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Abstract

We solve an expected utility-maximization problem with a Value-at-risk constraint on the ter-
minal portfolio value in an incomplete financial market due to stochastic volatility. To derive
the optimal investment strategy, we use the dynamic programming approach. We demonstrate
that the value function in the constrained problem can be represented as the expected modified
utility function of a vega-neutral financial derivative on the optimal terminal wealth in the
unconstrained utility-maximization problem. Via the same financial derivative, the optimal
wealth and the optimal investment strategy in the constrained problem are linked to the opti-
mal wealth and the optimal investment strategy in the unconstrained problem. In numerical
studies, we substantiate the impact of risk aversion levels and investment horizons on the
optimal investment strategy. We observe a 20% relative difference between the constrained
and unconstrained allocations for average parameters in a low-risk-aversion short-horizon
setting.
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1 Introduction

In the context of incomplete financial markets, this paper establishes the relevance of dynamic
programming techniques for portfolio optimization problems with terminal wealth con-
straints. This development allows us to find the first analytical solution to an expected utility
maximizer in the presence of a Value-at-Risk constraint on the terminal wealth in a stochastic-
volatility environment as per Heston model (see Heston, 1993). This is an important problem
in the banking and insurance sectors; not only there is ample evidence of time-dependent
volatilities in financial markets, see Wiggins (1987) and Taylor (1994), but also financial
institutions have to comply with the minimum capital reserve based on Value-at-Risk (VaR)
required by the Basel Committee on Banking (see Basak and Shapiro, 2001), and similarly
the insurance sector must provide minimum guarantees due to solvency regulations (see
Basak, 1995). These are effective constraints on their operating portfolios (see Boyle and
Tian, 2007).

Our methodology generalizes the pioneering work of Kraft and Steffensen (2013) to
incomplete markets due to stochastic volatility by demonstrating that the optimal wealth
in the constrained optimization problem can be represented as a an infinite sequence of
vega-neutral financial derivatives on the optimal wealth in the respective unconstrained opti-
mization problem with adjusted initial capital. To prove this result, we use a convenient
financial derivative and match the Hamilton-Jacobi-Bellman (HJB) equations under the real-
world probability measure as well as an equivalent-martingale measure (EMM). Importantly,
the link between the optimal terminal wealth in the wealth-constrained portfolio optimization
problem and the optimal terminal wealth in the unconstrained problem was established in
Basak and Shapiro (2001), where the authors considered a complete financial market and
used the martingale approach (see Pliska, 1986; Karatzas et al., 1987). In contrast to Kraft
and Steffensen (2013), Basak and Shapiro (2001) and other related papers, we demonstrate
this link for constrained problems in an incomplete financial market with stochastic volatility.

In the complete market setting of Kraft and Steffensen (2013), the optimal terminal wealth
of the VaR-constrained investor is represented as a portfolio consisting of four positions: a
long position in the optimal portfolio of the unconstrained investor, one long and one short
position in put options with the underlying asset being the optimal unconstrained portfolio
but with different strikes, and a short position in a digital option with the same underlying
asset. The strikes of the financial derivatives and the initial value of the optimal unconstrained
wealth are fixed throughout the whole investment period. An important implication of our
paper is that those quantities are continuously updated in the incomplete market setting. This
result has a certain degree of similarity to the one obtained in El Karoui et al. (2005) and
Kronborg and Steffensen (2015), where the decision maker wants to ensure that the portfolio
value is almost surely larger than or equal to a lower bound at each time of the investment
period, i.e., it is a strict lower-bound constraint that must be dynamically satisfied. The
respective optimal solutions involve American options the number of which is updated and
adapted to the realized risk as time evolves. In our setting, the financial derivatives are of the
European type and their number as well as the design are adapted to ensure the neutrality
of the overall portfolio to the volatility risk. It is an intriguing conjecture that, in the case of
a VaR constraint that must be satisfied at all times, the options needed to always ensure the
dynamic constraint and make the portfolio vega-neutral must be of American type.

In closely related literature, Escobar-Anel (2022) derives the analytical representation of
the optimal investment strategy for a decision maker maximizing his/her expected power
utility of terminal wealth subject to a VaR constraint on the running minimum of the wealth
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process. To achieve this, the author extends the methodology of Kraft and Steffensen (2013)
to path-dependent constraints in a complete Black-Scholes market. Chen et al. (2018) solves
the portfolio optimization problem with a VaR constraint on terminal wealth in a complete
financial market with three assets: a risk-free asset, a stock whose price dynamics follows
the Heston model, and a continuously traded financial derivative that allows the investor to
hedge the variance risk. In their setting of a complete market, the authors apply the martingale
approach. When the market is incomplete, the martingale approach becomes significantly
more difficult even for problems without constraints on the terminal portfolio value, since the
investor cannot hedge any generic contingent claim and there are infinitely many equivalent
martingale measures. Ntambara (2017) addresses portfolio optimization problems with a
constraint limiting the present expected short-fall of terminal wealth in an incomplete finan-
cial market that consists of one risky asset and one money-market account with a stochastic
interest rate following 1-factor or 2-factor Vasicek model. Using the martingale approach,
duality and Malliavin calculus, the researcher derives optimal investment strategies. Accord-
ing to Ntambara (2017), the distribution of a so-called deflator (also known as the pricing
kernel) must be obtained prior to solving the dual optimization problem and a deflator is not
known when a stochastic interest rate is described by the Cox-Ingersoll-Ross (CIR) model.
This aspect motivates us to tackle our wealth-constrained portfolio optimization problem
via a dynamic programming approach in contrast to the martingale approach, since the
stochastic volatility in our incomplete market is also governed by the CIR model. Our work
provides more evidence of the usefulness of Bellman’s principle of optimality for portfolio
optimization problems commonly tackled via the martingale approach.

Our article, Basak and Shapiro (2001), and all references mentioned in the previous para-
graph consider a portfolio optimization problem with a static VaR constraint, i.e., the decision
maker aims to satisfy only at the beginning of the investment horizon the VaR constraint on
the terminal value of the portfolio. In this case, the optimal investment strategy should be
understood as a pre-commitment solution. In contrast, an asset-allocation problem with a
dynamic version of the VaR constraint is studied in Cuoco et al. (2008) under the assumption
of log-normally distributed returns of traded assets. In their setting, the utility-maximizing
investor wants at every time of the investment period to limit the conditional probability of the
portfolio value falling below a predetermined threshold during a small period of time (e.g.,
one trading day) if the investment strategy remained unchanged. The researchers assumption
about the distribution of returns is violated in our setting where the price process of the traded
asset follows the Heston model. Therefore, we could not directly apply the methodology of
Cuoco et al. (2008) for our financial market even if we considered the dynamic VaR constraint
as in Cuoco et al. (2008). We briefly compare their numerical findings with ours at the end
of Section4 below.

Our methodology can be extended in many directions, for instance, to other incomplete
market problems, e.g., stochastic market price of risk, stochastic interest rates, or stochastic
correlations; other terminal or intermediate constraints on wealth like expected shortfall;
or other utilities like HARA or piece-wise concave. Each of these cases would need spe-
cial considerations in terms of matching partial differential equations (PDEs) and terminal
conditions. In other words, each problem requires a special crafting, i.e. an ansatz, of the
financial derivatives permitting the matching of PDEs and, hence, linking constrained and
unconstrained problems.

Closed-form solutions to wealth-constrained optimization problems in incomplete markets
have remained elusive through the years, mainly due to the lack of techniques to tackle the
problem. Next, we highlight relevant sources on utility maximization in incomplete markets
for general constraints. Karatzas et al. (1991) consider an extension of the Black-Scholes
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market where the number of risk drivers is larger than the number of traded stocks, placing
constraints on investment strategies, rather than wealth. Their idea is to complete fictitiously
the financial market. This completion is based on a suitably parameterized family of fictitious
completions, which correspond to exponential local martingales. The “right” completion
should satisfy a certain minimality property. Gundel and Weber (2007) study this approach
for the only optimal terminal wealth but do not derive the corresponding investment strategies.
The explicit representation of the optimal terminal portfolio value is derived via certain worst-
case measures, which can be characterized as minimizers of a dual problem. In parallel, He
and Pearson (1991) apply a martingale approach to solve a continuous-time consumption-
investment problem in a setting with an incomplete market and no-short-selling constraints on
investment strategies. They introduce the notion of minimax local martingale, transforming
the dynamic problem into a static problem. Showing when the minimax local measure exists
and how it is characterized, they derive conditions when the optimization has a solution, then
linking the optimal strategies to the solution of a quasi-linear PDE.

Our paper is organized as follows. Section 2 introduces the problem at hand, a few impor-
tant well-known results, and a first general representation of the main theorem of the paper.
Section 3 focuses on explicitly applying the theorem to the power-utility maximization prob-
lem subject to VaR constraints in a Heston-model-based financial market. Section4 reports
details on the numerical implementation and the most significant results. Conclusions and an
outlook for further research are presented in Section 5. Appendix A contains the results related
to the unconstrained optimization problem. Appendix B provides proofs of theoretical results
for solving the VaR-constrained problem. Appendix C contains the derivation of explicit for-
mulas to calculate the price and the Greeks of a synthetic derivative linking the constrained
optimization problem and the unconstrained one. Additional plots from numerical studies
are provided in Appendix D.

2 Constrained portfolio optimization problem and its solution

We consider an investor maximizing utility from terminal wealth at time 7 with respect to a
continuous and increasing utility (primal) function U. The price process B(¢) of the risk-free
asset evolves according to d B(t) = r B(t)dt, B(0) = 1, and the interest rate r is assumed to
be constant. The price process S(¢) of the risky asset follows Heston’s stochastic volatility
model, introduced in Heston (1993). Its dynamics under the real-world measure [P is given
by the stochastic differential equation (SDE):

ds@ = SO [ (r + ) di + o0 awf 0] @.1)
dv(t) =k (0 — v(0)) dt + o/vO)pdWE () +o/v(t)y1 — p2d W3 (1); (2.2)
with starting values S(0) = so > 0 and v(0) = vg > 0, premium for volatility A > 0, mean-

reversion rate k > 0, long-run mean 6 > 0, volatility of the variance o > 0 and fulfilling

.. 2 .
Feller’s condition k6 > %-. The portfolio value process under the real-world measure P

evolves according to:
X7 (1) = X0 (0) [ (r + 7 ORv©) di + 7 OVoOAWE D], X©O) =x0 >0,

where 7 (¢) denotes the proportion of wealth invested in the stock at time ¢ € [0, T], with
1 — 7 (¢) invested in the cash account, and xg is the initial budget.
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We consider the set of EMMs that have the following Radon-Nikodym derivatives w.r.t.

P:
- T T
% = exp —/X\/TS)dWF(s)—/A”(s)de;P(S)
0 0
1 ; — 2 2
—*/ ((A v(s)) +(A”(s)m> ) ds | .

2
0

where Q(X, AV) denotes a specific EMM, AY(s) is assumed to be dependent on ¢ and
independent of v(s), as per Heston (1993), and it also satisfies the Novikov’s condition:

T
EP | exp 1/(@ v(s))2+()»v(s)m>2) ds | | < +oo.

2
0

To make the notation concise, we will write only A” and Q(A"), since only A" is a degree
of freedom in the choice of the EMM. Moreover, we assume that AV is such that v(z) > 0
V¢t € [0, T]under Q(&, 1Y) (see (2.3) and (2.4) below).

The Heston model under the EMM Q(A") is given by

ds(t) = S(t) [rdt + \/v(t)dWi@(t)] : 2.3)
dv(t) = & (é - v(t)) dt + o o) pdW2(1) + ov/u(t)y/1 — p2dW2(t), 2.4)

where S(0) = 5o > 0, v(0) = vy > 0, dW (1) = —2Jv()dt + dW{@(z), awi () =

Aot +dW2(@), & =k +0hp +or'T— p2, 0 = kb /k.
The wealth process under the EMM Q(A") evolves according to:

AX5OT (1) = X07 (1) [ra’t n n(t)\/v(z)dW]Q(t)] . XYT(0) = xp > 0.

Let U(xg, vo) be the set of all admissible unconstrained investment strategies on [0, T']:

U(xp, vo) := {rr = (rr(t)),e[oyﬂ‘ 7 is progressively measurable, X" (0) = xo,

T
v(0) = vo, f (71'([)X"°‘”(t))2 dt < oo]P’—a.s.}
0

and U(t, x, v) be the set of all admissible unconstrained investment strategies 7 on [z, T],
given that X*7(t) = x, and v(t) = v. Denote by A(xg, vg) C U(xp, vo) the set of
all admissible investment strategies that satisfy at + = 0 a VaR constraint A(xg, v9) =
{mr € U(xg, vo) | P(X*T(T) < K) < &}. As in Basak and Shapiro (2001) and Kraft and
Steffensen (2013), the VaR constraint is static, i.e., it is satisfied only at the initial time t = 0
and may not be satisfied in general at a later time ¢ > 0. Readers interested in a dynamic
version of a risk constraint are referred to Pirvau (2007); Cuoco et al. (2008), where the
authors consider a dynamic VaR of the projected portfolio loss over infinitesimally small
time periods.

Unless otherwise stated, the decision maker maximizes the expected power utility function
Ux)=x"/y,y € (—00,0) U (0, 1), x > 0, evaluated at the terminal wealth X*0-" (T).
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So, the main problem we study is

Ve (0, xo, Vo) = EF U (X" (T))], 2.5
(0, xo, vo) ﬂei{l(%vo) O,xo,vo[ ( ())] 2.5

where we write EM. | [-] := EM [-[X*7 (1) = x, v(t) = v] for M € {P, Q}. Analogously,
we will use the notation M y , (-) ;== M (- | X*7(¢) = x, v(t) = v) for M € {P, Q}.

Since the VaR constraint is static and must be abided by the investor only at t = 0, (2.5)
can be transformed to an equivalent problem using a proper (optimal) Lagrange multiplier
Ae > 0:

V0, x0,v0) = max Eg . [U(X7(D)], (2.6)

€U (x0,v0)

where U (x) = U (x) — Ag (l (x<K)} —8) is a modified utility function. Static VaR constraint
implies that A, is constant and the problem is time consistent, i.e., the Bellman’s principle of
optimality holds. If we imposed a dynamic VaR constraint, i.e., P; , , (X*7(T) < K) < ¢
V(t, x,v) € [0, T] x (0, +00) x (0, +00), then the A, would be a function of (¢, x, v) and the
respective optimization problem would be time inconsistent, i.e., the dynamic programming
approach would not be applicable and a different notion of optimality would be needed, e.g,
see Bjork et al. (2021).
We embed (2.6) into a family of related problems by varying time ¢ € [0, T']:
VE(t, x,v) 1= EF [0 (X¥7(T))]. PC
@ xv)= max B, [U (x*™(D))] (PC)
We denote by " = (7} (¢))e[0,77 the optimal investment strategy for (PC) and by X*(¢) :=
X7 (1), t € [0, T], the corresponding optimal wealth process.
We will solve (PC) using the solution to the following unconstrained optimization problem:
V*(0, yo, vo) := ES o [U (Y207 ()], 2.7
( Yo UO) nellﬁilf())(,vo) 0,y0,v0 [ ( ( ))] ( )
where we denote by Y07 (r),t € [0, T] the respective wealth process to emphasize its
relation to the unconstrained problem. As in the constrained case, we can embed (2.7) into
a family of similar unconstrained, time consistent, problems that start at a different initial
point (¢, y, v) € [0, T] x (0, +00) x (0, +00):

Vi(t,y,v) ;= max EF
( Y ) TeU(t,y,v) ty,v

[U>™(T))]. (PU)

Let ;¥ = (7,f(t)):¢[0,7] be the optimal unconstrained investment strategy and Y*(¢) :=
Y0 (1), t € [0, T], be the optimal unconstrained wealth process (2.7). These objects are
known, since (PU) has been well studied in the literature. In particular, for Heston’s models
whose parameters satisfy the following condition (same as Condition (26) in Kraft (2005)):

y —f[xp A K2

l—yk<a+2><202’ (2.8)

Kraft (2005) solves the unconstrained utility maximization problem using the HIB approach

to derive a candidate solution and then provides a verification result. Kallsen and Muhle-

Karbe (2010) combines the martingale method, the concept of an opportunity process, and

the calculus of semi-martingale characteristics for parameters that may violate Condition
(2.8).

In Appendix A, for completeness, we provide two propositions regarding the uncon-

strained optimization problem. In Proposition A.1 we show the optimal investment strategy,
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the optimal wealth, and the value function in (PU), which is a concise version of the results
obtained in Kraft (2005) adapted to our notation. In Proposition A.2, we derive the character-
istic functions of the logarithm of the unconstrained optimal wealth Z*(¢) := In (Y*(¢)), t €
[0, T], under P and Q(A"). These characteristic functions are needed later for pricing finan-
cial derivatives on the optimal unconstrained wealth and calculating their Greeks with the
help of the inverse Fourier transform.

If Po, x,v0 (YXO’”:(T) < K) < &, then the VaR constraint is non-binding, A} = 0,
m}(t) = m}(t) and XX (1) = YX0.7i (1) ¥t € [0, T]. Therefore, from now on, we assume
that Po, v, (Y"O*”: (T) < K) > ¢ and the investor’s initial capital xo is sufficiently large
to satisfy the VaR constraint on the terminal wealth. The optimal wealth X X075 for the con-
strained problem (PC) will be represented via a to-be-conjectured financial derivative on the

optimal unconstrained wealth Y* and the variance process v. They have the following SDEs
under the EMM Q(A"):

dY*(t) = Y*(t)rdt + Y*(t)7,; (t)y/ v(t)dW;Q(t); (2.9)

dv() =& (6= v) dt + 0 /uOpdWE® + 00O T = p2d W),

Let D(-,-) be a Borel-measurable payoff function! of a financial derivative on Y*
and v. We denote by DY) (g, v, v) the price of such a contingent claim at t € [0, T]
such that DQO‘U)(T, y,v) = D(y,v). At t = 0, this financial derivative should satisfy
the budget constraint and the terminal-wealth constraint, i.e., DQ(’\U)(O, Y0, V9) = Xxo and
P(DX*(T), v(T)) < K|Y*(0) = yp, v(0) = vp) = ¢ respectively.

The PDE for the price of D(Y*(T), v(T))

DU (1, y, vy = O [exp (= (T — 1)) D(Y*(T), v(T))] (2.10)

t,y,v

is known via the Feynman—Kac (FK) theorem:
DF*) = rp% —rypP0Y — i (9 - v) DY @.11)
1 v v v

DT, y,v) = D(y, v).

__ The expected modified utility of the claim that is based on the modified utility function
U() is:

UD’P(t,y, v) :EEM [UDX*(T), v(T)))]. (2.12)
where the optimal wealth process under P comes from Proposition A.1. Due to the FK
theorem, the investor’s expected modified utility (ﬁD’P(t, v, v)) of the contingent claim
satisfies the following PDE:

0=0""+ (r + i) yUf'P +r@—0T>"

1 —D,P —D,P —D,P
+§v|:y2(n:)2Uyy +20p0ym, Uy, +‘72va i|; (2.13)

! The payoff function D(-, -) may have points of discontinuity, but the function must be Borel measurable, so
that we may later apply the Feynman-Kac theorem, see, e.g., Theorem 6.4.1 in Shreve (2004).
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TP (T, y, v) =UD(y, v)). (2.14)

We show now that the wealth of the constrained problem can be represented by the price
DA of a contingent claim on Y* and v, and the value function V° by the expected utility

. . =—DJP . . . .
on the contingent claim U " . The following theorem is our main result. It provides three
conditions under which the PDEs and the terminal conditions associated with V¢ (¢, x, v)

—D,P . . v
and UD’ (t, y, v) coincide, with x = DR (¢, v, ).

Theorem 2.1 (Representation of constrained-problem solution)
Assume that Condition (2.8) holds and that the VaR constraint is feasible in (PC). Let

D), yo, M) and xe be such that Po s, v, (D(Y}’O'”u*(T), w(T)) < K) —catt =0,
D(y, v) is non-decreasing in 'y € (0, 400) for any v > 0 and strictly increasing on a non-
empty open sub-interval of (0, +00), and the following three conditions are satisfied at each
timet € [0, T]:

—D,P v
3 yUyy (t,y,v) _ yD%O‘ )(t, Y, v)

— = — - +1—-y; (2.15)
U'VD’P(t,y, U) Dg(k )(tv J’,U)

—DP v

Uy ty,0) DR, y, )

I =D +b0); 2.16)
Uy (tv Vs U) D)" (t’y’v)
Dg(k”) (t, y,v) =0, 2.17)

where DR s given by (2.10), UD’P is defined in (2.12), Y*(t) = y, v(t) = v. Then the
optimal? terminal portfolio value is:

X5 (T) = DY (T), v(T)) (2.18)

with x = E2,) [exp (—r(T — 1)) D(YY™i(T), v(T))] =D (1, y, v)

and the value function and optimal investment strategy in (PC) at time t € [0, T] are:

Ve (1, x, v) = EF [U (Xx’”j(T)>] —EP [ﬁ(D(Yy»”if(T), v(T)))] T 1,y )

t,X,v t,y,v
(2.19)

)'1)
DY, y, v)

_— 2.20
DU (1, y, v) (220

ENOESNOENE
If p = 0, solely Conditions (2.15) and (2.17) are required.
Proof See Appendix B.

Remarks to Theorem 2.1

1. We do not yet need to impose any condition on A”. Along with the parameters of the payoff
function D, it is an important degree of freedom to ensure Conditions (2.15)—(2.17), as
we will see in the following corollaries.

2 Technically, the optimal terminal portfolio value and the optimal investment strategy are candidates whose
optimality must be verified by a corresponding verification theorem.
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2. Condition (2.15) is the same as in Kraft and Steffensen (2013). Moreover, in the absence
of stochastic volatility, we recover their results for the Black-Scholes market. Recall that
the relative-risk aversion (RRA) coefficient of U (x) = x? /y is 1 — y. Therefore, from an

economic perspective, condition (2.15) means that the RRA coefficient of UD’]P, which is
induced by U, is 1 — y, since D can be interpreted as the value function of a risk-neutral
decision maker with the RRA coefficient of 0.

3. Condition (2.16) conveys a deterministic relation between the ratio of the Greeks vanna
and delta for both the contingent claim value (DR and the expected modified utility

(UD’P). This is similar to the deterministic relation on the ratio of the Greeks gamma
and delta implied by Condition (2.15).
4. Condition (2.17) means that the financial derivative with terminal payoff D has to be

vega-neutral at time ¢ and the value v of the variance process (i.e., %D = aa % 85? =
aD 1 . L. . . .
ENG] ﬁ)' The complexity lies in crafting this payoff function D.

5. If the optimal terminal wealth in the unconstrained problem with initial capital x satis-
fies the VaR constraint, then it is obviously the optimal wealth in the VaR-constrained
optimization problem. In this case, D(y, v) = y, A, = 0 and:

o (2.15) — Uf’lp(t, y,v) = yY"1G4(z, v) for some function G 4 (¢, v), which
holds for V*(¢, y, v) from (A.3);

e (2.16) «— ﬁ?’P(I, y,v) = exp (b(t)v) Gp(t, y) for some function Gp(t, y),
which holds for V¥(z, v, v) from (A.3);
e (2.17) holds;

o (2.19) becomes VF (1, y, v) = U (1, y,v) "E° V' (1, y, v);
* 220) i (1) =y (ﬁ + %b(r)) L=mi.

Next, we provide convenient sufficient conditions to facilitate the applications of Theorem
2.1.

Lemma 2.2 (Sufficient condition for (2.15) and (2.16))
Condition (2.15) is satisfied at time t € [0, T] given Y*(t) = y and v(t) = v, if there
exists a function H (t, v) such that the following sufficient condition holds:

Uy v) = v H@ ) D)1, y,v). (SCO)

Both Condition (2.15) and Condition (2.16) are satisfied at timet € [0, T] givenY*(t) = y
and v(t) = v, if (SCO) holds with H(t, v) = h(t) exp (b(t)v) for some function h(t), i.e.:

Ty 5y, 0) = 3" h()y exp (b)) DI, y, v). (SC)
Proof See Appendix B.

In contrast to the sufficient condition in Kraft and Steffensen (2013), Condition (SC)
has an additional term exp (b(¢)v). As we will see later, h(t) = exp(a(t)) with a(¢) from
Proposition A.1.

3 Detailed application of Theorem 2.1

In solving the VaR-constrained power utility problem in a complete Black-Scholes market,
Kraft and Steffensen (2013) use a contingent claim D55 (-) with the following payoff as seen
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Payoff in case of Black-Scholes market Payoff in case of stochastic volatility
120 — 120
e yd
yd e
100 _— 100 —
80 80
cg 60 % 60
,//l/
40 pd 40 e
y ,/"
20 pd 20
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(a) Example of Payoff (3.1), complete Black-Scholes (b) Example of Payoff (3.2), incomplete stochastic
market volatility market

Fig. 1 Comparison of payoff structures of to-be-conjectured D in complete and incomplete markets

from time ¢ € [0, T]:

X*(T)=Y"(T)+ (K = Y*(T) Lk, <v*(T)<K}
=Y*(T) + (K — Y*(I)) Liy*r)=<k}

— (ke = Y*(T)) Ly=(ry<ke) — (K — ko) Ly=(ry<key =2 DES(Y*(T); ke, 1),
3.1

where 0 < k, < K. The payoff (3.1) is illustrated in Fig. 1a. It consists of a long position of
the optimal unconstrained wealth, a long put option, a short put option with a lower strike,
and a binary put option.

The main result in Kraft and Steffensen (2013) (Theorem 1) and their VaR application (i.e.,
Proposition 2) requires only one condition, their Equation (8), to ensure a successful writing
of the constrained problem in terms of a derivative on the unconstrained optimal wealth (i.e.,
the matching of PDEs). This is the key observation behind their need for only one degree of
freedom, the parameter k. in their choice of contingent claim. However, their condition must
be met at all times r € [0, T']. It turns out that the condition leads to the same constant k.
at all times and for all state variables. In other words, the contingent claim is the same at all
times: DBS(Y*(T); ke, t) = DBS(Y*(T)). This further facilitates the calculation of k, and
helps simplify the contingent claim. This conclusion is also supported by a concavification
argument, as explained by the authors.

In the presence of stochastic volatility, we have to ensure two conditions, namely Equa-
tion (SC) (i.e., a sufficient condition for Equations (2.17) and (2.16)), and Equation (2.15).
Therefore, the payoff structure requires a second degree of freedom, while (3.1) is no longer
viable. Our choice of the payoff a contingent claim at a given time ¢ € [0, T] is presented
next:

XNT) =Y (T) + (K = Y*(D)) Lo <yecny=k) = (Y(T) = ko) Ly <ve(ry<ks)
=Y*(T) + (K — Y*(I)) Liy=1)<k)

— (ko = Y*(I)) Liy*(ty<ky) — (K — ko) Liy=(ry<k) = D (Y*(T)i kev ko, 1) ,
(3.2)

with 0 < k, < k. < K. This payoff has an additional degree of freedom k,, which is
crafted to ensure Condition (2.17) at the corresponding time point ¢ € [0, T'], while &,
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remains to ensure the sufficient condition (SC). In general, for ¢t; € [0, T] and 1, € [0, T]
such that # # 1, the payoffs B(Y*(T); ke, ky, 1) and 5(Y*(T); ke, ky, 1) are differ-
ent. To emphasize this time-dependence while making the notation more concise, we write
D (Y*(T); ket ko) = D (Y*(T); ke, ky, 1), where k., and k,; are the related param-

eters of the contingent claim at time ¢t € [0, T]. Since ]P(Xx‘)*”c*(T) < K) =& &

P (Yyo’”: (T) < ka,O) =g, 5(~; ke 1, ky,r) has enough flexibility to ensure Condition (2.17),
which can be seen as vega neutrality of the financial derivative. This payoff is illustrated in
Fig. 1b.

We show in the proof of Corollary 3.2 that (k. ;, ky ;) must be modified at every time
t € [0, T] to ensure Condition (SC). This means that we deal with a state-dependent payoff.
This is a financial derivative that can be hedged with a self-financing investment strategy and
that has changing payoffs. In other words, we must use an infinite sequence, a continuum, of
contingent claims to match the two conditions at all times. A similar development is needed
in Kraft and Steffensen (2013) to tackle the so-called Expected Shortfall constraint in their
Section 3.3, although the authors do not dwell on it.

Each contingent claim in the above-mentioned continuum of claims has the underlying
asset Y* and a payoff 5(-; ke, ky ) that has the structure of (3.2). Therefore, in order
to apply our main theorem, we need to show that such a continuum of contingent claims
(i.e., with payoffs D ('; ke, kv,t)) can be modeled as a single contingent claim with a non-
state-dependent payoff, denoted by D(Y*(T'), v(T)), as required by our Theorem 2.1. This
connection is presented in the next proposition.

Proposition 3.1 Ler é(Y* (T); k(z, Y*(2), v(2))) be some payoff function of a con-
tingent claim with a state-dependent strike denoted by k(t,Y*(t),v(t)). Let
D@, Y*(@), v(t); k(t, Y*(t), v(t))) be the price process corresponding to this payoff:

D, y*(0), v@); k (1, Y1), v(®))) = EZ, , [G (Y* (D) k (1, Y* (1), v(1)))].

Assume that D is vega neutral at each t € [0, T] and that there is a self-financing investment
strategy that replicates the price process of this financial derivative. Then D canbe  interpreted

as the price process of a single contingent claim with price D(t Y*(1), v(1), k(t)) and a

non-state- dependentpayoﬁ‘G(Y*(T) k(T)) = D(Y*(T), v(T)), suchthatforallt € [0, T]:

D(t, Y*(1), v(0), k(1)) = D(t, Y* (1), v(0); k (. Y*(1), v(D))),
where k can be interpreted as an artificial asset fully explained by (Y*, v).
Proof See Appendix B.

Next, we apply our main theorem, using the sequence of financial derivatives with payoff
(3.2) and Proposition 3.1, and derive a more explicit representation of the solution to (PC).

Corollary 3.2 (Solution to (PC)) Assume that Condition (2.8) holds and that the VaR con-
straint is feasible and binding in (PC). Set A’(t) = —o+/1 — p2b(t), and let D( 4 be the
payoff derived —via Proposition 3.1 —froma continuum ofpayoffs denoted by D( ke, kyt),
of the type given by Equation (3.2). Assume that D( ke.t, ky ) is such that its degrees of
freedom (y,, ky.t, kw) satisfy the system of non-linear equations at time t = 0:

B (30, kv.0, ke.0) := D(0, yo, v0; ky.0, ke.0) = x0;
By N (30, ku.0, ke.0) := Dy(0, 0, v0; kv 0, ke.0) = 0; (NLS0)
hyvar (50, ku,0 ke0) := P (Y*(T) < ke olY*(0) = yo, v(0) = vo) =
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and the system of non-linear equations for each time t € (0, T]:

hg(yr ko ket) = x¢5
hvn(es koes ker) = 0;

f(ZQiﬁ(T)(lnks,t) KY _kw))/,t

y—1 *

y exp(a(t) +b()v, —r(T —1)) (K —ky; =A%

' ( ’ ) fg*(r) (Inke, ;) 14 ¢
(NLS)

for the Lagrange multiplier given by:
Q 14
_ frmUnkeo) KV —k

3=y exp @(0) + b(Oyvy — rT) (K — kyg) “oD——2 20 (33

fg*(T) (In ke 0) Y

Here x; is the realized value of X (t) att € [0, T), v; is the realized value of v(t) at
t €[0,T], fé\g(r)(-) is the conditional density function of Z*(T) := In(Y*(T)) under the
measure M € {P, Q} given Y*(t) = y; and v(t) = v,. Then, the optimal terminal portfolio
value is given by (2.18), the value function is given by (2.19), and the solution to (PC) is
given by (2.20).

Proof See Appendix B.
Remarks to Corollary 3.2

1. The tuple (y,, ky.t, ke, ,) needs to be updated at every ¢ € [0, T] in order to produce the
right strategy. In a Black-Scholes market, Kraft and Steffensen (2013) does not need to
update k. and y.

2. The conditional density functions f%ﬂ 1) (+) can be calculated using the inversion of the
characteristic functions of Z*(T') provided in Proposition A.2.

3. The investor’s value function V¢, the price of the financial derivative DRC) and its
Greeks D;Qw) as well as Di,Q()‘U) can be numerically computed using the Carr-Madan
approach to pricing options. We provide the corresponding formulas for i g (y;, kv 1, ke 1),
hvar(Ves kvt ket), hvn (e, ko ¢y ke r) in Appendix C.

4. AV is the same as the worst-case shadow price in the unconstrained problem that leads to
Y*. As we represent X* as a synthetic financial derivative on Y*, it is not a surprise that
AV appears in the optimal constrained solution too.

Other types of constraints on terminal wealth require problem-specific financial derivatives
D. For example, for an investor with an Expected Shortfall (ES) constraint and a risky
asset driven by the Heston model, we conjecture that the respective D is constructed from
a sequence of financial derivatives whose payoffs are similar to Equation (20) Kraft and
Steffensen (2013) but modified such that the first derivative of their current value w.r.t.
current level of volatility is zero, i.e., they are vega neutral locally. For other constraints and
financial markets, it may be helpful to follow a two-step approach presented next. In the first
step, one shall solve the constrained problem in a complete Black-Scholes market and check
whether the solution can be linked to the unconstrained solution via a financial derivative. If
yes, then in the second step and for the incomplete market, one shall try modifying the payoff
of the previously found financial derivative so that it can locally hedge the source of market
incompleteness. Then the target financial derivative can be obtained by “gluing” a sequence
of those contingent claims from the second step.
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4 Numerical studies

In this section, first, we explain how we choose the model parameters and provide details on
the solution procedure for the system of non-linear equations (NLS). Second, we conduct
sensitivity analysis of the optimal constrained and unconstrained investment strategy w.r.t. key
parameters such as the relative risk aversion (RRA) coefficient and the investment horizon.

4.1 Model parameterization and numerical procedure

We choose the parameters of the Heston model as in Table 4 in Escobar and Gschnaidtner
(2016), the row corresponding to the average case of the table mentioned. There, the authors
provide model parameterization under an EMM. In particular, we set: k = 3.6129, 6 =
0.0291,0 = 0.3, p = —0.4, vy = 0.03. . = 1, r = 3%. Under these parameters, AV =
0.0238, leading to k = 3.5, 6 = 0.03. We set y = —2, which corresponds to the RRA
coefficient of 3, as also considered in Chen et al. (2018). We assume that the investor’s time
horizon is 7 = 3, his/her initial wealth is xo = 100, and the VaR constraint is specified by
K =100 and ¢ = 1% in the base case.

Solving the system of non-linear equations (NLS) requires numerical methods. First, we
need to find AM, BM M e {PP, Q} appearing in the characteristic functions of Z*(T'). As we
mentioned in Remark 2 to Propostion A.2, the ODEs for BM have time-dependent complex-
valued coefficients and are of Riccati type. To compute the solutions to those equations, we
use a Matlab function ode45 that is based on an explicit Runge—Kutta method. We chose
a time grid of 10001 points, which corresponds to a time discretization step of 3 - 1074,
Second, we compute the LHS of (NLS) using the Carr-Madan approach, see Appendix C for
explicit formulas. Regarding dampening factors in this approach, we use 2 for plain vanilla
put options (the 2-nd and 3-rd terms in the financial derivative D) and 0.5 for a digital put
option (the 4-th term in D). Finally, the solution of (NLS) is computed by minimizing the
sum of squared absolute errors, which is done with the help of a Matlab function fmincon
with sequential quadratic programming as the underlying non-linear optimization algorithm.

4.2 Numerical results

In this subsection, we first compute and interpret the optimal constrained investment strategy
in the base case of ¢ = 1%. Second, we conduct a sensitivity analysis of 7 (0) and the
optimal parameters of the synthetic derivative D are with respect to ¢. Third, we examine
the impact of the RRA coefficient and the investment horizon on the optimal constrained
investment strategy.

In the base case, the optimal unconstrained investment strategy at time ¢t = 0 is equal
to 33.71%. The optimal constrained investment strategy at time ¢t = 0 equals 31.72%. The
optimal terminal wealth in the constrained problem equals a financial derivative on the optimal
unconstrained wealth with the following parameters: y(“; =99.5, k:,o = 68.55, k:,o = 87.96.
It means that the optimal terminal wealth in the constrained optimization problem given the
starting value xo = 100 is equal to a financial derivative consisting of:

1. along position in the optimal unconstrained wealth Y*(T') with Y*(0) = y5 = 99.5;

2. along position in one put option on the optimal unconstrained wealth Y*(7T") and with
strike K = 100;

3. ashort position in one put option on Y*(7T") and with strike k’vk’o = 68.55;
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Fig.3 The impact of risk aversion and time horizon on the optimal investment strategies

4. a short position in K — k¥ , = 31.45 digital put options on the optimal unconstrained
wealth Y*(T') and with strike k;:k,o = 87.96.

Next, we analyze the impact of . Denote by ¢, := P (Yx'”:(T) < K) ~ 12% the prob-
ability that the optimal terminal unconstrained portfolio value is below K. Consider Fig.2,
which consists of two subfigures. In Fig. 2, we see that for increasing ¢ the optimal con-
strained investment strategy becomes closer to the unconstrained one. This is intuitive, since
the closer ¢ is to ¢, the more the optimal constrained investment strategy should resemble
the optimal unconstrained one. As Fig. 2b indicates, the larger ¢ < ¢, the larger the optimal
initial capital of the underlying of the financial derivative D (the optimal unconstrained port-
folio) and the higher the thresholds k. and k,. This is consistent with our previous finding
that ¢ closer to ¢, leads to the optimal constrained investment becoming the unconstrained
one. The same holds for the optimal terminal wealth, since increasing k. and k, mean that the
optimal payoff of the derivative D is closer to the identity function (cf. Remark to Theorem
2.1).

Next, we investigate in Fig. 3 the influence of the investor’s risk aversion and time horizon
on the optimal investment strategies. In Fig. 3a, we see that both constrained and uncon-
strained investment strategies are decreasing in the RRA coefficient 1 — y. The difference
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between these strategies shrinks as the investor becomes more risk averse, going from a
relative difference of approximately 14% (7} (0) = 44% and =,f (0) = 50% for an RRA of
2) to a relative difference of 0% (7 (0) = 7.} (0) = 20% for an RRA of 2).

In Fig. 3b, we see that the optimal constrained strategy is increasing in the investment
horizon and is approaching the unconstrained one. A constrained decision maker with a 1-
year investment horizon will allocate approximately 28% of his/her money to the risky asset,
while an unconstrained investor would allocate almost 33.7% to the risky asset, which means
a relative difference of approximately 20%. However, over a longer period of time, e.g., 5
years, the investor allocates more money to the risky asset while still ensuring the desired
VaR constraint, i.e., he/she invests 33% of the money in S. For T = 10, the probability that
the optimal terminal unconstrained wealth is smaller than K = 100 is around 1%, which
is why the optimal unconstrained strategy and the optimal constrained strategy for ¢ = 1%
almost coincide.

We also studied the impact of p, as well as the simultaneous decrease of the parameters
o and «k on the optimal constrained investment strategy. These last two parameters can be
considered as a measure for the magnitude of the market incompleteness, since their joint
decrease would eliminate the stochastic volatility. The impact of the parameters is very sim-
ilar between constrained and unconstrained solutions; e.g., correlation decreases allocations
almost with the same slope, while the joint decrease of k, o causes similar decreasing effects
in allocation (sightly more pronounced on constrained allocations); this is why we did not
report the figures here. In Appendix D of supplementary materials, we provide such plots
under the parameterization of the model that corresponds to a more turbulent market and a
less risk-averse investor. In that case, the described sensitivity effects are more pronounced,
and the differences between constrained and unconstrained strategies are larger.

Finally, we provide a brief comparison of our numerical results and those of Cuoco et al.
(2008) for an agent with CRRA and a dynamic VaR constraint with a constant VaR limit. Note
that in their setting the dynamic VaR constraint means that at each ¢ € [0, T'] the conditional
probability of a portfolio loss below a fixed VaR limit over a short period of time ([z, ¢ + 7]
for a small > 0) is close to zero under the assumption that the investment strategy remains
unchanged. As per Cuoco et al. (2008), the economic agent with a dynamic VaR constraint
never invests more in risky assets than a VaR-unconstrained agent does. In our paper, as also
mentioned in Basak and Shapiro (2001), an agent with a static VaR constraint may invest
at + > O riskier than an agent without a VaR constraint, since the constraint is evaluated
only at + = 0. According to Cuoco et al. (2008), an agent with a dynamic VaR constraint
may not follow an optimal VaR-unconstrained strategy at ¢+ = 0 even if this unconstrained
strategy satisfies the constraint at # = 0. In our problem formulation, the agent will always
invest according to the optimal unconstrained strategy if this strategy satisfies the static VaR
constraint at t = 0. In that regard, our setting has the same peculiarities of the static VaR
constraint as those in Basak and Shapiro (2001).

5 Conclusion

In this paper, we solve a VaR-constrained utility maximization problem under the Hes-
ton model via dynamic programming. Our methodology extends the methodology of
Kraft and Steffensen (2013) from a complete market to an incomplete market; hence, it
opens the door to studying other types of terminal wealth constraints, e.g., expected shortfall,
or incomplete market setting, e.g., stochastic interest rates, stochastic price of risk.
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The key idea is to link the solution of the constrained optimization problem with the
solution to the unconstrained one via a synthetic derivative. For the VaR-constrained problem,
this derivative is based on plain-vanilla put options and a digital put option, whose strikes must
be determined numerically and adjusted dynamically. In numerical studies, we find that, for
investors with low risk aversion and short investment horizons, the relative difference between
optimal constrained and unconstrained allocations could be substantial, e.g., 20% for normal
market parameters.

Appendix A Results on unconstrained problem

Proposition A.1 Assume that Condition (2.8) is satisfied. Then the optimal investment strategy
for (PU) is given by:

AV opVH * o
= T b () (A1)
XV -y " 1-»

(1) =—

with ko = (y2)/(1 = ), ki = k — (hop)/(1 = y), ks = 0% + (yo2pD)/(1 — y),
k3 = ,/k% — kok> and

exp (k3(T —1)) — 1

b(t) = ko . (A.2)
exp (k3(T — 1)) (k1 + k3) — k1 + k3
The value function is given by
yY
V(¢ y,v) = > exp(a(t) + b(t)v) (A.3)
where b(t) is defined by (A.2) and
26 2k L+ ka) (T —t
a(t) = yr(T =)+ =—1n sexp (5 (ki + k)T — 1) .
k> 2k3 + (ki + k3) (exp (k3(T — 1)) — 1)
The optimal wealth Y* has the following dynamics under P:
A b()\ —
dy*(1) = Y*(r)[(r + ( L )> Av(t))dt
l—y 1-y
(A.4)

+ (lfy + ‘jpf(;)) \/v(t)dW{P(t)], Y*(0) =y > 0.

Proof of Proposition A.1 For the readability of this proof, we denote V := V*. We face a two-
dimensional control problem (PU) with state process (Y, v) and consider the HIB equation:

1 — 1
0=V, + Eazvvw + k(@ —v)Vy +max { y(r + TAv)Vy + Enzyzvvyy +TYyovpVyy
p )

g(m)
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and boundary condition V(T', y, v) = % Eliminating max results in a first-order condition
for m:
o _vaVy :—yav,ovyv _ _XVy +opVyy 5 vy op Vi (AS)
Y uVyy YVyy YWy YVyy
under the assumption that Vy, < 0. Substituting the expression for 7r;; back into the HIB
equation leads to the following non-linear PDE for the value function.

1 Ay + 0 pVyy —
0=V + f(rzvvvv + k(@ —V)Vy +yrV, — y"ipwxvvy
2 YVyy

1 (AVy +0opVy)? AVy +opVy
*%ﬁvm A Tk LTINSV
2 Y Viy YVyy

— 2
i 1 (W, + opV

=V 6OV, + 3V + 0 | 202V — KV, — LAYy +opVn)" ) (A.6)
2 2 Viy

To find the solution, we use the separation ansatz
yY
V(t,y,v) = —h(t,v), h(T,v) =1.
Y

In this case, 7, (t) = ﬁ + lafphf We substitute the ansatz into the HIB equation and

y
conclude that:

Y 2
1y (h + ophy) ) A7)

1
0=h; +Kkbhy +yrh+v (202;1,“, —xhy+ 5 Tk

The structure implies that A (z, v) is exponentially affine:
h(t,v) =exp(a(z(t)) + b(z(t))v) =: h,

with time horizon 7 () = T — ¢ and, therefore, using boundary condition 2(T,z) =1 Vz,
we get:
a(0) =a(t(T)) =0,b0) =b(z(T)) =0.

Using this structure of /(¢, v) and rearranging to emphasize the linearity in v, we obtain the
following:

1 2p%h
0= —d'(t)h + b(0)kOh + yrh + v[ — W (@h+b20) [ =o2n + LT
2 2(1 —vy)
- =2
roph A h
o) | —en+ X222 L Y ]
-y 20—y
Cancelling & out leads to Riccati equations for a and b:
a'(t) = k0b(t) + yr; (A.8)
1 22 by 1 yx
o)==+ 72 V2 @) — [k = 222 oy 4+ = P2
2 1—y 1—y 21—y
~— S———
ky ki ko
1 5 1
= Ekzb(f) —kib(z) + Eko; (A9)
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and boundary conditions a(0) = 0, b(0) = 0 with constants kg, k1, k> that have to satisfy
k% —koka > 0. Then according to Kraft (2005); Kallsen and Muhle-Karbe (2010) the solution
is given by:

1
a(t) = yrr + 2% 1 2k exp (5 k1 +k)7) (A.10)
ko 2k + (k1 + k3) (exp (k3T) — 1)
b(t) = ko exp (k1) — 1 (A.11)

exp (k3t) (ki1 + k3) — ki + k3

with k3 =,/ k% — koka . For the system to be well-defined, we have to check whether our

constants fulfill k% — koka > 0. Therefore, we formulate the following requirement on the
parameters:
2 2
[y Y_ 2522 Y3242 Y 72522

k2—k0k2=/c2—2/c rlop + g p — — ap
: l—y (1—7)? -y (1-9)?

o 2 202

_ _ _ N 2
=x2_ Y )»0(2/(,0+)»0)>0¢>L)\ Q—l—f <K—
-y -y

which is exactly what Kraft (2005) requires in their Equation (26). Note that the ansatz
satisfies the assumption V), < 0 as for y < 1 we have (y — 1) y”_zh(t, v) <O0.
—— ————

<0 >0

Proposition A.2 The logarithm of the unconstrained optimal wealth has characteristic
functions of the form:

¢ DMt z,0) = EL | [exp(iuz*(T))]
= exp (AM(T —tu) + BT — 1, v + iuz) :
where M € {P, Q} and AM and BM satisfy ordinary differential equations (ODEs):
1 2
0= —B?(r, u) + (7" (t)opiu — k) B¥(t,u) + 502 (B]P(‘L', u))

- % (7*(0)” (u® + iu) + 7* (D) kiu; (A.12)
0=—A%, u) + riu + k6 B (z, u).

and

0= =82 + (" opin ~#) B + 507 (B8 ) = 5 () (i + )

0=—A%, w) + riu + 6Bz, u).
(A.13)
respectively, where t :=T —t.

Proof of Proposition A.2 Applying Itd’s lemma to the wealth process Y* and the logarithmic
function, we obtain the dynamics of Z* under the measure PP

dzZ*(t) = (r + (n;(t)X - % (7 (t))2> v(t)) dt + (1) v(t) dWT (1);
dv(1) =k (0 — v(0)dt 4+ opy/v(t) AW (1) + opy/v(1)y/1 — p2 dW5 (1).
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To make the notation within the proof concise, we write 77 *(¢) for . (). According to the
Feynman-Kac theorem, the characteristic function satisfies the following relations under [P:

% DP (et 7, 0) = E?z,v [exp(iuZ*(T))]:
* _ 1 N
0= ¢IZ (T),P +(r + (n*(t)k _ 5(719«(1‘))2> U)¢ZZ (T),P
« 1 i
1@ =gl T+ S )P DF

+ ﬂ*(t)voquzzv*(T)'P + %UzvqvaU*(T)’P;
¢Z*(T)’P(u; T,z,v) =exp(iuz).
Using the ansatz for the characteristic function:
6% TP (4t 2. v) = exp (AP(T — 1)+ BE(T — 1, v + iuz) :

changing the variable t = T — t, substituting and grouping under IP,we receive
- 1
0=—A%, u) — BE(r,u)v + <r + <n*(r)k -5 (n*(r))z) v) iu+x©® —v)BY (1, u)
1 1 2
—5 (71*(‘5))2 vu? + 7 (t)vopiuBT (T, u) + 5021) (BP(‘L', u))

and, thus,

P % . P 1 2 P 2

0=—B, (t,u) + (7" (v)opiu — ) B (t,u) + 30 (B (z, u))

1 _
-5 (n*(r))2 (u2 +iu) + ¥ (v)hiu;
0=—AP(t,u) + riu + k6 BE (z, u).

Analogously, we obtain the dynamics of Z* under the measure Q(A"), writing Q for short:
1
dz*(t) = (r -3 (n;(t))2 v(t)) dr + 7 (1) v(t) dW{@(r);
dv(t) = & (é - v(t)) dr + opo() dW2(t) + oo/ T — p2dW2(),

with @ =k +0Ap +0r'/1 — p2 and 6 = k6 /i . These parameters may be time-dependent
due to AV.
Again using Feynman-Kac theorem and the ansatz

¢Z*(T)’Q(u; t,z,V) = exp (AQ(T —t,u)+ BQ(T —t,u)v + iuz) s
we obtain

0= —A(T@(‘C, u) — BP(‘L’, u)v + <r — % (ﬂ*(‘r))2 v) iu —|—E(§ — v)BQ(r, u)

1 1 2
—5 (n*(‘r))2 v + ¥ (t)vopiuB(z, u) + Eazv (BQ(‘L', u)) .
Hence:

0= —B(I@(T, u)+ (7 (t)opiu — E) Bz, u)—l—%a2 (BQ(‘L', u))2 — % (71*(1:))2 (u2 + iu) ;
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0=—A%, u) + riu + k6 BU(z, u).

Remark to Proposition A.2. The characteristic functions of In (Y*(¢)) have the same
structural form as the characteristic functions of In (§(¢)). The latter function is known in
closed form. The ODEs for BF and B2 are of Riccati type, as in the case of the characteristic
functions of In (S*(T)). However, here, the coefficients of the Riccati ODEs for BY and BQ@
are time-dependent. Therefore, we solve them numerically. The analytical derivation of the
solutions to these ODE:s is beyond the scope of this paper.

Appendix B Proofs of main results

Proof of Theorem 2.1 Our proof is based on the fact that two functions are equal if they satisfy
the same PDEs with the same terminal conditions. In the following, we:

1. use the dynamic programming approach to derive the HIB PDE of V°(z, x, ¢), simplify
it under the assumption that V< (¢, x, v) < 0 and get the optimal investment strategy 7 *
in terms of the (to be found) function V°(¢, x, v);

2. consider the PDE of ﬁD’P(I, v, v) obtained via the Feynman-Kac (FK) theorem and
change of variables from (7, y, v) to (7, x, v) viax = DR*) (¢, y v),ie., Ve(r, x, v) :=
UD'P(I, (D(@(”))_1 (t, x, v), v) is our ansatz for the value function in the constrained
optimization problem;

3. simplify the PDE from Step 2 using the assumption (2.17) that D?(t, y,v) = 0 and
using the PDE of DQ (t, y, v) obtained via the FK theorem

4. show that the resulting PDE in Step 3 coincides with the PDE of V°(z, x, ¢):

(a) for case p = 0 if Condition (2.15) holds;
(b) for case p # 0 if both Conditions (2.15), (2.16) hold;

5. show that the terminal conditions in the PDEs from Step 1 and Step 4 coincide and that
Vi, (t, x,v) < 0, which implies that V°(¢, x, v) solves the HIB PDE of V°(z, x, ¢) and
enables the calculation of 7 from Step 1.

To make the derivations in this theorem more readable, we omit the arguments of the
functions V°(¢, x, v), DQW)(I, v, v), FD’P(I, y, v). We also omit the parameter AV of the
EMM Q(\"Y).

Step 1. HJB PDE of V. Similarly to the unconstrained Problem (PU), we face a two-
dimensional control problem with state process (X, v) and consider the HIB PDE:

1 — 1
0=V + fozvvgv + k(@ —v)V + max {x(r + TAv) VS + En'zxzvV;X + wxovpVy,

2
(B.1)
and the boundary condition V¢(T, x, v) = U (x). Eliminating max results in a first-order
condition for : _ _
ot = _xAVY ;— xccrv,ov;'v _ At c:,ov;‘v (B.2)
x=vV§, xV§,

under the assumption that V¢, < 0. Analogously to (A.6), we substitute the expression for
7} back into the HIB PDE (B.1) and get the following PDE for the value function V°:

1 1 VS +opVE,)?
VE + xrVE 4 kOVE + v (202v5v — KV — ZW) ~0; (B.3)
XX
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VE(T, x,v) =U (x). (B.4)

Steps 2-4. PDE of U" ¥ anda change of variables. Recall from (2.13) and (2.14) that
. —D,P . .
the FK representation of U™ is given by:

0=T" + (r +770) U,

Tk -nT) "
1 —D,P —D,P —D,P
+§u[y2(n;)zufy + 200y Uy +0Ty, ]
—D.,P —
U (T,y,v)=U(D(y,v)).
We change variables as follows:
t=t, x=DY, y,v), v=o. (B.5)

This change of variables leads to an equivalent PDEYV (¢, y, v) € [0, T]x (0, +00) x (0, +00),
since:

dr Jt Ot
51 AN
oo i = p2 D2 DY = DY £0 V(t.y,v) €[0.T] x (0. +00) x (0, +00)
w0 0
tr dy ov

under the assumption of D(¢, y, v) being non-decreasing in y € (0, +00) with a strictly
increasing part for any ¢t € [0, T], v € (0, +00). The condition above is needed to ensure
that the change of variables (¢, x,v) < (t,y, v) is bijective, which is necessary for the
equivalence of the respective PDEs on the whole domain.

Using the ansatz

Ty, v) = V¢t D, y, v). v), (B.6)
we compute the corresponding derivatives that appear in the PDE of UD’P:
TP = V¢ + D2,

=Dy,

—Vep® 4 v 2D P,
B.7)

yy’
- A A 2.17) A

= V5,02 + VD% 1 V¢, pODE %27 P p2 4 VD

. . Ao o 2 217 ¢ e
=205, DY + VDT, + V5, + V5, (p2) 2 Vel + v,

yv?

o)t
Th
oo = Ve (DY + V¢ DY
u’
vk

. L. . —D,P . .
Next we substitute these derivatives into the PDEof U~ , also use the PDE for D;@ to simplify
the equation, and then we cancel out terms and insert the assumption D, Y, V) = X.

2.13
0@

—D,P —D.P —D.P I »—pP —DP — ,—DP
U’ +yrU," +x6U, +v<502Uw — kU, +yrm, U,
1 —D,P —D,P
+§y2(”;)2U.vy +opym, Uy, )
EDYe 1 DeDR 4+ yrieDD 4 .0VC + o] 202 (PEDY + %, ) — V¢ 4+ yTmi D DY
- t+x t+yrx y+K v+v 20 X vv+ Vv Kv+yﬂux y
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1 . ) . .
+ 5320? (VDD + VDY) + opymy (V5,07 + ViDF, ) ]

1 e I
RV VoV v(2 206, — VS + yam Ve DY
1 \ .
+ EyQ(n;ﬂ (vfx(Dg)Z) +opym) (VﬁvD9)>
i) A ~ n 1 R R 1 X]}L \}c 2
DPe 4 2 De 4 k0D + v | 2o2Pe, —pe - SOV T oV
2 2 vy

1S +GpVCU)2)

A 1 A
(A vpE 4+ o, (D) + opympi,pf 4 5 P
XX

C

c c )2
where in (i) we added and subtracted the term —v % Wg}#).

We show now that under Conditions (2.15) and (2.16), the term C is zero. Expanding the
brackets in the last term of C we get:

,_
/\
AL I s
N—"
[S)

N 1 ~ 2
C =R VDY + 23> (1) Vs, (D?) +opyn;V, DY + 5 .

A \2
e, 1, (%)
702102#.

+rop—=—2 +
Ve

XX 2 V;X
Using (B.7), we obtain:
D,P DP _Q DP_Q
V€ = y \')c _ Uyy Dy - Uy D}')’
Q * Txx 0 3
y (Dy )
(B.8)
DP Q DP _Q
f}c _L(ﬁD!P_f}c‘DQ)_ va Dy _Uy Dyv
xv — DQ yv x~yv Q 2
y (2F)
Inserting these expressions in C, we get:
7P P yQ 7D P S0 Q Q
- _x77D.P 1 2 27yy Dy _Uy D)’y *Uy D U Dyv
C=yArU," + =y“(n)) +opym
u-y 2 u D;Q u D;(}Q
=D.P\?2 0 —D,P
+1X2 <Uy ) Dy +XO’,0UDPU\U DQ U D;QU
2 Ty -7 pd U DY -7 DY
—D.P .Q +DP_ Q)2
tlo22 (U” by — Uy Dy”)
—a%p
2 Q (77P-PHQ _ 7P.P 50
i (U, D} -1 pf)
—D,P Q —D,P Q
= 437DP 1 5 L o—DP Uyy Dy, x77D.P va Dy,
=y, Uy + Sy (m)°U —55 — —o | toeym U, | =55 —
uy 2 u’ “y U;),IP D@yQ uy U;),IP va@
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—D,P —D,P 2
D,P <U«V“ — Dg) ( W D@L)
=DF Q =DP Q
—l—liz Yy —i—Xa,OUDP Yy D + l02 2 PP Y% i
2 UDE’ D@ y UD']P DQ 2 y UD']P D
yw_ o Dyy vy _ Dyy w_ _ Py
[ [ [
Denoting
D,P Q D,P Q
Uy}' D)’Y va Dy“
A= —DP — m and B = m — DQ ,
Uy y Uy y
we get:

—pp [ - 15 .o 1ol - B 1 ,,B?
cC=U, (y)»n;+§y (n:)A+apyn:B+§k X+kopg+iapj . (B.9)

If p = 0, the term B disappears (i.e., no condition on B is required) and (B.9) becomes:

—DP ([ — 1, ) 21\
C=U, (ykn:—kay(n:)A—kikA =0

I—y

- 2 Al !
o ympay’ L0 &8 AL — .

i.e., Condition (2.15) of this theorem. Thus, we conclude that V¢ satisfies the PDE (B.3).
If p # 0, we insert A = —FTV into (B.9) and get:

prf — . 1 1—y Lo
c=U, (ym; + Eyz(n;‘)2 <_T) +opymiB + Sk (——

l—y
_ 1
+R0pB (——2— ) + 2020282 [ - ——
1—y 2 1—y

—D,P

U _ 1 _ _
(A:'“lyiyy (m +opb(t) - 50+ opb(1)? + o p(n + o pb(t) B

1o - 1 5o
— A" —XlopB — = B
2 opTTRop

—D,P
y

S 1o — 1 -
_ 1y (xz 4 hopb(t) — Exz — Ropb(t) — 5(o,ob(z))2 + ophB + (6p)*b(t)B
-y

Il = I 5 am
— -2 —XopB— = B
2 apTTRop

Uy (1 1

= ——(opb(1))> + (0p)*b(t)B — =% p*B?
-y \ 2 2
—D,P
U,y o2p?

=—2 ——— (b@t) - B)?.
11—y 2

Hence, if p # 0, A = —I_Ty and B = b(t), i.e., Conditions (2.15) and (2.16) hold, then

C = 0. Thus, we conclude that V¢ satisfies PDE (B.3).
Step 5. Concluding the value function and the optimal investment strategy.
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Having shown that V¢ satisfies the HIB PDE of V¢ for any p € [—1, 1], we now show
that V¢ satisfies the terminal condition of the HIB PDE of V°¢:

(B6) 5 @.14) = 2.10)

Ve, DUT, y, v), v) (T, y,v) U(DYUT, y,v)),

i.e., (B.4) holds with x = D (T, y, v).
Next, we prove that V¢ satisfies the assumption of concavity in x. Observe that:

U(D(y,v))

~ (BS)U "D - U D%DeﬁA

‘. o5

-3 __
(D?) AT, DY

(B.10)
@15 (o) 2 1—vy D,P
(59)° (150"
W_\_,
>0 <0

since y > 0, ¥ < 1,and D(-, v) is assumed to be non-decreasing on (0, +00) with a strictly

increasing part. If ﬁf’P > 0, then f/;x < 0.
Take any y > 0 and Ay > 0. Obviously, for any w € <2 the following holds:

Yo (Dlyswy=y+ay > Yo (T)lyz)=y-
Denote by (d,d) C (0, +00) the sub-interval where D(-, v) is strictly increasing. Denote

Sy) = [w € QYT e DY) = y}. Then, according to (2.1) and (2.2),

P(S(y)) > 0Vy > 0. The function U(D(y, v)) = U(D(y, v)) — re(L{D(y,v)<Kk} — €) 18
strictly increasing in y because U (-) is strictly increasing, A, > 0, and 1{p(y,y)<k) 1S a non-
increasing function as a superposition o (S (y; v)) of anon-increasing function @ (x) = 1<k
and a non-decreasing function S(y; v) = D(y, v). Using these properties and the linearity

. . —D,P . . . R
of the expectation operator, we obtain that U™ " is strictly increasing in y as follows:

Ty Ay v =EF o, [TO@T), o(T))]
=E/yray., [U@T (D), oM Ls+an]
+ By paye [TDET), o(T)) Liaysr+ay)]
> By, [UDET), v(T))Lisy+ay)]
+ ]E, v UMD, v (M) Li\s(y+ay)]

—EF, [T, o] =T . y.v)

So ﬁD’P is strictly increasing in y. Therefore, ﬁf’P > 0, and via (B.10) we obtain
f/fx <0.

Since V¢ satisfies the PDE of V¢, the corresponding terminal condition, and )A/)f . <0, we
conclude that it is a candidate for the value function in the constrained optimization problem.
Thus, we can now calculate the candidate for the optimal investment strategy. Plugging

Q
v, sy Uye DY -7, 70§, (p§)’ B
s
Ve, (09) U FpY UD D%, T A

DO — _yb(t) pQ
Dy 1—y Y
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and f/; as well as f/)fx from (B.8) into (B.2), we obtain the optimal control in the constrained
portfolio optimization problem:

nry = 205 Vs _ VR DY yop DY D)
¢ x]A/ﬁx x{/fx 1—y D@ L—vy DQ ! DT’

Remark The above proof uses D(-, -) to ensure a matching of the terminal condition and
the necessary Conditions (2.15)—(2.17). The choice of AV is crucial to ensure the Conditions
(2.15)—(2.17).

ProofofLemma2.2 11U, " = y*~'H (1, v) DY, then:

—D,P —_ —
Uy DY _(y=DH®DH' 2+ HewDRy ™ DY 1-y
" p? H(t,v)DYyr-1 DY y

y
i.e., Condition (2.15) holds.

If H(t, v) = h(t) exp(b(t)v), where H (¢, v) does not depend on y, then we also have the
following:

—D,P _ _
Uy DR _b0DFy ' H(t,v) + DRy’ "' H@v) DYy _ bo
u?t DY DYyr=1H(t, v) DY

y

i.e., both Conditions (2.15) and (2.16) are satisfied.

Proof of Proposition 3.1 Without loss of generality, we assume that »r = 0 and consider the
following model under an EMM Q:

dA() = A)oa)y/u(t)dW T,
dv(t) =R (1) (00) = v(®)) dr + o,/ 0D dW,

where Wg@ = pWi@ +1 = p? W;Q, A = (A(t)):e0,1] is the price process of a generic asset,
and o4 (1), kK (1), 0 () are deterministic functions of time, whose argument we drop in the rest
of this proof to make notation easier.

Consider a generic contingent claim with value:

Ct, A), v(1): k) = EX [G (A(T), )]

where k is assumed to be a scalar parameter for simplicity (e.g., strike an of an option), but it
could be a vector of parameters (e.g., strikes of multiple options constituting the contingent
claim C).

By the FK theorem, the price process C of a contingent claim with a fixed k satisfies the
following PDE and terminal condition:

_ 1 1
C+7 (9 - v) Cu+ 504A™0C i + pOAGLAVCay + 300C0 = O

C(T,A,v:k) =G (A, k).

If we roll over this contingent claim C, it creates a new product that can be interpreted as
a continuum of financial derivatives. This product has the following price at t € [0, T']:

D(t, A1), v(0): k (1, A1), v()) = ER [G (A(T), k (1, AG), v(1))] .
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where k (z, A, v) is now seen as a functiqg of (¢, A, v), and it is assumed to be such that D
is attainable, i.e., the financial derivative D can be hedged by a self-financing portfolio. This
means:

dD(t, A(t), v(t); k (t, A(D), v(1))) A(t)
= =7 (1, A1), v(t))i
D(t, A(t), v(1); k (1, A(1), v(2))) A(r)

=7 (t, A, v(D)) A(oavodWE  (B.11)

for some function 7 (¢, A, v). To make notation less cumbersome, we omit time when
referring to a process at time 7.
Applying Itd’s lemma to D(¢, A, v; k (t, A, v)), we get:

dD(t, A, v k (¢, A, v))

~ ~ 1 —~ ~ ~ ~
= (Dt + Dk + EAz(riv (Daa + 2D axka + Drik3 + DkkAA)) dt

o~ o~ s 1 - ~ ~ ~
+ ((Dv + Deky) & (6= v) + 5000 (Dow + 2Duiks + Duak; + Dkkvv)> dr
+ (poyoaAv (5UA + Dyika + Diaky + Dickaky + 5kkvA)) dt

+ (Da + Dika) Aoas/vdW2 + (D, + Dik,) 0y /vd W2,
(B.12)
Matching the SDEs (B.11) and (B.12), we must ensure that the terms related to dt, dWi@

and d Wé@ are equal. The equality of diffusion terms d WiQ and d Wé@ implies that:
57‘[ (t, A, v) AO'AI = (5,4 + BkkA) AUA\/B — 57‘[ (t,A,v) = 5,4 + 5kkA§
o D
(Dy + Diky) 0yi/v = 0 <= ky = —5—”.
k

The previous equation is a condition on strike k due to the incompleteness of the financial
market. Since our rolling derivative is constructed to be vega neutral at all r € [0, T'], we
naturally have 51; + Bkku =0.

The equality of the drift terms and the terminal conditions implies:

—~ —~ 1 —~ —~ —~ —~
(Dt + Dik; + §A20ﬁv (Daa +2Darks + Dkkkf; + DkkAA)> +

- mga 1 - _ - -
((Dv + Deky) & (6= ) + 5000 (Dou + 2Duiky + Duak; + Dkkvv)> +

(pGUGAAU (511/1 + 5vkkA + ﬁkAkv + ﬁkkkAkU + Bkkv,q)) =0;
D(T, A, vik(t, A,v) = G (A, k (1, A, v)).

We can rewrite the previous PDE in the following way:

_ /s 1 1 -
D; + <k, + kyk (9 — v) + EAzaivaA + Eavzvtkw + ,oa,,aAAvkvA> Dy

2 04
+ (63 A% + poyoa Aky) Dk + (povoa Aka + 02ky) VD

1 _
+( o3 AN + cr 2k 4 poyoa Akaky ) vDyx

~ 1 ~ ~ ~ 1 ~
+poyoaAvDys + EG‘%AQUDAA + K (0 - U) D, + EO'UZUDUU =0.
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This is a FK formula for the price of a financial derivative with three underlying assets
(A(), v(t), k(t)), one of which is perfectly correlated to the others:

dA(1) = A@)oayv@)d W,
dv(t) =k (5 - v(t)) dr + JUMdWé@;

- _ 1
AR () = (k, + kR (9 - u(t)) + 0Rv(Dkas
+%03(AU»2UUMMU+J%%UAAUﬁWﬂhm>C”

+oaka A o) dWE + 6,k /(1) d WL,

Therefore, D can be interpreted as a single financial derivative D on three underlying
assets:

D(t, A, v,k) = ]EQ[ G (A(T), k(T))]=E9[6(A(T),k(r,A,v))]=13(r,A,v;k(r,A,v)).

In this derivative, D (t, A, v, k), the process k is an explicit function of time, asset
price, and variance, that is, Z(t) = k (¢, A(t), v(t)). Therefore, D (t, A, v, %) can be inter-
p:eted as QQ (t, A, v), i.e., the financial derivative invoked in Theorem 2.1, and the payoff
G (A(T), k(T)) can be seen as G (A(T), v(T)) for an implied function G.

D (1, A, v,k) =EZ[G (A1), K(T))] = EZ [G (AT), o(T)] = D (1, A, v) .
Now we apply FK theorem again and get:

1
EaﬁAzD% + poAavAvDQ + 20U vDQ =0;

DUT, A, 1) =G (A,v).

Dl +# (0 -v) D2+

These calculations indicate that a rolling-over contingent claim with a changing payoff
G (A(T), k (¢, A, v)) can be interpreted as a single financial derivative with a new pay-
off G (A(T), v(T)). In other words, the financial derivative from Theorem 2.1 with payoff
D(A(T),v(T)) = G(A(T),v(T)) can be constructed from a continuum of derivatives
with payoffs 5(A(T), k(t, A, v)) = 6(A(T), k(t, A, v)) as prescribed in Corollary 3.2,
where A(t) = Y*(r) and k(t, A(t), v(1)) = (ke(t, Y*(2), (1)), ko, Y*(2), v()))| =:
(ke ko), 1 €10, T].

Proof of Corollary 3.2 Here we prove that for the Heston model and power-utility function
there exist D and A" such that the VaR constraint is satisfied at # = 0 and Conditions (2.15),
(2.16) and (2.17) hold for all ¢ € [0, T]. Then we apply Theorem 2.1 to derive the optimal
solution to (PC) and provide more explicit formulas for computing the optimal solution and
the value function.

Recall that D can be constructed, thanks to Proposition 3.1, via a continuum of derivatives
D depending only on the unconstrained optimal wealth process Y* and with time-changing
(state-dependent) strike prices k¢, k,. Therefore, we show that at each ¢ € [0, T'], the degrees
of freedom k. and k, of the payoff 5(-; ke, ky) ensure the conditions necessary for the
application of Theorem 2.1. For convenience, we state here the related payoff structure as
per (3.2) and suppress the hat in Do simplify the notation:

D(Y*(1)) = Y*(T) + (K = Y"(D)) L, <y=my<k} — (Y*(T) — ko) L, <y=(1) <k}
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with 0 < k, < k., < K. Therefore, we can rewrite D as follows:

D(y) = y+ (K —y) lyy<ky — (K =) Ljy<ry) + kv — ) Iiy<kyy — ko — ¥) Tiy<ky)
= y+ (K —y) Liy<kxy — ke = ¥) Liy<k,) — (K — ke) Ly<ky)
=: D1(y) + D2(y) — D3(y) — D4(y)

Observe that:

{(yeR:D(y) <K}={yeR:y+ (K —y) lj=y<k} + kv — ) L. =y<k) < K}
={yeR:y <k}

We can also rewrite ﬁD () := U(D(y)) as follows:
UMDG)) = UDO) = (Iipp<k) = ¢)
1
; (y + (K - y) 1{y<K} - (kv - Y) 1{y<kv} - (K - kv) 1{y<kg})y

—Ael{y<k,) + Aee

SR (K" = y") Liy=<xy — . (kY = ") y<k,)
y y — )/ v v
1
_; ((Ky - k,’j) Ly ko) + V)Lal{y<ks}) +Aee

—D —D —D —D
= U M+Uy () —Us )= Uy () +Aee
The proof contains three Parts.

Part 1. First, we show that Conditions (2.15) and (2.16) hold. By Lemma 2.2, it is sufficient
to show that (SC) holds: US’P =y~ 1h@) exp (b(t)v) D;Q. This involves checking
three cases, as the second and third terms are structurally the same, whereas the fifth
term is independent of y:

Term 1 D; and UlD,

Terms 2 and 3 D, and Uf , D3 and U? . This involves writing the sufficient condition in
terms of expectations leading to a new representation (ESC Put), then proving
the equality via four steps:

Step 1 use FK theorem to derive the PDE of LHS of (ESC Put);

Step 2 use FK theorem to derive the PDE of expectation term in the RHS of (ESC
Put);

Step 3 show that the terminal value of the LHS is equal to the value of the RHS, i.e.,
check that the terminal conditions of the corresponding PDEs are equal;

Step 4 show that RHS of (ESC Put) solves the PDE for LHS of
(ESC Put).

Term 4 D4 and U4D

Part 2. Addressing Condition (2.17)
Part 3. Addressing the VaR constraint and applying Theorem 2.1

We write fori € {1, 2, 3, 4}:

T,y v) =B, [Uf) (Y*(T))] :

DDz, y,v) = IE%!U [exp (=r(T — 1)) D; (Y*(T))] .
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Part 1. Term 1. For the first term of the modified utility function and the related (first) piece
of the financial derivative on the optimal unconstrained wealth, we can check the sufficient
condition (SC) by explicitly calculating its LHS and RHS.

In LHS, U(l) is the optimum of the objective function in (PU), which is known due to
Proposition A.1:

U(l) = % exp(a(®) +b(t)v) = U;l) = y)’_1 exp(a(t) + b(t)v).

Regarding RHS, D (y) = y and exp(—rt)Y™*(¢) is a martingale under any EMM Q. Thus,

DY =y = D;l) = 1 and we conclude that for any p € [—1, 1] and any Q the following
holds: —0)
U," = y" "expa(t) + b(t)v) - 1 = " exp (a(1)) exp (b(t)v) DV.
—_———

=h(t)

Part 1. Terms 2 and 3. We show now that the same relation holds for the second and third
terms of the modified utility function, i.e., the utility of a put option on the unconstrained opti-
mal wealth is linked to a price under the suitable Q(A") of a put option on the unconstrained
optimal wealth. For simplicity of presentation, we will write QQ instead of Q(A?).

Recall that the expected values can be computed via the inverse Fourier transform:

Ei\fﬂz,u [g (Z*(T))] = /g (x) <$ / exp (—iux) ¢Z DMy, 2, v)du) dx
- i//g(x)exp(—iu(x — )+ AM(T — 1, )
2w
+BM(T —t, u)v) dudx,

where ¢Z*(T) ‘M is the characteristic function of Z under the measure M € {P, Q} given in
Proposition A.2.
Changing variables, Z*(T) = In (Y*(T)), z = x — Iny, and using the inverse Fourier
Transform of Z*(T'), we obtain Vi € {1, 2, 3, 4}:
770 P D
0" =g, [07 o))
— 1 *
= / UiD(exp (x)) (2— / exp (—iux) ¢Z (T)’P(u; t,Iny, v)du) dx
T
1 —D . P P
= o U, (exp (x)) exp(—zu x—Iny)+A" (T —t,u)+ B (T —1t, u)v)du dx

1 _
= o / / T} (vexp (2)) exp (—iuz + A¥(T —t,u) + BY(T —1, u)v) dudsz

(B.13)
DY = exp (—r(T — ) ES, , [D;(Y*(T))]
_exp(—r(T —1))
27
: f / D; (yexp (z)) exp (—iuz + AT — 1, u)+ BYUT 1, u)v) du dz.
(B.14)
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For ﬁzD(y) = % (KY —y¥) 1{y<ky with K > 0 a given parameter, we receive, using
(B.13):

—2
U( ) = 27_[ Y f/ —eXP(V(Z+1ny))) 1[z<1nK—lny}
- exp (—iuz + AP(T —t,u)+ BP(T -, u)v) dudz
1 K7

I ” / / Liz<inK—Iny) exp(—iuz + AP(T —t,u)+ BP(T —t, u)v)dudz

_E;// {z<In K—Iny}

~exp<y Iny+yz—iuz+ AP(T —t,u)+ BP(T —t, u)v)dudz

| In(K/y) +o0
K
= / / exp (—iuz—i—A]P(T—t,u)—i—BP(T —t,u)v) dudz
2 y
—00 —00
11 In(K /y) +o0
3 / y”exp(yz—iuz—i—AP(T—t,u)—i—BP(T—t,u)v)dudz
Ty
—00 —00

Next we state the Leibniz integral rule (LIR), as we will use it several times. For
g(a, x), (o), m(c) continuously differentiable functions it holds:

m(a)

0
e / gla, x)dx | = gla, m(@))m'(a) — g(a, l{a)!'(a)
()
m(a)
ad
+ —g(a,x) | dx
oo
(@)
Taking the derivative of U(z) yields:
5 /1 KV In(K'/y) +o0
[ exp (—iuz—i—AP(T—t,u)—i—BP(T—t,u)v) dudz
Y ay\2r ¥
-0 —0
=:81(y,2)
In(K/y) +o0
ad 1 . P P
B yVexp(yzfluz+A (T—t,u)+ B (Tft,u)v)dudz
ay\ 2w y
—00 —00
=:82(y,2)
In(K/y)
LR) 1 KV 1 . dc 9
= g1(y,In(K/y) | —— ) — lim {gi(y,0) — |+ —81(y,2)dz
2 1% y cl—oo ay ay
— -0 ——
=0 =0
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In(K/y)

11 1 ) dc 0
- **(gz(y,ln (K/y) (—*> — lim (gz(y,c') 7)4_ / *gz(y,Z)dz>
2y y cl—o0 ay ay
— —o0
=0
1 KV'1 . P P
= exp(—mln(K/y)—i—A (T—t,uy+ B (T—t,u)v)du
2t y vy
—0oQ
11 +00
+——y! / exp (y In (K /y) —iuln (K/y) + A¥(T —t,u) + BE(T -1, u)v) du
27y
—00
- In(K/y) +o0
- —— / / vy’ Lexp <)/z—iuz+AP(T—t,u)+BP(T—t,u)v)dudz
2m y

| In(K/y) 400
- 27% / / Yy’ Lexp (yz—iuz-i—A]p(T—t,u)-l—B]p(T—t,u)v)dudz
v 4
—0Q —00

yy_l . P P
= //1{Z<]HK,]H},}exp(yz—zuz+A (T —t,u)y+ B (T—t,u)v)dudz,

where in (a) we used exp (y In(K /y)) = ’y(—yy

. . —2
Next we reconstruct the stochastic representation of U (y ):

—1
—@) x=24ln(y) Y’
Uy = _7//1{x<1n1<}

-exp(y(x —In(y)) — iu(x —In(y)) + A¥(T — 1, u) + BY(T —1, u)v)dudx

—yIn=In(y7) y’~ly7 ! .
= T (x<In K} €Xp (YX — iux)

- eXp(iu In(y) + AP(T — 1, u) + BY(T —1, u)v)dudx

1 *
= _y—l / 1{x<an} exp (yx) <E / exp (—iux) ¢Z (T),P(u; t, In(y), U)dbt) dx

density of Z*(T) evaluated atx
=y "E¥ [exp (y Z* (1)) Liz+(1)<in k)| Z* () = In(y), v(1) = v]
Z*(t):=In(Y*(¢ _
OO _ SRR [y (1) L=y <) [YH(0) = y, (1) = v] .
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Applying the previous result for y = 1 under the measure Q instead of IP, we receive the
following expression for D> (x) = (K — y) l{y<k} with K > 0 a given parameter:

p® = —expr@-1) [ [ Daiyexp @
2w
exp (—iuz +AYT —1,u) + BYUT -1, u)u) dudz

= —y 7 EQ [exp (—r (T — 1)) YX(T) )<k} |V * (1) = y, v(1) = v]

Therefore, proving Condition (SC) for the second and the third terms of the auxiliary
utility function is equivalent to proving the following condition:

—y TP [(YH(D)) L)<y [Y*(0) = y, v(t) = v] = 3"~ exp(a(t) + b(t)v) (—y~")
-EQ [exp (—r(T — ) Y*(D) 1 y+(ry<x)|Y* (1) = y, (1) = 0],

which, in turn, is equivalent to the following one:

By (YD) Ly <i]

=:gP(t,y,v)

, (ESC Put)
=y Lexp(a(t) + b(O) EY, , [exp (= (T — ) Y* (D) Liy+ry<k) ]

=:g0(t,y.v)

ESC stands for equivalent sufficient condition.
We prove now (ESC Put) via four steps.
Part 1. Terms 2 and 3. Step 1. FK PDE for LHS of (ESC Put)
Recall that under the measure P we have:

dY*(1) = Y*(1) [(r + (DA (r)) dt + n:(t)\/v(t)dW}P(t)] ;
dv(t) =k (0 — v(1)) dt + opy/v(t) dWT (1) 4 o/v(t)y/1 — p2d W (1);

with 75 (1) = & + 2220,

1-y 1-y
Then EP Y*(M)Y lyyrry<k) | = gP(t, v, v) has the following FK representation:
1,y,v {Y*(T)<K}

_ 1 5
0=gl +y0r+ Jr,j‘(t))»v)glyP> +x0—v)gh+ Evy2 () g%

1
+ Evazgfv + ,oayvn;‘(t)glypv;

yyl{y<K} = g]P(T, v, v).

Part 1. Terms 2 and 3. Step 2. FK PDE for (Q-expectation in RHS of (ESC Put)
Recall that under the measure (Q we have:

dY*(t) = Y*()rdt + Y ()7} (1) v(t)dWi@(t);

dv(t) = @ (é - v(t)) dt + oo (O)pdWE(t) + o /o)y T — p2d W2 ().

Then E2 [exp (—r(T — 1)) Y*(T) Liy+(r)<k}|Y*(t) = y, v(t) = v] = gUT, y,v) has
the following FK representation:

L (= 1 2
0= g;Q —rg@ —|—yrg;Q + i (0 — v) gi(,l) + Evy2 (i) g;%
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1,
+ 0 gi% + payvﬂ;(t)g%;

Yl<ky = gUT, y, v).

Part 1. Terms 2 and 3. Step 3. Equality of terminal conditions
Consider the ansatz gF(r,y,v) =y’ lexpla(t) + b()v)g@,y,v) with
a(T) = b(T) = 0. Then:
5T, y,v) =y Ljy<ky = V' ' yly<k) = ¥y ljy<ky exp(@(T) + b(T)v)
="~ exp(a(T) + b(T))g™(T, y, v),
i.e., the LHS and RHS coincide at time t = T.
Part 1. Terms 2 and 3. Step 4. Verifying gP(t, y,v) = yV‘1 exp(a(t)+b(t)v)g@(t, v, V)

via PDEs
Let us calculate the necessary partial derivatives of g, which appear in its FK PDE:

a
o =5 (7 expa® + b1 y.v)
=y L exp(a(t) + b(1)) (' (1) + b/ (1)v) g°
+ " Lexpa(t) + b(1) g2
— -1 ! ! Q 2
=y expta() + b)) (@ @ + 5 (00) ¢ + 57)
gy = exp(a(t) + b)) (v = Dy 22+ 7'?)
=" Zexpa(®) + bow) ((r — Vg + yg2);

gf =y (a @) 0O 0 | expiatr) + b(r)v)g?)

v v

— v~ Lexp(a(t) + b()v) (b(t)gQ + g?) ;

9 9 _ .
gy = 3y () = exptat + by (0 =Dy 2%+ y71g?)

= exp(a(t) + b(t)v)
~ ((y ) ((y —2)y" g%+ yy_zg;Q) + ((7/ - 1)y”‘2g;Q) + yy‘lg%)

¥ expla(®) + bow) (7 = D = 2% +2(r — Dyg? +%¢3)
0 a
g =5 (8) = 5 (7" expla) + bwyw) (b01g% + ¢2))

=371 (exp(a® + bOIb) (b11g® + ) + explatt) + bnw) (b1)g? +3))

= 7V exp(a(t) + b(t)v) ((b(t))2 ¢Q 4 2b(1)g® + gi%)
9 9
=7, (&) = 5, (7 et + 60w (b1 + 57))

= exp(a(n) +b®v) (v = Dy 2 (b0g% +¢7) +37 7 (b0)g? +23))

=y ?exp(a(t) + b(t)v) ((y —Db)g% + (v — g + yb(1)g? + yg3,
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We plug those partial derivatives in the LHS PDE, i.e., FK PDE of g%, and get:
0= 37" exp(a(t) +b®) (') + ' (1)v) 8 + )
+y( + 7 OR0)Y 2 exp@( + bow) (7 = Dg® + yg?)
10— v) " exp(a(n) + b(ow) (b1g? + )
+ %vy2 ()" ¥ expla(t) + b(1)v)
: ((y — Dy —2g%+2(y — Dyg2 +y g%)
+ %vazy“1 exp(a() +bow) ((b1)? g% +26()g? + ¢ )
+ poyvr )y’ expla(t) + b(1)v)
(= DbOg2 + (7 = DT + yb(1)g? + y8F)

Since Vy > 0, v > 0, we have yV_] exp(a(t) + b(t)v) > 0 and can divide by this term
both sides of the PDE:

0= (a'(®) + ') g%+ g + ¢ + w30 (v — Dg? + yg?)
+10—v) (b0)g? +g2)
Ly () 1 2 2y — 1
+5v (o) ((y — Dy —2g%+2(y — Dygd+y gyy)
1
+ 5007 (0?7 + 2610 + 83
+ povri) (7 = Db + (v = gl + 3b()g? + y83 ).
where we underlined terms related to the g@ PDE. Collecting these terms, we get:

0= (a'®)+ ') g%+ ryg®+mr 0w (v = Dg? + vg?)
+ (0 —v)b)g?

1

+ 50 () (7 = Dy =282 +2(/ = Dye?)
lvo ((b(t)) + 2b(z)g?)

+ povmi ) (v = Db@® + (v = Dg? + yb(1)g?)

1 1
+ [gQ — gl rygl + 00 —v) gt + v (m )% y%¢2 + Sl + pavﬂj‘(t)yg%-|-

Next we use the link between the variance process parameters under the different measures
according to (2.4):

K(@—v)gké—/( (g)K9—<K—O‘)»p—O‘)\,U\/1—p2)v
:;Z(é—v)—i—cripv—i—o)\“\/l — p2v,
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where (i) refers to 6 = Ok /i, (ii) refers to & = k + oAp + oA¥/1 — p2. Taking this as
well as PDE of gQ into account, we get:

0= (a0 +5'0w) g2 +ryg® + 7 kv ((r — g+ yg;@)
+ k(0 —v)b(1)gY

1
+5v (@)’ ((y - Dy —2g% +2(r — 1)yg;@>

1
+ v’ ((b(t))2 9+ 2b(r)g9)
+povmy ) (7 = Db + (v = Dg? +yb(1)g})
+ oapvgd + o1V 1 — p2ugd.

Using the ODEs for a(t), b(t) from (A.8) (A.9) and the relation T = T —t, we conclude
that:

a'(t) = —k6b(t) — yr;

2.2 T 72
b0 = —1<02+ %)bz(wr (x a Gp)b( -2

2 1 21—y’

Plugging the representation of a’(¢) and b’ (¢) in the key relation we want to prove, we get:

0:(—K9b(t)—yr+v~<—1<a X ’O)(b(r)) +( ”‘”’)b()—k))g(@
2 11—y 1

+rygd + (i ((y - 1g%+ yg?)
+& (0 —v) b(1)g?

1
+ 50 (o) (0 = Do =282 +20 = Dygy)

1
+ 5v0% ((60) 82+ 2b(0))
+ povr(r) <(y —Db1)g% + (v — g2 + yb(t)g?))

+oapvg? + o1'V/1 — p2vgQ.

Next we indicate terms to be cancelled out directly and plug in the representation of 77" () =

X opb(t) .
I—y + 1—y

— -2
A 1 yx
=<—&%€ff—)ﬁ“+v‘<— (/Jr)/ o )(b(r)) +</ )1/_0:/7>b(t)—213’_y>)g<@
A opb(t) \ - Q Q
+W@+(1—y+ 1—)’)%((]/_1)‘? +e5)
K (f = #) b(n)g?
! ( T opb)
1

(it 1_y> (0 = Do =282 +2(r - Dyg?)

o? (P g + 2618
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1—y 1

+ ax,ovggP +oA'V/1— p%g?.

+ pov (A + Upfg?) ((y — Db1g% + (r — De? + yb(t)gf9>

Y _ 1 y=t 1 w=Hy=2 1
Next, we use that = =1 l—y’ = = 1, =) (1= =1+ = expand several

brackets with multiple summation terms, and move y, v to the beginning of the corresponding
product where they appear:

o (- Y o222+ (1 - )% L) 2) 0
0=v (2<1 l_y)op(b(t))—i—(l I_V)Aopb(t)—i—Z(l 1_y>)»>g

—v (A +0pb(1)) 282 +vyi(l — y) ™ (A + 0pb(1)) g2

2
+v02b(1)gL — vop (k4 opb(1)) b(1)g?
—vop (k+opb(1) 82 + vyop(l — y) ™" (X + opb(1)) b(t)g
+ vXa,og;Q + ok”mvgg.
Q

The above equality is true for any y > 0, v > 0 if the the terms next to vgQ, vgi)Q, vygy
are 0.

Coefficient next to ng

Collecting all terms next to vg@ yields:

1 1 _
+vs (1 + ﬁ) (A +00b(0)" 8%+ vy(y = 7! (L + opb(0))” g2

1

S M Sk
O==-({1——)o°p (b(t)) + Ao pb(t)
- J/ -y

( ) A — (A +opb(0)x

( ) (x+ opb(1))’ = op (% + opb(t)) b(t)

/_\m- m
ﬁ

)ozpz(b(t)) + (1 - ﬁ) Aopb(1)
( ! ))\. —k — Aopb(t)

*3
% (1 + ) /\ + 2o pb(t) + (apb(l))z) — hopb(1) — a2 p>(b(1))>.

We show that the above equality is true by showing that the coefficients next to (b(1))?,
b()! and b(¢)? are all equal to 0.
For the coefficient next to (b(r))% we obtain:

1 1 1 1
(1= — 2.2 | - 2.2 2.2
2< 1—V>Up+2<+1—y>ap 7P
1 1 1 1
2 2
= i = - -1)=
”(2 -y 2Ty )
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For the coefficient next to (b(¢))! we obtain:

1 — — 1 1 — _
l——— ) dop—rop+ - |1+ ——)2%op — Aop
2 1—y

_ 1 1
:A0p<1—7—1+(1+7)—1):0.
-y -y
For the coefficient next to (b(¢))° we obtain:

1 1 \= — 1 1\ =

(- — )P (1 — )%

2 11—y 2 1—y
L1 11 1+1+1 L\ _,
- 2 21—y 2 21—y)

Hence, the coefficient next to vg? is 0, i.e. vg@ vanishes in the relation we are proving.

Coefficient next to vygf\;Q The coefficient next to vy g;Q is equal to:

21— (4 oob®) + (v = D7 (E 4 00b(®) + 0p(1 — 1) (% + b)) b(1)
— (1) ( (h+ opb(1)) — (* + opb(t))” + opb(t) (% + a,ob(z)))

= (1= (6 +00b0) = (- 0pb(0)7) =

Hence, the coefficient next to vygg;Q is 0, i.e., vyg? vanishes in the relation we are proving.

Coefficient next to ng The coefficient next to vgijQ is equal to:
o2b(t) — op (A +0pb(1)) + hop + A'oy/1 — p?
=02b(t) — oph — 2 pb(t) + Aop + Ao/ 1 — p2

=b(t)o* (1 — p?) + 170 y/1 — p?

The coefficient next to vgi,Q is equal to zero if \Y = —o+/1 — p2b(¢t). This is equivalent

to picking a convenient change of measure on the variance process.
So for AV = —a+/1 — p2b(t) (ESC Put) holds also for the 2nd and 3rd piece of the
modified utility function:
0 P 1 1% * 14
513,,),,,} " (KY = (Y*(D))") Lyy=1)<k)
ad
- aE%’v [exp(—r (T — 1) (K — Y*(T)) 1iy=(ry<k;]
-y Lexp(a(t) + b(t)v) VK >0,y <1
Part 1. Term 4. i.e. binary option
Now we derive the relationship between A, y, k. and k,, which ensures that the last
piece of the modified utility function also satisfies the same (SC), in particular ﬁy =

¥~ Lexp (a(t) + b(1)v) DY,
For U4(y) = % (KV — kK + ykg) L{y<k,} in (B.13) we get:

*(4)
27_[ Y f/ - kl))/ + ]/As) 1{z<lnk£—lny}
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1302
- exp (—iuz + AP(T —t,u)+ B]P(T —t, u)v) dudz
LKV — i ) In(ke /y) 00
= §++Vs / / exp (—iuz—i—AP(T—t,u)—l—BP(T—t,u)v) dudz
—00 —00
=:8(y.2)
wr) 1 KV — ki + 7k
T 2n Y
In(ks/y)
1 . ac ad
g0, Intke/yN | —— ) — lim {g(y,0) — |+ —8(y,2)dz
y cl—o0 ay ay
S~~~ —00  S———
=0 =0
g VKV =kl +yk 1
Ty y o2
+00
: / exp (—iu (Ink; —Iny) + AP(T —t,u) + BE(T -1, u)v) du
—00
LKV =k +yhe 1
Ty y o2
+00
. / exp (—iu Inke) exp (iulny + AP(T — 1, u) + BY(T —1, u)v) du
—00
So:
VKY =K +yhe 1 [
U(y4) = w77 tyke 1 f exp (—iulnk8)¢z*(T)’P(u; t,In(y), v)du
y y 2
—00
=fpu ) (Inke)

1KY —k§ +yA
N, Jrank).

where fZP*(T) denotes the P-density of Z*(T) = In(Y*(T)).
Applying the previous result for y = 1, A, = 0 and working under the measure Q instead
of IP, we get for D4(y) = (K — ky) 1{y<x,) in (B.14) the following:
@ _ 1
D = 7 SXP (=r(T —1)) (K —ke) 1z<ink.—n y)

cexp (—iuz + AUT — ) + BT —1, u)v) dudz

1
—5 (K =k exp (=r(T = 1) f7 ke,
where fg‘(T) denotes the Q-density of Z*(T) = In(Y*(T)).
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Hence, the condition equivalent to (SC) in the context of the fourth piece is given by:

KY — ki + vy
f//jmfg*(r)(ln ke) L vy~ Lexp (a(t) + b(t)v) (ESC Binary)
y 14

f/y/j (K —ky) - exp (=1 (T = 1)) f 32 ) (Inke)

KY — kI +vA b
TR Ve pE k) = v exp (a(t) + b()w) (K — k)

cexp (—r (T = 1) f7 ) (Inke)

Condition (ESC Binary) is satisfied if the following relationship among A., y, k. and k,
holds:

[ nk) Ky — i
fg*(T) (Inkg) 14
(B.15)

So by Lemma 2.2, both (2.15) and (2.16) in Theorem 2.1 are satisfied at an arbitrary but
fixed ¢ € [0, T], when Condition (SC) holds at ¢ € [0, T]. In Part 1 of this proof, we have
shown that for an arbitrary but fixed ¢ € [0, T], ensuring Condition (SC) is equivalent to
ensuring ﬁfvl) = yV_1 exp (a(t) + b(t)v) D§,i) Vi € {1,2, 3,4} for the constructed D. As
we have also shown, these four equalities are satisfied when AY(t) = —o4/1 — p2b(t) and
(B.15) hold, imposing a specific relationship among A, k¢, k, and y at ¢ € [0, T]. The
optimal Lagrange multiplier is determined at r = 0 via

e = y" " Lexp (a(t) + b(t)v) (K — ky) exp (—r(T — 1))

f(ZQi«(T) (In ka,O) _ KY — kl))/,O
fg*(r) (1n ké‘,O) 14

A= yg_l exp (a(0) + b(0)vo — rT) (K — ky,0)

B

and imposes the relationship among the degrees of freedom &, ;, k, ; and y; ateacht € [0, T'].
Part 2. At any t € [0, T], Condition (2.17) is satisfied due to the assumption that
(V1 kv.1» ke.r) solves the vega-neutrality equation in (NLS), namely

Ry N ity kot ke) := D(t, Y1, vi; kyt ke) = 0.

Note that for any ¢ € (0, T] the system (NLS) has three variables and three equations. The
same applies to the system (NLSO) at r = 0.

Part 3. As argued in Parts 1 and 2, Conditions (2.15) — (2.17) are satisfied, at ¢t = 0, the
second equation in (NLSO) ensures that the VaR constraint is satisfied:

hvar (Y0, kv,0. ke,0) :=P (Y*(T) < ke,0lY*(0) = y0, v(0) = vg) = &.
Thus, we can apply Theorem 2.1 for A” = —o'y/1 — p2b(t) and conclude that

XOT(T) = D(Y™(T)) with

x = DU (1, y, v) = EX) [exp (—r (T = 1)) D(Yy’”;(T))] :

VE(t, x,v) = UD'P(I, ¥y, v);

Dg(t, y,v)

ﬂ:(f) :ni(f)'y'm,
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where D is the derivative constructed via a continuum of contingent claims with payoffs
D(-; ky t, ke 1), as allowed by Proposition 3.1.

Appendix C Explicit formulas for the left-hand side of (NLS)

In this section of the appendix, we provide representations of the equations in (NLS) in the
spirit of Carr and Madan (1999).

Budget equation. First, we provide a formula for the price of a plain-vanilla put option.
Second, we derive the formula for the price of a digital put option. Afterwards, we will provide
the formula for the LHS of the budget equation, which combines the formulas obtained in
the previous two steps.

Put option. Take any ap > 1 and any strike K > 0. Denote k = In (K). Analogously to
Equation (3.50) in Fabrice (2013), pages 82—-83, we can get:

Put(k) := Put(Y*(T), K) = E2, , [exp (—r(T — 1) (K — Y*(T))+]
_exp (ak)

/g

+00

—r(T —t¢ —iuk "

./Real e;‘p( T = D)exp (ZIUR)_ 2.0, 4 (p — 1)is 1,1ny, v) | du.
ap —ap —u?+iu(l —2ap)

0
(C.1)

Digital put option. Let K > 0 be an arbitrary but fixed strike of a digital put option with
the nominal payment of 1 monetary unit. Denote k¥ = In (K). Then the price of such a digital
put option is given by:

DigPut(k) := Dig Put(Y*(T), K) = E2, , [exp (—r(T — 1)) Ly+(r)<K)]

2 RO [exp (—r(T = 0) izery<i)| 27 (1) = n (y) , v(r) = v]
=exp(—r(T — 1) Q(Z*(T) < k|Z*(t) =In(y), v(t) = v)

k
=exp (=r(T —1)) / f%m(z) dz. (C2)

Take any aopp > 0 and consider the following dampened price of a digital put option:
Dig Put“rP) (k) = exp (—appk) Dig Put (k). (C.3)

Then the Fourier transform of Dig Put“PP) (k) is given by:

+00
¢DigPut(°'D”)(k)= /exp(iuk) Dig Put“p?) (k) dk

—o0

+00
‘@ fexp(iuk)eXP(—aDPk) Dig Put (k) dk

—00
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1305
+00 k
(C.2) . N N _ Q
= exp (iuk) exp (—appk) exp (—r(T — 1)) Iz (@) dzdk
00 —00
+00 +00
0, / / exp (iuk) exp (—appk)exp (—r(T —t)) fg(T)(z) dkdz
- Z
+00 +00
= / exp (—r(T — 1)) fg(n(z) / exp (iuk) exp (—appk) dk | dz
—00 4
+00
app>0 Q €Xp (ZMZ _aDPZ)
= exp (=r (T = 1) fz+(r) (Z)aDP——iu dz
—00
400
—r(T —t¢
= R =D [ ey 2 — app i) 12 g d2
app —iu
—00
= R ZD) 20 —app izt Iny. v)
Opp — 11U
—r(T —t *
_ X CrT =) 2 DQy 4 appist.Iny. v) (C.4)
app —iu

where in (i) we changed the order of integration.
Therefore, the price of a digital put option is given by:

Dig Put(k) = exp (appk) exp (—appk) Dig Put(k) ‘S’ exp (appk) Dig Put PP (k)

+00
1 : o
TET exp (appk) — / Real (exp (—iuk) ¢ PigPur’ DP)(u)) du
2
—00
(C.4) 1
="exp (eppk) —
2
+00 T
(T —t .
. / Real (exp (—iuk) wqﬁz (T)’Q(u +appi;t,Iny, v)) du
Opp — U
—00
(@p k) -
=exp (« -
p(app -
+o00 T
- _t *
. / Real <exp (—iuk) M(ﬁz (T)’@(u +appi;t,Iny, v)) du.
app —1u

(C5)

where IFT stands for Inverse FourierTransform.
Therefore, the budget equation in (NLS) can be written as follows:

DQ()LU)(Z’ v, 0)

+00
=y+ / Real(eXp(_r(T_t))exp(—iuln(K)) 7+

MQu 4 (@p — iy 1,Iny, v) | du
0 a —ap —u?+iu(l —2ap) v
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exp (ap In(K))
' T

400 .
_ / Real<exp(—r(T—t))exp(—zuln(kv))

2

o o u? +iu(l —2ap) ¢Z*(T),Q(u Flep =iy, v)) o
p 9P — - P

0
exp (ap In(ky))
b
+00

— / Real (exp(fiuln(kg))
0

—r(T — .
exp (—r( l))¢z

. (T)»Q(u+aDpi;t,lny,U)> du
app —1u

1
(K = ky) exp (appIn (ke)) —

VaR equation. The LHS of the VaR equation can be obtained from Equation (C.5) by
considering the measure P instead of Q and setting r = 0.

IP(Y*(T) < kelY*(t) = y,v(t) = v) = exp (epp In (ke))

In (k¢ #
1 / Re ]<exp( iuln ( ))¢z DP 4 appist,Iny, v)) du

dpp — iu

Vega equation. Differentiating the budget equation w.r.t v and using Remark 3 to Corollary
3.2, we get:

v exp (ap In(K
D,y v) = S L ED

+00
- / Real(eXp (=r(T = 1) exp (=iuln(K)) BUT —t.u+ (@p = 1)i)
0 a% —ap —u? +iu(l —2ap)

7 D 4 (@p — izt Iny, v)) du — S @pIntkn))
b

2

+00
: f Real(eXp (=r(T = 1) exp (=iuln(ky)) BUT —t,u + (@p — Di)
ap —ap —u? +iu(l —2ap)

. 1
L MQy 4 (ap — Dist,Iny, u)> du — (K — ky) exp (@pp In (ke)) 5

+00

. / Real (exp (—iuln (kg))

-0

exp (—r (T — 1) BUT — 1, u+ appi)
app — iu

2 DQu 4 appist,ny, v)) du
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Impact of p on the investment strategy Impact of § on the investment strategy

S =
P «— 0.46
= 0.47 N ]
— I
. 0.44 o
0.45 ~— o
— -
e 0.42 7
0.43 T ~ P
T 04
0.41 h ~
0.38 <
1 0.8 0.6 0.4 0.2 0 0.2 0 01 02 03 04 05 06 07 08 09 1
/ 5
(a) 72(0) & m;(0) vs p (b) 72(0) & 75 (0) vs § (influencing o5 = 0+ and ks = K+0)

Fig.4 The impact of p, o, k on the optimal investment strategies in a more turbulent market

Appendix D Numerical studies for more turbulent markets

In this subsection of the appendix, we consider T = 3 as in the main part of the article, but
a decision maker with a smaller relative risk-aversion and who invests in a more turbulent
market than we had before, i.e., higher initial value of the variance process, a higher long-
term average variance, and a lower mean reversion rate. In particular, we set y = —1 and
use the values of the Heston model parameters so that they are consistent with Schoutens et
al. (2004): vy = 0.0654, 6 = 0.0707, & = 0.6067, ¢ = 0.2928, p = —0.7571. We plot in
Fig.4 the sensitivity of the optimal constrained investment strategy w.r.t. p, o, and .

In contrast to the case of average parameters considered in the main text of the paper, the
sensitivity of the optimal constrained investment strategies w.r.t. the correlation coefficient,
mean-reversion rate, and the volatility of the variance process is higher in a more volatile
market. For example, according to the Fig. 4a, a decrease in the correlation coefficient from
—40 to —60% leads to an increase of the initial optimal constrained investment strategy by
more than 1%, namely from 42.7% to approximately 44%. Looking at§ = 1 and § = 0.75in
Fig. 4b, we see that a decrease in volatility from 39.28 to 21.96% and the real-world-measure
mean-reversion rate of the variance process from 0.8171 to 0.6128 would require a rational
investor to decrease his/her initial constrained investment strategy by approximately 0.7%,
namely, from 45.2 to 44.7%. The behavior is similar to that of the optimal unconstrained
investment strategy. It can have the following economic interpretation. The infinitesimal
Sharpe ratio of the risky asset is A+/v(7). It is negatively correlated with the Wiener process
W{P (t) driving the stock returns. As a result, low return “today” tends to occur when d WF’ (1)
is negative and d W;P () is positive, which in turn pushes the “tomorrow’s” Sharpe ratio higher
and may give hope to the investor for good investment in the risky asset. Consequently, an
investor increases his/her position in the risky asset in comparison to the Black-Scholes
market. The “more” incompleteness an investor sees in the market, the more chances he/she
sees for making profit with the risky asset investment and the corresponding correction term
will be larger.
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