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Abstract

A common choice for the marginal distribution of a bivariate count time series is the
bivariate Poisson distribution. In practice, however, when the count data exhibit zero
inflation, overdispersion or non-stationarity features, such that a marginal bivariate
Poisson distribution is not suitable. To test the discrepancy between the actual count
data and the bivariate Poisson distribution, we propose a new goodness-of-fit test
based on a bivariate dispersion index. The asymptotic distribution of the test statis-
tic under the null hypothesis of a first-order bivariate integer-valued autoregressive
model with marginal bivariate Poisson distribution is derived, and the finite-sam-
ple performance of the goodness-of-fit test is analyzed by simulations. A real-data
example illustrate the application and usefulness of the test in practice.

Keywords Asymptotic distribution - Bivariate dispersion index - Bivariate INAR(1)
model - Bivariate Poisson distribution - Count time series

1 Introduction

During the last years, bivariate count processes (X, |, X;,),ezWithZ = {...,-1,0,1, ...},
ie., where the quantitative random variables X,; have a range contained in
Ny = {0, 1, ...}, received considerable interest in the research literature. In particular, a
broad variety of time series models have been proposed for such data, see the surveys
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by Karlis (2016); Weil3 (2018, 2021); Fokianos (2021) for details and references. In this
research, however, the focus is not on time series modelling, but on time series series
diagnostics. Like the (multivariate) normal distribution for real-valued time series or the
ordinary Poisson (Poi) distribution for univariate count time series, the bivariate Pois-
son (BPoi) distribution constitutes the default choice for modelling the marginal distri-
bution in bivariate count time series. Here, {X,, X, } is said to follow BPoi(4,, A5, 4,)
if it can be generated from independent random variables Y, Y, Y, with Y; ~ Poi(4;)
by X; =Y, + Y, fori = 1,2; see Johnson et al. (1997); Kocherlakota and Kocherlakota
(2014) for further information. For the practice of time series modelling, this implies the
need to test if such a BPoi-model is appropriate for the given bivariate count time series.
In the case of univariate count time series, one of the most popular goodness-of-fit (GoF)
tests regarding a Poi-null hypothesis relies on Fisher’s dispersion index. Such a simple
moment-based GoF-test is not only easy to interpret, it is also possible to obtain closed-
form asymptotics that allow for a computationally feasible implementation in practice, see
Schweer and Weil3 (2014); Weill and Schweer (2016) for details. Here, however, we are
concerned with bivariate counts such that GoF-tests for the BPoi-null are required. There
are considerably less contributions to the GoF-test of a bivariate rather than a univariate
Poi-distribution. Bivariate extensions to the univariate Fisher’s dispersion index have been
proposed by Crockett (1979); Loukas and Kemp (1986); Rayner and Best (1995); Best
and Rayner (1997), but the asymptotics of these moment-based tests are only available for
the case of independent and identically distributed (i. i. d.) bivariate counts. Recently, also
more sophisticated GoF-tests relying on the probability generating function have been
developed, see Novoa-Mufioz (2021) and the references therein, but again only for i. i. d.
data. In particular, due to complicated asymptotics, these tests require for computation-
ally demanding bootstrap implementations, where an extension to time-dependent data
appears even more challenging. Thus, in the present article, we develop a GoF-test based
on an appropriate type of bivariate dispersion index, and we derive the asymptotics for a
relevant time series case. We also analyze if the proposed approach can be successfully
used for testing the null hypothesis of a BPoi-marginal distribution, where we compare
it to the joint application of the univariate dispersion test. Note that this research ques-
tion differs from the work by Weill and Aleksandrov (2019), where bivariate dispersion
indexes were applied to time-lagged pairs of observations from a univariate count pro-
cess, whereas we focus on the marginal distribution of a bivariate count process.

If testing the null of a BPoi-marginal distribution in a time series context, a time
series model allowing for such a BPoi-marginal is required as the starting point. The
probably most widely used model for bivariate count time series with BPoi-marginal is
the first-order bivariate integer-valued autoregressive model(BINAR(1)) with diagonal
thinning matrix as proposed by Pedeli and Karlis (2011). It is defined by the recursive

scheme
[Xt,l] — [0‘1 ]O [Xt—l,l] + [Sz,l] _ [“1°Xt—1,1 +5z,1] )
Xia o] | X2 €2 00X, 15+ €

where the bivariate (and cross-correlated) count innovations (g, ;,€,,)7 are i. i. d.

Furthermore, “o” denotes the binomial thinning operator, which is defined by requir-
ing for a conditional binomial distribution, namely aoX | X ~ Bin(X, «) for some

@ Springer



Goodness-of-fit testing in bivariate count time series based... 243

a € (0, 1), and which serves as an integer-valued substitute of the ordinary multipli-
cation « - X. In (1), the thinning operators are performed independently of each other
and of the innovation sequence. Because of the diagonal thinning matrix, the com-
ponent processes (X, )z, i = 1,2, are univariate INAR(1) processes, which also sat-
isfy the mixing properties being required for applying a central limit theorem (CLT),
see Ibragimov (1962); Schweer and Weil3 (2014). In particular, their autocorrelation
function (acf) is given by p,(h) = Corr[X,;, X,_,;] = af’ forhe N={1,2,...}. Note
that @; = a, = O leads to the case of i. i. d. bivariate counts.

Due to its widespread use in practice and its appropriate stochastic properties,
we shall focus our GoF-derivations to the case of an underlying BINAR(1) pro-
cess, i.e., we test the BPoi-null hypothesis within the BINAR(1) framework (BPoi-
INAR(1) model). Note that the marginal distribution {X, |, X,,} ~ BPoi(4,, 4,, 4y)
implies that X, ; ~ Poi(4; + 4y) and X,, ~ Poi(4, + 4¢) hold as well. This BPoil-
NAR(1) process is achieved if the i. i. d. innovations satisfy

{e 1,600} ~ BPoi(ﬂT(l —ap) — A1 —ajay), A(1 =) — Ag(1 — yary),
2
(1 — a1a2)>,

where A7 = 4, + 4, 45 = 4, + A, see Pedeli and Karlis (2011). The detailed der-
ivation of (2) is also summarized in Appendix A.l. Model (2) shall be used for
illustration throughout this article. In particular, for the considered bivariate dis-
persion index (see Sect. 2) and the corresponding dispersion test, its asymptotic
distribution is derived under the null of the BPoiINAR(1) model. But it would also
be possible to apply our test to other types of data-generating process (DGP) with
BPoi-marginal by using a corresponding parametric-bootstrap implementation.
In addition, we conjecture that asymptotic derivations should also be possible for
some other types of count process with BPoi-marginal. For example, in view of
the derivations by Aleksandrov and Weifl (2020) for univariate first-order integer-
valued moving average (INMA(1)) models, we expect that an extension of our
approach to an appropriate type of bivariate INMA(1) model could be possible, see
Quoreshi et al. (2020) for a recent survey, which appears to be an interesting task
for future research.

The outline of our article is as follows. In Sect. 2, we define the type of bivari-
ate dispersion index to be considered in this article. The main part of this article
is presented in Sect. 3, where we derive an explicit expression for the asymp-
totic distribution of the bivariate dispersion index under the null hypothesis of a
BPoiINAR(1) DGP. This distribution can be used for an efficient implementation
of the corresponding hypothesis test. We also discuss the special case of i. i. d.
BPoi-counts and demonstrate that our novel asymptotic approximation outper-
forms an existing one. Finally, the joint asymptotics of the univariate dispersion
indexes are derived, too. The finite-sample performance of our novel GoF-test is
examined with simulation experiments in Sect. 4, while an illustrative data exam-
ple is presented in Sect. 5. We conclude the article in Sect. 6.
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244 H.Wang et al.

2 A bivariate dispersion index

Let us first introduce some notations that are used throughout the manuscript:
= E[X ] My 1= E[X,,];
pp2(0) 1= EIX;|1 = E°[X, ] + Var[X, ] = p} + o7;
p2(0) 1= E[X],] = E*[X, 5] + Var[X,,] = 45 + 63; 3)
H1(0) 1= E[X, X, 5] = E[X, ] - E[X; 5] + cov(X, |, X;5) = uy * 4o + 71
He, =Ele 15 p, 1= Elg,,].

Note that under the null hypothesis Hy: {X;,X,,} ~ BPoi(4;, A,, y), the above
moments become

U =A+ A=A upy =+ Ay =45

Hp(0) = (A + A + A + Ag = AT + 4%,

U (0) = (A + A + Ay + Ag = A3° + 45 )
11200 = (A + A (Ay + Ag) + Ay = AT A5 + Ay

pe =i+ A)1 —a) =21 —a) fori=1,2.

Given an i. i. d. sample of n bivariate counts, n € N, a couple of bivariate disper-
sion indexes for uncovering deviations from the BPoi-null have been proposed in the
literature, such as those by Crockett (1979); Loukas and Kemp (1986); Rayner and
Best (1995); Best and Rayner (1997), to mention a few. In this article, we focus on
the bivariate index proposed by Loukas and Kemp (1986) because of its simple and
intuitive structure. Its sample version is defined by

L XS -2 XS
lix = = < 2
X\ X, -8,

; &)

where }_(1,)_(2 are the sample means, Sf,S% are the sample variances, and S, is the
sample cross-variance. Note that in the original proposal of Loukas and Kemp
(1986), an additional re-scaling by the factor n was considered, i.e., n 1, instead of
1, x> but we omit the factor n for simplicity.

If we substitute the sample moments by the population moments (3), i.e.,

X, & X, = opy, Si2 = Y12 = H1200) = pypy,
St e ol =upO) —pi, S5 = 05 = un0) -,
then (5) is re-expressed as follows:

) ,u2~612—2-y122+/416§
lix = 2 (6)
HiHy =7,
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il (0) = i1 = 2 [y 5(0) = py a1 + g - [2(0) — i3
HiHy — (11 5(0) = py 2 ’

@)

Under H,, if {X, , X, , } follows the BPoi-distribution, we get I = 2.

3 The goodness-of-fit test based on the bivariate dispersion index

In what follows, we propose 1, from (5) to be used as a test statistic for the null
hypothesis that the bivariate count time series {X, |, X;,},-;  , is generated by a sta-
tionary BPoiINAR(1) process (2). Note that assuming the null hypothesis to hold, also
the existence of moments up to any order (due to the BPoi-distribution) as well as rel-
evant mixing properties (due to the INAR structure, see Schweer and Weil} (2014)) are
implied, as they are required for applying a CLT like in Ibragimov (1962). To enable an
asymptotic implementation of this GoF-test, we have to derive the asymptotic distribu-
tion of \/; (iLK — 2) under the null, which is done in two steps. As I; x equals g; x (1)
with the vector u = (uy, 4y, #12(0), pix2(0), u; 5(0)) and the function

y2 - (3 _}’%) =25 = y132)* + 3,04 —yi)
gk ) = > ’ )
Y1y = 05 = y1y2)

for y = (v, Y2, Y3, Y4, Y5), we first derive a CLT for the vector of sample moments
corresponding to u, see Sect. 3.1. Afterwards in Sect. 3.2, we apply the Delta
method Serfling (1980) and conclude the asymptotics of y/n (I — 2).

3.1 ACLT for some sample moments

Denote the vector X, = (Xz,l’X;,z’X,ZI’X?TXth,z), the sample mean of which is an
estimator of u. Furthermore, let X," = (X, | — p;, X, 5 — p1p. X?| — p12(0), X2, — p12(0),
X, 1X,, — u;,(0)) be its centered version. According to the CLT in Ibragimov (1962),

we have
1 . ’ 5 4
Vi = X = VXN, Ey), ©)
=1

. —
where the covariance matrix £y, = n Var(X,) = n E[X,'X, ] equals

011 012 013 O14 Oy5
031 023 023 024 Ops
Ly =031 O3 033 O34 O35 |- (10)
041 O4p 043 044 Oys
051 Osp 053 Os4 Oss
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246 H.Wang et al.

Since Xy is a symmetric matrix, so we only need to focus on the lower triangle of
t

the matrix. For ¢}, 0,,, 633, 044, 03, and o,4,, explicit expression can directly be con-
cluded from Weil and Schweer (2016), namely

_1+a _1+a1/1* 1+ _1+a2/1*
011—1_alﬁll—1_0[1 1’ 622_1—052”2_1—052 2
l+0{12 l+a 1 +a? 1+«
_ 2 1 2 _ 1 %2 1 g% 2
o5 =T 22;41+ g (200" = 1o a%Ul g A2 A
2
%4=1+a2M 1+ozzﬂz(1+2ﬂ2)2 1+22ﬁ 1+%1%1+2ﬁf,
-« 2 ¥ l-a, 1- ; l-a,? ?
l+a I+« "
031 = 1—a ﬂ1(1+2l’l])= 1— 1(1+2/11)7
1
1+a2
0'4221 M2(1+2/42)—

(In
Thus, in what follows, we only need to focus on the remaining covariances o,,, 03,
0415 051, Osp, 043, 033, 054 and o55. To express these covariances, let us introduce the
following moment notations (which are consistent with the ones used in (3)):

My os(k) = [X6 1X22] 1y (0) = E[X(r)’i] fori=1,2. (12)
Furthermore, we use
4oy s (0) = E[(XG | = 1 0)) (X2, = 4(®))] = payr 2 (k) = )i 0),  (13)

to simplify the expressions for the cross central moments. The following closed-
form expressions, which assume that the BPoiINAR(1)-null holds, shall be used:

pp ) = g+ 34 + 40, pp(0) =y + Tud + 60 + i} fori=1,2, (14)

and

H122(0) =4, 112(0) + Yo (uy + 3455 + 1),
’ A+ A o
Ao
Hy, 2(0) =4, u» (0) + (//‘2 + 3/42 + /42)

Ay 2
H1202(0) =2, 112(0) + —— e /413(0) + /12/412(0) + #2/414(0) + 0M13(0),
1

A A
”13,2(0) =ﬂ,2,u13(0) + ﬂ_MH(O), /41,23(0) = Alllzs(o) + ﬂ—,bl24(0).
1 2

The proof of (15) is given in Appendix A.2. The following Proposition 1 provides
the missing covariances for the matrix Xy in (10).
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Goodness-of-fit testing in bivariate count time series based... 247

Proposition 1 Ler {X,|,X,,},_,  , be generated by the BPoiINAR(1) process (2).
Recall the moment formulas (12)—(15). Then, the entries of the covariance matrix
Xy in (10), except those already summarized in (11), are given by:

Oa1 = 15 5(0) + K HO) (72 + 21,

1—a;

2
1

122 )12 5(0) + 45 ,(0) - (1 + 2p)( 111 - ]2),

aZ
o3 = i, 0) + (12
a.

@ a c c ;
041 = My (O + (5 + 20 ) MO + 1,00 - (U + 2m) (5 - 55)-

51 = Hp2(0) = iy g 2(0) + (p122(0) = pypa 5(0)) (222 + =)

l—aja, I—a;
a aya, 2 Ay aa. c
(2 = o ) (0 = ) + gy (12 = 7252 ) i 5 (0),
655 = p1 2(0) — py a1 ,(0) + (M1 2(0) — py g 2(0)) ( 12:22 + 1(_1_;1)
(T2 = T ) M0 + i (2 = 2 ) (e (0) = ),
az
0-43 ”12 22(0) + 1 22 Mlz 22(0) + le 2(0)(1 + 2)“2)( 2 — 1_2_22)

a?
])
—a2/?
lal

653 = U3 p(0) — up2(0)py ,(0) + (M13,2(0) U0y 2(0))( Aty - 2)

l-aa, o

+ li;lzu;;,p(m + ] O+ 200 (7%

— o

+ (1122000 = s 2(0) (72 = 722) 1+ 20)

1 ©) = i 0) (5 = £ ) 4y, O — 25

l-a l-aa,

054 = H123(0) — pp2 (0 ,(0) + (MzB,l(O) M2 0y 2(0))( Sy a—gz)

l-a;a, 1—a;

(12
22)(1 +2u,)

+ (11.22(0) = popy 2(0)) 12, -

+ Uy (/423(0) - /421422(0)) ( lzz - la;ai ) + Mzﬂl 22(0)( - %),
Os55 = H12‘22(0) - lliz(o) + 2{#2( :;] - lai:; ) (Mlz 2(0) Hl,z(o)lll)
(e 20) = 1 ,(0) T2 4 g (22 = 12252 ) (1 2 0) = iy Oy .

The detailed proof is given in Appendices A.3—-A.8.
In the special case of i. i. d. BPoi-counts, which means that «; = 0 and a, =0,
Proposition 1 further simplifies as in the following corollary.

Corollary 1 If{X, |, X,,},-1.. ,arei.i.d. BPoi-counts, then the entries of the covari-
ance matrix Xy in (10) are
t
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248 H.Wang et al.

o, = py, 04 = S 5(0), oy = py,

o)y = (L +2u), 0y = S, ,(0), o = 207 + iy (1 + 20,

04 = H{ (0), 0y = pir(1 +2my), 04y = 5, 2(0), 0y = 2005 + pr (1 4 2105)°,
0-;1 = p122(0) = 1111 2(0), 0';2 = p122(0) — po 111 5(0), 0';5 = pp252(0) — '“%,2(0)’
053 = H132(0) = pp2(0)p 5(0), 05, = py53(0) = pp2(0)pa; 5(0).

3.2 The limiting distribution of the test statistic

After having determined the asymptotic distribution of \/ﬁft’, we next use the
Delta method (first-order Taylor expansion) to derive the asymptotic distribution of
\/n (Ix — 2). Here, I, can be expressed as g, x(X,), where function g, x(-) is defined
in (8). We have

_ d .
\/;(ng(Xt) - ng(ﬂ)) - N(O’ GfK) with GzK = DA'LKEX,'D;LK’ (16)

where Xy, was derived in Sect. 3.1. The D, = (g’LK’1 , g’LK’z, g’Lm, g’LKA, g’LK’S) is the
gradient vector of g, evaluated at p = (uy, py, #12(0), 22(0), p 5(0)), where the
explicit expressions are as follows:

1

L1 = = 2(4% + 12 (0)) 1y L (O)42
Suz1 (!41,2(0)2 = 2p 11 5Oy + pypp (=1 + Uy Ho))? { (”1 M2 ( ))ﬂl,z( M5
- ”§<”12(O) = 2u112 )y + M% (a+ ) — sz(o))) + ;41’2(0)2(,42(2 + 24, + py) — ;422(0))},
a7
r_ 1 { o2 0 (12 0
8ik2 = 5 13 112 0) (43 + 12 (0))

(141.2(0)2 = 2p1 11 5Oy + pypp (=1 + 141142))

F 12 (= + 1) + 1 (0) 13 = 2 (0) + 20, i (0)) + 20V (=2 (0) + 4oy 2 + oy + 2;42))},

(18)
g/ — Hy
3Tty = (5 (0) = oy ) (19)
ks = a
R4ty = (a5 (0) = ) (20)
, 2(=p1200) + py (=2 Q) iy + py (2 + g + ) — 1 122(0))
81ks = - @D

2
(/41,2(0)2 - 2/41141,2(0)/42 + /41142(_1 + /41l42))
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The derivation of D, is presented in Appendix A.9. Thus, combining (9) and (16),
and after tedious algebraic computations, we finally get the following closed-form
expression for o7, :

_ 4(1-ata3) (Ao + A1) (Ao + 42) [(Ao + 41) (Ao + 4p) + 2]
(1=a?)(1=a2)[(A +4) (29 + ) = &)’

(22)

In the i. i. d. case, i.e., if ¢; = 0 = a,, expression (22) further simplifies to

| B 4(A + A1) (Ao + A) [(Ag + A1) (Ao + 4p) + 2] o)
LK la;=0=a, ™ .
[(Ag + A1) (Ao + 42) = 2]

Using (22) or (23), respectively, we can perform the 7LK-test based on the critical
value of the asymptotic normal distribution (16). Recall that 4, 4,, 4, can be traced
back to marginal moments of {X, |, X;,}, see (4). The true values thereof (as well as
those of a;, a,), however, are not known in practice, so a plug-in approach has to be
used: the sample moments of {X, |, X, , } as well as the sample acf at lag 1 are used as
consistent estimators.

Remark 1 At this point, a reference back to the original article by Loukas and Kemp
(1986) is necessary. Loukas and Kemp (1986) solely considered the i. i. d.-case,
and by a different reasoning, they concluded on an approximate y>-distribution for
n -1, ;. According to their approximation, the variance n - Var[l, ;] should always be
~ 4, independently of A, 4, 4,. This does not agree with (23), which is > 4 as long
as Ay > 0. Only if 4; = 0 or 4, < 4;, 4,, we get UI%K ~ 4. To judge which approxi-
mation is more suitable in practice, we provide simulated values of the n-fold vari-
ance for various scenarios in Table 1 (using R = 10’ replications). In the first block
for 4, = 0.5, we see that these values are only slightly larger than 4, but nevertheless,
our novel normal approximation (23) in row “oco0” provides a much better agreement
than just the value 4. In the second block for 4, = 3, however, the value 4 is consid-
erably exceeded. But still, our novel normal approximation (23) is able to explain
this value rather well (except for the case (2, 3) with sample size n = 100, where the
sample distribution of n - 1 1k showed heavier tails than expected under normality).
So we conclude that even in the i. i. d.-case, our novel asymptotics should be pre-
ferred upon the existing ones.

3.3 Joint distribution of the univariate indexes

As a competitor to our proposed iLK—teSt, we jointly apply the univariate dispersion
indexes

@ Springer



250 H.Wang et al.

1= > =
My My Hy Hy

or  pup(0) = p ; o7 pp(0)—

to the components of the bivariate time series, i.e., we simultaneously test the null
hypothesis that both components follow a univariate PoilNAR(1) process, see
Schweer and Weill (2014); Weill and Schweer (2016). To get the correct distribu-
tion of this joint test, we again have to consider the cross-correlation between both
components, i.e., the joint distribution of both statistics has to be considered. Since
the univariate indexes only depend on the marginal first- and second-order moments

of the series, analogously to Sect. 3.1, we define the vectors Y, = (X 1 ,Xt’z,thl,thz)

andY, = (X, — p;, X, — Ha, X7\ = 112(0), X7, — p152(0)). Note that these vectors are

equal to the first four components of X, and X; in Sect. 3.1, respectively. According
to the CLT (9), we have

-, d
\/nY/—N@©,Zy),
t
The covariance matrix Xy = n Var(Y_t’ ), and its explicit expression is
t

011 012 013 014

T, = 031 Oy 023 04
Y =

' 031 O3y 033 O34

041 O4p 043 Oyy

which equals the upper 4 X 4-block of (10). Actually, all the expression in the matrix
2y have already been derived in Sect. 3.1.

) A A T -
As we use the sample index vector [I = L1, — 1] as the test statistic, we focus on

the limiting joint distribution of \/n[l; — 1,1, — 1] " Note that the indexes I, i = 1,2,
can be written as I; = g;(p) with u = (p1, 412(0), p,, 152(0)), where

J’3_y2

1

8101, Y2, Y3, Y4) = y s 801234 =
1

)’4_)%
o

We compute the partial derivative of g, and g,, evaluated at the vector u, as

Table 1 Simulated values of

n - Var(l, ], asymptotic value
according to (23) in row “oco0”. 2,3) (2,8 (6,3) (6,8 (2,3) (2,8 (6,3) (6,8)
Italic values used trimmed
variance (omitting the ten lowest 100 4.477 4.199 4.216 4.127 39.254 7.967 8.938 5.678

and largest simulated ], values) 250  4.390 4.156 4.141 4.086 12.788 7.119 7.126 5.375
due to outlier problems 500 4444 4.177 4134 4065 11519 6.860 6910 5364
1000 4.393 4.169 4.174 4.071 10970 6.767 6.843 5.336
1500 4364 4.113 4.141 4046 10881 6.771 6757 5285
o 4360 4.144 4.134 4055 10612 6.654 6.720 5.280

n A9=05, (4,4,) = Ay=3, (41,4)=
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0 0 d d 0
11=ﬁ__ﬂlzg)_1’ d12=ﬁ=0’ d13=ﬁ=iv d14=ﬁ=0’
9y, My 9y, dy; M 9y,

98, 98, H2(0) 98, dg, 1
== =0dp === - Ldy == =0, dyy = == —.
oy, 9y, Hy dy3 oy, My

Thus, the Jacobian matrix of [I, — 1,1, — 1] " has the following form
D= [dn dy, dis d14].
dyy dyy dys doy

According to the Delta method, the joint distribution of y/n[I; — 1,1, — 1] Tis

uni

1 - d
\/Z[{l 1] “LNO,Z,) withE

-1 =Dz, D". (24)

Then, according to the definition of the Chi-square distribution )(22, we have

A T ~
-1 o =1
n |:i2 _ 1] 2uni |:A Xy - (25)

So the test implementation is based on the xzz—distribution (25). To simplify the
required computations, it is useful to know again a closed-form expression of X
can be derived, namely

uni

2 1+af 2(1—(1]20(%)15
Y = 1-a? (1=a)(1-a2)(Ag+41 ) (Ao+4,)
uni. — 2(1-ajay) 2 1+a3 : (26)
(1=a?)(1-a2)(Ag+4) (Ao +4;) 1-a2

In the i. i. d.-case, the matrix X ,; further simplifies to the following form:

2 ¥
Eum‘ |a]:0=02= 21(2) ('10+’11)290+12) 27

(Ao+41)(Ag+4y)

Note that (26) and (27) constitute a novel extension of the univariate asymptotics
derived by Schweer and Weil} (2014).

4 Simulation experiments

In this section, we present some results from a simulation study, which was
done to evaluate the performance of the 7 1x-test as well as that of its asymptotic
approximation. As the competitor, we consider the joint univariate indexes as dis-
cussed in Sect. 3.3.
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4.1 Peformance under null hypothesis

To evaluate the approximation quality of the asymptotics derived in Sect. 3.2, we
first simulate time series from the BPoiINAR(1) model, i.e., if H; is true. We con-
sider the following parameter groups:

(A (A1 s Ager @, @) = (3,5,0.5,0.3,0.5),
(B): (Aye» Aper Ager @ @) = (1,3,0.5,0.2,0.4),
(©): (Ayer A er Ager @, @) = (2,6,0.5,0.2,0.4),
D): (A1 Aper Ager @ @) = (3,6,1,0.3,0.5),

) (Aye» Ay er Ager @, @) = (5,4,0.5,0.2,0.4).

The most important property for practice is the achieved size. For convenience,
we execute the tests on the 5%-level, where the test decisions are done with respect
to two-sided critical values: The test leads to a rejection of the null if either the
lower critical value q,(,5 or the upper critical value a; ;5 is violated. The propor-
tion of rejections among R replications (we use R = 10°) expresses the empirical
size of the test (columns “biv” in Table 2), which has to be compared to the nominal
5%-level. As the competitor, we jointly apply the univariate-indexes test. It is imple-
mented using the limiting )(22-distribution, i.e., the upper critical value is ;(22’1_(1, and
the achieved sizes are tabulated in the columns “uni” of Table 2. For both types of
GoF-test, the sizes are quite close to each other and, in particular, close to the given
nominal level of 5%. So we conclude that the asymptotic implementation of both
GoF-tests works rather well in practice.

In addition, we computed the standard error (SE) of the I, x-statistic in three ways.

In Table 3, the column SE,,,, represents the empirical standard deviation among the

R replicates of I 1> SE,., 1s the asymptotic SE implied by (22) with true parameters,
whereas SE,. , expresses the mean asymptotic SE with plugged-in parameter esti-
mates, i.e., the mean value obtained after inserting the R replicates of the parameter
estimators into the asymptotics (22). The results are summarized in Table 3, where
we recognize a good agreement between the three types of SE.

4.2 Power analyses

To evaluate the I, x-test’s performance in uncovering violations of the BPoi-null
hypothesis, we calculate the empirical power from R replications of various alterna-
tive models (and using a pre-run of length 250 for burn-in). We also compare the
power of the ?LK-test (“biv”) to that of the joint application of the univariate test
statistics (“uni”) according to Sect. 3.3. As alternatives, we consider the following
three types of DGP:

BINARCH(1) model: The bivariate INARCH(1) model (CH=conditional
heteroscedasticity), see Lee et al. (2018), is defined by the conditional dis-
tribution X, [ X,_; ... ~ BPoi(4,;, 4,5, 4y), where the conditional mean
M, =E [X X ] with M, ; = Ay + A;, has the following recursive expression:
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b a X
e (1) (") ()

We set g = 0.5, = 0.3,y = 0.5, b, =2.45, and b, = 2.75.

BNBINAR(1) model: The bivariate INAR(1) model (1), but with the innova-
tion term {g,,¢,,} following the bivariate negative binomial (BNB) distribution
with parameters (r, p;, p,, py) = (2,0.3,0.5,0.2), see Pedeli and Karlis (2011). So
{X, 1, X,,} has the same marginal mean as model (A).

CuBINAR(1) model: The circumstance-driven bivariate (CuB)INAR(1) model of
Wang et al. (2024) defined by

X1 _ [ O ° X1 -1(81-1) + €14(58-1)
X5,(s,) 0 a X5 -1(821) €,(s5585-1)]°
where the states s,, t € {1, ...,n}, are generated from a stationary 2-state Markov

chain with initial probability vector (0.5, 0.5) and transition probability matrix
(0.4 0.6

0.6 04
ferent parameter groups:

). Under the generated state sequence, we consider the following two dif-

(F): (/11(&1),/11(52), Ay(s1)s An(s,), Ao,al,a2> =(1,3,3,5,0.5,0.15,0.5),

(G): (Al(sl), A1(52)s Ao(sy)s An(sy), lo,ocl,a2> =(1,2,1.5,2.5,0.5,0.15,0.3).

The obtained power results are summarized in Table 4. Both GoF-tests show a sim-
ilar performance. For the BNBINAR(1) process, the joint univariate indexes usu-
ally lead to higher power values, but also the 7, (-test is very powerful throughout
(between 89 % and 100 % power). By contrast, the I L x-test is more powerful in case
of the BINARCH(1) process and the CuBINAR(1) process with parameter group
(G). Altogether, the T, .-test, which also utilizes the information about the cross-cor-
relation of the bivariate counts, has very good power values for various alternatives,
and often performs better than if jointly applying the univariate indexes.

Table2 Simulated sizes of univariate and bivariate dispersion index test

n A (B) © D) (E)

uni biv uni biv uni biv uni biv uni biv

100 0.0462 0.0505 0.0469 0.0461 0.0449 0.0471 0.0461 0.0495 0.0450 0.0457
250  0.0493 0.0492 0.0485 0.0486 0.0483 0.0480 0.0479 0.0487 0.0486 0.0495
500  0.0494 0.0502 0.0494 0.0499 0.0489 0.0498 0.0493 0.0501 0.0491 0.0493
1000 0.0510 0.0499 0.0493 0.0489 0.0498 0.0504 0.0492 0.0498 0.0495 0.0502
1500 0.0510 0.0495 0.0489 0.0504 0.0490 0.0488 0.0501 0.0500 0.0502 0.0498
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5 Real-data analysis

In this section, we analyse a bivariate data set of accident counts, which was ini-
tially presented by Pedeli and Karlis (2011) and further discussed by Weil3 (2018).
The accident data x,, collected for the days ¢ = 1, ..., 365 during the year 2001, con-
sist of two sub-series, where x, ;| expresses the number of daytime accidents and x, ,
the number of nighttime accidents in the Schiphol area (Netherlands). The distinc-
tion is necessary as these types of accidents are known to behave differently, see
Pedeli and Karlis (2011): while people more often travel for entertainment during
nighttimes, we have rush-hour traffic, delivery traffic, etc. at daytimes. Nevertheless,
(mild) cross-dependence between the daytime and nighttime traffic is commonly
observed as both types of traffic have common environmental conditions (weather
conditions, road characteristics, etc.). The data were read from Fig. 1 in Pedeli and
Karlis (2011), a corresponding plot of the data is presented in Fig. 1. We observe
about 7.277 daytime accidents in the mean, and 1.504 nighttime accidents, where
the cross-correlation equals about 0.142. According to Pedeli and Karlis (2011);
Weil3 (2018), the autocorrelation structure of the data is sufficiently well explained
by a bivariate INAR(1) model. So it remains to discuss an appropriate choice of the
marginal distribution.

In Weill (2018), the univariate dispersion indexes were applied separately to
the x,; and x,,, respectively. Their values 1, =2.8773 and I, = 1.2479 are both
significant at the 5%-level, which indicates that the BPoilNAR(1) model is prob-
ably not sufficient for the data. To test this conjecture more thoroughly, also tak-
ing account of the apparent (though mild) cross-correlation, we apply the novel
1, x-test. The maximum likelihood estimates of the BPoilNAR(1) model are

&, = 0.0769, &, = 0.0867, A, = 0.2700, 1, = 7.0187, i, = 1.2265.

which are all significantly different from zero, see Pedeli and Karlis (2011); Weil3
(2018). Recall that a;,a, are the autocorrelation parameters, whereas the BPoi-
parameters Ay, A, 4, satisfy cov(X, |, X;,) = Ag and E[X,;] = 4y + A; fori =1,2. We
use the fitted BPoiINAR(1) model to calculate the lower and upper critical value for
the 7, «-test at the 5% level under the null hypothesis of the BPoiINAR(1) model,
leading to +0.2086, while the test statistic I;  — 2 itself is computed as 2.2790.
Thus, we clearly reject the BPoi-null, which confirms the analysis of Pedeli and Kar-
lis (2011); Wei3 (2018), who finally recommended to use the BNBINAR(1) model
for the accidents data. While the fitted BNBINAR(1) model does similarly well as
the BPoiINAR(1) model in explaining the accidents’ means (7.289 and 1.496), it
better captures the apparent overdispersion (2.504 and 1.267), see Weill (2018).
Incorporating the overdispersion into the fitted model is important in view of pre-
dicting or monitoring future accident counts, because we thus account for more fre-
quent extreme counts than under BPoi-assumptions.
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6 Conclusions

In this paper, we proposed a new goodness-of-fit test for bivariate count time series
under a bivariate-Poisson null hypothesis, more precisely, the bivariate-Poisson
INAR(1) model. The construction of test statistics is based on the bivariate dispersion
index by Loukas and Kemp (1986), which was originally proposed for testing i. i. d.
bivariate counts. The asymptotic distribution of the test statistic was derived under the
bivariate-Poisson INAR(1) null hypothesis. As a special case, we considered i. i. d.
bivariate Poisson counts and improved an existing asymptotic approximation. Further-
more, we also adopted the joint univariate index as competitor and derived its asymp-
totics. The simulation results showed that under the null hypothesis, the sizes computed
for the bivariate index and the joint univariate indexes are all close to the given nomi-
nal level. We also showed that the bivariate index leads to an appealing power per-
formance, which is often better than that of the joint univariate indexes. Finally, we
applied our novel GoF-test to real data, a bivariate time series of accident counts. We
confirmed that a marginal Poisson distribution is not sufficient for explaining these
data.

Appendix Proofs
A.1 Proof of (2)

If {X},X,} ~ BPoi(A, 4y, 4), then X| ~ Poi(4; + Ay) = POi(ﬂT), X, ~ Poi(Ay + )
= Poi(4}). There are two equivalent ways of expressing the probability generating
function (PGF) of {X,, X, }, see Kocherlakota and Kocherlakota (2014), namely

I (1. 1,) =exp [A7 (1, = 1) + A5 (1, = 1) + Ao (1, = 1) (1 = 1)],
L, (t).1,) = exp [A,(t; = 1) + Ay (1, = 1) + Ao (1,5, = 1)].

Using I, (1,, 1, ), the bivariate PGF of {X, |, X, , } equals

Table 4 Simulated powers of univariate and bivariate dispersion index test

n BINARCH(1) BNBINAR(1) CuBINAR(1) CuBINAR(1),

uni biv uni biv uni biv uni biv
100 0.3244 0.3315 0.9398 0.8874 0.8423 0.8345 0.2284 0.2429
250 0.6864 0.7114 0.9762 0.9365 0.9973 0.9968 0.4793 0.5322
500 0.9412 0.9454 0.9928 0.9456 0.9928 1 0.7755 0.8278
1000 0.9989 0.9989 0.9711 0.9903 0.9990 1 0.9711 0.9843
1500 1 0.9999 1 0.9982 1 1 0.9977 1
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Daytime accidents x4

Nighttime accidents x;,

R

t

Fig. 1 Plots of the daily numbers of daytime and nighttime accidents data in the Schiphol area

Xr,] XI.Z
Ela," -a,"1=

=E[(1 —a; + aya)* 1 - (1 — ay + aya,)"12] - Ela

Ela,

ajoX,_

L1ten
2

00X, _j2+€n

]

= exp {/11 (—ay+aja)+ Ay (—ay + aya,)

i1

12
.2]

+ A [(1 —a;+aa)(1l —a, +ma,) — 1] } 'E[air.l .ag”z]

=exp { @ = D) + Ayl = 1)

but we also have

X,

E[a1

+ Ao[(a; = Day + (a, = Day + (a; — D(a; — Day oy } . E[ai'v‘ .a;»z]’

Thus, the PGF of {¢, |, €,,} is derived as

ol a)z("z] = exp{/ll(al - 1) + Az(az - 1) + Ao(alaZ - 1)}
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Ela}" - a5*] = exp {Mal — D+ hay = D+ Ag(aja, = 1)
— /110‘1(“1 - 1) - izaz(az - 1)
= dol(a; = Day + (@, = Day + (a; = 1)@, = Daj )] }
Using that

= Ao|(a, = Day + (a; — Day + (a; = 1)(a, — Dy,
= —Ag(a; — Day — Ag(ay — Day, — Ag(aya, —ay —a, + Doy,
= —Agla; — Da; — Ag(ay — Da, — Aplaja, — 1 = (a; = 1) = (a, — D]ojay,
we get

Er1

E[al

. a;‘z] = exp {Al(al -1+ A(a, = 1)+ Ay(a;a, — 1)
—Aa(a; = 1) = hay(a, — 1)
— do(a; = Day — Ag(ay — Daty — Aglayay — 1 = (a; — 1) = (a — 1)]a1a2}
= exp {(a1 DAy = Ay — gy — Agay@y)
+(ay = DAy — Aytty — Agy — Ay @)
+(ayay — DAy — /loalaz)}
= exp {(a1 — DI + AL = ay) = Ag(1 — ayay)]
+(ay = DIy + Ag)(1 = ap) — Ag(1 = ayy)]
+(ayay, — DAy — /loalaz)}.

Using A} = A; +4p, 45 =4, + 4y, we get {g,1,€,,} ~ BPoi(A](1 — a;) — Ay(1—
a,0,), A1 — ay) — Ag(1 — ay @), Ag — Ay a,), which completes the proof of (2).

A.2 Proof of (15)

According to Kocherlakota and Kocherlakota (2014), the conditional moments of the
BPoi-distribution are

AoX,
A+ Ay

Ay AgX,

(do + 40)

E[X1|X2=x2]=/11+ V[X1|X2:x2]:ﬂl+

Let us begin with u, ,»(0) = E[X} ,X,,,]. We get

AoX
) _ > _ ) 00,2
E[Xo,z 'XOJ] B E[XOJ E[Xo, IXO’Z]] B E[Xo’z‘ </1] " A+ ﬂo)]

=E[X2 1, +X3 LI A1 (0) + L(M + 342+ 41d).
02 0.2 Az + AO ),2 + }'O 2 2
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Similarly,

E|X2 X,,| = A, up2(0 al 32 + 42
01%02| = Aata( )+/1 AO(M1+ MY+ Hy).

Next, we turn to p2 2(0) = E[XS 1X§2] where

2 2 2 _ 2 2
B[ X5 = E[E[xg, 6 1| = £ ]G, - £, 16|
A Ao X, 2x2 Ao X,
—E|X2 A+ A2 OOl 49y, 201
: (A + 4)? (A + Ap)? A+ A

A4
2 2 140 3
= (A + 2)E [XOJ] YO io)zE[XO’l]

A2 24,4,
0 E )74 240 E )73
[ ] + [ ]
(/l1 + A2 U0 A 44, 0

Mg A 24,4
= (dy + AD)2(0) + =52 13 (0) + — 12 (0) + —=2
M M

;413(0).
1

Then, we get for u;3,(0) = E[X] X, ,] that

EIX; X0l = E|E[X X0 | Xou || = E[X E[Xo2 1 Xo]

Ao X, A
_ 3 00,1 3 4 0
- E[Xo’l </12 }”1 Ao)] [Xo'l/b +X01/11 /10]

= AzE[XS’l] + E[xg’l] = Ayys(0) + H—OMH(O).
1

Ao

Similarly, y; »3(0) = E[XO’IXS ,] has the following expression:

E[X;,Xo,1 = E[E[XS’ZXO’I |Xo’2” = E[Xg’zE[XO,I |x0!2]]

A0Xo2 A
=E|X3 (4 + —= E|X3,4, +X; 0
[ 0’2< ! /12"'/10)] [ 022, + 4

]+ l E[X4 ] (0 + 200 0)
02 Ay + 4 02 1 Hy e

This completes the proof of (15).

A.3 Derivation of 0,,

We compute the explicit expression of o,, as follows:
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o = El(Xos = 1)z = )] + Y, (EKos = 1)z = )]
k=1

+ (X = 1)z = m)1) = 5,0+ X (1,0 + 15, ).
k=1

Here,
Hy (k) = El(Xg; = u) Xy = 4]
k-1
= E[(a§0X0,2 + Z 0/2052,1(—_;‘ - MZ)(XQ] = 1y)]
=0

=@ ElXo, Xoal + E[Xo,11< @ E[ez,k_,-]> — Uy (EXo,1 = )

j=0
k—1 )
— M 0"5 “ElXool — py - <Z 0/2 ) E[£2,k-j]>
j=0
= a} - E[Xy, Xo,) — 1y - ab - E[X,]

= alzc “m0) - ﬂ]llzaé = 0{]2‘ ) lliz(o)-

In a similar way, we get
H5 (k) = EL(Xy ) — 1)Ko = )] = @ - 1y 2(0) = pypyry = af - a5 ,(0).

Thus, the explicit expression of o, is

o = w0+ X { [o - s O] + [af - w5,0)] |
k=1

= 0+ 5,0 + ——)
= Hi2 iz l—a, 1-—a/

A.4 Derivation of 03, and 0,

The expressions of o3, and o, are as follows
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o3, = EL(X3 | = 12(0)(Xop — )] + ) (E[(X,i1 — 120X, = 1)
G, = i) Xz = 1)1 = 5,0+ X (5,000 + 45,0,
k=1
o = EIG, = ipO)Xoy = i)l + Y, (ELCG, = e Oy = )]
k=1

+ELOG, = Oy = 1) = 1 @+ Y (15, 0+ 1 ().
k=1

Here,

p5 p(0) = ELXG ) = u2(0) (X = 1))
k-1

= Bl((@hoXo, + Y, @oe1 ) = #12(0) ) Koz = )]

=0
= El(a}0X 1) Xy ,] = myEl(@) Xy )’]

k—1
+ 2(2 tx’l . E[elqk_j])E[(a]f°xo,1)(xo,z — 1)l

j=0

k=1 2
+ E<Z aioflyk_j) E[Xo,z - Mz] - /412(0)E[X0,2 - /42] (E[Xo,z] = /42)

Jj=0
= El(a}0X,) Xy ,] = myEl(@foX;)’]

k-1
+ 2(2 a - E[El,k—j]>E[(“II°X0,1)(X0,2 = Hy)]
=0
“ka[XSJXOJ] +af(1 = d))EX,, Xo 2] — llzaka[X(z),l]

k 1- (xk

— (1= aDEXo iy +2 - prey T a F(E[X,1 X021 — 1E[X 1 1)

a5 (0) + (1 — ]f)lh,z(o)—llzal #12(0)
k

1- o
—af(l =Dy +2 -, a(ulz(O) i)
1=

: 24,
o, 5 (0) + w ,(0) - af(1 = af) - <1 + T )
- %

= o2 S, (0) + 16 5(0) - (1 = o) - (1 +2y).
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Similarly,

# () = ENXG ) = e (0)(Xoq = Hp)]
k—1
= E[((a’;oxo,z + ) oy, ) - ;422(0)>(XQ1 — )]
Jj=0
= El(@f0X,)*Xo 1] — i El(a¥0X,)’]

k-1

+ 2<2 o E[szyk_j]>E[(a’2‘oX0,2)(X0’1 Y

=0

KEIX2,Xp 11 + ab(1 = ab)E[Xy 1 Xo 5] = py o2 ELX2,]
k

I
= o3 1y 2(0) + &5(1 = )y 5(0) = iy #22(0) — a5(1 = a) iy
_ k
t2 U T 2 k(4 2(0) — 1)

=a

- 0(2(1 )E[Xo 2]/41 +2- He, Z(E[Xo 1Xo 2] /41E[Xo,2])

2k d k k 2M5°
QB pS ,(0) + i H(0) - (1 — k) - <1+ — )
— %

= a3 45 (0) + i ,(0) - a5 (1 = &) - (1 + 2p1y),
and

H5s (k) = E[(X5 | = Hp2(0) Xy = 4]
k—1

= E[(X], — 2 (0)(asoXyn + D d)oes, ; — )]
j=0

= E[X; (a50X,)] — py2(0)E[as0X,,]

+ (E[XZ, 12(0))K2a/ Eng_]> ]
j=0

= 4E[X; , X)5] — pp2(0)a5 E[X, 5]
= a2 5(0) — u2(0)aypy = @i - s, ,(0).
Furthermore, we get

ﬂgz’l(k) = E[(ngz — Hp (0))(Xk,1 —pp)l= (XIICE[XS’ZXOJ] — Hp (O)GIIE[XOJ]
= a1 2(0) = pup(O)afpy = af - p5 ,(0).

Altogether, the explicit expressions of o5, and o, are
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o3 = 1, (0) + Z{[ s (04 4 (0) - a1 = ) (14 200)| + [ - 2(0>]

= Hp,(0)+ (

ou = w0+ Y { | l.uuz(O)] |24 O + 4,0 a1 = ) - (1+2u2)]
k=1

>u, 20)+ 4 ,0) - (1 + 2#1)<

)
=
)
=

c G @
= /4]’22(0) + ] 3 + 1_— Ml 22(0) + M 2(0) (1 + 2/42)

_az

A.5 Derivation of 05;and 05,

The expressions of o5, and o5, are as follows

o5 = E[(XO,IXO,Z - Mlyz(o))(x(),l - :ul)]

+ Z (E[(Xk,]XkQ - Hl,z(o))(xo,l —u)l+ E[(X(),]Xo,z - ﬂl,z(o))(xk,] - l/‘])])
k=1

=1 (p122(0) — pypy 5(0)) + Z (”ilz(k) + Mhl(k))
k=1
055 = E[(X1 X0 — 112(0)Xg5 — 4]

+ 2% (BIOG X2 = 20D Koz = )] + E(Xo, X = 1y 20D Xs2 = 1))
k=1

= 11200 = gt 2O+ X (K510 + iy, ) ).
k=1

Here,
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Hy 1K) = E[(X 1 Xio — m120)Xoy = py)]

k-1 k-1
= E{ [(a]f°xo,1 + Z 0‘/1051,k—j><0‘]2<oxo,2 + Z aé°£2,k—l> - H1,2(0)] Ko — /41)}
=0 =0

= E[(a}oX,)(ah0X,,)Xy 1] — uy El(afoX, ) (ahoX, )]

k-1 k=1
+ (Z ab - E[ez,k_,]>E[(a’1‘0X0,1) Xou| - <z a) - E[ez,k_j]> wE[(afoXy )]

1=0 j=0
k-1

k-1
+ (Z 0’{ 'E[gl,k—j]>E[(a§°XO,2)XO,1] = <Z 0/1 'E[£l,k—j]>ﬂ1E[(a12(°XO,2)]
Jj=0 J=0

k—1 k—1
E |:<Z a/l oel’k_j> <Z aéoez*_l)
j=0 1=0

= E[(a}oXy)(@50X2)Xo,1 — mEl(@joX,  )(@50Xy )]

k=1 k=1
+ (Z aé . E[ez,kl]>E[(a/1‘oX0,l) XO,I] - <Z a; . E[sz,k_i]>;41E[(a11‘oX0’1)]

<E[Xy1 — ] — 1 2(0E[Xy, — py]

1=0 =0
=1 =1
+ (Z a - E[el,kj]>E[(a/2‘oX0,2)X0,1] - <z o - E[slqkj]> i E[(aboX, )]
=0 =0
1- a’,; . 1- a’z‘ « o
_a a. E[ Xo,z]_ 1a1a2E[X01X02]+y5 7T a E[X 1]—/4521_—%(11;41
_ ak 1— k
1
+ K, T E[Xo 1Xo21 = ﬂgll_o"ﬁM/‘z
—a
k k k k 1- O‘IZC k 1- k2
= ajay iy (0) — pyayay 5 (0) + /4521__0(20‘1/412(0) Mo T o "‘1/41
1-—aF 1—aF
+He T - éul 20) = e 7 - ’z‘uluz

=ar a2 (py2 2(0) M1 #12(0))

He,
+ T (= @) (a(0) — )
- %

1

He, ky ok
+ -« (1 - al)az(”l,Z(O) - /41”2)
1

=a) ”’2 (12200) = 141 2(0)) + - (1 - alzc)ak(ﬂﬁ(o) /41)+ = (] - ak)a LH12(0)

= abak - (up2(0) u1u1,2(0)>+u2(1— s 0) — ) + (1 — abyakus ,(0).

In a similar way, we get
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llilz(k) = E[(Xklek’z - ﬂl,z(o))(XO,z = )]

k=1 k=1
= E{ [<GT°X0,1 + Z “]1°51,kj> (0‘]2(°Xo,2 + Z aé°£2,kl> - #1,2(0)] Xoo — Hz)}
=0 =0

= El(a}0X,,)(50X )Xy 5] — mEl(a)oX ) (@50X )]

k=1 k=1
+ (Z a - E[szyk_l]>E[((x11{oX0’l)X072] - <2 o E[gz’k_j]> pE[(@boXy))

=0 j=0
k-1 k=1

+ (Z o - E[slyk_j]>E[((x12{oX0’2)X072] - <2 o - E[g]’k_j]> 1E|(afoX, )]
Jj=0 J=0

. 1- ak 1- a’z‘ .
= (x a E[X 02X0,11 — %E[meoz] + 4, T (x E[X01X02] ”ezﬁalﬂllh
-

[04

1-
+#511—1 a5 E[X;,] “He T T

k 1= k
1k 2
1“2/‘2

k k

l—a a,
=a Ulzlﬁzz(o) Hoot) 0521412(0)‘*‘!452]_ 11412(0) e T "o 1141142

1- ak 1-
the T 2#22(0) He T 0 a5 5

= “1”‘2 : (”1,22(0) = o1 2(0)

He, ky ok
(1- 012)011(/41,2(0) - /41/42)
a

+
1-—

He,
+ —(1 - all‘)alz((llﬂ(o) - M%)

Mfz

(/41 22(0) = popty 2 (0) + - (1 - ay)a ps 5(0) + l(l — )5 (12 (0) = 13)

k
2
a’g.(ul,zz«»—u2u1,2(0)>+u2(1— ’g)alul,2(0>+ul(1— a)ab (4 (0) = p3).

Next,
“fz,l(k) = E[(X0,1X0,2 - #1,2(0))(Xk,1 = up]l

k-1
=E l(Xo,lxo,z - /41,2(0))<“]f°X0,1 + Z o) 0€ 4 — /41)]

=0
= d'E[XZ X0) — 1y ,(0)alE[X, ]

= af - H122(0) = py (O iy = af - (p12(0) = piy 1y 5(0)).
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Similarly,

ﬂfz’z(k) = E[(XOJXo,z - ﬂl,z(o))(Xk,z Ilz)] = akE[ X() 1] M],Q(O)UIZ(E[XQ,Q]
= 0"5 1 2(0) — #1,2(0)G§M2 = 0‘2 (1 22(0) = py g 5(0)).

Altogether, the explicit expressions of 65, and o5, are

o5 = ,ulz,z(O) - lllﬂl,z(o) + 2 {[0511{0512{ . (/412’2(0) - ﬂ1ll1,2(0))
k=1

+ uy(1 - Ullz{)a]f(lllz(o) - ﬂf) + py(1 - alf)alzcﬂiz(o)] + Otf (pp2(0) - ﬂllﬁ,z(o))}

a a; o a
> ) + (p122(0) — py 2(0))< + )

1 —ma, l-a

= (up22(0) - /41/41,2(0))<1 + N

+ﬂ2<i_ = >(#12(0) 1) + p( e 20( 120

1 -« l—alz l-a, 1-0aa,
— k
05y = 1 2(0) = oty 5(0) + 2 {[a a - (1 22(0) =yt 5(0)
k=1

+up(1 = ad)af i, (0) + i (1 = ) (12 (0) = )] + a5 - py 2(0) — /42/‘1,2(0)}

X a0 a
> + (41 52(0) — /42/41,2(0))< + _>
—a, 1—

aa, 1—o

N a aa, 0+ a, aa, (in(0) — )
= l—a 1-aua iz i 1—(12 l—aa, H

= (p12(0) - ﬂ2ﬂ1,2(0))<1 +

A.6 Derivation of 0,3

0,3 satisfies

= ]33 15) (35, - 00)] + £ (]~ :0) 1m0

+E[<X ﬂ22(0)>( 2, ;412(0)>] = 4, (0) + Z <u122 k) + 4, ,,(k))

Here,

@ Springer



Goodness-of-fit testing in bivariate count time series based... 267

#5222 (K) = ELXG, = iy (O)XG | = pp2(0))]

k-1 2
=E (a’z‘OXo’z + 2 (x’zoez’k__/) — 12 (0) (X&1 — p12(0))
=0

k-1

2 k-1
(0/2‘0X0’2)2 + (Z agoez’k_j> + 2(a'2‘0X0,2)<Z aéoez,k__,) — ux(0)

=0 =0

=FE

N

(.- 0))

= E[(a’z‘oXolz)zXé] - ulz(O)(alz(on)z]

k-1 k-1
+E [Z(aIZCOXM) <Z “12052,1(—_/))(&1} — up(0O)E [2(a§°xo,2) <Z 0/2062‘,(__/-)]
7=0

j=0

= BE[X,XG | + b1 = dDE[X02X2, | = e (4 EIXE 1+ a1 = aDELX, 1)

k—1 k—1
+ 2<Z aéE[ez’k_j]>a§E [XO!ZX(%,]] - 2<Z a;E[ezyk_j]> 42 (0)akE[X, 5]
J=0 =0

= agk,ulz,zz(O) + a’z‘(l - a’z‘)uIZYZ(O) — /4,2(0)((1%"/422(0) + a’z‘(l - a’z‘)yz)

k-1 k=1
+ 2!4&2 (Z “12)0612(/412,2(0) - 2/452 <Z aé)lllz(())a;‘yz

j=0 Jj=0
= a2 (2 2(0) — 2 (02 (0) + @h(1 = @b (py25(0) — py2 () )
1—af

2, T (122(0) = 2 (O)pr)
e
%, ¢ k ky 1-a ke
= o Ho 2 0) + (1 = )i, ,0) + 2, T2 5 (0)

= B4, (0) + o (1= @b, )1 +24,).

Thus,
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X (0= Y { @3 e 2 (0) + k(1 = abuts O +241) }
k=1 k=1

a2

= —2 4, O) + s, O]+ 2y —2— - :
= 1_a2M12’22 ﬂ12’2 12%) 1—(12 1_a2 .

2

Similarly, we have

My 12 (k) = E[<X§,2 - /‘22(0)> (Xlil - ﬂ12(0)>]

[ k-1 2
= E/ (all‘oXO’l +y aflogl,k_j> =10 |(X3, = 12(0))
J=0
[ k=1 2 k=1
= EX (‘X]f°X0,1)2 + (Z 0[]1°51,kj> + 2(a’1‘oX0,1)<Z 0511051,kj>
j=0 J=0

O], = (O }

= E[(a’l‘oXO’])2X§’2 — Hp (0)(‘1I1€°X0,1)2]

k-1 k-1
+E[2 (a 0X01)<Za’oelk_/>X ] Hp(0)E [2((1 0X01)<20/061k ,>]

Jj=0 j=0

= E[X,X | + b = dE[X0, X2, ] - ip ) E[X2 ] + a1 = abEIX, ]

0,270,1
k-1 ) k-1 )
+ 2<2 a’lE[el’kj])a’fE[Xo’]Xg,z] - 2(2 o/lE[sl’kj]> 1 (0¥ E[Xy ]
J=0 Jj=0

= 0 p12.2(0) + ¥ (1 — @)y 52(0) = py (0) (@ 12 (0) + @ (1 — )

k=1 el
+ 2/451 <Z 0’]1 )lxlfﬂl,zz(()) - 2/45] (Z 0/1 )#22(0)(1]1‘;41

=0 =0
= a%k(,“lz,zz(o) - ll12(0)/422(0)) + all((l - alf)(ﬂl,zz(o) - /422(0)/41)
_ 0{]1‘ .
+ 2/451 1__0!1(11(/41,22(0) =t (0)uy)
1= k
= 11} 2 0) + 07 (1= ] o 0)+ 20, Tl o (O)

c k k 2”
Ml 22(0)+a (l_a )/4122(0) I+ 1 P
- "

= a1 45, 0 (0) + @l (1 = ap)p L, (O)(1 + 2p1y).

Thus,
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2 i ® = Y ar -t (0) + @i (1 = abus (O +24)))
k=1 k=1

2

a c a of
= m”v,z?(o) + 1y 5 (O +2py) - .

" 1—0!1 1—a?

Altogether, the explicit expression of 645 is

703 = Wiax O+ T MO i, O + 2“2)< I—a 1- a;>
C e “___
+ 1_—0[12/412,22(0) + /"1,22(0)(1 + 2#1)( l—a - a% >

A.7 Derivation of 05; and 05,

For 653 and 654, we get
05 = E[ X0, X0z = 120X, = 120 |
+Y {E|Xo1Xo2 = 120X, = 120 )|
E| (X2 = 12OV, = 1) |
= 1 2(0) — (O 2(0) + 2 VARCEYTARCY
034 = E[ (X0, X2 = 200 (Xg,z_— H2 )]
* 2 {B| (X = 200 (X3, = 12 0))]
+E[(Xo,lxo,2 — 12 ONE, = x| §
= 11.22(0) = 4 (O)py 5(0) + 2 (Koo a0+ 25, (00

Here,

@ Springer



270 H.Wang et al.

ey 00 = E[ (1 X = 1200 (K3, = 1))

k-1 k-1

— k j k !

= E{ [<“1 °X0,1 + Z o oel,k_j><a20X0,2 + Z 0‘2°52,k—1>
j=0 =0

120 (X, = 120 |

= E[(”]f°X0,1 ) (“§°X0,2)X§,1] = 2 (O)E[(@}0Xy, 1 )(@30Xy,0)]
k
u

k-1
+ <Z o Eley s ) [(azoon) ] (Z:,) a;E[el,kj])ylz(O)E[(a’;oXo,z)]
f=

J=0

k-1 k=1
+E [ a] osl,k__,) (2 agoez,k_,>] EIXG, = m2 0] = u1 2 OEIXG ) = 1y2(0)]

Jj=0 1=0

1

abEley J>E[(o/l‘ XX 1] - (2 aEley ])ylz(O)E[(o/l‘ 0Xy.1)]
1=0

»N
L4

k
-
k_k 3 k k 2k 3
= dhabE (X Xoo| - i Q)b b BTy 1 X1 + iy 1_—0(2(1119[)((11

»i_l

1-af 1-a R
“He T 1/411412(0)+Mg, = E[Xmon] Hey T ar azmz(O)uz

k k

1- a a
= afaf 13 5(0) — 2 (Oakad 5 (0) + Hey T o 1/411(0) Hey T 1/41#12(0)

ak 1—(1’1‘ t
+”gll 2#122(0) Mglmazllﬂ(())ﬂz

= a’f&’i(ms;(O) ~ 12O, 20))

1- ak k
the, 7o (1413(0) /41,”12(0)) the T a2u122(0)

Similarly,
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Hy 1p (k) = E[(Xk,lxk,z - /41,2(0))<X§,2 - /422(0))]

k-1 k-1
= E{ [(afoXo,l + Z “{051,1(/) <ot'2‘oX0’2 + Z aéoez,k,>
Jj=0 1=0

1200, = e (O) |

- E[(a’l{oXOY] J@koX)X2,] = iy (OE[(akoXy, )(a'z‘oXovz)]

k=1 k-1
+ ( o - E[ez’k_,]>E[(a]l‘oX0’] 3, - <Z o - E[eM_,]) o (O)E (a0 Xy, )]
=0

=0
1

— k—1

+ < o - E[gl,k__,])E[(a’;oxoﬁz)xg,z] - <z o - E[elvk_j]> 1 (OE[ (e 0X, )]
=0 j=0

kK - 2

- alazE[ ] e O QE Xy Xo] + s, T— E[XO X '2]

x~ =

l-a , l—aj  r . 1 —af
“He T 1;41/427(0) the T azE [X ] O 2HzZ(°)M2
- ok
= a’l‘alz‘yl,zg(O) — tp (O)afasp, 5(0) + ﬂezﬁafmz(m
- %
1- a’z‘ 1- ak 1- a"
“HeT g ¥ py 1 (0) + He T 052/42%(0) He T o azllz-(o)ﬂz
= ahat (1,2:0) = 2 O)p ,0))
1- 1- ’;
e T az(#zw(O) ;42#2-(0)) th, T 11 52 (0).

Next,
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i ) = E[ 060 X0 = 12O (X, = 10|

k=1 2
(Xo1X02 — HI,Z(O))[<Q§€OX0J + Z 0‘1051,kj> - 1412(0)]]

J=0

Il
s

1]
s

k-1 2
Xo,1 X0, — Hl,z(o))[(‘xf°xo,1)2 + <Z aioel,kj>
=0

) k—1
2(afoX0,1)<Z (x{osl,kj> - M12(0)>]
j=0

+

k-1 2
(Xo,1 %02 — ﬂl,z(o))[(af°xo,|)2 + E[X,1 X0, — ﬂ],z(o)]E<Z a{°£l.k—j> ]]

=E
Jj=0
B k—1 )
+2E | Xy, X — yl,z(O))(a’l‘oXO,l)( > oslyk_j)] — ElX01Xg5 — #112(0)] - 1112(0)
L =0

= E[(Xo,lxo,z - #1,2(0))(0‘1(0)(0-] )2]

- k-1
+2E | (Xy1 X9, — 1 ,(0)(@} 0X, | )<z 0/1 °£1,k—_/>:|

L Jj=0
= E[(Xo, Xoa(a}oXy, )] = ui2OE[(@}eXy )]
k—1
+ 2<Z a - E[eu{j]> (ElXo,1 Xo, (a¥0Xg 1)1 = m12(0E[akoX,, ] )
=0
= GE[XG X0 | + b1 = a)E[X X2 ] = s o) (oFEIXG 1+ al(1 - a)EIX,, 1)

— o
1 0!1
¢4

20, LA E[XC X0 | — ORI

l—a

= o s 5(0) + & (1 = @)y 2(0) = py ) 12 (0) = gy () (1 — )y
— (1{(
+2u,, T (o 122(0) = py ()i ;)
- %

= a%k(ms,z«» - mz(oml,z(O)) +af(1 - a'{)(ﬂlz,z(O) - ulul,z(m)
1- a’l‘ .
200, 7 (1220 = g 0)

Similarly,
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15y 20 = ELX, X = 13 2O (XE, = iz ©))]

k-1 2
_ k j
= E| (X1 X0 — H12(0)) (‘XZOXo,z + Z “2°52,kj> — un(0)

=0

_ 2
= E| Xy, Xp2 — 120 (@50Xp,)* + <Z agoeszj>
=0

k—1
+2(a12‘oX0‘2)<Z aéoezyk]) — pp (0))]

j=0
= E[(Xo.lxo,z - ﬂl,z(o))(alf°xo,2)2]
k—1
+2F [(XO,]XQ2 - 1y 0) (@ oX04’2)<2 o/z'oez,k_,>]
j=0
= E[(X()JX();(“I;OXUQ)Z] - ﬂ],z(O)E[(aéox()yz)z]
k-1 )
+ 2(2 @, - E[ezvk_j]> (E[Xy,1 Xo2(ak0X2)] — 1y 2 (0)E[a0X, 1)
j=0

= a;"E[Xé,zXo,l] + 0/2‘(1 - aé‘)E[ngzqul] ”12(0)<(x2"E Xzz] + alzc(l _ alz()E[Xo,z])
1— k
+2u,, _1 aSE[Xo, X7 ,] — p1 2 (0)abE[X, 5]

= 0‘2 H1,23(0) + 0‘]2((1 - aé)ﬂl,zz(o) Hi 2(0)0(2 U2 (0) — ﬂ1,2(0)0‘12{(1 - ‘112()142
k

a
+ 2”52 1— (02/41 22 (0) Illvz(o)alzcl,{2>
- a2 <M23 1(0) = ”22(0)”12(0)) + a§(1 - 0‘]2{ (ﬂl,zﬁ(o) = M2ﬂ112(0)>

a
+ 20, 7 (120~ pap )

Altogether, the explicit expressions of ¢s; and o5, are
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053 = s 2(0) - u12<0>u12<0>+2{a 0 - iy 2(0) = (O 5(0))

- k _
+ b, T k(w(O) 1112 (O) + e, 70+ i, (0)
1 : (M13 2(0) - M12(0)M1 »(0)) + a]f(l - ]f)(ﬂ12,2(0) - M1l41,2(0))
1- k
"‘2:“511— ay(uy2 5(0) — M1ll1,2(0))}

= 13 2(0) = 120y (0) + (3 5(0) — 2 (O)py L (O (T s ilz)

l—a;a, 1

o? .
+ (uyp2 5 (0) — (1 L)
aa He aa
_ﬁ) ; M122 P 111312)
02
= 13 2(0) = p12(0) 1 2(0) + (113 2(0) — p12(O) 2(0))(1 ;2 —)
1
2
+ (uy2(0) — + (1 +2)
+”2(M]3(0)_ - ‘IID‘Z )+M1M122 - %)

054 = M3 2(0) — p12(0)p; ,(0) + Z {a 5+ (1.25(0) = pp )y 5(0))

k
+ ”51 a2(M23 (0) MZ”ZZ(O)) + l’lgz 1— M] 22 (O)

1—a;
a2k - (4 23(0) = pp (0)pay ,(0)) + a’;(l —~ 5)(;41,22(0> — Uy ; 5(0))
+ 2#521:—2“]2(@1,22(0) - Hzﬂl,z(o))}

= l‘13,2(0) - ﬂlZ(O)ﬂl,z(O) + (”1,23(0) M22(O)M1 2(0))( - aza + = 5)

1- a

+0n220) = popn 20D + lixl 2

a;a, ) Msz aa, )

I—aa,

Mo _
+ I—a, (/423(0) ———

2

= p1135(0) — p12(0) g 5 (0) + (411 23(0) — pp2 (0) ey 2(0))( a]afx 12@)

+ (41 22(0) — pp g 2(0))( . + 2)(1 +2u,)
BT T - ;fx )-

+ py(p93(0) —

l-aa,

A.8 Derivation of 0

We compute o5 as
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055 = E[(Xo,1Xo2 = ﬂ1,2(0))2] +2 Z E[(X; 1 X2 = H12(0)(Xo,1 Xo2 = 1 2(0)]
k=1

= 1120) = ] () +2 Y w1, (K).
k=1

Here,

Hip12(k) = E[(X; 1 X p — py2(0)(Xo,1 X2 = p12(0))]

k=1 k=1
k j k !
=E l(aIOXO,l +2 “’1°fl,k—j> (“2°X0,2 ) “2°£2J<—1)

J=0 =0
_M1,2(0)>(X0,1X0,2 - M1,2(0))]

= E|(a* Xy 1)(ak0Xy )Xo 1 X0 — H12(0))]
k—1

+E[(a]1‘oX0’1)<Z aéoezsk_,>(X0’1X0’2 - ;41,2(0))]

=0

k=1
+E l(“§°X0,2) <Z “{°E[51,k—j])(xo,1xo,z - /41,2(0))]

Jj=0
= E[(a¥oX, 1)@k 0Xy2)Xy 1 Xo2] — #12(0E[(a¥oX, )(akoXy )]

k—1
+ <2 a -E[ez’k_,]> (El(a¥oXy )Xy Xo2] — p12(0)E[af0X, 1)

=0

+ (Z “/1 : E[El,k—j]) (E[(“§°X0,2)X0,1X0,2] - Ml,z(O)E[a§°Xo,2])

=0

= dadE|X3 X3, | = 2Ot dhELX, 1 Xo]

o k 2 k
< o E[Xo, Xy, 1 - ﬂl,z(o)alE[Xo,1]>

/452 =
1- ak ‘
tHe T, ( ayE[Xy 1 X5,] = MI,Z(O)aZE[XO,Z])

a
= ahat (o 2 (0) = 4350)) + sy 72 (a0 = Oy

1— k
+ He 77— 1 (0‘2/41 22(0) /41,2(0)0512{/42)

1—ak
a2(u12,22(0> = 15(0)) e, T2y 0) = gy 5(0)
1- ak
+ He 77— 1 az(ﬂl 2(0) - /42/41,2(0))
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Thus, the explicit expression of o5 is

055 = M2 2(0) — “12,2(0) +2 2 {“]1(“12((/"12,22(0) - “12,2(0)>
=1
;

a
e T e a0) = o 2O g, T 20) - k1 20) |

= e 2(0) - M1,2(0> #2{ (2 2 (0) = 7, (O 22

I-aja,

+ Hey <1L—&>(H172(0) /41/41,2(0))

l-a, ! 1 a a,
/'461 < a, %o

)(Ml 2(0) = pp 1 ,(0)) }

1- o l-a, I1-aja,
= Hy22(0) =y ,(0) + 2{(,4]2,22(0) 12,5(0)) 1alaafz
(72 = 7 )12 20) = 1 20))

(72 = )y 20) = g 2O .
S A | |

A.9 Proof of (17)-(21)
First, we denote

Vo (s =3) =2 (s —yma) +nm (e =32) A
gLk = 3 =g
Y12 — (}’5 _)’1)’2)

According to the quotient rule, we get

9A p_ 9B
081k _ o ay,
M B? '
where
2
9A a[)’z‘ ()’3_)’%)—2‘ ()’5_)’1y2) +y1(y4—y§)]
9y, B oy,
= =2y, + 405 =y ) -y + ()’4 —yi),
2
()_B B a[)’l)’2 - (ys _)’1)’2) ]
oy, 9y,
=yt 2()’5 - )’1)’2)Y2~
Thus, the explicit expression of =& 981k jg
Y1
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1

— { [=2y1y; + 405 = y192) - y2 + (v = ¥3)1 [ylyz - (s - y1y2)2]
[)’1)’2 - ()’5 _)’1)’2) ]

= P2+ 205 =ya)na] - 12 (5 =33) =2+ (s =)+ (= 33)] -

Inserting u = (,ul,yz,ylz(O), 12 (0), /,11,2(0)) and after simplification, we get the
explicit expression for g . , given in (17). Similarly, we derive the Eq. (18).
Next, we focus on Eq. (19). Since

9A a[)’z‘ ()’3_)’%)—2‘ ()’5_)’1)’2)2"‘)’1()’4_)’%)]

— = =Y,

0y3 oy3 :
2

6_B B a[Y1)’2 - (ys _}’1Y2) ] _o

0y 0y3 |

. . a0 .
the derivative % can be written as
3

0A 0B
og1x _ dy3 B Jy3 A
Y3 B?
Y2

Y12 — s _yly2)2.

Again inserting u = (/41, My 112(0), p2(0), ;41,2(0)), we get (19). The derivation of
Eq. (20) is analogous to that of g| .
Finally, we have

a[hh - ()’5 _)’1)’2)2]
oB
5 = = —2()’5 —y1)’2)a

9ys 9ys
oA _ 02 (5 =31) =2 05—y’ tyibu =) _ _ 98
0_)75 = dys =405 —yi) = 5_)75
So
A p_ 29
981k _ o ays _ —2(y5 _yl)’Q) 2-B—A
Vs B? B?
2()’5 —J’1Y2)

= 5 _212_(5_12)2
[Y1)’2_(Y5_)’1)’2)2]{ [yy o ]

+ [yg : ()’3 —)’%) -2 ()’5 _Y1)’2)2 +)’1()’4 —yﬁ)] }

2()’5 _)’1)’2>

= 31 = 22+ s (3 =07) (= 93)] -
[)’1)’2_(}’5_)’1)’2)2]{ . e e }
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Inserting g = (1, tyr 112(0), 112(0), 4, ,(0)), we get the explicit expression of g/ .
in 21).
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