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Abstract
In healthcare, especially within intensive care units (ICU), informed decision-making by
medical professionals is crucial due to the complexity of medical data. Healthcare analyt-
ics seeks to support these decisions by generating accurate predictions through advanced
machine learning (ML) models, such as boosted decision trees and random forests. While
these models frequently exhibit accurate predictions across various medical tasks, they often
lack interpretability. To address this challenge, researchers have developed interpretable ML
models that balance accuracy and interpretability. In this study, we evaluate the performance
gap between interpretable and black-boxmodels in two healthcare prediction tasks, mortality
and length-of-stay prediction in ICU settings. We focus specifically on the family of gener-
alized additive models (GAMs) as powerful interpretable ML models. Our assessment uses
the publicly available Medical Information Mart for Intensive Care dataset, and we analyze
the models based on (i) predictive performance, (ii) the influence of compact feature sets
(i.e., only few features) on predictive performance, and (iii) interpretability and consistency
with medical knowledge. Our results show that interpretable models achieve competitive
performance, with a minor decrease of 0.2–0.9 percentage points in area under the receiver
operating characteristic relative to state-of-the-art black-box models, while preserving com-
plete interpretability. This remains true even for parsimonious models that use only 2.2%
of patient features. Our study highlights the potential of interpretable models to improve
decision-making in ICUs by providing medical professionals with easily understandable and
verifiable predictions.

Keywords Healthcare analytics · Interpretable machine learning · Generalized additive
models · Length-of-stay prediction · Mortality prediction
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1 Introduction

Healthcare systems across the globe face a multitude of complex challenges, such as care
quality disparities, demographic shifts, and administrative obstacles including resource short-
ages, rising costs, and insufficient infrastructure (Roncarolo et al., 2017). These issues are
intensified by increasing demand for healthcare services, sophisticated medical technology
complicating physicians’ workflows, and heightened expectations for patient-centered care.
In the context of intensive care units (ICUs), these challenges are further heightened due to
patient acuity, the need for specialized staff, and pressure on resource allocation. ICUs account
for approximately 14% of total hospital expenses, making them one of the most critical and
costly components of healthcare systems (Halpern & Pastores, 2010). Consequently, effec-
tive ICU management is essential for optimizing patient outcomes and ensuring healthcare
systems’ sustainability (Bertsimas et al., 2021). However, optimizing resource utilization
in ICUs remains a daunting task due to the urgent and unpredictable nature of intensive
care, high costs associated with maintaining sufficient resources, and constant demand for
specialized staff (Bai et al., 2018).

One promising strategy to address ICU challenges is the implementation of machine
learning (ML) models. ML models, with their ability to make predictions more quickly
and on a larger scale than humans, are increasingly considered indispensable for modern
healthcare systems (Malik et al., 2018). Yet, advanced ML models such as boosted decision
trees and random forests are often regarded as the primaryMLmodelswith superior predictive
performance (e.g., Hyland et al., 2020), despite their black-box characteristics, which render
their decision logic difficult for humans to understand. This perception has led to awidespread
belief that interpretability must be compromised to achieve accurate predictions (Gunning
& Aha, 2019), significantly impeding ML adoption in healthcare (Kundu, 2021). While
this viewpoint has been challenged by numerous researchers (e.g., Caruana et al., 2015;
Rudin, 2019), the current literature lacks an in-depth analysis examining the performance
gap between black-box and interpretable models.

A fundamental principle of achieving interpretable ML models is to use the simplest
possible model that adequately explains the data (Brunton & Kutz, 2019). This concept is
also known as model parsimony. In general, there are two objectives to focus on in order
to obtain a parsimonious model. First, the ML model itself should be interpretable, i.e., of
limited complexity, so that humans can understand the model, and second, the number of
features used by themodel to compute an output should be small, i.e., using a compact feature
set.

Our study seeks to investigate the performance differences along these two objectives.
We compare black-box and interpretable models, as well as the role of compact feature sets.
By illustrating that interpretable models with a minimal set of input features can attain com-
parable accuracy, we aim to promote further research and development of interpretable ML
models for healthcare applications. This work contributes to a more comprehensive under-
standing of interpretability in ML models and emphasizes the significance of these factors
for successful implementation in healthcare settings. Specifically, this work contributes to
the existing literature in four ways:

1. We examine and evaluate multiple interpretable models from the family of generalized
additive models (GAMs) against prevalent black-box models in an ICU setting. We com-
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pare three distinct prediction targets: length-of-stay>3 days (LOS3), length-of-stay>7
days (LOS7), and mortality.1

2. We perform a comparative analysis to evaluate the impact of feature reduction methods
on predictive performance, with particular emphasis on sensitive features such as gender,
age, and ethnicity.

3. We showcase the utility of interpretable models by discussing their plausibility with four
medical experts from diverse backgrounds.

4. To make these models competitive, we also propose multiple feature engineering steps
that yield favorable results in comparison to previous approaches.2

Our findings challenge the prevailing belief that only black-box models provide high pre-
dictive performance in healthcare. We demonstrate that interpretable models can achieve
competitive predictive performance, with a minor decrease of 0.2–0.9 percentage points in
area under the receiver operating characteristic (AUROC) compared to black-box models,
while remaining full interpretability. This finding holds true even for parsimonious models
that utilize only 2.2% of the patient features available, while exhibiting a negligible per-
formance drop relative to black-box models, ranging from 0.1 to 1.0 percentage points and
averaging at 0.5 percentage points. By showcasing the comparable accuracy of interpretable
models even with compact feature sets, we aim to inspire further research and development
of interpretable ML models in healthcare applications.

The remainder of the paper is structured as follows: Sect. 2 delves into the conceptual
background and prior research on ML in healthcare, legal and practical requirements for ML
models, and interpretableML. Section3 details the dataset, prediction tasks, usedmodels, and
the experiments. In Sect. 4, we evaluate and compare the proposed models against black-box
models, and visually inspect so-called shape plots produced by GAMs. Section5 discusses
the implications of our work for research and practice, along with its limitations. Section6
concludes the paper.

2 Research background

2.1 Generalized additive models

This study emphasizes the use ofGAMs as a particular powerful class of interpretablemodels.
GAMs have been employed in other high-stakes domains where model interpretability is
essential (Chang et al., 2021; Zschech et al., 2022). Fundamentally, GAMs are ML models
that build relationships between input features and the target by summing several distinct
univariate non-linear mappings, called shape functions. Formally, GAMs can be expressed
as

f (x) = f1(x1) + f2(x2) + · · · + fm(xm), (1)

where each fi denotes a shape function mapping the i-th input feature to the output space.
As such, GAMs preclude feature-interactions, potentially sacrificing model performance but
enabling complete comprehension of model functionality. Building on this core concept of
utilizing nonlinear functions to map input features to the output space, various GAMversions

1 Our evaluation pipeline and replication code can be found here:
https://github.com/HBDynamite/Interpretable_ICU_predictions
2 For our feature engineering steps, see:
https://github.com/HB-Dynamite/mimic3-benchmarks_AoOR_data_export
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Fig. 1 Comparison of the shape functions of a linear model and a GAM

have been proposed (Lou et al., 2012; Agarwal et al., 2021; Kraus et al., 2024b). A GAM
can also function as a classification model by modeling the log odds of the target class
probabilities. The log odds are the logarithm of the odds, which are the ratio of the target
class probabilities. In a binary classification context, the GAM can be expressed as

log

(
P(y = 1)

1 − P(y = 1)

)
= f1(x1) + f2(x2) + · · · + fm(xm), (2)

where P(y = 1) denotes the probability of the target class given features x1, . . . , xm ,
and fi (xi ) are shape functions. The logit function maps the probability space [0, 1] onto
(−∞,∞), allowing the model to predict target class probabilities. To obtain class probabil-
ities, the logistic function is applied to the model output.

The independence of the input features enables a 2-dimensional visualization of shape
functions using so-called shape plots. Figure1 presents an example for a shape plot, where
the GAM captures the nonlinear relationship between body temperature and the probability
(in log odds) of mortality (represented by the solid curve). In contrast, the linear model
assumes a linear relationship (represented by the straight line). This comparison highlights the
flexibility of GAMs inmodeling complex patterns, providingmore accurate and interpretable
predictions than linear alternatives. For physiological signs, often anoptimal value exists,with
deviations in either direction increasing mortality. Eventually, human experts can evaluate
the established relationships through this visualization (Hegselmann et al., 2020).

Furthermore, GAMs have the advantage of being intrinsically interpretable (Du et al.,
2019). That is, they provide an exact description of their decision logic rather than an approx-
imation. This is in stark contrast to post-hoc explanation methods such as Shapley additive
explanations (SHAP), where complex MLmodels are simplified based on rough approxima-
tions to gain certain insights into the models’ behavior (Stiglic et al., 2020; Rudin, 2019).
Such post-hoc explanations inevitably lead to a loss of information, which creates the risk of
erroneous insights and thus a harmful basis for medical decision support (Babic et al., 2021).
Therefore, intrinsically interpretable models such as GAMs offer a more reliable choice
because they provide an undistorted view of the global model structure, which can be easily
analyzed, adjusted, and validated for safety and efficacy.
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2.2 Healthcare decisions andmachine learning

Advanced ML models, such as boosted decision trees and random forests, have transformed
healthcare analytics by enabling extensivemedical data analysis (Bohr&Memarzadeh, 2020;
Saadatmand et al., 2022;Hyland et al., 2020).However, their complex structure and black-box
behavior have slowed their adoption in high-stakes domains (Miller, 2019; Rudin, 2019). The
models’ lack of interpretability makes it difficult to understand what drives their predictions.
This lack of clarity fosters skepticism among regulators and practitioners, hindering the
widespread use of these powerful ML techniques (Agarwal & Das, 2020).

Despite skepticism, ML models in healthcare provide numerous benefits, such as sur-
passing human performance in diverse clinical decision support areas (Richens et al., 2020).
Human judgment is limited by perceptual biases and cognitive constraints, while machines
can process data more quickly and efficiently. Some algorithmic architectures even sur-
pass doctors in predictive accuracy (Johnson et al., 2022). ML models can also aid essential
resource allocation, such as bed allocation or work scheduling, by providing decision-makers
with real-time information about the entire patient population (Bertsimas et al., 2021). This
approach aligns with operations research principles, as ML models can be integrated with
optimization techniques to improve healthcare decision-making (Bai et al., 2018; Johnson
et al., 2022; Kraus et al., 2024a). However, it is crucial to recognize the challenges and lim-
itations associated with implementing ML models in healthcare settings. These encompass
legal, practical, and ethical issues, which we discuss in the following section.

2.3 Legal, practical, and ethical requirements in healthcare

The legal landscape for algorithmic interpretability is evolving, with authorities utilizing
primarily recommendations, guidelines, and preliminary frameworks. In the United States,
an exemption for interpretable medical software has been introduced (Gerke et al., 2020)
and is overseen by the Food and Drug Administration (FDA), which is responsible for regu-
lating medical devices. In the European Union (EU), the focus is on promoting algorithmic
transparency. The EU enforces a "right to explanation" under the General Data Protection
Regulation (GDPR) (Parliament and Council of the European Union, 2016; Goodman &
Flaxman, 2017). This mandate emphasizes the importance of interpretability for protecting
sensitive data3 and ensuring fair and ethical treatment. Regulatory efforts may become more
stringent, as the EU is developing the Artificial Intelligence Act (Parliament and Council of
the European Union, 2021), which aims to regulate ML use in high-stakes decision-making.
This legislation could further emphasize the significance of algorithmic interpretability in
the U.S. and EU, promoting interpretable and accountable ML systems to ensure ethical and
legal compliance.

From a practical perspective, healthcare decision-makers prioritize patient well-being
above all else, and typically do not possess extensive knowledge ofML techniques. Therefore,
ML model interpretability is essential to enable care givers to perform informed decision-
making rather than blindly relying on opaque predictions (Stiglic et al., 2020). Explanations
should align with user skills and domain knowledge, reducing the risk of application errors
(Coussement & Benoit, 2021).

3 "personal data revealing racial or ethnic origin, political opinions, religious or philosophical beliefs; trade-
union membership; genetic data, biometric data processed solely to identify a human being; health-related
data; data concerning a person’s sex life or sexual orientation" [Article 4 (13), (14) and (15) and Article 9 and
Recitals (51) to (56) of the GDPR].
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Regarding ethical requirements, handling sensitive data demands special attention to pro-
tect individual privacy and prevent discriminatory practices (Goodman & Flaxman, 2017).
The potentially life-altering consequences of healthcare amplify these concerns (Babic et
al., 2021). Inherently interpretable models, such as GAMs, address ethical concerns related
to sensitive data by providing insights into the impact of individual features on predictions
(Chang et al., 2021). This interpretability facilitates the identification andmitigation of poten-
tial biases, ensuring fair and accurate healthcare decisions.

2.4 Achievingmodel interpretability

Model interpretability refers to a model’s ability to present its behavior in human-
understandable terms (Doshi-Velez & Kim, 2017). The necessary level of interpretability
depends on the use case and domain, as stakeholders may have varying expectations and
requirements. What is sufficient for one use case may not be for another (Rudin, 2019).

In healthcare, risk charts such as the FraminghamRisk Score for predicting the 10-year risk
of developing cardiovascular diseases (Wilson et al., 1998), the Simplified Acute Physiology
Score (SAPS), and Acute Physiology and Chronic Health Evaluation (APACHE) scores for
severity-of-illness classification in ICUs (Moreno et al., 2005) are commonly used to assess
patient prognosis and inform clinical decision-making. These risk charts represent simple,
interpretable models that enable clinicians to quickly understand patient conditions andmake
informed decisions.

Interpretability and ease of understanding are crucial factors when selecting ML models
in the healthcare domain. While more complex ML models can often provide more accurate
assessments of patients’ conditions, simpler models such as decision trees and linear models
have been favored for their interpretability. Decision trees provide visual representations
that allow physicians to trace decision-making processes (Breiman et al., 1984), making it
easier to understand how the model arrived at its predictions. Similarly, linear models help
understand the contribution of each feature to the predictions, providing insights into the
factors that influence the model’s output. By maintaining interpretability, these techniques
foster trust and adoption in healthcare settings, where understanding the reasoning behind
predictions is essential for making informed decisions (Kundu, 2021).

GAMs have emerged as powerful tools that strike a balance between accuracy and inter-
pretability,making themwell-suited for healthcare applications (Zschech et al., 2022). GAMs
combine the simplicity of linear models with the flexibility of nonlinear functions, capturing
complex relationships between input features and outcomes while preserving interpretability
(Chang et al., 2021). The renewed interest in GAMs has been fueled by integrating advanced
techniques like boosting and specifically designed neural networks (Yang et al., 2021; Lou
et al., 2012; Agarwal et al., 2021).

Model parsimony, which refers to the ability of a model to describe the data using the
minimum number of terms or parameters, is closely related to interpretability. Parsimonious
models strike a balance between fitting the data well and avoiding unnecessary complexity
(Brunton &Kutz, 2019). Thus, parsimony promotes simplicity while retaining a high level of
accuracy. This is achieved through two objectives. First, themodel architecture should be kept
as simple as necessary, which also allows people to understand its functionality. Second, the
model should be based only on a subset of selected features, identifying the most informative
ones and reducing the dimensionality of the input space in order to obtain a compact model
(James et al., 2013). GAMs in particular promote parsimony by their architecture, as they
are typically simpler than more complex models such as neural networks. By combining
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GAMs with feature selection techniques, we can ensure the development of parsimonious
models that are both accurate and interpretable, similar to the risk maps commonly used in
healthcare.

3 Research approach

This study aims to evaluate the performance gap between black-box and interpretable GAMs
in an ICU setting. We use a well-established intensive care database and focus on two com-
mon binary classification tasks: mortality and length-of-stay prediction. The methodology is
detailed in the subsequent sections, covering the dataset, prediction tasks, feature extraction,
preprocessing steps, models, and analyses performed.

3.1 MIMIC-III clinical database

With the increasing adoption of healthcare information systems, hospitals start to generate and
store large amounts of data. In particular, electronic health records track the patients’ health
trajectories combining information about demographics, physiological signs, and laboratory
results. This data potentially allows to derive informed predictions about the patients’ health
(Kocheturov et al., 2019).

In this study, we use the Medical Information Mart for Intensive Care (MIMIC)-III
database (v1.4), one of the most extensive healthcare database that is publicly available
(Johnson et al., 2016). MIMIC-III contains 58,976 anonymized health records of 46,520
patients admitted to the ICU of the Beth Israel Deaconess Medical Center between 2001 and
2012.

3.2 Mortality and length-of-stay prediction

We evaluate our models on two common healthcare prediction tasks: in-hospital-mortality4

and length-of-stay. Mortality and length-of-stay are the primary cost drivers in ICUs (Kramer
et al., 2017) and as Bates et al. (2014) emphasize, early identification of high-risk and high-
cost patients is key for implementing strategies to conserve resources in care. Consequently,
these high-stakes prediction tasks are well suited to study the performance gap between
interpretable and black-box ML models.

Mortality. This binary classification task predicts patient survival or death based on phys-
iological data collected during the first few hours after admission to the ICU (Harutyunyan
et al., 2019; Wang et al., 2020). The goal is to identify high-risk patients for timely provision
of intensified medical supervision, care, and resource allocation.

Length-of-stay. This task estimates which patients will have longer ICU stays and require
additional resources. Even rough length-of-stay estimates can significantly improve ICU
scheduling, as long-term patients account for a disproportionate share of ICU resources
(Halpern&Pastores, 2010;Kramer et al., 2017). The implementation details of this prediction
task vary across the literature, e.g., it is framed as a multiclass classification (Harutyunyan et
al., 2019) or regression problem (Purushotham et al., 2018). For improved comprehensibility,
we follow Wang et al. (2020) and divide the task into two binary classification tasks: length-

4 Wepredict in-hospital-mortality by determiningwhether patientswill die during their hospital stay or survive
to discharge. For readability, we use "mortality" as a synonym for in-hospital-mortality in this paper.
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Table 1 Descriptive statistics of
the target features: mortality,
Length-of-stay3, Length-of-stay7
- stratified by gender

Gender Total
Female Male

Mortality

Alive 13,724 17,764 31,488

Dead 1701 1939 3640

LOS

<3 9394 12,179 21,573

>3 6031 7524 13,555

<7 13,376 17,087 30,463

>7 2049 2616 4665

Total 15,425 19,703 35,128

of-stay>3 days (LOS3) and length-of-stay>7 days (LOS7), providing better performance
comparability with mortality classification. The same feature sets are used to predict length-
of-stay and mortality, potentially enabling decision-makers to gain insight into expected
expenditures at the patient, ward, and hospital levels (Halpern & Pastores, 2010).

Table 1 presents descriptive statistics for the target features, mortality, LOS3, and LOS7,
showing a significant imbalance in their distribution. For instance, mortality has a larger
number of alive patients (31,488 [89.6%]) compared to deceased patients (3640 [10.4%]).
Similarly, most patients have a length-of-stay below the respective thresholds for LOS3 and
LOS7.

3.3 Feature extraction, preprocessing, and evaluation strategy

In this section,we describe the process of feature extraction, preprocessing, and the evaluation
strategy for our MLmodels. Our goal is to create a clean and consistent database for analysis
and comparison of the performance gap between interpretable and black-box models.

Feature extraction. Regarding feature extraction, we prioritize reproducibility by primar-
ily relying on the widely-used MIMIC-III benchmark suite created by Harutyunyan et al.
(2019). To create a patient-specific time series of physiological measurements, we utilize the
corresponding scripts with the following modifications to the original approach:

• As suggested by Wang et al. (2020) and Purushotham et al. (2018), we reduce the con-
sidered time period from the first 48h to the first 24h of ICU stay.

• We remove implausible values from the time series, following the approach of Hegsel-
mann et al. (2020), detailed in Appendix A.

• The often missing total score of the Glasgow Coma Scale is recalculated as the sum of
the sub scores (Teasdale & Jennett, 1974) whenever possible, and subsequently the sub
scores are removed from further evaluations.

• Three sensitive features are intentionally (see Sect. 2.3) included to explore their influence
in detail: gender, age, and ethnicity.

After these steps, we obtain a cohort of 35,128 patients, displayed in Table 2 with a particular
focus on patients’ sensitive features.

To extract meaningful static features from these time series, we compute six sample
statistics (mean, standard deviation, minimum, maximum, skewness, and number of mea-
surements) for seven different subperiods (full time series and subsets representing the first
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Table 2 Default cohort summary
stratified by sensitive features
adopted from Wang et al. (2020)

Gender Total
Female Male

Ethnicity

Asian 363 479 842

Hispanic 465 740 1205

Black 1892 1470 3362

Other 1816 2745 4561

White 10,889 14,269 25,158

Age

< 30 690 909 1599

31–50 2303 3282 5585

51–70 5224 8266 13,490

> 70 7208 7246 14,454

and last 10%, 25%, and 50% of time), resulting in 42 (6×7) features per time series variable
(Harutyunyan et al., 2019).

Preprocessing. We apply standard preprocessing steps to the extracted dataset to make it
suitable for comparison, including standardization and removal of features with more than
50%missing values.Missing values are imputed using themean. For the latter, we also exper-
iment with more advanced approaches such as k-nearest neighbor imputation and iterative
random forest (Stekhoven & Bühlmann, 2012), but with limited success. See Appendix B
for results of these experiments.

Excluding the sensitive features gender, age, and ethnicity, our approach results in 11
features as shown in Table 3. These physiological features are clinical indicators and cover
various medical examination areas, including basic life-sustaining functions like respiratory
rate, cardiovascular measures like diastolic pressure, biological markers like urinary glucose,
and awareness-related measurements like the Glasgow Coma Scale (GCS) (Johnson et al.,
2016). They aim to provide a comprehensive description of patients’ conditions within the
first 24h of ICU stays (Harutyunyan et al., 2019).Applying the feature generation described in
the preceding paragraph results in our initial feature set, consisting of 462 features, excluding
the three sensitive features: gender, age, and ethnicity.

Evaluation. In our evaluation strategy, we employ 5-fold cross-validation for assessing
the models’ performance, i.e., we split the dataset into five equal folds and use four folds
for training (80%) and one fold for testing (20%). We repeat this process until each fold has
been used as the test set once. This approach offers a more reliable estimate by mitigating the
effects of random variations in the data. By measuring out-of-sample performance in each
fold and calculating the mean and standard deviation of the model performance across all
folds, we effectively compare the models.

In this study, we tackle the challenge of highly imbalanced targets (see Table 1) by using
both the area under receiver operating characteristic (AUROC) and the area under preci-
sion recall curve (AUPRC) to evaluate our ML models’ classification performance. The
AUROC is a widely-used metric to measure classifier performance. However, in the context
of imbalanced datasets, the AUROC may convey an overly optimistic view of the model’s
performance. To address this limitation, we also employ the AUPRC, which emphasizes the
identification of theminority class (Davis&Goadrich, 2006). Nonetheless, our primary focus
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Table 3 Descriptive statistics of numerical features

Feature Abbr. Mean SD Percentile Missing (%)
25% 75%

Diastolic Blood Pressure DBP 61.0 10.9 53.6 67.2 1.2

Systolic Blood Pressure SBP 119.5 16.9 107.37 129.70 1.2

Mean Blood Pressure MBP 78.28 11.13 70.61 84.71 1.21

Glasgow Coma Scale Total GCST 12.58 2.98 10.60 15.00 2.57

Glucose GLU 139.35 44.83 111.67 155.25 0.78

Heart Rate HR 85.59 15.45 74.74 95.52 1.2

Respiratory Rate RR 18.67 4.01 15.88 20.83 1.3

Oxygen Saturation OS 96.96 2.39 95.90 98.51 0.77

Temperature Temp 36.84 0.67 36.46 37.21 2.73

Weight Weight 81.90 23.72 66.00 94.00 32.19

pH pH 7.08 0.64 7.06 7.40 30.16

Missing (%) describes the percentage of missing values of the respective feature

lies on the AUROC metric due to its well-established and intuitive nature, enabling a more
straightforward interpretation and comparison with existing literature.

To further address the challenge of highly imbalanced targets during model training,
we also experimented with data balancing techniques, specifically random under-sampling
and synthetic minority over-sampling (SMOTE). However, the application of these meth-
ods resulted in a decrease in model performance for threshold-independent metrics such as
AUROC. For a detailed presentation of these results, we refer the reader to Appendix C.

We perform hyperparameter optimization for both interpretable and black-box models,
with details and the hyperparameter grid provided in Appendix D. Hyperparameter optimiza-
tion is essential for a fair comparison, as it ensures that each model is tuned to its optimal
performance, allowing a more accurate comparison. All models are trained on a workstation
equipped with an Nvidia A6000 GPU, Intel i7-12700K (12 cores) CPU, and 128 GB of
memory.

3.4 Feature selection for parsimoniousmodels

Constructing parsimonious ML models, especially in high-dimensional data scenarios like
our ICU case study, relies on compact feature sets. These sets, composed of the most relevant
features, streamline models by reducing computational complexity and enhancing inter-
pretability. Several methods exist for obtaining such compact feature sets, including L1
regularized logistic regression (lasso regression), forward-selection, and backward-selection
(James et al., 2013). L1 regularization, for instance, adds a penalty term to the logistic
regression loss function, effectively promoting feature sparsity by driving less critical fea-
ture coefficients to zero. Forward-selection gradually incorporates features based on their
predictive power, while backward-selection starts with all features and eliminates the least
significant ones. These approaches facilitate the selection of a compact set of informative
features, thus improving model interpretability.

In this study,we investigate the impact of reducing the feature spaceonmodel performance.
Therefore, we utilized two types of feature selection: First, we made an informed choice and
manually selected the mean of each feature within the 24-hour time period, resulting in a
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highly interpretable feature set of 11 features excluding the sensitive features gender, age, and
ethnicity. Second,we employedSequential Forward Floating Selection (SFFS) in conjunction
with logistic regression to obtain a compact feature set (Pudil et al., 1994). SFFS is a hybrid
feature selection method that combines the strengths of forward- and backward-selection.
The SFFS algorithm is outlined in Algorithm 1.

Algorithm 1 Sequential Forward Floating Selection (SFFS)
1: Input: Input feature set X, criterion function J , number of features kmax
2: Output: Selected feature set S
3: Initialize the current set of selected features S and the possible set of features U
4: S ← ∅
5: U ← X
6: while |S| < kmax do
7: i∗ ← argmaxi∈U J (S ∪ i) � Select best feature
8: S ← S ∪ i∗ � Add i∗ to selected features
9: U ← U \ i∗ � Remove i∗ from possible feature set
10: PS ← J (S) � Compute performance on S
11: repeat
12: j∗ ← argmax j∈S J (S \ j) � Temp. remove feature (floating)
13: PS\ j∗ ← J (S \ j∗) � Compute performance on S \ j∗
14: if PS\ j∗ > PS then
15: S ← S \ j∗ � Remove feature permanently
16: end if
17: until PS\ j∗ ≤ PS
18: end while

The algorithm starts with an empty feature set and iteratively incorporates the most sig-
nificant feature not yet included. Following each addition, the algorithm assesses potential
improvements by temporarily removing features from the current set. If this removal leads
to a better model, the feature is permanently excluded. This floating process allows SFFS
to explore a broader solution space compared to traditional forward- or backward-selection
methods, resulting in a more optimal and informative feature subset. As the criterion function
J , we employ a 5-fold cross-validation using logistic regression. This selection process is
repeated for each classification task individually. It is important to note that we do not use
model-specific feature selection. Instead, we derive a uniform set of features for each predic-
tion task using the described method. These feature sets are used across all models, ensuring
a fair comparison and allowing us to examine the effect of reducing the feature space on
model performance.

Eventually, Table 4 presents an overview of our feature sets. Specifically, we evaluate
model performances on our three classification tasks: mortality, LOS3, and LOS7. For each
classification task,we consider three options to define feature sets.We either select all features
(no selectionmethod), only use 11 selected features, or combine the selected features with the
sensitive features gender, age, and ethnicity, for a total of 14 features. The feature selection
is done either manually (selecting mean values) or automated using SFFS. Note that the
automated feature selection yields three different feature sets for each task, which are detailed
in Appendix E.
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Table 4 Overview of feature sets

Index Number of features Selection method Sensitive features

D462-None 462 None

D465-None-Sens 465 None �
D11-Man 11 Manual

D11-Auto 11 Automated

D14-Man-Sens 14 Manual �
D14-Auto-Sens 14 Automated �

Features were selected by the naive manual or the automated algorithmic approach. Sensitive features were
either included or excluded. Note, that the reduced feature sets found by SFFS differ between tasks (see
Appendix E)

3.5 Mathematical formulation

We consider a set of n training samples comprising input features x j ∈ X and targets y j ∈ Y,
with j = 1, . . . , n. The input space typically is high-dimensional, determined bym features

X = X(1) × · · · × X(m). (3)

The objective is to train an ML model M ∈ H, H = {M : X 
→ Y}, by minimizing the
empirical risk

min
M∈H

1

m

n∑
j=1

L(y j ,M(x j )). (4)

Here, L : Y × Y 
→ R represents a loss function that measures the error between target
features and training sample predictions. The function spaceH, commonly referred to as the
hypothesis space, produces an outputM(x j ), also called the prediction.

3.5.1 Generalized additive models

GAMs compute their predictions by summing the outputs of n functions, where n equals
the number of input features (Hastie & Tibshirani, 1987; Lou et al., 2012). Thereby, each of
these functions fi ∈ FGAM, maps from X(i) to Y, where X(i) denotes the input space of the
i-th input feature. The univariate mappings between individual features and the response are
called shape functions (Lou et al., 2012). The function space FGAM is commonly pre-set,
ranging from smooth splines to step functions.

GAM-splines. Traditionally, GAM shape functions were learned via splines (Hastie &
Tibshirani, 1987). Splines provide a flexible, non-parametric way to model the relationship
between individual features and the target. The idea behind using splines in a GAM is to
capture non-linear relationshipswhile preventing overfitting from excessivemodel flexibility.
Mathematically, a spline is represented by a linear combination of basis functions, with the
coefficients of the linear combination estimated from the data. The most common types of
basis functions used in GAMs are cubic splines,

fi (xi ) =
∑
j

βi j B j (xi ), (5)
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where fi (xi ) is the shape function representing the relationship between the i-th feature xi
and the target. Bj (xi ) are the cubic basis functions evaluated at xi , and βi j are the coefficients
estimated from the data, specific for each feature and each basis function.

Explainable boosting machine (EBM). In more recent approaches bagged and boosted
tree ensembles (Lou et al., 2012, 2013) are used. Here, shape functions come from the space
of step functions, which are computed as a sequence of shallow trees. Mathematically, the
shape functions take the form

fi (xi ) = ck 1xi∈Ck =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c1 if xi ∈ C1,

c2 if xi ∈ C2,

. . .

cK if xi ∈ CK ,

(6)

where C1, . . . ,CK divide the input space X(i) into K disjoint areas, i.e.,

K⋃
j=1

C j = X(i), (7)

C j ∩ Cl = Ø, j, l = 1, . . . , K , (8)

and the scalar ck denotes the effect features have in their respective areas.
Interpretable generalized additive neural network (IGANN). IGANN, a novel ML model

belonging to the GAM family, fits shape functions using a boosted ensemble of neural net-
works, where each network represents an extreme learning machine (Kraus et al., 2024b).
An extreme learning machine is a special type of neural network with a single hidden layer;
the input-to-hidden layer weights are randomly assigned and fixed, while only the weights
from the hidden layer to the output are optimized during training. This method can improve
training time and reduces overfitting (Huang et al., 2006). The shape functions of an IGANN
model are expressed as

fi (xi ) =
∑
j

W (2)
i j σ

(
W (1)

i j xi + b(1)
i j

)
+ b(2)

i j , (9)

where W (1), W (2), b(1), b(2) are weights and biases, and σ is an activation function like
Rectified Linear Units (ReLU) (Nair & Hinton, 2010). IGANN uses a sequence of networks,
where each element j ∈ J corresponds to an extreme learning machine.

3.5.2 Black-box and traditional interpretable models

In order to evaluate the performance gap between interpretable GAMs and non-interpretable
black-box models, we selected black-box representatives known for their strong predictive
capabilities. Additionally, we included traditional interpretable models to provide a more
comprehensive comparison.

Random forest (RF). RF is an ensemble learning method that combines multiple decision
trees to enhance prediction accuracy (Breiman, 2001). The algorithm constructs each tree
independently by recursively splitting the data based on the most informative features. To
prevent overfitting, bootstrapping and random feature selection are employed. However, the
interpretability of RF can be limited due to the complexity of the ensemble.

eXtreme Gradient Boosting (XGB). XGB is a scalable, efficient, and distributed gradient
boosting framework that constructs an ensemble of decision trees to minimize a given loss
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function (Chen & Guestrin, 2016). Unlike RF, XGB expands the ensemble by adding new
trees that correct the errorsmade by previous trees. Interpretability ofXGBcan be challenging
due to the complex interactions between features learned by the ensemble.

Decision tree (DT). DT is a category of interpretable ML models that recursively divide
the input space into regions based on input feature values (Breiman et al., 1984). Each internal
node of the tree represents a feature and its split value, while each leaf node signifies the
predicted class (for classification) or value (for regression).

Logistic regression (LR). LR is a straightforward and interpretable linear model used for
binary classification. It estimates the probability of an instance belonging to a specific class
by applying the logistic function to a linear combination of input features. The model’s
coefficients can be interpreted as feature importance, offering insights into the relationship
between the features and the predicted outcome.

3.6 Model interpretation

In order to demonstrate the advantages of interpretable GAMs, we proceed with a qualitative
analysis of the so-called shape plots along three lines. First, we analyse and compare the
shape plots of different GAMs, highlighting the differences that arise from the underlying
mechanisms (see Sect. 3.5.1). The aim is to identify patterns and relationships that underly the
predictive process of themodel. In a practical setting, this graphical analysis enables clinicians
to understand the behaviour of the model, facilitating the recognition of patterns and the
assessment of the plausibility of the learned relationships between features and outcomes.
Second, we assess the interpretability and plausibility of our ML models by comparing
the shape functions derived from our analysis with existing medical literature. This step is
crucial, as counter-intuitive shape functions are concerning to clinicians, and may prevent
the potential use of such an ML model. Finally, we consult medical experts to discuss our
findings, which serves as a crucial step in verifying the plausibility of our interpretable ML
models and ensuring their relevance and applicability in real-world healthcare situations.
More details about these consultations can be found in Appendix G.

4 Results

In this section,we showcase the results of our experiments. First, we compare the performance
of interpretable and black-box models on the three prediction tasks using all available data.
Second, we assess the performance gap between parsimonious ML models using only few
features, and their counterparts trained on the full dataset, emphasizing the influence of
feature selection methods on model performance. Moreover, we examine the difference
in performance resulting from the inclusion or exclusion of sensitive features. Finally, we
present selected shape plots to underscore the distinctions between the GAMs and discuss
the plausibility of the visualized relationships.

4.1 Model performance on full dataset

Table 5 summarizes the model performances on the complete dataset including sensitive
features (D465-None-Sens) and shows the average AUROC and AUPRC values, as well as
the standard deviation of these metrics over the folds of the cross-validation. XGB stands
out as the model with the highest predictive performance overall, consistently surpassing
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other models in both AUROC and AUPRC across all tasks and achieving the highest average
ranking.

EBM emerges as the top performer within interpretable models, demonstrating its com-
petitiveness with black-box models. The performance gap between the top black-box model
(XGB) and the top GAM (EBM) is minimal, with differences ranging from 0.2 to 0.9 per-
centage points in AUROC scores and 1.0 to 2.8 percentage points in AUPRC scores across
tasks. Notably, EBMnot only ranks highest among interpretable models but also outperforms
the second black-box model, RF, in all cases except LOS3. This observation highlights the
potential of interpretable models, indicating that they can achieve performance comparable
to more complex black-box models.

Comparing our results with other benchmark studies on the MIMIC-III dataset, our
AUROC scores are consistent with the literature. For instance, Wang et al. (2020) report
an AUROC score of 88.7 for LR and 89.7 for RF on the mortality task, while our LR and
RF models achieve AUROC scores of 85.3 and 86.3, respectively. Similarly, Harutyunyan
et al. (2019) report an AUROC score of 84.8 for the same task, differing by predicting on
the first 48h of patient data, whereas both our study and Wang et al. (2020) predict on the
first 24h. Additionally, Hegselmann et al. (2020) reported results closely resembling ours for
predicting mortality using LR, including an EBMmodel which exhibited comparable perfor-
mance with an AUROC score of 87.2, aligning with our value of 87.1. For the length-of-stay
tasks, our results slightly outperformed those reported by Wang et al. (2020). Additionally,
different preprocessing strategies among various studies, such as those by Purushotham et
al. (2018), lead to variations in the inclusion or exclusion of specific variables.

In conclusion, the results in Table 5 provide a comprehensive understanding of the
strengths and weaknesses of various models using the full dataset. The narrow performance
gap between the top black-box and interpretable models encourages further exploration
of interpretable models in operations research, particularly in contexts where model inter-
pretability is crucial for decision-making.

4.2 Sequential forward floating selection

Figure2 displays the results for the sequential forward floating selection approach using
logistic regression. The dashed horizontal lines indicate the model performances when uti-
lizing 462 features, excluding the sensitive features gender, age, and ethnicity (D462-None).
The results uncover three insights. First, it is remarkable that a single feature can predict
mortality, LOS3, and LOS7 with AUROC values ranging from 69.6 to 75.2. Second, only
14 features are needed to achieve a logistic regression model that performs just 1.4 to 4.6
percentage points below the full model trained on 462 features. Third, for all three predic-
tion tasks, a parsimonious linear model trained on a subset of features, excluding sensitive
features (gender, age, and ethnicity), can outperform the model trained on 462 features, also
excluding these sensitive features, in terms of cross-validation performance. This can be
seen by the dotted line, representing the performance of the parsimonious model, crossing
the dashed horizontal line, which represents the performance of the model trained on 462
features, excluding sensitive features.

4.3 Model performance on compact feature sets

Wenowexamine the performance of different interpretable and black-boxmodels on compact
feature sets obtained viamanual selection and SFFS. The results are presented in Tables 6 and
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Fig. 2 5-Fold sequential forward floating selection using optimized logistic regression as estimator. The dashed
horizontal lines represent the model performances when using 462 features, excluding the sensitive features
gender, age, and ethnicity (D462-None)

7, comparing the performance of models using only 11 (excluding sensitive features) and 14
features (including sensitive features). The numbers in parentheses indicate the performance
improvements or deteriorations compared to models trained on the full dataset including
sensitive features (D465-None-Sens).

Table 6 shows that the performance of all models typically declines as the number of
features is reduced to 14 (including sensitive features). However, the performance decrease
is not substantial relative to the reduction in the number of features used in the models. For
instance, the AUROC for predicting mortality for GAMs and black-box models dropped by
1.4 to 2.7 percentage points despite reducing the feature set by 451 features. This observation
suggests that the feature reduction did not significantly impact the overall predictive power
of these models. Similar results were obtained for other tasks.

Comparing the performance ofmodels on datasetswith different feature selectionmethods
reveals that models generally perform better on datasets with features selected using SFFS
than those selected using the mean values of numerical features. While SFFS appears to
be a more effective method for feature selection in our setting, it may come at the cost of
interpretability, as features based on more complex statistics (e.g., skewness and standard
deviation) are introduced (see Table 11 in Appendix E for full feature lists). Consequently,
the level of abstraction required to draw conclusions about the implications of a shape plot
might be considerably more complex than when using the mean (see Sect. 4.4).

Table 7 presents the performance of the models on reduced datasets with 11 features,
excluding the sensitive features. The results indicate that these models achieve comparable
performance to those trained with sensitive features included, demonstrating their ability to
maintain a satisfactory performance level despite the exclusion. Additionally, it is evident
that the performance of the models on the mortality task particularly suffers from the removal
of sensitive features.
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Tables 6 and 7 compare the performance of black-box and interpretable models across
three tasks (mortality, LOS3, LOS7). The best performing black-box model, XGB, shows
slightly higher AUROC scores than the best performing interpretable model, EBM, for all
tasks and both 11- and 14-feature datasets, with EBM’s AUROC scores only 0.1 to 1.0 per-
centage points lower. This suggests that EBMoffers competitive performancewhile providing
interpretability. Compared to the second black-box model, RF, EBM even shows favorable
results in three out of twelve settings and shows equal results in another three.

Overall, the black-box and interpretablemodels showed comparable performance on com-
pact feature sets. The results indicate that GAMs are capable of performing well on compact
feature sets obtained using the two feature selection techniques. Furthermore, the perfor-
mance losses are task-dependent when the sensitive features are excluded from the feature
set. A key observation is that performance differences between full and reduced datasets
typically exceed differences between black-box and interpretable models. This is also true
for differences between manual and automated feature selection. The pattern continues for
comparisons between datasets with and without sensitive features in the mortality tasks. This
suggests that feature selection has a greater impact than the choice between black-box and
interpretable models.

4.4 Assessment of shape plots

In this section, we present the visual output of the interpretable models. By analyzing exam-
ples of the generated shape functions, we discuss their plausibility and interpretability. To
evaluate the plausibility of the shape plots, we compared the displayed effects of the features,
when feasible, with the effects suggested by widely used scoring systems such as SAPS or
APACHE.

Additionally, we consulted with multiple medical experts (MEs) and discussed the plots
presented in this section to ensure their correctness and alignment with established medical
expertise. For more information about the meetings and the medical experts’ background, we
refer the interested reader to Appendix G as well as to Appendix H, which contains sample
quotes from the interviews with the medical experts that illustrate how we arrived at our
findings.

It should be noted that the choice of data extraction and preprocessing techniques – such
as outlier handling, imputation, and data balancing – along with the selected feature set can
influence the resulting shape plots. We focus our assessment on these plots generated with
the parameters outlined in Sect. 3.3 and and using models trained on the reduced datasets.
However in the following figures, shaped curves illustrate the impact of numerical features,
while the impact of categorical features is depicted by bar charts. In all plots the x-axis
represents the feature value, and the y-axis indicates the influence on the target (in log odds),
with positive influence for y > 0 and negative influence for y < 0.

4.4.1 Assessment of shape plots frommanually selected features

Figure3 examines the impact of patients’ age on three prediction tasks and various models,
illustrating shape plots for the different GAMs and logistic regression. Columns represent
models and rows represent prediction tasks. All three GAMs display similar trends, sug-
gesting data correlations. However, distinctions emerge. For instance, EBM generates noisy
functions with abrupt transitions, GAM-Splines produce less frequent, large fluctuations, and
IGANN yields smooth curves. The sharp jumps in EBM’s shape plot may seem confusing
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Fig. 3 Shown is the effect of the age feature on different prediction targets.Within each plot, age (in years) is on
the x-axis and the effect on prediction (in log odds) is on the y-axis (higher values indicate a higher probability
of mortality, LOS3 or LOS7). The grid contains three rows of shape plots, one for each prediction task. The
4 columns represent different GAMs and LR. The bottom row shows how the age feature is distributed in the
sample. All plots were created after training the models on the manually reduced dataset (D14-Man-Sens )

(ME1, ME2) for continuous features like age but are suitable for identifying thresholds in
feature spaces. Also, features with very narrow ranges, such as temperature, can be better
analysed using more abrupt transitions, such as EBM (ME3). Conversely, the extremely
smooth curves produced by IGANN are easier to read (ME1), but thresholds might remain
hidden or small, and meaningful fluctuations may go unnoticed.

All models exhibit a near-monotonic relationship between age andmortality, aligningwith
assessment tools like SAPS (Moreno et al., 2005). The relationship between age and LOS3
shows a similar trend. However, a sharp decrease in probability occurs for ages above 80,
suggesting older patients have shorter ICU stays, potentially due to early death or transfer to
palliative care units. This assumption is supported by the more pronounced effect for LOS7.
The linear model fails to capture this trend reversal between the input feature and the target,
indicating that a linear assumption may not adequately represent the relationship between
age and length-of-stay. This example highlights situations where simpler, linear models may
be less appropriate for describing feature effects and hinder interpretability.

Figure4 presents a set of shape plots for predicting mortality on the manually reduced
dataset with sensitive features. All three GAMs consistently link abnormal temperature and
blood pressure to higher mortality rates. Both upward and downward deviations are harmful,
with the latter being particularly detrimental. This is consistent with SAPS scores (Moreno
et al., 2005) and the experience of the medical experts. An unexpected relationship arises
between mortality and Glasgow Coma Scale Total (GCST) score: a monotonic negative
relationship is expected, as patientswith higherGCST scores are classified asmore conscious.
Although this negative trend is recognizable, all GAMs show a steep increase in mortality
probability between 13 and 14, contradicting medical experts (ME1) as well as medical
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Fig. 4 Shown is the effect of 5 (out of 14) features on patient mortality. We used the manually generated
reduced dataset including sensitive features. In each plot, different values of the features are on the x-axis and
the effect on mortality (in log odds) is on the y-axis (higher values indicate a higher probability of mortality).
The grid contains 4 rows, one for each model, and 5 columns, each representing a feature. The bottom row
shows the feature distribution in the sample. All plots were created after training the models on the reduced
dataset (D14-Man-Sens )

literature (Teasdale & Jennett, 1974). Furthermore, all models indicate higher mortality for
males, a discrepancy debated but unconfirmed in medical literature (Hollinger et al., 2019).
Appendix F shows the shape plots for the remaining features.

4.4.2 Assessment of shape plots from automatically selected features

Finally, we consider a selection of shape plots for predicting mortality based on the reduced
dataset generated with SFFS, excluding sensitive features (D11-Auto). The selected plots are
shown in Fig. 5. We observe nearly identical shape plots for diastolic blood pressure and
temperature, selected by both SFFS and the manual approach. This also holds for respiratory
rate, with SFFS considering only the initial 12h of ICU stay. For the GCST score, SFFS
considers the final 10% of the first 24h (i.e., the last 144min), revealing the expected negative
monotonic correlation and increasing plausibility. Additionally, a GCST-based feature, the
standard deviation of the first 12h, exhibits a clear negative trend. However, interpreting
features based on standard deviation can be challenging, as alsoME4 confirms. This negative
trend in the feature effect becamemore understandable after discussions withmedical experts
who confirmed that it is very common for patients to be admitted to the ICU under anesthesia
after a major medical procedure and then wake up as planned (ME1, ME3). A high GCST
standard deviation indicates that patients experience a change between comatose and fully
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Fig. 5 Shown is the effect of 5 (out of 11) features on patient mortality. This is the reduced dataset generated
by SFFS without the sensitive features (D11-Auto). In each plot, different values of the features are on the
x-axis and the effect on mortality (in log odds) is on the y-axis (higher values indicate a higher probability
of mortality). The grid contains 4 rows, one for each model, and 5 columns, each representing a feature. The
bottom row shows how the features are distributed in the sample

conscious during the first 12h of their ICU stay. However, the function does not indicate
the direction of the change. Medical experts express concern about including such logic in a
model (ME2, ME3).

5 Discussion

5.1 Interpretation of results

The trade-off between model performance and interpretability is crucial in healthcare analyt-
ics and widely discussed in the operations research literature (Yang, 2022; Bertsimas et al.,
2021). Stakeholders require a balance between interpretability and performance, focusing
on actionable insights (Coussement & Benoit, 2021), regulatory compliance (e.g., GDPR)
(Parliament and Council of the European Union, 2016), and ethical fairness (Goodman &
Flaxman, 2017).

Our experiments yield several important insights. First, GAMs emerge as a promising
solution for addressing the performance-interpretability trade-off in healthcare analytics.
The minimal performance gap between GAMs and leading black-box models makes them an
attractive option for balancing predictive power and interpretability. This finding aligns with
thework of Chang et al. (2021) andZschech et al. (2022), who demonstrated that performance
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penalties associated with interpretable models can vanish entirely in certain settings or even
turn into performance advantages.

Our results are consistent with other benchmark studies on the MIMIC-III dataset, as
discussed in Sect. 4.1. The AUROC scores we obtained for the mortality task with LR
and RF models are comparable to those reported by Wang et al. (2020) and Harutyunyan
et al. (2019). Furthermore, our EBM model’s performance closely matches the results of
Hegselmann et al. (2020) for the same task. These comparisons validate the robustness of
our findings and demonstrate that our models’ performance aligns with the state-of-the-art
in the field. However, it is important to note that directly comparing results across studies
can be challenging due to differences in preprocessing strategies and variable inclusion. For
instance, Purushotham et al. (2018) employed different preprocessing techniques, leading to
variations in the variables used for modeling. These differences highlight the need for caution
when making direct comparisons and emphasize the importance of considering the specific
context and methodology of each study.

Second, reducing features to obtain parsimonious models or excluding sensitive features
can lead to accuracy loss, which in our case was more pronounced with manual approaches
than automated methods like Sequential Floating Forward Selection. Notably, differences
in predictive performance between feature selection methods were consistently more sub-
stantial than disparities between black-box and interpretable models. For instance, sensitive
features like gender, age, and ethnicity showed varying importance across prediction tasks.
Particularly, for mortality prediction, the impact of excluding these features was much larger
than for length-of-stay prediction quality.

Third, shape plot comparisons across dataset versions indicate that GAMs exhibit stabil-
ity against feature selection procedures. The SFFS-based approach, while resulting in higher
agreement with medical evidence, includes more complex features, complicating interpre-
tation. As demonstrated in our study, interpreting features based on standard deviation is
challenging, and this complexity increases for features based on skewness or the number of
measurements taken. Nonetheless, such features can be strong predictors; thus, when uti-
lizing feature selection methods focused on interpretability, it is essential to balance both
predictive capacity and simplicity of feature selection.

Overall, GAMs align well with medical knowledge, but some plot details require further
investigation. The learned relationships remain stable despite dataset changes due to sensitive
feature exclusion or changes in time periods.WhileGAMs are desirable for their accuracy and
interpretability, it is crucial to note that they are not causal models: shape plots demonstrate
prediction generation but do not provide reasons for learned patterns or intervention effects.
The implications of these findings will be discussed further in the following sections.

5.2 Practical implications

Our study has several practical implications for the application of GAMs in medical data
science and healthcare settings.

Interpretability and collaboration. We reaffirm that GAMs are well-suited for medical
data science applications due to their high predictive performance and interpretability (Caru-
ana et al., 2015; Agarwal & Das, 2020). To achieve interpretability, models require careful,
manageable, and often time-consuming feature extraction and preprocessing steps. Insuffi-
cient preprocessing can lead to ambiguous shape plots, particularly in regions with only few
data points or when extreme and implausible values, such as negative age, occur. As a result,
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a rigorous process calls for close collaboration between medical experts and data scientists,
who must comprehend each other’s domains.

Our consultations with medical experts show, that shape plots enable communication
between model developers and domain experts. This type of visualizations help to exchange
insights and refine understanding of the data and model predictions. Such improved commu-
nication can also inform decision-makers about the reasoning behind a model’s predictions.
The utility of shape plots resides in its capacity to bridge the gap between domain knowl-
edge and model development. Domain knowledge can enhance the accuracy and relevance
of models, while the models can offer new insights into the domain, uncovering previously
unknown relationships or patterns. By fostering a continuous feedback loop between domain
experts and data scientists, shape plots can help ensure that models better align with the needs
of the domain, ultimately improving interpretability and real-world applicability.

Our study demonstrates thatGAMsoffer a balance between performance and interpretabil-
ity. However, it is worth noting that the interpretability of GAMsmay be perceived differently
bymedical experts, as evident from the expert opinions provided inAppendixH. For instance,
ME1expresses a preference for the smoother, less abrupt transitions in the spline-basedGAM,
indicating that they would not mind a flatter, slightly averaged graph. In contrast, ME3 sug-
gests that for features with a narrow range, such as temperature, a more precise representation
like EBM might be more practical.

These diverse opinions suggest that the interpretability of GAMs may be perceived dif-
ferently by medical experts, highlighting the potential importance of comprehensibility in
healthcare decision-making. In this context, comprehensibility could be understood as the
ease with which domain experts can grasp and reason about a model’s predictions, which
may play a role in the adoption of ML models in clinical settings (Sivaraman et al., 2023).
As ME2 points out, the overall trend might be more important than minor fluctuations in the
graph, indicating that the level of detail required for comprehensibility may vary depending
on the specific use case and the preferences of the medical experts involved.

Consequently, when considering interpretable models for healthcare applications, it might
be beneficial to take into account not only the predictive performance but also the level of
comprehensibility offered by the model, as perceived by the intended users. This could be
explored through close collaboration with domain experts, as demonstrated in our study. By
engaging in a dialogue with medical professionals and considering their diverse perspectives,
we may be better positioned to develop models that are not only accurate but also more easily
understood and accepted by healthcare practitioners, potentially leading to better integration
of ML models in clinical decision support systems. However, further research is needed to
establish the extent to which comprehensibility influences the adoption and effective use of
ML models in healthcare settings.

Ethical considerations. It is important to note that our study focuses on improving
predictive performance using interpretable and parsimonious ML models, while ethical
considerations are neglected. However, during our consultations various aspects have been
discussedwhich showcase the complexity of deployingMLmodels in the context ofmortality
prediction. One critical issue raised involves the ethical implications of deploying predictive
models in intensive care settings. As noted by one of our medical experts, the use of algo-
rithms to predict low survival probabilities may not serve the therapeutic goals, especially
when it informs clinical decisions about end-of-life care (ME3). The ethical concerns extend
to situations where the predictive models might suggest aggressive treatments for patients
with a very low chance of survival. This could lead to unnecessary prolongation of suffering,
a concern that another expert highlighted while discussing the application of such models in
real-world scenarios (ME4).
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In a more general medical use case, there is growing concern over the potential unfair
and unethical impact of sensitive features, such as gender, age, and ethnicity when applying
ML models. As a result, these features are often excluded to avoid these effects. However,
simply omitting sensitive features can cause correlated features to partially absorb the effect
of the omitted features. This can result in the sensitive feature not being present, but its effect
still being at work, hidden in proxy features. While there are no visible effects in the shape
plots when such features are removed from our dataset, similar effects have been described
in other healthcare settings (Obermeyer et al., 2019).

In general, sensitive featuresmight be reasonable inputs for decision-making in healthcare,
but they could also be the source of significant injustices (Vyas et al., 2020). Fully interpretable
models, such as GAMs, allow for a close look at the impact of these features, helping
prevent unfair decisions. This approach is not possible with black-box models, which remain
incomprehensible in their decision logic (Rudin, 2019). Thus, prioritizing interpretability in
medical decision-making is crucial to avoid unethical and unfair effects.

MLadoption in healthcare.GAMscan help facilitateMLadoption in healthcare by provid-
ing comprehensive, case-by-case explanations for predictions before deployment, addressing
ethical and legal concerns. ML models should be designed to complement the expertise of
healthcare professionals, rather than replace them entirely (Rajpurkar et al., 2022). In doing
so, MLmodels can provide valuable insights and support for decision-making processes that
ultimately lead to better health outcomes for patients.

5.3 Limitations and further research

Despite its contributions, this study presents some limitations and suggests opportunities for
further research. One key limitation is the absence of feature interactions in our analysis,
which was also confirmed in our consultations, where it was pointed out that physiologi-
cal systems always interact and therefore modelling interactions is important (ME4). Even
though certain GAMs can accommodate second-order interactions and produce heat-map-
like shape plots (Lou et al., 2013), incorporating interactions would exponentially increase
the models’ complexity, as there are

(n
2

) = n!
2!(n−2)! potential interaction terms for n features

(e.g., for our n = 465 features, this would result in 107,880 interaction terms). In addi-
tion, incorporating interactions would alter the models so that they no longer conform to the
inherent structure of GAMs. In addition, the methods by which models identify interactions
vary greatly between different GAM implementations, making it difficult to compare results.
To address this limitation, future research could develop more efficient algorithms to detect
interactions in a model-agnostic manner (Lengerich et al., 2020). As demonstrated by Topuz
et al. (2018) in Bayesian belief networks, one possible approach might involve using domain
knowledge, with a physician identifying the most relevant interactions to include. When
discussing interactions, the experts emphasize their relevance.

In our experiments with different imputation methods, mean imputation proves to be
the best performing. In our extracted dataset, most variables have low missing rates, which
limits the impact of imputation. However, it is important to recognize the limitations of
mean imputation and its impact on model reliability. These include the potential loss of
data variability and the introduction of bias by assuming the same value across different
patient populations (e.g., same weight for male and female patients). Further research on
datasets with higher missing rates could hold new insights. Similar considerations apply to
data balancing techniques. Although our initial experimentswith randomunder-sampling and
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SMOTE over-sampling were less promising, future studies may identify the circumstances
under which these techniques may be beneficial.

On a technical level, this study utilizes a single method for selecting the optimized feature
set based on LR and SFFS. Although this method provides high interpretability and compara-
bility with manual procedures, it might not be ideal, especially for features displaying strong
correlation. Investigating a model-agnostic approach focused on relevance and redundancy
(Yu & Liu, 2004) could offer a promising alternative, though it may present interpretability
challenges.

Lastly, the study’s reliance on a single dataset constrains the generalizability of its findings.
To enhance generalizability, future research should examine data from various ICUs across
different regions. Such analyses could yield valuable insights by comparing shape plots
among ICUs with diverse treatment procedures or capabilities.

6 Conclusion

In conclusion, this research contributes to healthcare operations research by examining the
use of interpretable models, specifically focusing on GAMs in the ICU context. Our study
establishes that GAMs can deliver high performance while preserving interpretability, thus
addressing the critical need for transparency in healthcare decision-making. Our findings
indicate that feature selection and extraction have a more substantial impact on predictive
accuracy than the choice between interpretable and non-interpretable models. Consequently,
future research should prioritize identifying best practices for feature selection and devel-
opment. Additionally, ethical concerns, such as the potential unfair and unethical influence
of certain features, must be considered when creating ML models for healthcare. We also
underscore the importance of collaboration between medical experts and data scientists in
developing accurate and comprehensible models.

Appendix A: Chosen upper and lower bounds to avoid implausible val-
ues

As described in Sect. 3.3, we remove implausible values from the time series before calcu-
lating summary statistics such as mean, standard deviation, minimum, and maximum. This
procedure is based on the approach by Hegselmann et al. (2020) and helps to mitigate errors
from the data collection process that could significantly affect the ML models. The upper
and lower bounds chosen are listed in Table 8. It is important to note that we do not remove
a patient from our dataset when an implausible value occurs; instead, we remove the indi-
vidual measurement from the time series associated with that patient and then calculate the
summary statistics on the remaining data points. Therefore, the lower and upper bounds are
chosen to exclude only values that are so far from a regular value that we can be reasonably
confident that it must be an error.
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Table 8 Established lower and
upper bounds for time series
preprocessing

Measurement Lower bound Upper bound

Glucose 5 2000

Systolic blood pressure 0 400

Temperature 20 45

Weight 20 500

Diastolic blood pressure 20 350

Glascow coma scale total 3 15

Mean blood pressure 20 400

Heart rate 10 300

Oxygen saturation 20 200

pH 5 9

Respiratory rate 5 50

Appendix B: Experiments with advanced imputation techniques

As described in Sect. 3.3, we explored several imputation techniques beyond simple mean
imputation. This section provides a brief overview of our experimental methods and results.
The techniques examined include median imputation, k-nearest neighbor (knn) imputation,
and two iterative methods: iterative random forest (iRF) and iterative linear regression (iLR).
To effectively manage computational requirements, these tests were performed on the dataset
containing the 14 manually selected features and the same hyperparameter grid as the other
experiments in this study. For all three prediction targets – mortality, LOS3, and LOS7 –
our results were consistent. Notably, the more complex imputation methods did not improve
performance. For most models with the exception of LR, these techniques actually decreased
predictive accuracy. We assume that the small performance losses of complex imputation
methods are due to the low incidence of missing values and the indeterminate nature of the
missing data mechanism in our dataset. As a result, simple mean imputation emerged as
the most robust method, consistently producing better results. This suggests that in datasets
characterized by low missing rates and ambiguous missing data mechanisms, simpler impu-
tation techniquesmay outperformmore sophisticated alternatives. In Table 9, we compare the
performance for the different imputation techniques and report the performance difference
to the mean imputation.

Appendix C: Experiments with data balancing techniques

We explore random under-sampling and Synthetic Minority Oversampling Technique
(SMOTE) to address imbalanced target distributions (see section 3.3). The tests are performed
on the dataset containing the 14 manually selected features and the same hyperparameters
as other experiments. For all prediction targets (mortality, LOS3, LOS7), both techniques
decreased predictive accuracy, with more pronounced decreases as more majority samples
are removed (under-sampling) or more synthesized minority samples are created (over-
sampling). Figure6 plots the performance for different balancing techniques and ratios,
defined as: ratio = α = Nminority

Nmajori ty
.
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Table 9 Comparison of AUROC differences (�) for various imputation methods relative to mean imputation
for different prediction targets

Model Mortality LOS>3 Days LOS>7 Days
Method � AUROC Method � AUROC Method � AUROC

XGB Mean – Mean – Mean –

Median −0.508726 Median −0.488815 Median −0.625327

iLR −1.403181 iRF −0.856955 iLR −0.869722

iRF −1.511133 iLR −0.894452 knn −0.945321

knn −1.567955 knn −1.149458 iRF −0.950152

RF Mean – Mean – Mean –

Median −0.235323 Median −0.336272 Median −0.230433

iRF −1.016325 iLR −0.451807 iLR −0.505472

iLR −1.210919 knn −0.497799 knn −0.538565

knn −1.254153 iRF −0.626240 iRF −0.665823

GAM-splines Median 0.079474 iRF 0.048688 iRF 0.184649

Mean – iLR 0.007246 knn 0.153558

iRF −0.336092 Mean – iLR 0.130880

iLR −0.442228 knn −0.126122 Mean –

knn −0.642070 Median −0.267787 Median −0.092878

LR iRF 0.690156 iRF 0.238541 knn 0.375990

iLR 0.253291 iLR 0.156303 iRF 0.306776

knn 0.250128 knn 0.133322 iLR 0.265012

Mean – Mean – Mean –

Median −0.678840 Median −0.494478 Median −0.672530

IGANN Mean – iLR 0.004094 iRF 0.061074

Median −0.322005 Mean – Mean –

iRF −0.354734 iRF −0.091654 iLR −0.042336

iLR −0.473279 knn −0.092008 knn −0.128729

knn −0.619628 Median −0.442074 median −0.465625

EBM Mean – mean – Mean –

Median −0.370593 Median −0.448254 median −0.609137

iRF −1.165603 iLR −0.780038 knn −0.915631

iLR −1.205107 knn −0.862468 iLR −1.116673

knn −1.391871 iRF −0.875292 iRF −1.193140

DT Mean – Mean – Mean –

Median −1.115663 Median −0.430361 knn −0.964964

iLR −1.519647 iRF −0.568668 iRF −1.177052

iRF −1.564441 knn −0.625558 iLR −1.306374

knn −1.719530 iLR −0.694613 median −1.399801
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Fig. 6 Results for the three prediction targets with applied data balancing techniques. Left: random under-
sampling, removingmajority samples until a specific ratioα is reached. Right: SMOTEover-sampling, creating
synthetic minority samples until a specific ratio is reached

Appendix D: Implementation and hyperparameter tuning

We implemented and evaluated all models in Python. The decision tree, random forest as
well as logistic regression are implemented using scikit-learn5 version 1.1.2. XGB is imple-
mented using the open-source implementation from xgboost6 version 1.6.2. GAM-Splines
are implemented using pyGAM7 version 0.8.0. EBM is implemented using the the inter-

5 https://scikit-learn.org/.
6 https://github.com/dmlc/xgboost.
7 https://github.com/dswah/pyGAM.
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Table 10 Grid showing all tested parameter combinations. Note that the best-performing hyperparameters
vary across our tasks

Model Tuning parameters Tuning range

XGB Num. estimators 50, 100, 200, 500, 1000, 2000

Max. depth None, 3, 6, 9, 12

Learning rate 0.01, 0.1, 0.3

Random Forest Num. estimators 50, 100, 200, 500, 1000

Max. depth None, 5, 10, 20, 40

Class weight None, balanced

Logistic Regression Regularization strength 1e−3, 1e−2,..., 1e2, 1e3

Penalty term L1, L2

Solver lbfgs, saga

Class weight None, balanced

Decision Tree Max. depth None, 5, 10, 20, 40

Max. leaf nodes None, 5, 10, 20, 40

Class weight None, balanced

Splitter best, random

EBM Max. bins 256, 512

Outer bags 8, 16

Inner bags 0, 4

GAM-Splines Num. splines 5, 10, 15, 20, 25

Regularization strength Log scale: 10−3 to 104

IGANN ELM scaling parameter 1, 2, 5

Boosting rate 0.025, 0.1

pretML8 package version 0.2.7. IGANN9 can be obtained from GitHub. We applied a grid
searchmethod to systematically explore the hyperparameter space for eachmodel. By testing
different combinations of hyperparameters, we aimed to identify the optimal configuration
for each model to ensure a fair comparison. Table 10 lists our hyperparameter grid.

Appendix E: Comparison of features selected by the automated vs. the
manual approach

We employ two types of feature selection, as discussed in Sect. 3.4. The manually selected
feature set (D11-Man) remains the same across all tasks, while Sequential Forward Feature
Selection (SFFS) finds potentially optimal feature sets (D11-Auto andD14-Auto-Sens) for each
task. Table 11 lists the manually and SFFS-selected features for reproducibility and trans-
parency. The feature names are derived as follows: an abbreviation for the time series from
which the measurements were taken (e.g., MBP = Mean blood pressure), followed by the
specific portion of the time series considered, given as a percentage, including the sign indi-
cating whether the (–) last or (+) first part of the time series is used (e.g., +50% = first 12h,

8 https://github.com/interpretml/interpret.
9 https://github.com/MathiasKraus/igann.
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Table 11 Task-specific features
selected by either the manual
(mean values) or automated
(SFFS) approach

Task Selection method
D11-Man D11-Auto

Mortality GCST+100%mean MBP+100%min

Weight+100%mean OS-10%mean

HR+100%mean RR+50%mean

MBP+100%mean pH+100%std

SBP+100%mean GCST-10%mean

GLU+100%mean Temp+100%mean

RR+100%mean DBP-50%mean

DBP+100%mean GCST+50%std

Temp+100%mean HR-25%max

OS+100%mean GLU-50%min

pH+100%mean Weight-10%min

LOS>3 days GCST+100%mean Ph+50%std

Weight+100%mean GCST+100%std

HR+100%mean DBP-10%min

MBP+100%mean GCST-25%len

SBP+100%mean RR+100%mean

GLU+100%mean GCST-50%mean

RR+100%mean OS+100%min

DBP+100%mean GCST-10%mean

Temp+100%mean pH-25%len

OS+100%mean SBP+100%min

pH+100%mean HR-10%mean

LOS>7 days GCST+100%mean GCST-25%len

Weight+100%mean MBP+100%min

HR+100%mean OS-50%skew

MBP+100%mean GCST+100%std

SBP+100%mean HR-25%max

GLU+100%mean pH-25%len

RR+100%mean GCST-25%mean

DBP+100%mean pH+50%std

Temp+100%mean OS+50%mean

OS+100%mean RR+100%mean

pH+100%mean RR+100%min

-10% = last 2.4h), and an abbreviation indicating which summary statistic (mean, standard
deviation, minimum,maximum, skewness, and number ofmeasurements) is used to calculate
the feature (e.g., len = number of measurements).
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Appendix F: Additional shape plots

This section presents 36 additional shape plots that complement the plots shown in Fig. 4,
displaying the effect of the remaining 9 (out of 14) features on patient mortality risk learned
by the GAMs analyzed in Sect. 4.4. These plots provide a more holistic view of the predictive
behavior of the models, allowing the reader to review a complete basis for the predictions
and gain a better understanding of the overall model behavior.

Appendix G: Consultations withmedical experts

To assess the interpretability and alignment of the shape plots with medical knowledge, we
consult four medical experts and discuss eight sets of questions (Q0-Q7).

During these consultations, we first ask the experts about their medical backgrounds and
experience with ICU patients to establish the context (Q0). We then provide an overview
of our study, explaining the rationale for comparing interpretable and black-box ML mod-
els in ICU decision-making. Next, we delve into the data basis of our study, detailing our
use of the MIMIC-III database. We describe our prediction targets, mortality and length-of-
stay, and outline the process of creating a supervised ML model for this purpose. We seek
opinions on the relevance of ML predictions, their potential integration into ICU workflows,
and associated risks and challenges (Q1). Emphasizing the importance of evaluating ML-
generated medical prognoses, we gather expert assessments of theML system.We then focus
on perceptions of ML-based predictions, specifically trust in opaque ML systems and mea-
sures to increase trust (Q2). Next, we describe interpretable ML models, particularly GAMs,
highlight their transparency and visualization methods. We discuss the process of variable
extraction for learning and predictions, addressing the comprehensibility of shape plots with
questions about their usefulness and clarity (Q3). We analyze specific features to determine
whether the relationships shown are consistent with medical knowledge (Q4). We assess the
suitability of such a prediction model for in-hospital use, considering the comprehensibility
of shape plots, the number of plots required, and the importance of feature interactions (Q5).
We compare different shape plots from various GAMs, looking for preferences and observed
differences (Q6). Finally, we discuss an example of a more complex feature and its shape
plot interpretation, focusing on their implications for prediction (Q7).

All consultations are conducted face-to-face or via video conference and are supported by
a presentation. These sessions are recorded, transcribed, and analyzed for insights regarding
the interpretability and alignment of the shape plots with the experts’ medical knowledge.
Table 12 provides basic information about the experts, including their current positions and
experiencewith intensive care patients. The interested reader can access the translated version
of the presentation used in the consultations.10 It is important to note that these consultations
were not conducted in English, and the statements and presentation were translated for this
paper. Additionally, the consultations did not include a complete analysis of the GAMs but
rather aimed to gauge the initial reactions of medical experts to the shape plots and their
expected value in a practical context.

10 For the translated version of the presentation see doi.org/10.17605/OSF.IO/2WP6F.
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Fig. 7 Effect of 9 (out of 14) features on patient mortality, completing the shape plots presented in Fig. 4.
Models were trained on the manually reduced dataset (D11-Man )
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Table 12 Summary of medical experience

ID Current position Experience with ICU patients

ME1 Resident physician,
internal medicine

- Responsible for ICU patients during transports
- 8 years as paramedic

ME2 Resident surgeon,
pediatric surgery

- Works in neonatal ICU
- Provides intensive surgical care to premature infants
- Daily pediatric ICU care
- 5.5 years as pediatric surgeon at university hospital

ME3 Chief physician at
anesthetic ICU

- Focused on ICU patients for 13 years
- Responsible for 30-bed anesthetic ICU
- 18 years as anesthesiologist

ME4 Physician in private
medical office

- Supervised different ICUs (15 years in total)
- 30 years as anesthesiologist

Appendix H: Direct quotes frommedical experts

In this section, we present some direct quotes from the interviews with the medical experts
that explain how we arrived at our conclusions from the consultations with them. These
quotes allow the reader to get an unfiltered impression from the medical experts’ perspective.

• The different opinions of the medical experts on the applicability of the shape plots of
the different GAM models in the context of intensive care medicine.

ME1: "Well, I mean, this unsteadiness in the [EBM] graph perhaps suggests an accuracy
that is ultimately not there after all. [...] That’s why I wouldn’t mind a flatter, slightly
averaged graph."

ME2: "The important thing is the trend [...] not whether there is a slight reduction in
[...] mortality risk [at a age of] 35 or whatever. [...] as a doctor working clinically at the
bedside of an intensive care unit, I would think, no, I don’t need it."

ME3: "For things like temperature and pH, where I have a relatively narrow range, I
think a more precise representation [refers to the EBM] is perhaps more practical."

• A medical expert’s perplexity regarding the increased mortality probability for patients
with a GCST of 14.

ME1: "I do not quite understand the outlier at 14."

• Comments on the shape plots of blood pressure and temperature.

ME2: "So low blood pressure is always worse than very high blood pressure. Unless you
get complications from high blood pressure, [...] like a cerebral hemorrhage."

ME1: "Especially in the lower temperature ranges, the middle graph [GAM-Splines] has
a peak at about 35 degrees, which I can’t quite work out where it comes from. Yes, as I
said, I already know the one on the left [EBM]. I don’t quite understand why the plateau
is in the lower temperature ranges. From my point of view, I think the one on the right
[IGANN] is the most plausible."

• Quotes on the difficulty of interpreting a shape plot that is based on the standard deviation
of a feature rather than the mean of that feature.
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ME4: "I find that really difficult. Yes, so the first thing that is irritating is that the Glasgow
Coma Scale [...], that you don’t start with 15, but as a clinician you tend to look at whether
it’s 3 or [...] 15, so at first I would think, well, I find that difficult and I would have to ask
again, what do you mean by variability in the variable."

• Ideas on how to explain the negative monotonic trend between an increased variability
of GCST and a lower prediction of mortality risk.

ME1: "The case with a high variability, whichwould be protective, is that a patient comes
to the ICU after an operation, is still ventilated, then perhaps a GCST of three is entered
on admission. And then, of course, [the patient] will be allowed to wake up as quickly
as possible in the next hours. If the condition allows it. Then, of course, he may show a
strong improvement. Of course, this is also a case that occurs frequently in ICUs, i.e.,
several times a day, where patients come in and wake up after an operation. I could just
imagine that this the reason for the system to see this high variability as protective."

ME3: "So the more common case is, of course, that I admit a patient from the OR who
is still under anesthesia, has a GCS of 3, then I wake him up and he has a GCS of 15, so
that’s why the trend is simply more frequent."

• Quotes from medical experts expressing concern about incorporating the learned rela-
tionship between GCST standard deviation and mortality into a potential ICU decision
support system.

ME2: "I find it difficult because it can go both ways. So it could be that you come up
with a scale of 3 and then it’s 15 or the other way around."

ME3: "There is also the case that I admit a patient with a GCS of 15 and now he has a
cerebral hemorrhage and then 3 hours later has a GCS of 3."

• Ethical implications of ICU mortality prediction that emerged during the consultations.

ME3: "There is definitely an ethical component behind this, which is not insignificant
in intensive care medicine [...] what do I do with this percentage [risk of death]? [...]
the algorithm tells me that the patient has a 10% probability of survival [...], what is the
conclusion then? Is the conclusion: he is going to die with a chance of 90% anyway, so
we stop the therapy. Or do we say: He has a 10% chance, so let’s try everything we can,
to improve this 10% perhaps by taking some measures [...] so for the mortality risk, the
doctor providing the therapy is not the ideal target group."

ME4: "So there are situations where you say: is it still worth it? To put it bluntly.
When they’re just totally sick and you say you’ll try anything [...] then you can possibly
prolonging suffer. [describes example case in detail] And right at the beginning, if you
had taken all these parameters into account, you may wouldn’t have had to do that."

• Comments on the importance of integrating interaction terms into predictive models.

ME4: "Physiological systems always interact and the variables are all interdependent.
So there is actually no single variable that is not connected to anything else, and to that
extent, the interaction is important."
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