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Abstract
Real-life transport operations are often subject to uncertainties in travel time or
customers’ demands. Additionally, these uncertainties greatly impact the economic,
environmental, and social costs of vehicle routing plans. Thus, analysing the sustain-
ability costs of transportation activities and reliability in the presence of uncertainties
is essential for decision makers. Accordingly, this paper addresses the Sustainable
Vehicle Routing Problem with Stochastic Travel times and Demands. This paper pro-
poses a novel weighted stochastic recourse model that models travel time and demand
uncertainties. To solve this challenging problem, we propose an extended simheuristic
that integrates reliability analysis to evaluate the reliability of the generated solutions
in the presence of uncertainties. An extensive set of computational experiments is car-
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ried out to illustrate the potential of the proposed approach and analyse the influence
of stochastic components on the different sustainability dimensions.

Keywords Transportation · Uncertainty modelling · Hybrid metaheuristics ·
Simheuristics · Vehicle routing problem · Reliability analysis

1 Introduction

The growing importance of sustainable logistics and transport (L&T) activities has
become increasingly evident in recent years, driven by the rapid growth of online shop-
ping and the increased demand for efficient, timely delivery across various sectors. This
study is inspired by the challenges of depot-based distribution across multiple con-
texts: (i) urban retail distribution (e.g., e-commerce orders and small retail locations),
(ii) regional delivery of essential goods (such as medical supplies to local clinics),
and (iii) perishable goods supply chains (common in food and grocery distribution
networks). These sectors often involve loading vehicles at a central depot and dis-
tributing goods to dispersed customer locations, with added complexities such as long
travel distances, unpredictable travel times, and increased accident risk. A significant
challenge in these contexts is the increased risk of accidents and delays, particularly
during working hours and in residential areas. According to reports published by the
European Commission (EU 2022) and the National Highway Traffic Safety Admin-
istration (NHTSA 2020), approximately 60% of traffic accidents occur during work
hours, and around 55% occur in rural areas compared to urban areas, with 9% involv-
ing cargo vehicles. These statistics underscore the risks associated with transporting
goods during peak periods. Furthermore, the increasing accident rate highlights the
urgent need for better safety measures and regulatory interventions to address these
risks effectively.

Consequently, this paper studies the Sustainable VRPwith Stochastic Travel Times
and Demands (SVRP-STD). Most existing vehicle routing problems (VRP) that deal
with sustainability issues are concerned with reducing costs associated with carbon
emissions and vehicle utilisation. However, consideration of social impacts is scarce
(McKinnon et al. 2015; Mahdinia et al. 2018), particularly in VRP with stochastic
travel times and demands. In a deterministic setting, Abdullahi et al. (2020) studied
the VRP with operational costs including CO2 emissions costs and safety costs in
the form of risk of traffic accidents. Given the existence of government programmes
aimed at taxing carbon emissions by freight transport in urban areas (Peters et al.
2022) and the impact of traffic accidents on victims, the model proposed in Abdullahi
et al. (2020) provides a close representation of reality. However, to the best of our
knowledge, previous VRP studies considering the three dimensions of sustainability
mainly assume that customers’ demands and travel times are fixed and known. Hence,
in this paper, we propose the SVRP-STD, which considers economic, environmental,
and social impacts with stochastic travel times and demands.

The SVRP-STD presents several challenges that must be addressed. Firstly, the
challenge lies in quantifying the impact of distribution plans on social, environmen-
tal, and economic dimensions in an uncertain environment. Quantifying the social,
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environmental, and economic impact of transport activities is challenging, as these
dimensions are often conflicting. Secondly, modelling of stochastic time and demand
presents another challenge, and quantifying the effects of these stochastic components
is crucial. Stochasticity of demands and travel times has social, environmental, and
economic impacts and can lead to route failures requiring estimation of the reliability
of solutions. The focus of this study is on developing corrective strategies to address
route failures as they occur, rather than relying on preventive measures, which cannot
fully guarantee the elimination of failures. An important but difficult aspect lies in
the modeling of these corrective strategies and accurately quantifying the impact of
failures on overall performance. Together, these challenges underscore the complexity
of the SVRP-STD and highlight the need for a comprehensive approach to achieve
efficient solutions in a short computational time.

To address these challenges, we propose an extended simheuristic approach (Juan
et al. 2015) that combines Monte Carlo Simulation (MCS) with Biased Randomi-
sation techniques (Grasas et al. 2017) and Iterated Greedy (Ruiz and Stützle 2008)
with Local Search (Sim-BRIG-LS) to approximate the behaviour of travel times and
demand patterns and provide computationally efficient solutions. Sim-BRIG-LS has
the main advantage in that it does not assume that an algebraic description of the
simulation is available (Amaran et al. 2016). Therefore, Sim-BRIG-LS solves the
problemwithout having to solve a large number of constraints,which reduces computa-
tional time compared to traditional stochasticmethods based on algebraic formulation.
Simulation-optimisation represents a key advantage of our approach, as it provides
an accurate and sustainable solution to the problem within a reasonable computa-
tional time. In addition, we also include risk and reliability analysis by employing the
Kaplan–Meier estimator (KME) (Kaplan and Meier 1958). The KME is used primar-
ily in survival analysis and medical research. However, we adapt and apply this in a
novel way to measure and estimate the reliability of generated solutions.

Figure 1 illustrates a schema of the proposedmethodology,which comprises ameta-
heuristic, simheuristic, sensitivity, and reliability analysis. The metaheuristic provides
a set of solutions for the deterministic problem, and the simheuristic evaluates each
deterministic solution in a stochastic environment using simulation. This process is
repeated until a pool of elite solutions emerges, that is, stochastic solutions. Lastly,
KME reliability analysis makes it possible to evaluate solutions holistically in stochas-
tic scenarios by analysing various quartiles discovered during the simulation.

The main contributions of this paper are summarised as follows:

i. A weighted stochastic recourse model with uncertainties in travel times and
demands, and that combines the economic, environmental, and social sustain-
ability dimensions is proposed;

ii. An extended simheuristic approachwith reliability analysis, in particular, theKME
(Kaplan and Meier 1958) is developed;

iii. A comprehensive set of computational experiments is conducted to analyse the
performance of the solutions and the trade-offs between the sustainability dimen-
sions.

The rest of this paper is structured as follows: Sect. 2 presents a review of related
literature, followed by a formal description of the problem addressed, including the
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Fig. 1 A high-level schematic representation of our methodology

weighted recourse model in Sect. 3. The proposed solution approach is presented in
Sect. 4. The computational results and their corresponding discussions are provided
in Sect. 5. Finally, Sect. 6 presents the main conclusions and proposes future work.

2 Literature review

When random data is considered in VRP, the VRP is referred to as Stochastic VRP
(SVRP). In general, stochasticity in the availability of data for the VRP occurs when
some information may be uncertain or unclear before route planning (Gendreau
et al. 1996). Compared to the deterministic VRP, the SVRP has been relatively less
researched due to the additional complexity introduced by the randomness of infor-
mation in the problem data (Goodson et al. 2012). The most studied SVRPs variants
are: stochastic customers—where a customer needs to be serviced with a given prob-
ability (Bertsimas 1988; Waters 1989)—, stochastic travel times—where service or
travel times are modelled as random variables (Laporte and Louveaux 1993; Kenyon
and Morton 2003; Chen and Zhou 2010)—, and stochastic demands—where cus-
tomers’ demands are modelled using probability distributions (Laporte et al. 2002;
Christiansen and Lysgaard 2007; Sun 2014), other studies deal with stochasticity by
considering approaches that are based on estimations—such as crisp equivalents in
uncertainty theory (Yang et al. 2021, 2022). A comprehensive description of the sci-
entific literature on SVRP variants and their solutionmethods is provided in Gendreau
et al. (2014), Oyola et al. (2016, 2017), Braekers et al. (2016).

Several researchers have applied different models and solution approaches to solve
different variants of SVRPs. The two common modelling approaches are the Chance
Constrained Problem (CCP) (Charnes and Cooper 1959;Miller andWagner 1965) and
the Stochastic Programming with Recourse (SPR). The CCP is based on the reliability
of solutions by assigning some control (probability of success) to specific constraints
to avoid violations, while the SPR is based on the concept of recourse/penalty. An
example of a recourse action is when a route fails if the total realised travel time (hours)
of a vehicle (route) exceeds the allowable driving duration (hours). The recourse action
could be that the driver completes his tour and serves the remaining customers on the
pre-planned route, if this does not violate the maximum allowed hours. This will
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incur a penalty cost in the form of overtime pay. In the case of uncertain demand, the
recourse action requires that, if a pre-planned route fails (i.e., there is some unmet
demand), then the vehicle must return to the depot for replenishment and resume the
pre-planned route. These are generally known as “traditional corrective actions” (Dror
and Trudeau 1986). Another commonly applied recourse action is preventive action,
which is applied to reduce the risk of a route failure occurring. For instance, at certain
predefined stages during the route execution, the current vehicle state is assessed to
determine if a return trip to the depot is required to avoid a failure. Similarly, other
recourse policies have been proposed in the literature (He et al. 2020). Summarily, a
recourse model aims to find a solution containing routes that minimise expected costs.
These are typically representative of the routes’ actual costs before failure and the
penalty costs incurred due to route failure (Guimarans et al. 2018).

2.1 VRP with stochastic travel times and demands

The Vehicle Routing Problem with Stochastic Demands (VRPSD) is a well-known
NP-hard problem characterised by some customers’ random requests to be served by a
fleet of homogeneous vehicles with limited capacity (Bastian and Rinnooy Kan 1992).
To model this variant of the VPR, some researchers proposed using recourse models
(Tillman 1969; Tang and Wang 2006; Sungur et al. 2008; Marinakis et al. 2013; Juan
et al. 2011). For instance, in Tillman (1969), penalties are incurred when a vehicle is
over capacity. Bertsimas (1992) presented a deterministic visiting sequence to obtain
the minimum expected distance and the expected value of demand that can be realised
upon arrival at the customer. In Chang (2005) a two-stage recourse model contains
the total cost of the aprioristic solution, while the second stage model computes the
expected recourse costs.

The Vehicle Routing Problem with Stochastic Travel Times (VRPSTT) is perhaps
oneof themost challenging, but realistic variants of theVRP.Travel timebetween every
pair of nodes assumes uncertainty in road (such as vehicle breakdowns or accidents) or
weather conditions (Uchida andKato 2017). Laporte et al. (1992) presented aVRPSTT
and proposed a chance-constrained programmingmodel and a recourse model to solve
the problem, where the chance constraint model restricts the probability that a route
can exceed a given threshold. Similarly, Guimarans et al. (2018) penalises the total cost
of the route when the route duration exceeds a time threshold defined by the decision-
maker. In the work of Tas et al. (2013) stochastic travel times were considered using
soft time windows and solved using a three-stage solution method. The solution stages
focused on defining an initial feasible solution with violation penalties, improving the
quality of the initial feasible solution, and determining the best departure time for each
vehicle at each node. Yang et al. (2021) study the consistent vehicle routing problem in
travel, demand, and service times. The authors solve the problem using the Uncertain
programming approach to minimise travel time, ensuring service consistency. Later,
Yang et al. (2022) extended the problem toYang et al. (2021) by considering aweighted
objective function where the authors aim to minimise the weighted average of the total
routing time and driver inconsistency.
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The reliability of the solution in theVRPSTT has also been explored. Lecluyse et al.
(2009) utilised the standard deviation of the travel times to select more reliable routes,
while Yan et al. (2014) applied simulation techniques to assess the performance of the
stochastic solution. Juan et al. (2023), Martin et al. (2023) optimised vehicle routes
for the Time-Capacitated Arc Routing Problem (TCARP) amidst stochastic demands
and travel times using a simheuristic approach focused on a singular problem-solving
objective.

Table 10 provides a summary of recent studies that were considered in our paper,
where we focus on scientific papers that explore the VRP with stochastic demand and
travel times while also considering sustainability dimensions. The literature review
indicates that hybrid algorithms that use metaheuristics combined with algebraic
approaches are commonly used to solve stochastic problems. Furthermore, solution
approaches tend to prioritise preventive strategies. Consequently, there is a growing
interest in developing methodologies that accelerate the search for feasible solu-
tions and incorporate corrective policies for possible disruptions caused by stochastic
demands or travel times. Additionally, our analysis revealed a gap in the literature
regarding the lack of robust criteria for evaluating the quality of solutions in terms of
their environmental, economic, and social impacts in stochastic VRP studies.

2.2 Overview of simheuristics

Simheuristics are becoming increasingly popularmethods for solving problems related
to uncertain scenarios, where uncertainty can be modelled as a set of random vari-
ables following certain probability distributions (Panadero et al. 2020). Simheuristics
involve the hybridisation of heuristics/metaheuristics with simulation techniques to
handle high variability in stochastic Combinatorial Optimisation Problems (COPs)
(Juan et al. 2015). Simheuristics are based on the hypothesis that by employing
expected values of stochastic variables, deterministic problems can be solved using
metaheuristic approaches. These methods have been implemented to tackle stochastic
COPs in order to demonstrate their suitability. For example, Juan et al. (2011) pro-
posed a simheuristic to solve the VRPSD, where the effect of safety stocks in routing
under uncertainty is also investigated. They considered different safety stock levels to
reduce the risk of route failure and computed expected costs by estimating expected
demands using MCS. Similarly, González-Martin et al. (2015) proposed a simheuris-
tic approach based on a RandSHARP algorithm presented in González-Martín et al.
(2012) to solve the Arc Routing Problem with stochastic demands. The former was
used to generate an initial solution, after which the latter was then implemented to
estimate the total expected cost and solution reliability through the MCS technique.

Simheuristics have been applied to tackle other complex COPs such as Flow Shop
Problems (Hatami et al. 2018; Juan et al. 2014; Villarinho et al. 2021), Orienteering
Problem ( Panadero et al. 2018), Facility Location Problem (De Armas et al. 2017),
Inventory Routing Problems (Juan et al. 2014; Gruler et al. 2020; Raba et al. 2020)
and Waste Collection Problem (Gruler et al. 2017).
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3 The weighted stochastic recoursemodel

We propose a weighted stochastic recourse model for the SVRP-STD that extends the
existing sustainable VRP model in Abdullahi et al. (2020) by considering the three
sustainability dimensions, as well as stochastic travel times and demands. To generate
an initial solution with route visit plans, the deterministic problem is first solved to
reveal the expected values of demands and travel times using MCS. After determining
the expected values, corrective actions are applied to failed routes and the reliability
of the solution is assessed.

3.1 SVRP-STD recoursemodel

The SVRP-STD is formulated as a complete and undirected graphG = (N , A), where
N represents a set of nodes, including the depot. A = (i, j)i, j ∈ N , i �= j is a set of
arcs connecting each pair of nodes and each node i ∈ Nc has a non-negative demand
E[qi ]. The homogeneous fleet of vehicles is denoted by M = {1, 2, . . . ,m}, with load
capacity Q. Each route starts from and ends at the depot, and all customers’ demands
must be satisfied. di j and E[ti j ] are the travel distance and the expected travel time
between i and j . Each vehicle contributes a certain amount of CO2, which has an
associated cost Ce per kg. Furthermore, we assume that there is a risk related to traffic
accidents. This risk represents the social impact propagated by the travel distance
between i and j . We consider that the risk of traffic accidents has a correlation with
driver fatigue, which could be related to the distance that the driver travels and the
volume of loading and unloading while making deliveries (Torregroza-Vargas et al.
2014). Moreover, some other earlier studies found that fatigue due to longer driving
distances and duration increases the risk of road accidents (Stevenson et al. 2010;
Frith 1994; Cummings et al. 2001).

The SVRP-STD is formulated as a recourse model with a weighted objective func-
tion, where a vehicle’s total travel time and customers’ demands are assumed to be
stochastic. We describe below the two-stage recourse model and provide the notations
and parameters in Table 1 above.

The first-stage provides deterministic routing plans before the expected values of
the stochastic variables are revealed. After the expected values have been revealed, a
recourse/corrective action is applied if there are any route failures in the second stage
model. We describe in details the failure types and recourse strategies in Sect. 3.1.2

3.1.1 First stage formulation of SVRP-STD

To represent the first stage model, we generate a deterministic route. We denote the
sustainability dimensions as z1, z2, and z3 which represent the economic, environ-
mental, and social dimensions, respectively. These dimensions are calculated using
the following expressions:

z1 =
∑

j∈Nc

∑

m∈M
FC ·x0 jm+

∑

(i, j)∈A

∑

m∈M
Cd ·ti j ·xi jm+

∑

(i, j)∈A

∑

m∈M
C f · fi jm ·xi jm (1)
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Table 1 Sets, parameters and variables

Sets and indices

N Set of all nodes

A Set of arcs connecting nodes

Nc Set of customers

M Set of vehicles

i Index of origin nodes

j Index of destination nodes

m Index of vehicles

s Index of sustainability dimension

Parameters

qi Demand of node i

di j Distance between (i, j)

ti j Travel time from i to j

vi j Vehicle speed between i and j

Q Vehicle capacity

Cd Driver cost per time unit

FC Vehicle fixed cost

kpl Km/l fuel consumption rate

lph l/h fuel consumption rate

C f Fuel price per liter

Ce Carbon price per kilogram CO2

a Factor to monetise accident risk for a heavy vehicle

λ Penalty cost per unit of overtime

γ Conversion factor for fuel consumption to CO2 (kg-CO2/liter)

αs Weight of the indicator s

Variables

xi jm Binary variable: 1 if arc (i, j) is traversed by vehicle m, 0 otherwise

yi jm Continuous variable: load on arc (i, j) when is traversed by vehicle m

fi jm Fuel consumption of vehicle m when travel from i to j

f jm Continuous variable: remaining tank fuel of vehicle m when it arrives at node j

U jm Auxiliary variable to eliminate sub-tours

zs Continuous variable. Value of indicator s

Equation 1 represents the economic dimension, where z1 is the total cost which
depends on: a fixed cost (FC)—including depreciation, repairing, and maintenance
of vehicles; driver cost (Cd ) which refers to driver wages; and fi jm—representing the
fuel consumption and fuel cost per unit of fi jm is represented by (C f ).

fi jm = lphi j · di j
vi j

·
(
1 + p · yi jm

H

)
∀(i, j) ∈ A, m ∈ M (2)
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Equation 2 computes fuel consumption fi jm (Kuo 2010; Zhang et al. 2015), where
lphi j (Eq. 3) is fuel consumption per unit of time and kpli j calculates fuel consumption
per distance unit (Muñoz-Villamizar et al. 2017).

lphi j = vi j

kpli j
∀(i, j) ∈ A (3)

To calculate the fuel consumption of a loaded vehiclem, when travelling from node
i to j ( fi jm), we assume that an additional amount of load with weight H will increase
fuel consumption by a ratio of p. Without loss of generality, we assume that p = 0
since the problem studied in this work does not consider pickups, then fi jm can be
up-bounded by fi j .

z2 =
∑

(i, j)∈A

∑

m∈M
Ce · fi jm · xi jm · γ (4)

Equation 4 computes z2, which represents the environmental dimension. This cost
is associated with the CO2 emissions generated per unit of fuel consumed (Kuo 2010;
Zhang et al. 2015) and γ is an activity-based emission factor (Piecyk 2010). We
monetise the emissions by a unit emission price Ce (World Bank 2015).

z3 =
∑

(i, j)∈A

∑

m∈M
a · di j · yi jm (5)

Lastly, Eq. 5 describes the social dimension, which is the cost attributed to the risk of
accidents. The value attributed to this risk changes according to the travel distance and
the vehicle’s loadwhen travelling fromcustomer i to customer j ( Eguia et al. 2013). To
ensure themodel accurately captures driver fatigue, Eq. 5 incorporates the accumulated
distance travelled up to arc (i, j). This approach reflects the cumulative nature of
fatigue, which increases with the total distance covered along the route. Additionally,
as deliveries are made, the transported load decreases, while the cumulative volume
of unloading increases, resulting in a proportional rise in driver fatigue associated
with accident risk. This dynamic naturally integrates the effect of unloading into the
calculation of social costs. In this study, we monetise the risk of accident by a factor
a, which is a coefficient in USD/kg–km proposed in Delucchi and McCubbin (2011).

Min Z = α1 · z1 + α2 · z2 + α3 · z3 (6)

subject to

∑

j∈N

∑

m∈M
xi jm = 1 ∀ i ∈ Nc (7)

∑

i∈N

∑

m∈M
xi jm = 1 ∀ j ∈ Nc (8)

∑

j∈N
xi jm =

∑

j∈N
x jim ∀ i ∈ Nc, m ∈ M (9)
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yi jm ≤ Q ∀ (i, j) ∈ A, m ∈ M (10)

f jm ≤ fim − di j
kpl

· xi jm + f0m · (1 − xi jm) ∀ i ∈ N , j ∈ Nc, m ∈ M (11)

f jm ≥ di j
kpl

· xi jm + d jo

kpl
∀ i ∈ N , j ∈ Nc, m ∈ M (12)

∑

i∈N
y jim =

∑

i∈N
yi jm −

∑

i∈N
q j · x jim ∀ j ∈ Nc, m ∈ M (13)

yi jm ≤ (Q − qi ) · xi jm ∀ (i, j) ∈ A, m ∈ M (14)

yi jm ≥ q j · xi jm ∀ (i, j) ∈ A, m ∈ M (15)

Uim −Ujm + |Nc| · xi jm ≤ |Nc| − 1 ∀ i, j ∈ Nc, m ∈ M (16)

xi jm ∈ {0, 1} ∀ (i, j) ∈ A, m ∈ M (17)

yi jm ≥ 0 ∀ (i, j) ∈ A, m ∈ M (18)

fim ≥ 0 ∀ i ∈ N , m ∈ M (19)

Uim ≥ 0 ∀ i ∈ Nc, m ∈ M (20)

The proposedweighted objective function Z in Eq. 6 is defined as a unified approach
that combines the sustainability dimensions.αs represents theweight or relative impor-
tance of a dimension s, where 0 ≤ αs ≤ 1 and

∑3
s=1 αs = 1. This aggregates the

objectives into a single objective with priority weights (Burke et al. 2014). This func-
tion aims to minimise the weighted cost associated with each dimension’s negative
impacts zs , ∀s ∈ {1, 2, 3}.

Constraints in Eqs. 7 and 8 restrict that each customer is visited exactly once by one
vehicle. The flow conservation, which ensures that the number of vehicles entering
and leaving each customer node is equal, is outlined in Eq. 9. The constraint in Eq. 10
guarantees that the total vehicle load does not exceed its capacity. Equation11 defines
the state of fuel in a vehicle after visiting a customer j considering the fuel consumption
and distance travelled. Equation12 ensures that the fuel state of a vehicle is enough to
return to the depot from any customer j location. Equation13 determines that the load
in the vehicle that reaches a customer j minus his demand must be equal to the load
in the vehicle after the visit. Equations14 and 15 bound the load of vehicle m when
travelling between i and j . The sub-tour elimination constraint in Eq. 16 sets Ujm as
an auxiliary variable and |Nc| as the number of customers. This constraint prevents the
formulation of smaller tours that do not include all customers. Equations17–20 define
variable domains that include binary variables for whether a vehicle travels between
two nodes, non-negative variables for vehicle load and fuel state, and non-negative
variable for Ujm .

3.1.2 Failure types and corrective strategies for the second stage model

When a restriction is violated, this is generally termed as a route failure and it is
assigned a penalty. There are two types of route failure and their relevant corrective
strategies, as described below.
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1. Failure type 1: Insufficient remaining load—the remaining load of a vehicle is not
sufficient to satisfy the demand of the customer being visited.

2. Failure type 2: Exceeding contracted working hours. Here, a driver has completed
his contracted number of working hours and has to work overtime, but within the
working time regulations.

Although other preventive strategies such as driver training and restricting transporta-
tion hours can also be applied (Asgari et al. 2017), it is important to note that the
implementation of preventive strategies does not guarantee that a route will not fail.
Therefore, we propose and implement two corrective strategies for the failure types
considered in this study, as described below.

1. Corrective strategy 1: The total revealed demand in a route may exceed the capacity
of the vehicle. This means that the remaining load of a vehicle is not sufficient to
satisfy the demand of the customer being visited. In this case, the corrective strategy
requires the vehicle to go back to the depot for reloading. For the purpose of this
study, we assume that the availability of drivers is limited. This means that there
are no additional drivers waiting at the depot. This strategy may impact the travel
time and distance.

2. Corrective strategy 2: The actual travel time of a route may exceed the maximum
allowed working hours. Here, a driver has been operating for the contracted 8h
(Tmax ), but he/she has not visited all the assigned customers: The corrective strategy
applied in this case requires the driver to complete the route, which will incur
penalties due to overtime pay. Without loss of generality, we assume that a driver
can visit all assigned customers within a total maximum allowed working limit of
9h (Tlimit ).

3.1.3 Second stage formulation of SVRP-STD

Following the first stage decisions, the second stage model considers stochastic
demands and travel times as random variables following specific probability distribu-
tions, which could be theoretical or empirical. In practice, the actual travel time to a
customer location is known upon arrival of the vehicle at the customer location. When
a vehicle follows a deterministic plan and a route failure occurs, some recourse actions
are taken, and the original plan is updated. The additional cost incurred for the recourse
action (that is, the penalty cost due to the route failure) is equal to the travel cost of
moving back and forth between the failure point and the depot. Thus, the objective of
the SVRP-STD is to minimise the sum of the travel cost and the expected cost of a
route failure. To compute the actual sustainability impacts in a stochastic environment,
z∗1, z∗2, and z∗3 represent the expected economic, environmental, and social impacts,
respectively. Equations1, 4 and 5 are rewritten below.

z∗1 =
∑

j∈Nc

∑

m∈M
FC · x0 jm + z1d + z1 f (21)

z1d =
{
cd · Ttime if Ttime ≤ Tmax

Ttime · cd + λ (Ttime − Tmax ) otherwise
(22)
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where
Ttime =

∑

(i, j)∈A

∑

m∈M
ti j · xi jm (23)

In the second stage, the economic dimension is rewritten as in Eq. 21. If the total
working hours of a route exceed the maximum allowed hours, penalties are incurred;
see Eq. 22. The z1d component of the economic impact computes the total driver
remuneration. When a deterministic route plan is generated, a MCS is run in order
to observe the ‘real’ travel time ti j between nodes i and j . If Ttime > Tmax , then, a
penalty λ is incurred per unit of overtime. For this problem, we assume that Tmax is the
upper bound duration (contracted hours) a driver can work within a daily legal limit
Tlimit (Ttime ≤ Tmax ≤ Tlimit ), and Ttime is the total travel time. Within the driver’s
contracted hours Tmax , a driver is paid cd per time unit, and for any additional unit of
time after Tmax , a penalty cost of λ is incurred. This penalty cost corresponds to the
overtime pay the driver receives (Tan et al. 2007). Additionally, we do not consider
any break time, waiting time, or stopping time for the duration of the working time.

z1 f =
{
c f · Fuelc if Tdemand ≤ Q

c f · Fuelc + Fuel∗c otherwise
(24)

where
Fuelc =

∑

(i, j)∈A

∑

m∈M
fi jm · xi jm (25)

Similarly, Eq. 24 computes the total fuel consumption, which is directly affected
by the travelled distance. When the actual demand of a customer is revealed, and if the
actual total revealed demand (Tdemand ) exceeds the vehicle capacity, a route failure
occurs. In such a failure, a recourse action is taken, and the original plan is updated.
The incurred extra cost for the recourse action (i.e., additional fuel consumption) is
equal to the fuel cost of moving back and forth between the failure point and the depot.
This additional cost is represented as the fuel cost of the additional distance travelled
Fuel∗c .

z∗2 =
{
ce · CO2 if Tdemand ≤ Q

ce · CO2 + CO∗
2 otherwise

(26)

where
CO2 =

∑

(i, j)∈A

∑

m∈M
fi jm · xi jm · γ (27)

Equation 26 computes the expected emissions cost. CO2 (Eq. 27) is the emissions
generated before the realisation of the actual demand. However, upon the reveal of the
actual demands and a customer’s demand cannot be met, the route fails. This means
that the vehicle has to travel back to the depot to refill and fulfil unmet demands,
generating additional emissions (CO∗

2 ).

z∗3 =
{
a · wkm if Tdemand ≤ Q

a · wkm + w∗
km otherwise

(28)
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where
wkm =

∑

(i, j)∈A

∑

m∈M
di j · yi jm (29)

Finally, Eq. 28 computes the accident risk impact, which is also referred to as the
social impact of the objective function. wkm (Eq. 29) is the value attributed to travel
distance and the vehicle’s loadwhen the revealed customers’ demands if fullymet. This
means that route failure has not occurred. On the contrary, w∗

km is the additional load
weight of a vehicle per kilometre in the case of unmet demand (route failure). Based
on Eqs. 21–29, the objective of the recourse model for the SVRP-STD is to design a
first-stage model that generates the expected values of the second-stage variables. The
SVRP-STD second-stage stochastic recourse model is presented in Eq. 30.

Min Z∗ = α1 · z∗1 + α2 · z∗2 + α3 · z∗3 (30)

Subject to:

Ttime − Tmax ≥ 0 (31)

Tmax ≤ Tlimit (32)

and Eqs. 7–19.
The total cost presented in Eq. 30 is the cost of the first-stage solution and the

recourse cost of route failure.

4 The proposed Sim-BRIG-LS algorithm

Since uncertainty in routing information before route planning is nontrivial and may
result in failure routes, violations such asmaximumvehicle capacity need to be avoided
or taken into account during route planning. Thus, solving a stochastic problem is com-
plex, as it is not enough to simply obtain the solution with the best expected value;
solutions that show reasonably good probabilistic behaviour need to be considered as
well. This requires the development of an advanced simulation-optimisation approach.
To solve the proposed SVRP-STD, we have developed a hybrid simheuristic integrat-
ing MCS and BRIG-LS metaheuristic, which we refer to as Sim-BRIG-LS (Fig. 2).

Simheuristics rely on a metaheuristic component, which searches for promising
solutions. These solutions are found by solving a deterministic version of the problem,
which is usually created by replacing the random variables by their expected values.
TheBRIG-LS is combinedwithMCS to assess the performance of promising solutions
under stochastic demands and travel times. This solution is defined as the one with the
lowest expected total cost or negative impacts for uncertain scenarios. The proposed
approach comprises of three stages, as described below.
Stage I: This phase begins by generating an initial deterministic schedule for the
vehicle (baseSol), which is then improved through a local search (Algorithm 1) and
saved as (best Sol). This best Sol serves as the initial solution for the SVRP-STD,
where expected values for travel times and demands are estimated using MCS (short
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Fig. 2 Sim-BRIG-LS framework

simulation), typically with a few hundred simulation runs. If corrective actions are
required, recourse costs are incurred, contributing to an updated expected total cost
for the SVRP-STD. At this stage, best Sol is stored as the temporary reference or
’base’ solution (baseSol) and is added to a pool of elite stochastic solutions. This
pool will be referenced continuously to assess and compare new solutions.
Stage II: An iterative process begins until the stopping condition is met:

• Starting with the current best stochastic solution from the pool, perform destruc-
tion, construction, and local search steps iteratively to generate a new candidate
solution.
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• Apply an acceptance criterion to evaluate the new candidate solution against the
current best stochastic solution. If the new solution is accepted, it is added to the
pool of elite stochastic solutions. To ensure that only the top-performing solutions
are maintained, the pool size is restricted as the algorithm progresses.

• Update the best stochastic solution by comparing the expected cost of the new
solution with that of the current best solution in the pool.

Stage III: Once the stopping condition is met, a detailed MCS (long simulation) is
applied on all solutions in the pool of elite stochastic solutions to providemore accurate
estimates of expected cost and reliability. Additionally, risk and reliability analysis
is performed by applying the KME on the solutions in the pool to further assess
robustness. The solution with the lowest expected cost and highest reliability from
this analysis is then returned as the best stochastic solution found.

Algorithm 1 BRIG-LS for SVRP-STD
1: procedure BRIG- LS(inputs, weights,maxT ime, β, p)

� inputs: geographical coordinates, demands, Q, impact parameters
� maxT ime: max computing time allowed

� β: parameter for biased randomisation
� p: parameter of the destruction stage

2: baseSol ← BRIG-LS(inputs, β) � Based on ‘rich’ savings
3: baseSol ←localSearch(baseSol)
4: best Sol ← baseSol
5: while (stopping criterion is not met) do � Search for promising solutions
6: newSol ← destructionConstruction(baseSol, p, inputs, β)

7: newSol ← localSearch(newSol)
8: rpd ← (cost(newSol) − cost(baseSol))/cost(baseSol) · 100
9: if (rpd ≤ 0) then
10: baseSol ← newSol
11: if (cost(newSol) < cost(best Sol)) then
12: best Sol ← newSol
13: end if
14: else � Avoid local optimal
15: u ← generateU ()

16: if (u < exp(−rpd)) then
17: baseSol ← newSol
18: end if
19: end if
20: end while
21: return best Sol
22: end procedure

4.1 BRIG-LS procedure

In the BRIG-LS (Algorithm 1), an initial solution (baseSol) is generated based on the
savings-based routing heuristics described inDominguez et al. (2016) and an enhanced
local search (Algorithm 2) is applied to improve the generated solution.

The best solution found (best Sol) is saved as the baseSol, and an iterative improve-
ment process based on the Iterated Greedy method (Ruiz and Stützle 2008) is started
until the stopping condition is met (lines 5–20). Within the iterative process, a new
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solution (newSol) is generated by partially deconstructing and re-constructing the
baseSol. The local search—Algorithm 2 - is applied to the newSol. If this procedure
generates a feasible solution, the relative percentage difference (rpd, line 8) between
the costs of newSol and baseSol is computed. If this measure is negative (i.e., newSol
is better), newSol replaces baseSol. Otherwise, newSol may replace baseSol with
a probability of e−rpd (lines 15–18) (Hatami et al. 2015).

4.2 Local search procedure

The proposed local search based on random swaps is described in Algorithm 2. This
algorithm is iterated until two conditions are met: (i) the number of trials is greater
than the number of routes, and (ii) the last swap did not lead to an improvement. For
each iteration of the loop, a route (r ) and two different nodes (n1, n2) of this route are
randomly selected. Then, a potential swap is assessed. The solution introduces this
change if the cost is improved.

Algorithm 2 Local Search Procedure
1: procedure localSearch(sol)
2: improvement ← TRUE
3: nTrials ← 0
4: while (improvement is TRUE or nTrials < nRoutes(sol)) do
5: r ← getRandomRoute(sol)
6: n1 ← getRandomNode(r )
7: n2 ← getRandomNode(r )
8: while (n1 is equal n2) do
9: n2 ← getRandomNode(r )
10: end while
11: newR ← swap(r , n1, n2)
12: if (cost(newR) < cost(r)) then
13: improvement ← TRUE
14: sol ← update(sol, newR, r)
15: end if
16: nTrials ← nTrials + 1
17: end while
18: return sol
19: end procedure

5 Computational experiments and analysis of results

In this section, a set of experiments to analyse the weighted recourse model’s per-
formance and the results of our simheuristic approach, and reliability analysis are
presented. The aims of the experiments are as follows: (i) to evaluate the performance
of the weighted recoursemodel and the Sim-BRIG-LS algorithm; (ii) to conduct a sen-
sitivity analysis of different sustainability dimensions importance weights to assess
the trade-offs between the parameters of the dimensions; (iii) to provide reliability
analysis (e.g., the survival function analysis) as a novel tool to assess and understand
the probabilistic behavior of the solutions provided by the Sim-BRIG-LS.
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Table 2 Parameters of the
algorithm

Parameter Value

maxT ime 100s

Number of seeds 5

β U(0.7, 0.8)

p U(0, 100)

nSims , nSiml 500, 5000

The proposed SVRP-STD and Sim-BRIG-LS have been coded in the Java program-
ming language, and all tests were perfromed on a computer with a Core i5, 2.30 GHz
processor and 4 GB of RAM.

5.1 Benchmark instances and experimental parameters

The Sim-BRIG-LS parameters used for the experiments are provided in Table 2 and
the run-time limit has been set to 100s for all instances. 10 runs (each with a different
seed for the pseudo-random number generator) were executed. The distributions of
β and p have been set after running a few experiments, based on the methodology
described in Calvet et al. (2016). The remainder of this section describes the SVRP-
STD instances, the assessment of the performance of the proposed Sim-BRIG-LS and
the trade-off analysis among the impacts of different parameters of the sustainability
dimensions.

To evaluate the performance of the proposed approach and perform a trade-off
analysis between the sustainability dimensions, 43 deterministic test instances were
adapted from Uchoa et al. (2017), which include instances ranging between 31 and 80
nodes.The test instances havebeen adaptedby changing the deterministic demands and
deterministic travel times into expecteddemands and travel times following log-normal
probability distributions (Eqs. 33 and 34). Although identifying the best probability
distribution can be challenging in practice, the log-normal distribution allows the
approximation of real-world stochastic parameters effectively than the normal distri-
bution (Juan et al. 2011).

Travel time between nodes and their demands are non-negative random variables
that follow a Log-normal distribution. The Log-normal distribution has a location
parameter μi j and a scalar parameter σi j , which are expressed below.

μ(ti j ) = ln(E[ti j ]) − 1

2
· ln

(
1 + Var [ti j ]

E[ti j ]2
)

(33)

σ(ti j ) =
∣∣∣∣∣∣

√√√√ln

(
1 + Var [ti j ]

E[ti j ]2
)∣∣∣∣∣∣

(34)

Given Eqs. (33) and (34), two uncertainty levels are presented in Table 3, that is,
Var [ti j ] = P · ti j for different values of the parameter P . The value of P determines
the degree of uncertainty.
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Table 3 Uncertainty levels Levels Degree of uncertainty
E[ti j ] E[qi ]

1 0.05 · ti j 0.10 · qi
2 0.85 · ti j 0.90 · qi

Table 4 Parameters that quantify and monetise impacts

Input Value Converted to Reference

kpl 0.052/km Muñoz-Villamizar et al. (2017)

γ 0.75 kg of CO2/l (rigid ≥ 7.5–17 t) Piecyk (2010)

FC 59.90 £/day 66.58 e/day
Cd 7.92 £/h 8.80 e/h Koç et al. (2014)

C f 1.4 £/l 1.56 e/l
Ce 22 USD/ton of CO2 0.02 e/kg of CO2 World Bank (2015)

a [0.1–2] USD/ton-mile 0.0005 e/kg–km Delucchi and McCubbin (2011)

λ 20 USD/h 16.40 e/h
Tmax 8h/day Tan et al. (2007)

Tlimit 9h/day Regulation (EC) no 561/2006

For example, if the customer’s demand i follows a logarithmic normal probability
with an expected value of qi and a variance of P ·qi and the values of P , 0.05 and 0.90,
are tested, representing a low and a high level of stochasticity, respectively. If qi = 20,
the smallest interval containing 90% of the generated values would be approximately
(18.42, 21.37) for P = 0.05 and (13.83, 27.58) for P = 0.90. To fully describe
these levels, Level 1 (0.05, 0.10) indicates more variability when, as indicated by the
wider interval and less variability for Level 2 (0.85, 0.90). Lastly, the parameters for
quantifying the impacts, including units and references, are provided in Table 4.

5.2 Experimental results to evaluate the quality of BRIG-LS

In Table 5, we evaluate the performance of BRIG-LS and compare our results to the
benchmark deterministic instances in Uchoa et al. (2017). We report the following
information: the best-known solution values (BKS), BRIG-LS solutions (Our Sol),
the %Gap (Eq. 35) from the BKS, and the CPU time of the proposed BRIG-LS.

%Gap = Our Sol − BK S

Our Sol
· 100 (35)

Results demonstrate that some of our solutions are slightly worse than BKS. On
average, BRIG-LS achieves a gap of 0.69% compared to BKS and achieves the best
solution in 36.47 s. To evaluate the stability of the BRIG-LS method, we provide in
Table 11 statistical results or 10 experimental runs with random seeds. We found a
mean standard deviation value of 1.41 indicating that small changes in input data of
the algorithm (random seeds) do not result in large changes in the output. In other

123



A reliability-extended simheuristic for the sustainable… Page 19 of 39 19

words, BRIG-LS produces consistent results even when there are minor variations in
the input.

5.3 Experimental results for different uncertainty levels in Table 3

Here, the average objective function values for our Best Deterministic Solution
(BDS), the best-found solution that minimises the total cost (assessed in a stochastic
environment)—and our Best Stochastic Solutions (BSS), the best-found solution that
minimises the expected total cost (considering recourse costs), are presented.

The uncertainty levels previously described are applied to all test instances. For
the experiments, the following scenarios have been generated to represent the dimen-
sions: The economic scenario represents the traditional objective, where the economic
dimension is the main optimisation criterion. This scenario assigns 100% of impor-
tance to the economic dimension, while the remaining dimensions are assigned 0%
importance. The environmental scenario represents the green dimension, where the
environmental impact is the only important dimension with an importance weight of
100%. The social scenario represents the abstract scenario, where the social dimen-
sion is the main optimisation criterion. Lastly, in the balanced scenario, all three
sustainability dimensions are assigned equal importance.

Tables 6 and7 summarise the results found in the scenarios described above,with the
uncertainty levels described in Table 3. The first column represents the instance name,
and the next two columns present the BDS and BSS in terms of the expected value of
the objective function for the balanced scenario. In columns 4–9, we present the gaps
between the BDS and BSS economic, environmental, and social scenarios compared
to the balanced scenario. To be specific, the percentage gap between solutions obtained
in the balanced scenario (equally weighted dimensions) and the solutions when each
dimension is assigned full importance is outlined. For evaluating solution quality,
positive values (gaps) represent a cost increase, while negative gaps indicate a cost
decrease. The %Gap in Eq. 36 compares the values of the BDS and BSS.

%Gap = TC∗ − TCe

TCe
· 100 (36)

where TC∗ is the average solution obtained when a dimension is given 100% impor-
tance, and TCe is the solution value of the balanced scenario.

Analysing the solutions obtained for level 1 uncertainty in Table 6 it can be observed
that, in comparison to the balanced scenario, the economic scenario is 0.38% and
0.35%more expensive in terms of the BDS and BSS, respectively. Additionally, com-
paring the BDS and BSS obtained when considering the social scenario, the social
scenario is 12.47% and 12.39% more expensive than the balanced scenario.

Regarding the solutions obtained when considering level 2 uncertainty in Table 7,
it can be observed that the gap between the average values of the BDS and the BSS
for the economic scenario and the balanced scenario are 0.79% and 0.34% respec-
tively. As expected, the BDS and BSS’s gaps for the social scenario and the BDS
and BSS gaps for the balanced scenario are 16.21% and 16.05%, respectively. The
experimental results show that, in all tested instances, the stochastic solutions outper-
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Fig. 3 Boxplot of reliability levels obtained for the BDSs and BSSs for the different solutions with Level 1
and Level 2 uncertainty

form the deterministic solutions. These results are expected since stochastic solutions
minimise the objective value of the second-stage problem (Eq. 30) including recourse
costs. This demonstrates the benefit of combining simulation with optimisation when
solving stochastic optimisation problems.

5.3.1 Reliability levels of stochastic solutions versus the deterministic solutions

The reliability of a route in Eq. 37 is calculated as 1 minus the proportion of
routes where, at least, a route failure occurs. nSim is the number of simulations and
routeFailures is the total number of times a route fails.

R =
(
1 −

∑nSim
n=0 routeFailures

nSim

)
(37)

The reliability level provides numerical insights into the probability that a solution
may fail in the presence of uncertainty (Reyes-Rubiano et al. 2019). In the context
of this work, this implies that solutions with higher reliability demonstrate better
resilience against demand and travel-time variations. Therefore, the more reliable
a solution is, the smaller the penalty cost it will incur. Thus, the route failure/cost
decreases as the reliability increases. Figure3 presents a boxplot of the BDS and BSS
reliability obtained for the balanced, economic, environmental, and social scenarios.

As expected, the higher the uncertainty level, the lower the reliability level of
the solution. This behaviour is consistent in all scenarios, as shown in Fig. 3. Conse-
quently, the results of this experiment indicate that relying on deterministic solutions in
a stochastic environment with high uncertainty may yield highly unreliable solutions.
For instance, directly applying deterministic solutions in a high-uncertainty environ-
ment may not only result in a significantly higher cost in comparison to stochastic
solutions but may also provide less reliable solutions.
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Fig. 4 Reliability functions to compare alternative solutions with a similar expected cost

5.4 Proposed new reliability functions to assess elite solutions

In addition to the reliability level comparison in 5.3.1, we have proposed the extension
of the simheuristic algorithm by generating the reliability function associated with
each of the elite solutions. In order to generate these reliability functions, we employ
the well-known KME (Kaplan and Meier 1958). This is a non-parametric and flexible
method typically applied in medical studies ( Tolley et al. 2016; Vierra et al. 2023; Xu
et al. 2022) that can be used in the presence of complete and censored data. Censored
data might appear, for instance, if we utilise real-life observations associated with a
proposed solution but are unable to accurately determine the survival rate (total cost).

For instance A-n32-k5, Fig. 4 shows three alternative solutions provided by the
simheuristic approach. These three solutions offer similar expected costs. However,
by analysing the reliability functions, one can notice that they also show a slightly
different probabilistic pattern. Thus, it seems very rare (probability close to 0) to
obtain cost values above 535 if Solution 1 is employed. In contrast, obtaining cost
values above 535 has a non-negligible probability (around 0.05) for solutions 2 and
3. Similarly, while the probability of obtaining a cost above 532.5 is around 0.05 for
Solution 1, this probability increases to 0.18% in the case of solution 3, and a similar
probability can also be observed for solution 2 as well.

These results suggest that, while the expected cost of the three solutions is similar,
Solution 1 may be ‘reliable’ in the sense that it will rarely generate a very high
cost, something that cannot be said about Solutions 2 and 3. Hence, this reliability
analysis using the KME provides valuable insights into the probabilistic patterns of the
alternative solutions. Accordingly, it can be used tomake informed decisions regarding
the selection of the most reliable and cost-effective solution.
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Table 8 Table of scenarios for
sensitivity analysis

Scenarios Importance weights
α1 α2 α3

Economic 1 0 0

Environmental 0 1 0

Social 0 0 1

Balanced 0.33 0.33 0.33

S1 0.5 0.25 0.25

S2 0.25 0.5 0.25

S3 0.375 0.375 0.25

S4 0.25 0.375 0.375

S5 0.375 0.275 0.375

S6 0.42 0.29 0.29

5.5 Sensitivity analysis on sustainability dimensions

To conduct sensitivity analysis for different importance between the dimensions,
scenarios has been generated based on the Revised Weight Sensitivity algorithm
(Jones 2011). Particularly, for our experiments, a set S of scenarios represented as
Si , i = {1, 2, . . . , 6} has been generated and provided in Table 8. A combination of
weights represents each scenario. The weights (1, 0, 0), (0, 1, 0), and (0, 0, 1), are
assigned in order to obtain the lower bounds for each dimension, while the balanced
scenario assumes equal weights (0.33, 0.33, 0.33) for the three dimensions. Finally,
scenarios S1 to S6 represent other combination of weights assigned to the dimensions.
The details of these scenarios can be found in Abdullahi et al. (2020).

This section looks at how low travel time anddemanduncertainty impact the number
of vehicles used, distance travelled, travel time, CO2 emissions, failure cost, and the
associated cost of accident risk. More precisely, the uncertainty levels have been set
at 0.05 · E[qi ] and 0.10 · E[ti j ] for demand and travel time, respectively. The results
are presented in Table 9.

5.5.1 Analysis of economic, environmental, and social impacts with recourse cost
under scenarios with level 1 uncertainty

Table 9 shows the average results in the tested instances. The first column shows the
tested scenarios. In columns 2–7, we show the mean distance, travel time, recourse
cost, the number of vehicles (|R|), CO2 emissions in kilograms kg and tonnes t . Lastly,
column 8 presents accident risk costs.

From Table 9, observe the trade-off between the sustainability impacts. The sce-
nario that reached the shortest route (travel time) is the economic scenario, while the
least expensive recourse cost is realised in the social scenario. However, this solu-
tion with the least expensive recourse cost shows a trade-off with the mean number
of vehicles used. This means that the social scenario requires one additional vehicle
compared to the other scenarios. This implies that the social scenario will be more
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expensive in the global solution due to using more vehicles and paying more drivers.
Although this scenario provides the highest number of vehicles, distance travelled, and
CO2 emissions, it reaches average solutions with fewer failures. This may be because
this scenario uses more vehicles than the other scenarios, i.e., it may avoid overtime
penalties.

Thus, as expected, each scenario that minimises only one dimension may present a
lower impact in the considered dimension. However, when considering the balanced
scenario, all the sustainability impacts showacertain equilibriumcompared to the other
scenarios. This couldbe connectedwith the logic that the routes aremorebalanced, thus
minimising the sustainability impacts jointly whileminimising the probability of route
failures. Accordingly, it shows a balanced economic, environmentally friendly, and
socially acceptable solution. This shows that sustainable solutions can be obtainedwith
a minimal increase in the cost of any individual dimension. Overall, this experiment’s
results show that not accounting for stochasticity may yield highly unreliable and
costly solutions.

6 Conclusions and future work

To the best of our knowledge, this is the first paper that addresses the problem of
minimising the economic, environmental, and social sustainability impacts of a VRP
under uncertain travel times and demands. We developed a weighted recourse model
to integrate the three sustainability dimensions, implemented a simheuristic algorithm,
and analysed trade-offs between the dimensions. In addition, the proposed approach
has been extended to include reliability analysis techniques, which allow for a more
accurate comparison of elite solutions in a scenario under uncertainty and yield numer-
ous managerial insights. The trade-off analysis was conducted with different levels of
uncertainty, and the results of the experiments showed that: (i)whenmaximum impor-
tance weight is assigned to only one dimension, solutions with the lowest impact in
regards to that dimension are obtained; (ii) when all three dimensions are assigned
equal importance weight, the probability of route failures is minimised and sustainable
solutionswith amarginal compromise can be obtained; (iii) ignoring uncertainty could
have expensive consequences; and (iv) reliability analysis allows for the evaluation of
the probability patterns of alternative solutions.

Several research lines can be established for future works: (i) the inclusion of addi-
tional social dimensions can be considered (e.g., fairness in driverworking conditions);
(ii) the use of chance constraint techniques to deal with travel time and demand uncer-
tainty; (iii) using preference information from the decision-maker, goal programming
approaches can be implemented with set achievement levels and (iv) incorporation of
real-world, real-time data allowing dynamic changes during route execution to test the
practical utility and scalability of our proposed methodology.

Appendix A Literature review summary

In this section, Table 10 focuses on scientific papers that solve the stochastic VRP
with sustainability considerations.
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Table 10 Summary of studies focused on travel time and stochastic demand with objectives related to
sustainability dimensions

Study Solution approach D TT Eco Env Soc Others

Tas et al. (2013) Tabu Search algorithm x x Soft time windows; objective:
minimize expected delay
and the expected earliness

Uchida and Kato
(2017)

Link-based algorithm x Stochastic traffic flow;
objective: minimizes
expected path travel time
variance

Eshtehadi et al.
(2017)

Robust-stochastic
optimization

x x Time windows

Guimarans et al.
(2018)

Simheuristic
algorithm: iterated
local search and
Monte Carlo
simulation

x x Objectives: minimizes
expected travel time

Shahmoradi-
Moghadam et al.
(2020)

Hybrid
robust-stochastic
optimization

x x Objective: minimize fuel
consumption and noise
emission simultaneously

Yang et al. (2021) Uncertain
programming

x x x Objectives: minimizes total
travel time of all vehicles
over the planning horizon;
multi-period

Yang et al. (2022) Hybrid algorithm with
large and
Neighborhood
search-simulated
annealing

x x x x Soft time windows; objective:
minimizes the weighted
average of the total routing
time and driver
inconsistency driver
consistency measure;
multi-period

Messaoud (2023) Chance constrained
programming
model, large
neighborhood
search (ILS)
algorithm, and
Monte Carlo
Sampling

x x Objective: minimize travel
time

Our paper Simheuristic
algorithm: biased
randomised iterated
greedy local search
metaheuristic, and
Monte Carlo
simulation

x x x x x Objective: minimise the
weighted cost associated
with economical,
environmental, and social
dimension; Corrective
policy

D: Demand; TT: travel time; Eco: economic dimension; Env: environmental dimension; Soc: social dimen-
sion; Others: additional attributes
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Appendix B Statistical analysis of BRIG-LS

In this section, we provide additional results from the experiments reported in Sect. 5.2
to analyse the stability of our proposed method. Table 11 shows the benchmark
instance, the total distance per instance for each experiment run, the average distance
and the standard deviation.
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