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Abstract
We consider random coefficient INAR(1) processes with a strongly dependent latent 
random coefficient process. It is shown that, in spite of its conditional Markovian 
structure, the unconditional process exhibits long-range dependence. Short-term 
prediction and estimation of parameters involved in the prediction are considered. 
Asymptotic rates of convergence are derived.

Keywords Integer valued time series · INAR process · Long memory · Long-range 
dependence · Random coefficient process · Gaussian subordination

1 Introduction

We consider integer valued time series defined by an INAR(1) equation with a 
randomly generated autoregressive parameter. INAR(1) processes based on the 
binomial thinning operator (Steutel and van Harn 1979) were originally introduced 
in McKenzie (1985) and Al-Osh and Alzaid (1987). By definition, INAR(1) 
processes are Markovian. In this paper, the autoregressive parameter is assumed 
to vary as a function of time. Random coefficient INAR(1) processes with iid 
coefficients �t are considered in Leonenko et  al. (2007) and Zheng et  al. (2007). 
Also see Cui and Wang (2019) for random coefficient INAR(1) models based on 
a negative binomial thinning operator. The iid assumption preserves the Markov 
property. In contrast, in the present paper, the latent coefficient process �t ( t ∈ ℤ ) 
is assumed to exhibit long-range dependence. Under suitable technical assumptions, 
this implies long-range dependence in the observed process Xt . In particular, the 
Markov property no longer holds. The second question addressed in this paper is 
prediction of Xt+1 given Xt and estimation of �t(r) = E(�t ∣ Xt−1 = r) ( r ≥ 0 ) and 
�Z = E(Xt ∣ Xt−1 = 0) . Consistency and asymptotic rates of convergence are derived.

There is an extensive literature on INAR(p) and related processes. For an overview 
see, e.g., Weiß (2018). A very partial list of relevant references includes for instance Du 
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and Li (1991), Gauthier and Latour (1994), Freeland and McCabe (2005), Silva et al. 
(2009), Pedeli and Karlis (2011), Schweer and Weiß (2014), Bourguignon et al. (2016), 
and Jentsch and Weiß (2019). Long memory generated by aggregating INAR(1) 
processes is studied in Leonenko et  al. (2007) and Barczy et  al. (2017). Beran and 
Droullier (2023) consider strongly dependent zero-inflated INAR(1) processes. Also, 
Beran (2002) and Jia et al. (2023) study the generation of integer valued processes with 
long memory by Gaussian subordination. Quoreshi (2014) discusses the possibility 
of defining INARFIMA models with long-range dependence. However, the results in 
Quoreshi (2014) are not correct, because linear filters with non-summable coefficients 
cannot be carried over directly to thinning filters. Applying such filters to non-negative 
sequences leads to infinite values. The processes in Quoreshi (2014) are therefore 
not defined. This problem was recognized by Segnon and Stapper (2019). They use 
truncated fractional filters, thereby obtaining higher order Markov processes that can 
be used as a heuristic approximation of long memory. Strictly speaking however, these 
processes do not exhibit long-range dependence. For a general review on count series, 
including processes with long-range dependence, see Davis et al. (2016, 2021). General 
references to long memory processes can be found for instance in Beran (1994), 
Giraitis et al. (2012), Beran et al. (2013) and Pipiras and Taqqu (2017). Empirically, 
the presence of long memory in count data has been observed in many applications 
(Hurvich et  al. 2009; Hainaut and Boucher 2014; Braccini 2015). For instance, in 
finance, long memory in processes characterizing durations between transactions often 
lead to long memory in count processes (see, e.g., Daley et  al. 2000; Hurvich et  al. 
2009).

The paper is organized as follows. Basic definitions are given in section  2. The 
existence of a stationary solution is derived in section  3. The asymptotic behavior 
of the autocovariance function is investigated in section 4. Prediction and parameter 
estimation are considered in section  5. Simulations and data examples in section  6 
illustrate the results. Proofs are given in the Appendix.

2  Basic definitions

Let X ≥ 0 be an integer valued random variable and � ∈ (0, 1) . The thinning operator 
" ◦ " is defined by

where �i are iid Bernoulli random variables with P(�i = 1) = � (Steutel and van 
Harn 1979). Thus, conditionally on X, Y = �◦X is a binomial random variable with 
parameters X and � . An INAR(1) process (McKenzie 1985; Al-Osh and Alzaid 
1987) is defined by

where Zt ≥ 0 are iid integer valued random variables with E(Zt) = �Z.

(1)�◦X =

X∑

i=1

�i

(2)Xt = �◦Xt−1 + Zt (t ∈ ℤ),
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In this paper, we consider a random coefficient INAR(1) process defined by

where �t ( t ∈ ℤ ) is a second order stationary process with �t ∈ (0, 1) , E(�t) = � 
and autocovariance function ��(k) = cov

(
�t,�t+k

)
 ( k ∈ ℤ ). More specifically, we 

consider the case where

for some 0 < c𝜙 < ∞ and d ∈ (0,
1

2
) . Here, " ∼ " means that the ratio of the left and 

right hand side tends to one. Equation (4) implies

Stationary processes with property (5) are said to have strong dependence, long 
memory, or long-range dependence.

The following assumptions will be used:

• (A1) Xt is defined by (3).
• (A2) 

 for some b = 1 − � , 0 < 𝜖 < 1 , and E(�t) = �.
• (A3) The process (�t)t∈ℤ is strictly stationary with autocovariance function �� 

satisfying (4).
• (A4) The processes (�t)t∈ℤ and (Zt)t∈ℤ are independent of each other. 

Also, conditionally on (�t,Xt−1) , the binomial random variable �t◦Xt−1 is 
independent of �s ( s ≤ t − 1 ), Xs ( s ≤ t − 2 ), and Zs ( s ≤ t).

• (A5) For all s1, s2, t1, t2 ∈ ℤ , s1 ≤ s2 , t1 ≤ t2 , 

• (A6) Let 

 and 

 Then, 

(3)Xt = �t◦Xt−1 + Zt (t ∈ ℤ),

(4)��(k) ∼ c�|k|2d−1 (k → ∞)

(5)
∞∑

k=−∞

��(k) = ∞.

�t ∈ (0, b)

cov

(
s2∏

j=s1

�j,

t2∏

j=t1

�j

)
≥ 0.

p(r) =P
(
X0 = r

)
,

p(k;r, s) =P
(
X0 = r,Xk = s

)
,

�1(k;r, s) = cov
(
1
{
X0 = r

}
1
{
Xk = s

})

= p(k;r, s) − p(r)p(s).
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 for some 0 < c𝛾 ,1(r, s) < ∞.

3  Stationarity

Using the convention that, for j1 > j2 , Πj=j1
�j = 1 , we define

Under (A1) to (A4), a stationary solution of (3) exists and can be obtained as an 
almost sure limit of Xt,n:

Theorem 1 Suppose that (A1) to (A4) hold. Then, for each t ∈ ℤ , there exists a ran-
dom variable Xt with E(X2

t
) < ∞ such that Xt,n converges to Xt almost surely. We 

then write

Moreover, Xt ( t ∈ ℤ ) is strictly stationary, and the unique solution of (3).

Remark 1 Note that

Remark 2 A strongly dependent coefficient process satisfying (A2) and (A3) can 
be obtained for instance by Gaussian subordination. Let �t be a stationary Gaussian 
process with E(�t) = 0 , var(�t) = 1 and autocovariance function �� (k) ∼ c� ,� |k|2d−1 
where d ∈ (0,

1

2
) . We define

where G ∶ ℝ → (a, b) ⊆ (−𝜙, 1 − 𝜙) is such that E[G(�)] = 0 , E[G2(𝜁)] < ∞ . 
If E[�G(�)] ≠ 0 , then the function G is said to have Hermite rank one, and the 
autocovariance function of �t is of the form

(6)lim
k→∞

k1−2d�1(k;r, s) ∼ c� ,1(r, s)k
2d−1

(7)Xt,n =

n∑

i=0

(
t∏

j=t−i+1

�j

)
◦Zt−i.

(8)Xt =

∞∑

i=0

(
t∏

j=t−i+1

�j

)
◦Zt−i.

(9)E
(
Xt

)
= E

{
E

[
∞∑

i=0

(
t∏

j=t−i+1

�j

)
◦Zt−i|�s, s ≤ t

]}

(10)= �Z

∞∑

i=0

E

(
t∏

j=t−i+1

�j

)
.

(11)�t = � + G
(
�t
)

(12)��(k) ∼ c� ,�|k|2d−1



285On random coefficient INAR processes with long memory  

for some 0 < c𝛾 ,Y < ∞ . Thus, the long memory property of �t carries over to �t . 
The process �t = � + G(�t) is said to be generated by Gaussian subordination. For 
references and a more general discussion of Gaussian subordination see, e.g., Taqqu 
(1975), Major (1981), Dobrushin and Major (1979), Giraitis et  al. (2012), Beran 
et al. (2013), Pipiras and Taqqu (2017), and references therein.

Example 1 Let �t be defined as in Remark 2, � ∈
(

1

4
,
3

4

)
 , 0 < c <

1

4
 , a > 0 , and

Then with probability one, �t ∈ (0, 1) and (12) holds.

4  Long‑range dependence

The autocovariance function of random coefficient INAR(1) processes with iid 
coefficients is of the form �X(k) = �X(0)�

k ( k ≥ 0 ) (Leonenko et  al. 2007; Zheng 
et  al. 2007). Since 0 < E(𝜙t) = 𝜙 < 1 , �X(k) is summable. Here we consider 
assumptions (A1) to (A4), and in particular �� of the form (4). Sufficient conditions 
will be given that imply a non-summable autocovariance function �X.

We will use the convention that an empty product is equal to one, i.e., 
∏s

j=r
�j = 1 

( s < r ). First note that (8) implies the following representation of �X(k):

Theorem 2 Suppose that (A1) to (A4) hold. Then

where

and

Due to stationarity, c2 and Ct can also be written as

and

�t = � + c tanh
(
a�t

)

(13)�X(k) = �C(k) + c2(k)

(14)

�C(k) =cov
(
Ct,Ct+k

)
,

Ct =�Z

∞∑

i=0

t∏

j=t−i+1

�j

c2(k) = �2
Z

∞∑

i=0

E

(
t∏

j=t−i+1

�j

t+k∏

j=t−i+1

�j

)
.

c2(k) = �2
Z

∞∑

i=0

E

(
i∏

j=1

�j

i+k∏

j=1

�j

)
= �2

Z

∞∑

i=0

E

(
i∏

j=1

�2
j

i+k∏

j=i+1

�j

)
,
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Assumption (A2) leads to an exponential decay of c2(k):

Lemma 1 Suppose that �t ∈ (0, 1 − �) for some 𝜖 > 0 . Then there are constants 
0 < K < ∞ , � ∈ (0, 1) and an integer k0 ≥ 1 such that

A lower bound for the autocovariance function can be given as follows:

Theorem 3 Under assumptions (A1) to (A5), there is a constant 0 < C𝛾 < ∞ and a 
k0 ∈ ℕ such that

As a special case we may consider random variables with positive quadrant 
dependence (Lehmann 1966), or association as defined in Esary et al. (1967). We 
recall the following definitions.

Definition 1 (Lehmann 1966) Two real valued random variables X and Y are called 
positively quadrant dependent, if for all x, y ∈ ℝ,

Definition 2 (Esary et al. 1967) Denote by Y = (Y1, ..., Ym) a vector of real valued 
random variables Yj , Then Yj ( j = 1, ...,m ) are called associated, if for all nonde-
creasing functions f and g,

provided that the covariance is well defined.

Corollary 1 Let �t = log�t . Suppose that for any m ≥ 1 , the random variables 
�0, ..., �m are associated. Then the lower bound (16) holds.

Remark 3 Suppose that �� (k) ≥ 0 for all k. Then the assumptions of Corollary 1 can 
be achieved for instance by Gaussian subordination (see Remark 2) where G is a 
suitable monotonically increasing function.

Remark 4 Theorem 3 provides sufficient conditions such that the process Xt has a 
non-summable autocovariance function. In addition to a lower bound for �X it would 
be desirable to obtain an asymptotic expression of the form

(15)

�C(k) = cov

(
�Z

∞∑

i=0

t∏

j=t−i+1

�j, �Z

∞∑

i=0

t+k∏

j=t+k−i+1

�j

)

= �2
Z

∞∑

i1=1

∞∑

i2=1

cov

(
0∏

j=1−i1

�j,

k∏

j=1−i2+k

�j

)
.

||c2(k)|| ≤ K�k (k ≥ k0).

(16)�X(k) ≥ C�k
2d−1 (k ≥ k0).

P(X ≤ x, Y ≤ y) ≥ P(X ≤ x)P(Y ≤ y).

cov(f (Y), g(Y)) ≥ 0,
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(0 < c𝛾 ,X < ∞ ) together with an explicit formula for the constant c� ,X . Deriving 
an explicit formula for c� ,X appears to be difficult in general. For instance, under 
Gaussian subordination �t = � + G(�t) , one may use the Hermite expansion of G(�) 
and diagram formulas for products of Hermite polynomials (Major 1981; Giraitis 
and Surgailis 1986; Malyshev and Minlos 1991; Surgailis 2003; also see Beran et al. 
2013 and references therein). Combinatorial questions in this context are subject of 
current research.

Remark 5 Note that, conditionally on �t and Xt−1 , the observation Xt is independ-
ent of the past Xs ( s < t ). Nevertheless, unconditionally Xt exhibits long-range 
dependence. The reason is that long-range dependence in the coefficient process 
�t leads to strongly dependent fluctuations in the distribution of Xt . For instance, 
E[Xt|�t,Xt−1] = �tXt−1 + � . As a result, unconditionally, long memory in �t carries 
over to the process Xt . Note in particular that, unlike cross sectional aggregation of 
linear AR(1) models (see, e.g., Granger 1980), this effect has nothing to do with the 
range the random coefficients �t.

5  One step ahead prediction

We consider optimal prediction of Xt+1 given Xt . The mean squared prediction error 
is minimized by

Thus, for r = 0, 1, 2, ... , let

Then

and

where conditionally on Xt = r , Yt+1 is independent of Zt+1 and Yt+1 ∼ Bin(r,�(r)) . 
Note in particular that

The conditional expected quadratic prediction error is equal to

�X(k) ∼ c� ,Xk
2d−1 (k → ∞)

X̂t+1 = E
(
Xt+1 ∣ Xt

)
= E

(
𝜙t+1◦Xt + Zt ∣ Xt

)

= E
(
𝜙t+1 ∣ Xt

)
⋅ Xt + 𝜆Z .

�(r) = E
(
�t+1 ∣ Xt = r

)
.

X̂t+1 = E
(
Xt+1 ∣ Xt = r

)
= 𝜙(r) ⋅ r + 𝜆Z

Xt+1 − X̂t+1 =
(
Yt+1 − 𝜙(r) ⋅ r

)
+
(
Zt+1 − 𝜆Z

)
,

E
(
Xt+1 ∣ Xt = 0

)
= �Z .
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In practice, �Z and �(r) ( r ≥ 1 ) are unknown. Simple consistent estimators of �Z and 
�(r) can be given as follows. Let

and define

Moreover note that, for r ≥ 1,

so that

If p(r) = P(Xt = r) > 0 , then (18) motivates to define the estimator

where

and

In cases where p̂n(r) = 0 we set �̂�(r) equal to zero. Consistency and asymptotic rates 
of convergence of �̂�Z and �̂�(r) are given in the following Theorem.

Theorem 4 Suppose that (A1) to (A6) hold, and p(r) > 0 . Then, as n → ∞,

MSPE(r) = E
[(
Xt+1 − X̂t+1

)2
∣ Xt = r

]

= 𝜙(r)(1 − 𝜙(r)) ⋅ r + 𝜎2
Z
.

p̂n(r) =
1

n

n∑

t=2

1
{
Xt−1 = r

}
,

(17)�̂�Z =
n−1

∑n

t=2
1
�
Xt−1 = 0

�
Xt

p̂n(0)
.

Xt+1 − �Z = Yt+1 +
(
Zt+1 − �Z

)
,

(18)
E

(
Xt+1 − �Z

r
∣ Xt = r

)
= E

(
Yt+1

r
∣ Xt = r

)

= E
(
�t+1 ∣ Xt = r

)
= �(r).

(19)�̂�(r) =
1

nr

Sn(r)

p̂n(r)

Sn(r) =

n∑

t=2

�t(r),

𝜉t(r) = 1
{
Xt−1 = r

}(
Xt − �̂�Z

)
.

�̂�Z →

p
𝜆Z , �̂�(r) →

p
𝜙(r)

E
(
�̂�Z

)
= 𝜆Z + o

(
n
−

1

2

)
, E

(
�̂�(r)

)
= 𝜙(r) + o

(
n
−

1

2

)
,
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and

Moreover, there are constants 0 < cest,𝜆, cest,𝜙(r) < ∞ such that

Remark 6 Theorem 4 implies that the mean square errors of �̂�Z and �̂�(r) are asymp-
totically of the form

and

It is quite remarkable that, in spite of long-range dependence in the observed 
process, both estimation errors are of the order Op(n

−1∕2).

Remark 7 In exactly the same way, we may estimate

by

An analogous result as in Theorem 4 can be derived.

Remark 8 Estimation of the unconditional expected value � = E(�t) is more diffi-
cult. The reason is that for Xt−1 = 0 , Xt = Zt does not include any information about 
�t . Thus, even if the noise process Zt were known completely, Xt would not provide 
any information about �(0) = E(�t|Xt−1 = 0) . In the case of iid coefficients �t (Leo-
nenko et  al. 2007; Zheng et  al. 2007), this problem does not occur, because �t is 
independent of Xt−1.

Remark 9 Note that �̂�(r) is a semiparametric estimator, in the sense that (3) is 
assumed, but no other specifications are needed. Long memory in the latent process 
�t suggests that forecast accuracy may be improved by taking into account a larger 
number of past observations. Thus, given observations X1, ...,Xt , one may consider 
predictions

lim
n→∞

cov
�√

n
�
�̂�Z − 𝜆Z

�
,
√
n
�
�̂�(r) − 𝜙(r)

��
= 0.

var
(
�̂�Z

)
∼ cest,𝜆n

−1,

var
(
�̂�(r)

)
∼ cest,𝜙(r)n

−1.

MSE
(
�̂�Z

)
∼ var

(
�̂�Z

)
∼ cest,𝜆n

−1

MSE
(
�̂�(r)

)
∼ var

(
�̂�(r)

)
∼ cest,𝜙(r)n

−1.

(20)�∗ = E(�t|Xt−1 ≠ 0)

(21)�̂�∗ =
n−1

∑n

t=2
1
�
Xt−1 ≠ 0

��
Xt − �̂�Z

�
∕Xt−1

n−1
∑n

t=2
1
�
Xt−1 ≠ 0

� .

X̂
(m)

t+1
= E

(
Xt+1 ∣ Xt−s, 0 ≤ s ≤ m

)
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where 0 ≤ m ≤ t − 1 . Analogous formulas involving �Z and conditional expected 
values of the coefficient process can be obtained. However, when m is large, then the 
probability that the vector (Xt−s, 0 ≤ s ≤ m) assumes a specific value may become 
very small. Therefore, the application of a semiparametric estimator analogous 
to (19) becomes problematic. In particular, for m = t − 1 , such an estimator is not 
consistent. Instead one would need to express X̂(m)

t+1
 in terms of the model parameters 

� , �Z , c� ,� and d, and apply a fully parametric estimator. This is a formidable task 
worth pursuing in future research.

Remark 10 With respect to prediction of count time series, some authors recom-
mend to use so-called coherent forecast approaches, such as the conditional median, 
see Homburg et al. (2019). A possible approach that combines this idea with esti-
mates of � and �(r) given here is discussed in the following section.

6  Simulations and data examples

6.1  Simulations

A small simulation study illustrates Theorem  4. We consider model (3) with iid 
Poisson distributed variables Zt , and

where �t is a FARIMA(0,  d,  0) process with var(�t) = 1 (Granger and Joyeux 
1980; Hosking 1981). The following parameter settings are considered for each 
d = 0.1, 0.2, 0.3 and 0.4: a) � = 0.5 , E(Zt) = �Z = �2

Z
= 2 , and b) � = 0.5 , �Z = 2.5 . 

The range of � = E(Xt) is 5.0 ≤ � ≤ 5.1 in case a), and 6.3 ≤ � ≤ 6.4 in case b). 
Figure 1a shows typical sample paths of Xt for � = 2 . A bar chart with simulated 
probabilities p̂(r) based on the fourth series ( d = 0.4 ) is shown in Fig. 1b.

For each parameter constellation, and sample sizes n = 800 , 1000, 1200, 1400, 
1600, 1800 and 2000, N = 10�000 sample paths were simulated. For each sample 
path, �̂� , �̂�∗ , �̂�(1) and �̂�(5) were calculated, as defined in (17), (21) and (19), 
respectively. Table 1 shows the simulated means and variances of the estimates for 
case a). For illustration, the logarithm of the simulated variances of �̂� , �̂�(1) and �̂�∗ 
are plotted against log n in Fig. 2a,b and c for � = 2 . For log(var(�̂�)) vs. log n , the 
slopes of the fitted least squares lines are very close to the theoretical value of minus 
one: −1.18 ( d = 0.1 ), −1.25 ( d = 0.2 ), −1.30 ( d = 0.3 ), −1.47 ( d = 0.4 ). Similar 
results are obtained for log(var(�̂�(1))) ( −0.82 , −0.80 , −0.79 , −0.75 ), log(var(�̂�(5))) 
( −1.25 , −1.13 , −1.12 , −1.12 ) and log(var(�̂�∗)) ( −1.24 , −1.16 , −1.18 , −1.17 ). These 
results illustrate the expected 

√
n−rate of convergence of the estimators. Comparable 

results are obtained for case b) (Table 2).
The formula for �̂� given in (17) has the advantage of being simple. However, �̂� 

may be highly volatile when p(0) is small. Comparing Tables 1 and 2, the simu-
lations illustrate that var(�̂�) increases considerably in spite of the rather minor 

�t = � +
1

10
tanh

(
10�t

)
,
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increase in � from 2 to 2.5. The reason is that this increase lowers p(0) by a factor 
of about 1/10. This leads to much larger simulated variances of �̂� . An improve-
ment of (17) may be achieved by including non-zero values of Xt−1 as well, for 
instance by using appropriate combinations of conditional log-likelihood func-
tions and/or equations for moments. Typically, formulas of this type are however 
no longer explicit. A detailed investigation of optimal estimation procedures and 
their asymptotic and finite sample properties is an interesting question that should 
be addressed by future research.

Table 1  Simulated means (first 
number) and variances (second 
number) of �̂� , �̂�∗ , �̂�(1) and �̂�(5) , 
for Case a) ( � = 2)

n �̂�Z �̂�∗ �̂�(1) �̂�(5)

d = 0.1

800 2.079, 0.435 0.581, 0.028 0.634, 0.282 0.584, 0.018
1000 2.063, 0.321 0.584, 0.021 0.616, 0.240 0.587, 0.013
1200 2.052, 0.249 0.587, 0.017 0.604, 0.207 0.589, 0.010
1400 2.044, 0.206 0.589, 0.014 0.596, 0.181 0.591, 0.009
1600 2.039, 0.173 0.590, 0.012 0.590, 0.162 0.592, 0.007
1800 2.034, 0.150 0.591, 0.010 0.590, 0.147 0.593, 0.006
2000 2.030, 0.134 0.592, 0.009 0.589, 0.134 0.594, 0.006
d = 0.2

800 2.067, 0.414 0.584, 0.026 0.638, 0.280 0.586, 0.017
1000 2.046, 0.308 0.589, 0.020 0.626, 0.237 0.591, 0.013
1200 2.035, 0.239 0.591, 0.016 0.614, 0.207 0.593, 0.010
1400 2.031, 0.195 0.592, 0.013 0.605, 0.181 0.594, 0.009
1600 2.028, 0.170 0.593, 0.012 0.600, 0.162 0.594, 0.007
1800 2.024, 0.149 0.594, 0.010 0.597, 0.147 0.595, 0.007
2000 2.019, 0.132 0.595, 0.009 0.595, 0.136 0.596, 0.006
d = 0.3

800 2.080, 0.443 0.582, 0.027 0.624, 0.281 0.583, 0.018
1000 2.056, 0.316 0.587, 0.020 0.608, 0.234 0.588, 0.014
1200 2.042, 0.245 0.590, 0.016 0.601, 0.205 0.591, 0.011
1400 2.033, 0.198 0.592, 0.014 0.594, 0.180 0.593, 0.009
1600 2.029, 0.172 0.593, 0.012 0.590, 0.163 0.594, 0.008
1800 2.023, 0.150 0.594, 0.010 0.589, 0.147 0.595, 0.007
2000 2.021, 0.134 0.595, 0.009 0.586, 0.136 0.595, 0.006
d = 0.4

800 2.118, 0.607 0.575, 0.032 0.624, 0.297 0.576, 0.024
1000 2.074, 0.419 0.584, 0.024 0.613, 0.255 0.584, 0.018
1200 2.053, 0.323 0.588, 0.019 0.604, 0.224 0.588, 0.014
1400 2.039, 0.253 0.591, 0.016 0.597, 0.199 0.591, 0.012
1600 2.032, 0.212 0.593, 0.014 0.592, 0.178 0.592, 0.010
1800 2.027, 0.178 0.594, 0.012 0.587, 0.162 0.594, 0.009
2000 2.024, 0.159 0.595, 0.011 0.585, 0.150 0.594, 0.008
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A further question of interest is the quality of one-step ahead forecasts given 
Xt−1 . By definition, conditionally on Xt−1 and �t , the random variable Xt is inde-
pendent of the past. Therefore, instead of point forecasts it is more meaningful 
to predict conditional quantiles of Xt , given Xt−1 . For illustration, we consider 
the conditional median, say M, of Xt given Xt−1 = r . The prediction results for 
r = 5 are summarized in Tables  3 and  4. For all parameter settings considered 
here, M is equal to 5. The results in Tables  3 and  4 are based on N = 10�000 
simulations. Given N simulated series of length n, estimated conditional medi-
ans M̂i,n (i = 1, 2, ...,N) were calculated. Here, M̂i,n is defined as the median of 

Table 2  Simulated means (first 
number) and variances (second 
number) of �̂� , �̂�∗ , �̂�(1) and �̂�(5) , 
for Case b) ( � = 2.5)

n �̂�Z �̂�∗ �̂�(1) �̂�(5)

d = 0.1

800 2.967, 1.859 0.510, 0.070 0.672, 0.642 0.508, 0.072
1000 2.816, 1.566 0.540, 0.059 0.702, 0.593 0.538, 0.060
1200 2.713, 1.288 0.560, 0.049 0.712, 0.545 0.558, 0.050
1400 2.665, 1.083 0.568, 0.042 0.701, 0.495 0.567, 0.042
1600 2.618, 0.904 0.577, 0.035 0.698, 0.459 0.576, 0.035
1800 2.588, 0.792 0.583, 0.031 0.695, 0.426 0.582, 0.031
2000 2.572, 0.698 0.586, 0.027 0.689, 0.401 0.585, 0.028
d = 0.2

800 2.956, 1.835 0.513, 0.069 0.684, 0.667 0.508, 0.071
1000 2.809, 1.529 0.542, 0.058 0.708, 0.612 0.537, 0.059
1200 2.727, 1.281 0.557, 0.048 0.707, 0.550 0.553, 0.049
1400 2.670, 1.061 0.568, 0.040 0.700, 0.499 0.564, 0.041
1600 2.624, 0.867 0.576, 0.034 0.689, 0.449 0.573, 0.034
1800 2.600, 0.752 0.581, 0.029 0.682, 0.417 0.577, 0.030
2000 2.579, 0.644 0.585, 0.025 0.673, 0.386 0.581, 0.026
d = 0.3

800 2.939, 1.819 0.518, 0.067 0.681, 0.643 0.509, 0.070
1000 2.808, 1.525 0.543, 0.056 0.699, 0.587 0.535, 0.058
1200 2.713, 1.259 0.561, 0.046 0.707, 0.538 0.553, 0.049
1400 2.658, 1.072 0.571, 0.040 0.704, 0.499 0.564, 0.041
1600 2.622, 0.918 0.578, 0.034 0.696, 0.458 0.571, 0.036
1800 2.597, 0.793 0.582, 0.030 0.688, 0.426 0.576, 0.031
2000 2.579, 0.694 0.586, 0.026 0.679, 0.392 0.579, 0.027
d = 0.4

800 3.030, 1.853 0.507, 0.061 0.630, 0.614 0.488, 0.068
1000 2.902, 1.586 0.530, 0.052 0.645, 0.561 0.513, 0.058
1200 2.803, 1.365 0.547, 0.045 0.657, 0.523 0.533, 0.051
1400 2.737, 1.178 0.559, 0.039 0.659, 0.484 0.545, 0.044
1600 2.686, 1.015 0.568, 0.034 0.660, 0.453 0.555, 0.039
1800 2.651, 0.890 0.574, 0.030 0.655, 0.418 0.562, 0.034
2000 2.621, 0.778 0.579, 0.027 0.652, 0.394 0.568, 0.031
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Table 3  Simulated distribution 
of estimated predicted 
medians for Case a) ( � = 2 ): 
Let M denote the conditional 
median of Xt given Xt−1 = 5 . 
The table displays simulated 
distributions of estimates 
of M. For each sample size 
n, N = 10�000 series were 
simulated and estimates of M, 
denoted by M̂i,n ( i = 1, 2, ...,N ), 
were calculated. The table 
shows relative frequencies 
fn,M(m) = N−1

∑
i=1 1{M̂i,n = m} , 

rounded to three digits after the 
decimal point

n fn,M(4) fn,M(5) fn,M(6)

d = 0.1

800 0.006 0.994 0
1200 0 1 0
1600 0 1 0
2000 0 1 0
d = 0.2

800 0.008 0.991 0.001
1200 0.001 0.999 0
1600 0 1 0
2000 0 1 0
d = 0.3

800 0.016 0.982 0.002
1200 0.006 0.994 0
1600 0.002 0.998 0
2000 0.001 0.999 0
d = 0.4

800 0.061 0.932 0.006
1200 0.042 0.956 0.002
1600 0.030 0.968 0.001
2000 0.022 0.977 0.001

Table 4  Simulated distribution 
of estimated predicted medians 
for Case b) ( � = 2.5 ): Let 
M denote the conditional 
median of Xt given Xt−1 = 5 . 
The table displays simulated 
distributions of estimates 
of M. For each sample size 
n, N = 10�000 series were 
simulated and estimates of M, 
denoted by M̂i,n ( i = 1, 2, ...,N ), 
were calculated. The table 
shows relative frequencies 
fn,M(m) = N−1

∑
i=1 1{M̂i,n = m} , 

rounded to three digits after the 
decimal point

n fn,M(5) fn,M(6) fn,M(7) fn,M(8)

d = 0.1

800 0.744 0.246 0.003 0.001
1200 0.780 0.212 0.002 0.001
1600 0.808 0.185 0.001 0
2000 0.830 0.163 0.001 0
d = 0.2

800 0.750 0.243 0.002 0
1200 0.787 0.209 0.002 0
1600 0.815 0.183 0.001 0
2000 0.843 0.157 0 0
d = 0.3

800 0.753 0.234 0.002 0.001
1200 0.788 0.207 0.002 0.001
1600 0.813 0.184 0.002 0
2000 0.830 0.168 0.001 0
d = 0.4

800 0.725 0.266 0.003 0
1200 0.744 0.249 0.002 0
1600 0.755 0.241 0.001 0
2000 0.762 0.236 0 0
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X̂t = Ŷ + Ẑ where Ŷ  and Ẑ are mutually independent, Ẑ is Poisson distributed 
with intensity �̂� and Ŷ  is a binomial random variable Ŷ  with r = 5 Bernoulli trials 
and success probability �̂�(5) . Tables 3 and 4 show the simulated distributions of 
M̂i,n for all sample sizes and parameter settings. Relative frequencies are denoted 
by fn,M(m) = N−1

∑N

i=1
1{M̂i,n = m} . The results show an increased concentration 

of M̂i,n around the correct value of M = 5 , as n increases. The probability of 
obtaining a correct estimate of the conditional median is generally close to one, 
in particular when long memory is weak (d=0.1, 0.2). A comparison of the two 
cases indicates however that increasing � makes prediction of M more difficult. 
This is not unexpected in view of the increased variances of �̂� and �̂�(5) (see 
Tables 1 and 2; Figs. 3 and 4).

6.2  Data examples

Transaction counts in high-frequency trading tend to exhibit long memory 
(see, e.g., Hurvich et  al. 2009). Though most high-frequency data are not in 
the public domain, the presence of long memory can be detected by examining 
suitable aggregates that are freely available. This is due to the fact that temporal 
aggregation preserves long-range dependence (see, e.g., Chapter 2.2.1 in Beran 

Table 5  Microsoft—estimated conditional medians given Xt−1 = r (r = 1, 2, 3) . The results are based on 
a series of length N = 2000 . The estimates (first number in each column) are based on the first n obser-
vations X1, ...,Xn and compared to the corresponding conditional sample medians of the future observa-
tions Xn+1, ...,XN (second number in each column)

n Xt−1 =1 2 3

600 1, 1 1, 1 2, 2
800 1, 1 1, 2 2, 1
1000 1, 1 2, 1 2, 2
1200 1, 1 1, 1 2, 1.5
1400 1, 1 1, 1 2, 1

Table 6  Netflix—estimated conditional medians given Xt−1 = r (r = 1, 2, ..., 6) . The results are based on 
a series of length N = 2000 . The estimates (first number in each column) are based on the first n obser-
vations X1, ...,Xn and compared to the corresponding conditional sample medians of the future observa-
tions Xn+1, ...,XN (second number in each column)

n Xt−1 =1 2 3 4 5 6

600 1, 1 2, 2 3, 3 3, 3 5, 3 4, 4
800 1, 1 2, 2 3, 3 3, 3 4, 3.5 4, 3.5
1000 1, 1 2, 2 3, 3 3, 3 4, 3 4, 3.5
1200 1, 1 2, 2 3, 3 3, 3 4, 3.5 4, 3.5
1400 1, 1 2, 2 3, 3 3, 3 4, 4 4, 3.5



295On random coefficient INAR processes with long memory  

et  al. 2013, and references therein). Figures  3a and  5a show daily trading 
volumes for Microsoft and Netflix, for a time span of about eight years (July 
29, 2016 to July 11, 2024). The data were downloaded from the Nasdaq public 
domain platform (https://www.nasdaq.com/). Histograms of the series are given 
in Figs. 3d and 5d, respectively. The slow decay of the sample autocorrelations 
(Figs.  3b and  5b) and the negative slopes of log-log-periodograms (Figs.  3c 
and  5c) are clear indications for the presence of long memory. Note also that 
there is one extreme outlier in the Netflix series. The outlier is due to a selloff 

Fig. 1  Simulated sample paths of an RCINAR(1) process with d =0.1, 0.2, 0.3 and 0.4, respectively, a. 
For better visibility, the series are shifted vertically. b Shows a bar chart of simulated relative frequencies 
p̂(x) ( x = 0, 1, 2,...) for the fourth series ( d = 0.4)
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Fig. 2  Logarithm of simulated variances of �̂�Z (a), �̂�(1) (b) and �̂�∗ (c) plotted against log n
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on April 20, 2022, after the company’s announcement of a loss of 200’000 
subscribers in the first quarter of the year.

Next we illustrate prediction of conditional medians. Let Δt > 0 be measured 
in seconds, and denote by Vt the volume on day t. Nasdaq is open for six and 
a half hours a day. The average number of transactions in a time span of Δt 
seconds is therefore equal to X0

t
= Δt ⋅ Vt∕(6.5 ⋅ 3600) . We define Xt by round-

ing X0
t
 to the nearest integer. Since Microsoft tends to have much higher vol-

umes than Netflix, we use different values of Δt (0.001 s for Microsoft, 0.005 s 
for Netflix). Figures  4a and  6a display Xt for the two companies. The correlo-
grams, log-log-periodograms and histograms are given in Figs. 4b, c, d and 6b, 
c, d, respectively. Both series are of length N = 2000 . Tables  5 and  6 display 
estimated conditional medians given Xt−1 = r , based on the first n observations 
X1, ...,Xn , where n = 600, 800, 1000, 1200 and 1400. The estimated conditional 

Fig. 3  Microsoft: daily trading volumes (a), sample autocorrelations (b), log-log-periodogram (c) and 
histogram (d)
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medians are compared to the corresponding conditional sample medians of the 
future observations Xn+1, ...,XN . Taking into account that the sample medians are 
estimates as well, the results show a reasonably good agreement between the 
two quantities.

7  Final remarks

In this paper we introduced random coefficient INAR(1) processes generated by a 
strongly dependent stationary parameter sequence �t . A lower bound for the auto-
covariance function of the INAR(1) process was derived, implying non-summable 

Fig. 4  Microsoft: daily average number of transactions per 0.001 s (a), sample autocorrelations (b), log-
log-periodogram (c) and histogram (d)
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autocorrelations. One-step-ahead prediction given the immediate past was consid-
ered. Consistent estimators of parameters needed for prediction were proposed and 
their asymptotic rate of convergence was derived.

Many interesting open questions remain, including a detailed study of the 
asymptotic dependence structure and other distributional properties, improved 
forecasts, and an extension to strongly dependent random coefficient INAR(p) 
processes with p ≥ 2 . Also, the development of more efficient parameter estimators 
should be addressed. In particular, �̂� as defined in (17) may be too volatile in cases 
where Xt = 0 is a rare event.

Fig. 5  Netflix: daily trading volumes (a), sample autocorrelations (b), log-log-periodogram (c) and his-
togram (d)
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Appendix

Proofs

Proof (of Theorem 1) First, we prove the existence of Xt as an almost sure limit of 
Xt,n . Note that �t ∈ [0, b] with b < 1 , implies

Let

E

(
t∏

j=t−i+1

�j

)
= E

(
i∏

j=1

�j

)
≤ bi.

Fig. 6  Netflix: daily average number of transactions per 0.005 s (a), sample autocorrelations (b), log-log-
periodogram (c) and histogram (d)
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where

Note that, by definition, �t,i ≥ 0 so that

To prove almost sure convergence of Xt,n we can now apply the same arguments 
as in Proposition 13.3.1 in Brockwell and Davis (1991). Due to (22), convergence 
of E(|Xt,n|) = E(Xt,n) implies almost sure convergence of Xt,n . Now, E(|Xt,n|) is 
monotonically nondecreasing, with an upper bound given by

Therefore, E
(||Xt,n

||
)
 converges to a finite value, and hence Xt,n converges almost 

surely to

Note also that E
(
|Xt|

)
< ∞ . Strict stationarity of Xt follows from strict stationarity 

of �t.
To obtain weak stationarity, we need to prove E(X2

t
) < ∞ . Setting 

ai =
∏t

j=t−i+1
�j◦Zt−i , the inequality

implies

Xt,n =

n∑

i=0

�t,i

�t,i =

(
t∏

j=t−i+1

�j

)
◦Zt−i.

(22)0 ≤ Xt,n =

n∑

i=0

�t,i =

n∑

i=0

||�t,i|| ≤
n+1∑

i=0

||�t,i|| = Xt,n+1.

E
(||Xt,n

||
)
= E

(
Xt,n

)

= E

[
n∑

i=0

(
t∏

j=t−i+1

𝜙j

)
◦Zt−i

]

=

n∑

i=0

E

{
E

[(
t∏

j=t−i+1

𝜙j

)
◦Zt−i ∣ 𝜙s, s ≤ t

]}

= 𝜆Z

n∑

i=0

E

(
i∏

j=1

𝜙j

)
≤ 𝜆Z

n∑

i=0

bi ≤
𝜆Z

1 − b
< ∞.

(23)Xt =

∞∑

i=0

(
t∏

j=t−i+1

�j

)
◦Zt−i.

E
(
ZiZj

)
≤ �2

Z
+ �2

Z
, E

(
Z2
i

)
= �2

Z
+ �2

Z
,
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and hence

Next we show that Xt is a solution of (3). Recall the semigroup property and 
distributivity of binomial thinning operators (Scotto et al. 2015):

for any �, � ∈ [0, 1] , and integer valued random variables X, Y, Z ≥ 0 . Now, let Xt be 
defined by (23). Then, using (25) and (26),

Now,

so that

Uniqueness of Xt follows by analogous arguments.   ◻

(24)
∞∑

i1=0

ai1

∞∑

i2=0

ai2 =

∞∑

i=0

i∑

k=0

akai−k ≤
(
�2
Z
+ �2

Z

) ∞∑

i=0

(i + 1)bi,

E[X2
t
] ≤ (𝜆2

Z
+ 𝜎2

Z
)E

[
∞∑

i=0

(
t∏

j=t−i+1

𝜙j

)
∞∑

i=0

(
t∏

j=t−i+1

𝜙j

)]

≤ (𝜆2
Z
+ 𝜎2

Z
)

∞∑

i=0

(i + 1)bi = (𝜆2
Z
+ 𝜎2

Z
)

1

(1 − b)2
< ∞.

(25)�◦(�◦X) =
d
�◦(�◦X) =

d
(��)◦X,

(26)�◦(Z + Y) =
d
�◦Z + �◦Y

�t+1◦Xt + Zt+1 = �t+1◦

(
∞∑

i=0

(
t∏

j=t−i+1

�j

)
◦Zt−i

)
+ Zt+1

=

(
∞∑

i=0

(
�t+1

t∏
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�j

)
◦Zt−i

)
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=

(
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(
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�j

)
◦Zt−i

)
+ Zt+1

=

(
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(
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�j

)
◦Z(t+1)−i

)
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(
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∞∑
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(
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j=(t+1)−i+1

�j

)
◦Zt+1−i = Xt+1.
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Proof (of Theorem 2) Using the notation

and the representation

we have

Since

we have

Since

we obtain

Ct = �Z

∞∑

i=0
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�j
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Thus

  ◻

Proof (of Lemma 1) Assumption (A2) implies K = 𝜎2
Z

∑∞

i=0
b2i < ∞,

and hence

  ◻

Proof (of Theorem 3) Let

From Lemma 1 we have

where

and

�X(k) + E2
(
C0

)

=
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E
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)
E
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�j
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+
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�j

)

= E
(
CtCt+k

)
+ c2(k).

�X(k) = cov
(
Ct,Ct+k

)
+ c2(k) = �C(k) + c2(k).

0 ≤

i∏

j=1

�j

i+k∏

j=1

�j ≤ b2i+k,

c2(k) = �2
Z
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(
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�j
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�j
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≤ Kbk.

�t,i =
d

t∏

j=1−i+t

�j.

�X(k) = S(k) + o
(
k2d−1

)

S(k) =

∞∑

i1,i2=1

��;i1,i2 (k)
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Since, by assumption (A5), ��;i1,i2 (k) ≥ 0 , it is sufficient for a lower bound to show

for at least one pair i1 , i2 ≥ 0 . Consider for instance i1 = i2 = 1 . Then

and the result follows.   ◻

Proof (of Corollary 1) Let �t = log�t . Suppose that �0, ..., �m are associated for any m. 
Since the sum is a nondecreasing function, it follows that, for arbitrary finite index 
sets I1, I2 ⊂ ℤ,

are associated. Applying nondecreasing functions preserves associativity (Esary 
et al. 1967). Hence,

are also associated, and the result follows from Theorem 3.   ◻

Proof (of Theorem 4) By assumption (A7),

Now,

and

where

��;i1,i2 (k) = cov
(
�0,i1 , �k,i2

)
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(
0∏

j=1−i1

�j,
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�j

)
.

��;i1,i2 (k) ∼ ci1,i2k
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(
�0,�k

)
= ��(k) ∼ c� ,�k

2d−1
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∑
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�s, S2 =
∑
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�t
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∏

s∈I1

�s = exp
(
S1
)
, T2 =

∏

t∈I2

�t = exp
(
S2
)

�1(k;r, r) = p(k;r, r) − p2(r) ∼ c� ,1(r, r)k
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n
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Since Xt is equal to Zt whenever Xt−1 = 0 , we have

where

Stationarity of Xt ( t ∈ ℤ ), cov(Zs, Zt) = �st�
2
Z
 , and independence of Zt from Xt−1 lead 

to

and

Furthermore,

so that

Next, we consider �̂�(r) for r ≥ 1 . Note that
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For An we have

where

Now, E(Mn(r)) = 0 and

where

Conditioning on C = {Xs−1 = r,Xt−1 = r,�s = �(r),�t = �(r)} , we obtain

for s ≠ t . Moreover, for s = t , we have Xt = Yt + Zt with Yt ∼ Bin(r,�(r)) so that
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Furthermore,

with

Furthermore,

so that cov(An,Bn) = o(n−1) . Also note that

Overall we obtain
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implies

◻   ◻
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