealer, we reformulate Eq. (2) as a Quadratic
Unconstrained Binary Optimization (QUBO) (Kochenberger et al. 2014; Glover et al.
2022) of the form

min
x∈{0,1}n x

T Qx (4)

with a coefficient matrix Q ∈ Z
n×n with entries

Qi j :=
{

wiw j if i �= j

wi (wi − c) if i = j
(5)

for i, j ∈ [n] and c := ∑

wi∈W wi , as formulated, for example, in Glover et al. (2022).
The n-dimensional vector x of binary optimization variables represents the solution
A = {wi ∈ W | xi = 1} of Eq. (3), where xi = x2i for i ∈ [n] as a consequence of
the binary domain. The equivalence of Eqs. (4) and (2) follows from the squared error

⎛

⎝

n
∑

i=1

wi xi −
n

∑

i=1

wi (1 − xi )

⎞

⎠

2

= c2 − 4c
n

∑

i=1

wi xi + 4

⎛

⎝

n
∑

i=1

wi xi

⎞

⎠

2

= c2 + 4x�Qx,

which reduces to the objective from Eq. (4) when removing the constant term c2 and
the linear factor 4.

Assuming that no weight is vanishing (as defined in our problem statement), the
coefficient matrix Q is fully dense, i.e., it is comprised entirely of non-vanishing
elements. This makes it particularly challenging to solve the corresponding QUBO on
a quantum annealer: for the complete embedding of the problem, every qubit has to
be connected to every other qubit. Therefore, a decomposition is crucial for handling
larger problem instances on a NISQ device.

In short, the main idea of the proposed decomposition method is to consider subsets
of the multiset W . These subsets form sub-NPPs and can be chosen sufficiently small
such that they can be solved on the D-Wave Advantage system. Solving these sub-
problems leads to partial solutions,which, in another step, are used to formulate another
auxiliary NPP. Subsequently, solving this auxiliary NPP allows us to merge the sub-
solutions to an overall solution of the complete NPP. Numerical experiments show that
the results are improved significantly compared to a general purpose decomposition
method. This indicates that by focusing on specific problems and leveraging their
unique properties, one can significantly enhance solution quality.

The remaining paper is structured as follows. We introduce our proposed hybrid
decomposition method in Sect. 2. Subsequently, we investigate the proposed method
in Sect. 3 on a theoretical level, where we examine the influence of our decomposition
on so-called perfect solutions. To further support our conclusions, we show the results
of the numerical experiments in Sect. 4, comparing LDM, GR, Simulated Annealing
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(SA), QB, and different variants of our algorithm. We conclude the paper in Sect. 5
with a summary of our results and ideas for future research directions.

2 Method

Weconsider theNPP fromEq. (2)with the error function E(W , A) and a givenmultiset
W as introduced in Eqs. (3) and (1), respectively. The proposed method consists of
three major steps: First, decompose the original NPP into multiple smaller sub-NPPs.
Second, solve the sub-NPPs with QA. Third, recombine the solutions of the sub-
NPPs into a solution for the original NPP by solving an auxiliary NPP with SA. This
auxiliary NPP is in particular smaller than the original NPP. Both QA and SA utilize
the formulation of a NPP as a QUBO from Eq. (5).

The key idea of the proposed method is that solving the sub-NPPs in the second
step and also the auxiliary NPP in the third step is easier than solving the original
NPP. Conceptually, our method differs from many other hybrid algorithms such as
QB.Other hybrid algorithms often run a loop inwhich one tries to improve the solution
step by step. This process terminates when no further progress is obtained or when the
maximum number of iterations is reached.We partition the problem into sub-problems
only once, solve them all, and then combine the solutions in a single step.

We describe the three steps of the proposed method in more detail in the following.

1. Decompose: Initially, we choose a number of sub-NPPs m ∈ N with m ≤ n and
a corresponding decomposing vector j ∈ [m]n that determines their construction.
Specifically, the multiset W of the original NPP, Eq. (1), is decomposed into m
smaller multisets W := {W1, . . . ,Wm} with Wk := {wi ∈ W | ji = k} for all k ∈
[m], where ⋃m

k=1 Wk = W and
∑m

k=1 |Wk | = |W |. Without loss of generality, we
assume that |Wk | ≥ 1 for all k ∈ [m]. Each of the multisets Wk in W is used to
construct a sub-NPP defined byminA⊆Wk E(Wk, A) that is smaller than the original
NPP in terms of problem size.
The choice of the decomposing vector j determines the decomposition and can
therefore have a major influence on the performance of the method. Throughout
this paper, we pursue a randomized and balanced decomposition strategy to keep
the size of each sub-problem about equally large. Specifically, given n and m, we
define a vector j ′ ∈ [m]n with elements

j ′i =
{

	(i − 1)/K 
 + 1 if i ≤ Km

	(i − Km − 1)/K 
 + 1 otherwise
(6)

for i ∈ [n], where K := 	n/m
. We then construct j by shuffling j ′ in a uniformly
random manner.

2. Solve sub-problems:We solve each sub-NPP independently, using an exchangeable
solution method, which is called SubSolver. The only requirement for this solver
is that it is able to provide a (not necessarily optimal) solution for any given NPP.
By default, we use QA as the SubSolver. From each each sub-NPP, we obtain a
solution Ak for all k ∈ [m]. The resulting partitions—which are not necessarily the
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optimal partitions—are denoted by A1
k := Ak and A2

k := Wk\Ak , respectively, for
all k ∈ [m]. Without loss of generality, we presume that

∑

w∈A1
k
w ≥ ∑

w′∈A2
k
w′.

We write A := {A1
1, . . . , A

1
m} to denote the full set of partitions.

3. Recombine: Finally, we merge all of the sub-NPP solutions from A to obtain
a solution for the original NPP. A naive recombination approach would be to
simply take the unions

⋃m
k=1 A

1
k and

⋃m
k=1 A

2
k . However, this way, the errors

accumulate. Instead, we propose here an alternative approach which allows us
to recombine the sets in such a way that errors cancel out. For this purpose, we
define an auxiliary NPP using the errors of the solutions of the sub-NPPs. Let
Ek := | ∑w∈A1

k
w − ∑

w∈A2
k
w| = ∑

w∈A1
k
w − ∑

w∈A2
k
w, where we omit the

absolute value as we assumed the first sum to be larger. We construct another
multiset W ′ := {Ek | k ∈ [m]} and arrive at an auxiliary NPP defined by
minA⊆W ′ E(W ′, A). We solve this problem using another exchangeable solution
method, which is calledRecombinationSolver. The only requirement for this solver
is that it is able to provide a (not necessarily optimal) solution for any given NPP
in analogy to the SubSolver. By default, we use SA as the RecombinationSolver.
While the resulting partition A′ is again not necessarily the optimal solution, we
expect that this auxiliary NPP is typically easier to solve than the original NPP
because it contains fewer elements and the values of the elements are presumably
smaller, as they are the error values of another NPP.
An estimate Â for the optimal partition A of the original NPP, Eq. (2), can then be
reconstructed based on A and A′ with

Â := Â(A,W ′, A′) :=
m
⋃

k=1

Au(Ek ,A′)
k (7)

with the abbreviation

u(Ek, A
′) :=

{

1 if Ek ∈ A′

2 if Ek /∈ A′ .

The corresponding objective reads E ′ = | ∑m
k=1 Ek(−1)u(Ek ,A′)| = E(W , Â).

However, it is not guaranteed that Â is an optimal solution.

Our method is also summarized in Algorithm 1 and we refer to this algorithm in the
following.

Although our default solver choices are QA as the SubSolver and SA as the Recom-
binationSolver, any other combination of (heuristic or deterministic) solvers can also
be used. The motivation for our choice is that the sub-problem solutions can tolerate
more noise, which can be compensated for the solution of the NPP forW ′. Therefore,
we can utilize the fast but noisier solution from QA. For the recombination, however,
a more accurate solution is needed, as the error directly impacts our final solution. In
Sect. 4, we investigate and compare other solver choices with numerical experiments.
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Algorithm 1 Proposed algorithm to solve the NPP.
Require: W , j, SubSolver,RecombinationSolver
Ensure: partition A
1: Initialize an empty list A
2: Initialize an empty list W ′
3: W ← Decompose W according to j � step 1
4: for each Wk inW do � step 2
5: A1k ← Solve the NPP for Wk using the SubSolver � step 2

6: Append A1k toA � step 2
7: Ek ← Compute the energy of the solution using Equation (3) � step 2
8: Append Ek to W ′ � step 2
9: end for
10: A′ ← Solve the NPP for W ′ using the RecombinationSolver � step 3
11: Â ← Evaluate Equation (7) using A, W ′, and A′ � step 3
12: return Â

Before we turn to the theoretical and numerical analysis of Algorithm 1, we provide
a simple example to enable an intuitive understanding. Consider the NPP given by

W := {1, 1, 3, 4, 5, 6} and a decomposing vector j = (1, 1, 1, 2, 2, 2)ᵀ

with m = 2. In the first step, we perform a decomposition into the multisets W1 :=
{1, 1, 3} and W2 := {4, 5, 6} according to j and solve an NPP for each of them using
QA in the second step. Let us assume this approach yields the partitions

A1
1 := {3}, A2

1 := {1, 1} for W1 as well as A
1
2 := {4, 5}, A2

2 := {6} for W2

with the objectives E1 = 3 − 1 − 1 = 1 and E2 = 4 + 5 − 6 = 3, respectively. That
is, we arrive at the set of sub-partitionsA = {A1

1, A
1
2}. There are two distinct ways to

merge these sub-partitions to obtain A for the original NPP, either

A1 := A1
1 ∪ A1

2 = {3, 4, 5} or A2 := A1
1 ∪ A2

2 = {3, 6}

For the first choice, we find

E(W , A1) = |3 + 4 + 5 − 1 − 1 − 6| = 4 = E2 + E1,

and for the second,

E(W , A2) = |3 + 6 − 1 − 1 − 4 − 5| = 2 = E2 − E1.

While for A1 the errors simply add up, we can use E2 in the second possibility to
make the overall error smaller.

These outcomes align with the potential results of W ′ = {E1, E2} when treated as
a NPP. We consequently solve this auxiliary NPP in the third step using SA. Let us
assume that we obtain the solution A′ = {E2} with the objective E ′ = E(W , A2).
Hence, we find Â = A2

1 ∪ A1
2 = {1, 1, 4, 5} according to Eq. (7) as an estimate for the
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partition A of the original NPP with the objective E(W , Â) = E ′ = E2 − E1 = 2.
This is in fact an optimal solution.

3 Conservation of perfect solutions

In line 3 of Algorithm 1, we decompose the original NPP, Eq. (2), into m ≤ n
sub-NPPs, where the parameter m can be chosen at will. This raises the question of
whether there is an optimal choice for m. One of the core criteria for performance
is that the auxiliary NPP in line 10 should be as simple to solve as possible, i.e., W ′
should contain few and small elements. From this observation, one could conclude to
choose a small m. However, since we use QA to solve the sub-NPPs, finding a minor
embedding becomes increasingly difficult with smallerm (implying larger sub-NPPs)
and is ultimately limited by the hardware capacity. Accordingly, we expect that there
is a practical sweet spot for m somewhere in-between too large and too small.

Before we study this question from a numerical perspective in Sect. 4, we provide
some theoretical insights in the present section. To this end, we consider so-called
perfect solutions. We differentiate between a “perfect” solution and an “optimal”
solution in the following sense. A solution A ⊆ W is called perfect, if and only
if E(W , A) ∈ {0, 1}. Whereas A is optimal, if and only if no A′ exists such that
E(W , A′) < E(W , A). Note that a perfect solution is always optimal, but not neces-
sarily vice versa. While a perfect solution does not exist for all instances of NPP, an
optimal one always does. It is important to note that Algorithm 1 does not necessarily
require perfect or optimal solutions of the sub-NPPs to perform effectively, as we
discuss in Sect. 4. Instead, the elements in W ′ merely need to be sufficiently close to
each other. The reason for studying perfect solutions instead of optimal ones is that
their value is known a priori, which simplifies the investigation.

Analyzing the behavior of QA and SA is challenging since they are both prob-
abilistic heuristics. Results from QA can additionally be influenced by hardware
imperfections from a NISQ device. To simplify the theoretical analysis of our
decomposition method, we therefore assume in the following that both QA and SA
consistently yield optimal solutions. But even under this strong assumption, it is pos-
sible that we lose optimal or perfect solutions in the decomposition process. For
example, let W (n) := {2t | t ∈ [n]}. We observe that the optimal solution has always
E(W (n), {2n}) = 1, since 2n − 1 = 2n−1

2−1 = ∑

t∈[n−1] 2t . However, if we consider
any decomposing vector j with m ≥ 2 and at least two elements in each subset Wk ,
we always obtain a sub-optimal solution.

This means that it is easily possible to construct problems for which Algorithm 1
results in a sub-optimal solution even under perfect conditions. In order to provide a
discussion beyond this worst-case scenario, we turn to a probabilistic analysis. For that
purpose, we make two simplifying assumptions. First, the elements of W are drawn
from a uniform distribution U [λ] in [λ] for a λ ∈ N. Second, the sum of elements is
even (i.e., E = 0 for a perfect solution). The expected number of perfect solutions
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under these assumptions was estimated by Gent and Walsh (1998) to be

|Sol(W )| = 2n

λ
(8)

for a sufficiently large n = |W | and λ, the maximum of the uniform distribution.
For reasons of notational simplicity, let us further assume that m | n, such that the

size of each sub-problem is |Wk | = n
m for the decomposing vector j sampled from

Eq. (6). As each element ofW is assumed to be drawn from a uniform distribution, the
same holds true for the subset Wk . Then, we can apply Eq. (8) on Wk (if we assume
|Wk | is even). Consequently, for each |Wk |, the expected number of perfect solutions
is |Sol(Wk)| = 2n/m

λ
, which we transform into

m = n

log2(λ × |Sol(Wk)|) . (9)

The expected number of solutions only appears in the logarithm. This means that,
provided λ does not grow exponentially with n, we can decompose the NPP into many
sub-NPPs and still expect many perfect solutions.

For example, if we set |Sol(Wk)| ≥ 1 as a condition, then Eq. (9) turns into

m ≤ n

log2(λ)
. (10)

Exemplarily, in case of n = 500 and λ = 5000, we find m ≤ 40.
Summarized, we observe that according to Inequality (10), our decomposition

method begins to fail as λ → 2n , but, a suitable m is expected to exist for a con-
stant λ ∈ N and sufficiently large n, such that our method performs well.

4 Numerical experiments

After these theoretical insights into our decomposition strategy within Algorithm 1,
we proceed with a numerical study of the overall performance, where we concentrate
on three main questions:

1. What is the influence of the sub-NPP size (i.e., the choice of m) on the solution
quality?

2. What is the influence of the two solver choices (SubSolver and Recombination-
Solver) on the solution quality?

3. Howdoes the solution quality of our problem-oriented decompositionmethod com-
pare with the solution quality of the problem-agnostic decomposition implemented
in QB? We also compare the results with the classical NPP-heuristics LDM, GR,
and SA.

Before proceeding with the presentation of our results, we explain the experimental
setup.
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We randomly generate a set of different NPPs, which serve as our benchmark
instances. To this end, we generate 10 different instances for each problem size n ∈
{325, 500, 675, 850, 1025, 1200}. For each instance of a given size n, we draw the
elements uniformly from the interval [5n, 10n]. The problemsizes and element spacing
are chosen based on preliminary tests, as they provide a range of differently scaled
instances of sufficient complexity for the purposes of the numerical study. All problem
instances and solutions are available online (Li et al. 2024b). The number of instances
for each n is limited by the limited access to D-Wave machines within this research
endeavour. While the previous analysis suggests that an exponential growth leads to
harder problems (and thus would present a more stringent test for the algorithms), we
observe that the elements of the coefficient matrix Q, Eq. (5), contain the squares of the
NPP values. As these values increase, the precision of their mapping onto the quantum
device declines, leading to significantly worse results. Classical strategies are also
included to highlight the non-triviality of these problems, as well as to showcase the
performance difference between classical and hybrid strategies. We therefore adhere
to linear growth. In total, we generate a collection of 60 different NPP instances.

We consider six candidate algorithms to solve those problem instances (either
directly or as a sub solver):

1. Our proposed problem-specific quantum-classical hybrid strategy, Algorithm 1,
with the randomized and balanced decomposition strategy, Eq. (6). Referred to as
OUR in the following. Our algorithm is implemented by the authors in Python.

2. A modification of the problem-agnostic quantum-classical hybrid strategy QB as
implemented in the dwave-hybrid Python package (D-Wave Systems Inc 2024b)
under the name SimplifiedQbsolv. We exchanged the simple execution of one
energy impact decomposition by default of SimplifiedQbsolv to a loop of the func-
tion with an convergence of 3 iterations, a variable rolling_history= 0.3 and a
max_subproblem_size= 40 to run in parallel with the default Tabu Search racing
branch. Exit convergence of the full routine is 1 and max_iter is set to 100 to force
exit by convergence.

3. The classical strategy LDM with a standard implementation from the authors in
Python.

4. The classical strategy GR with a standard implementation from the authors in
Python.

5. The classical strategy SA as implemented in D-Wave Systems Inc (2023b). We
use SimulatedAnnealingSampler from the dwave-neal python package (v0.6.0)
with the standard settings (incl. geometric β-schedule and num_sweeps = 1000),
except for the parameter num_reads, which is set to 100.

6. The classical Tabu Search strategy (tabu) implemented by D-Wave in the function
TabuSampler from the Python package dwave-tabu (v0.5.0) with all standard
settings.

Implementations for the algorithms are available online at Li et al. (2024a). We use
the D-Wave Advantage quantum annealer (Advantage_system6.4) as a Quantum Pro-
cessing Unit (QPU) for OUR and QB. As a classical host, we use a Ubuntu Virtual
Machine based on 4 cores Intel Haswell processor. No additional fine-tuning of param-
eters (including, but not limited to, chain strength andmanual embedding) nor any pre-
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Fig. 1 Experiment 1. We solve 60 randomly generated NPP instances of different sizes n with SA and our
proposed method, Algorithm 1, using the D-Wave Advantage quantum annealer as a QPU. We consider
different sub-NPP sizes m = 	n/N
 in our decomposition strategy, denoted by OUR-N accordingly. The
solution error E , Eq. (3), is a measure for the solution quality and becomes 0 or 1 for a perfect solution. We
run each algorithm five times on each instance to take their probabilistic nature into account. The resulting
distributions of solution errors are shown as box plots

or post-processing techniques (such as local search) are applied in our experiments.
This means that we use the standard settings. In specific, we use the find_embedding
function provided byD-Wave’sminorminer Python packages (v0.2.15)with all default
parameters to find the embedding for QA, which is then used with FixedEmbedding-
Composite from dwave-system (v1.26.0). The weights are scaled with the default
method auto_scale from dwave-system (v1.26.0). The problems for QA are solved
with the default chain strength tuning method of uniform_torque_compensation, and
100 shots each with the default anneal time of 20 microseconds. The post-processing
method for chain breaking (“unembedding”) is majority_vote, as in default.

Each problem instance is solved once with the deterministic algorithms LDM and
GR. The probabilistic algorithms Algorithm 1 (incl. its variants), QB, and SA are
executed 5 times on each instance, i.e., we perform a total of 60 optimization runs for
each problem size n for each of these three algorithms.

In our first experiment, we investigate the influence of the sub-NPP size m on
the quality of solutions represented by the error E , Eq. (3). For this purpose, we
consider five different choices for m depending on the problem size n. Specifically,
m ∈ {	n/20
, 	n/40
, 	n/60
, 	n/80
}. We write OUR-N with N ∈ {20, 40, 60, 80}
to denote the respective choice of m = 	n/N
. For comparison, we also solve the
problem instances with SA. The results are shown in Fig. 1.

Wefind thatwithOUR-20, a perfect solution is found in almost all cases, as indicated
by the error E ∈ {0, 1}. This observation aligns with the findings discussed in the
previous section. Since a perfect solution is always an optimal one, the error measure
E not only represents the difference between the two sets but also serves as an indicator
of the distance from the perfect solution. In cases where no perfect solution exists, this
measure can be pessimistic. On the other hand, computing the actual optimal solution
in every case can be computationally intensive. Since a perfect solution evidently
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Fig. 2 Experiment 2. Comparing variants of our proposed method, Algorithm 1, that use both QA and
SA (OUR), only QA (OUR-QA), only SA (OUR-SA), or only tabu to solve 60 randomly generated NPP
instances of different sizes n. For QA, we use the D-Wave Advantage quantum annealer. In analogy to
Fig. 1, we show box plots of the resulting distributions of solution errors E , Eq. (3)

exists for many instances, we report the error E instead of the distance to the optimal
solution in this context.

For OUR-40, the median error is relatively high for n ∈ {325, 500}. In contrast, for
n ≥ 675, we again obtain a perfect solution in many cases. The performance of OUR-
60 andOUR-80 is generally poorer, yet it shows an improving trend as the problem size
increases. Across all variants, we observe that the solution improves as n increases.
Conversely, the behaviour of SA differs. For small instances, SA outperformsOUR-40
toOUR-80. But the performance of SA does not improve as n increases. Consequently,
all variants of the proposed algorithm perform better than SA for large problem sizes.
This behaviour can be attributed to the characteristic of our decomposition method.
The perfect solutions of the auxiliary NPP in the merging step are more likely to be
conserved with the larger problems than the smaller ones, as discussed in Sect. 3.

The second question concerns the influence of the choice of SubSolver and Recom-
binationSolver in Algorithm 1. For this purpose, we consider different solver choices:

• OUR, where we consider our default choice of QA as the SubSolver and SA as
the RecombinationSolver.

• OUR-QA, where we consider QA as both the SubSolver and the Recombination-
Solver.

• OUR-SA, where we consider SA as both the SubSolver and the Recombination-
Solver.

• OUR-tabu, where we conisder Tabu Search as both the SubSolver and the Recom-
binationSolver

For each variant, we choosem = 	n/40
 based on the results from the first experiment.
Note that this is not the variant that performed best in the previous experiment. The
motivation is to allow room for improvement in order to better compare the approaches
and to examine the variant with a greater contribution from QA in the case of OUR.
The results are shown in Fig. 2.
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Fig. 3 Experiment 3. Benchmarking the solution quality of our proposed problem-oriented method (OUR)
with a problem-agnostic decomposition strategy QB and the classical solvers SA, LDM, and GR for the
solution of 60 randomly generated NPP instances of different sizes n. As a QPU, we use the D-Wave
Advantage quantum annealer. In analogy to Figs. 1 and 2, we show box plots of the resulting distributions
of solution errors E , Eq. (3)

From Fig. 2, it is apparent that OUR-SA outperforms the other three variants. This
superior performance is to be attributed to the ability of SA to solve the sub-NPPs and
the auxiliary NPP in the merging step with greater accuracy. First of all, an advantage
arises since better solutions of sub-NPPs lead to smaller (and thus closer) values in
the auxiliary NPP. The quality of the solution of the NPP in the merging step directly
influences the overall solution. However, particularly for large instances, the approach
can tolerate sub-optimal solutions in the sub-NPPs.

In a third experiment, we benchmark the solution quality and the runtime of our
proposed algorithm (using both QA and SA) with QB, SA, LDM, and GR. The results
for the solution quality are shown in Fig. 3, where we limit ourselves to OUR with
m = 	n/40
 for the purpose of clarity. The runtime results are reported in Table 1,
where we additionally include the results for the different variants of OUR.

According to Fig. 3, we observe that QB still finds acceptable solutions for the
problem sizes n = 325 and n = 500, but its solution quality declines as n increases,
indicating that our method outperforms QB for large instances. Additionally, both SA
and GR consistently perform worse than OUR, where GR performs better than SA for
instances with even problem size. Although LDM always finds perfect solutions for
every instance with an even problem size, it performs poorly for others. For problems
with an odd size, LDM and GR perform significantly worse than the hybrid OUR in
Fig. 3. Furthermore, certain problems, such as W = {3000, 3000, 2000, 2000, 2000},
are known to be ill-behaved forLDM(Fischetti andMartello 1987).Our results suggest
that Algorithm 1 is promising for NPPs where the magnitude of elements is linearly
related to the problem size.

In Table 1, we report average runtimes (in seconds) over all runs for the correspond-
ing instance size. For OUR, we provide both the runtime of the QPU as reported by
the D-Wave cloud service (D-Wave Systems Inc 2023a) as well as the total end-to-end
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runtime (including the QPU runtime and possible queueing times in the cloud ser-
vice). We use the notation OUR-N for the choice m = 	n/N
 in the same way as in
the second experiment. For QB, SA, LDM, and GR, we only list the total end-to-end
runtimes.

In addition, we provide a so-called “parallel” end-to-end runtime for OUR based on
the presumption that the sub-NPPs from the second step ofAlgorithm1 could be solved
in parallel with QA (instead of a sequential solution as in our actual implementation).
This would require the simultaneous execution of multiple QA instances, for example
using multiple quantum annealers or one quantum annealer that has sufficient capac-
ities for multitasking (Huang et al. 2023). Instead of a practical implementation, we
are considering this concept here only theoretically and define the parallel end-to-end
runtime as

tpara = max
k∈[m] t2,k + t1 + t3 (11)

where ti with i ∈ [3] denotes the runtime of the respective step in Algorithm 1 and
t2,k denotes the runtime of the QPU within the kth iteration of the second step in
Algorithm 1. Similarly, we list a “parallel QPU” runtime, which is defined as

tpara,QPU = max
k∈[m] t2,k,

We note here that the times depend on many factors, which are difficult to stan-
dardize.

Independent of this consideration, we find that GR has by far the shortest execution
time, with LDM coming in second. Even if we ignore the classical overhead (e.g., for
the minor embedding), and only compare with the QPU times, the classical heuristics
still outperform OUR by orders of magnitude. However, we find that OUR-20 and
OUR-40 have certain time advantages over SA and QB as well in terms of total times,
especially for larger n.

Nevertheless, we note that there is plenty of room for improvements in these results,
especially for the solution quality. For instance, employing better embeddings specifi-
cally tailored for the NPP, such as the one introduced in Lucas (2019), might enhance
the results from this study. In contrast, we use the standard minorminer package
provided by D-Wave with the default settings as specified earlier in this study. Addi-
tionally, fine-tuning other parameters could also be beneficial, as demonstrated by
Asproni et al. (2020) in their work with QB. However, we aim to provide a first insight
into the potential benefits of a problem-oriented approach in this paper without such
detailed refinements.

5 Conclusions

In this manuscript, we propose a hybrid quantum-classical decomposition algorithm
to solve large NPPs on the D-Wave Advantage quantum annealer. We investigate
its performance compared to alternative classic and hybrid algorithms. Based on
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numerical experiments, our proposed algorithm shows better solution quality than
the problem-agnostic hybrid solver QB from D-Wave. This demonstrates the benefits
of a special-purpose decomposition method over a general-purpose method.

Compared to well-established classical methods, our algorithm is competitive in
terms of solution quality. In particular, for instances with an odd problem size, our
proposed method finds significantly better solutions. A runtime advantage of our algo-
rithm compared to classical heuristics is not observable from the results in this study.
Although our implementation can be improved to achieve shorter times even with
current quantum hardware, the QPU runtime alone is longer in the case of parallel
execution than the runtime of the classical heuristics.

This study focuses on the 2-wayNPP.However, by introducing additional quadratic
constraints to the auxiliary NPP in the last step of our algorithm (quadratic constraints
can be included in a QUBO as described in Alidaee et al. (2005)), our method can
also be generalized for the solution of multi-way NPPs. Another generalization can be
made in terms of problem size. For example, multiple layers of sub-problems can be
introduced. Furthermore, this study only examined an uniformly randomdecomposing
vector j . It might be beneficial to investigate other j , such as one which considers the
magnitude of the elements. Moreover, the performance of our proposed algorithm for
other NP-hard problems can also be investigated by reducing these problems to NPPs.

Throughout the paper, we choose a randomized and balanced decomposition into
sub-NPPs. However, alternative decomposition strategies (e.g., evenly distributed
element values) can also be used. As a further alternative, different solvers can be
employed as SubSolver or RecombinationSolver beyond the presented choices. For
example, as a quantum alternative to QA, QUBOs can also be solved on gate-based
quantum devices using the Quantum Approximate Optimization Algorithm (QAOA)
(Hadfield et al. 2019). Such variations could potentially increase the performance of
the algorithm, at least for some types of instances.

In conclusion, we have demonstrated with our proposed method that quantum opti-
mization can benefit from problem-specific decomposition strategies based on expert
knowledge. Furthermore, the current research landscape paints a very positive pic-
ture. We anticipate that the improvement of quantum hardware will likely enhance the
performance of our method both in terms of runtime and solution quality.
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