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Abstract
The stability of a complex financial system may be assessed by measuring risk conta-
gion between various financial institutions with relatively high exposure. We consider
a financial network model using a bipartite graph of financial institutions (e.g. banks,
investment companies, insurance firms) on one side and financial assets on the other.
Following empirical evidence, returns from such risky assets are modelled by heavy-
tailed distributions, whereas their joint dependence is characterised by copula mod-
els exhibiting a variety of tail-dependence behaviour. We consider CoVaR, a popular
measure of risk contagion, and study its asymptotic behaviour under broad model
assumptions. We further propose the extreme CoVaR index (ECI) for capturing the
strength of risk contagion between risk entities in such networks, which is particularly
useful for models exhibiting asymptotic independence. The results are illustrated by
providing precise expressions of CoVaR and ECI when the dependence of the assets
is modelled using two well-known multivariate dependence structures: the Gaussian
copula and the Marshall–Olkin copula.
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Fig. 1 (left) Bank–asset bipartite network of the Mexican financial system on a particular day. Nodes
in the network represent banks (blue) and assets (red). Links between an asset and a bank exist if the
bank holds the asset in its portfolio. (Courtesy: Poledna et al. [52]); (right) Bipartite network structure of
common assets held by Chinese banks in 2021. The numbers and letters in the circles respectively represent
identifiers for banks and industries (Courtesy: Fan and Hu [28])

1 Introduction

The global financial crisis of 2007–2009 brought into immediacy the need to under-
stand risk contagion in order to assess the stability of a financial system. The high
level of inter-connectivity between various financial institutions has been argued to
be one of few key contributors to such systemic financial instability; see Allen and
Gale [5], Eisenberg and Noe [26], Acemoglu et al. [1], Gai and Kapadia [31], Fe-
instein et al. [29], Benoit et al. [8] for some compelling arguments on such network
effects. Among the various frameworks proposed to capture risk contagion in finan-
cial systems, a popular one has been to model the financial system as a bipartite graph
of financial institutions (e.g. banks, investment companies, insurance firms) on one
side and overlapping financial assets where the banks invest on the other. We use this
bipartite network as our model which has been observed in many financial markets;
see the Chinese and Mexican financial system in Fig. 1. This framework has been
used not only for modelling bank–asset risk sharing (Caccioli et al. [14], Fan and
Hu [28], Poledna et al. [52]), but also bank–firm credit networks (Marotta et al. [47]),
claims in insurance markets (Kley et al. [40, 41]), etc.

To fix notations, consider a vertex set A = Iq = {1, . . . , q} of banks/agents and
a vertex set O = Id = {1, . . . , d} of assets/objects. Denote by Zj the risk attributed
to the j th object; then Z = (Z1, . . . , Zd)� forms the risk vector. Each bank/agent
k ∈ A is connected to a number of assets/objects j ∈ O, and these connections may
be modelled in a stochastic manner following some probability distribution; see Fig. 2
for a representative example of such a bipartite network. A basic model assumes that
k and j connect (denoted k ∼ j ) with probability

P[k ∼ j ] = pkj ∈ [0, 1], k ∈ A, j ∈ O.
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Fig. 2 A bipartite network with q = 3 banks (or agents) and d = 5 assets (or objects). We model inter-
dependencies via a multivariate model for the assets and the bipartite network (which may be assumed to
be random or fixed) connecting assets to banks

The proportion of loss of asset/object j affecting bank/agent k is denoted by

fk(Zj ) = 1{k∼j}WkjZj ,

where 1 represents the indicator function and Wkj > 0 denotes the proportional effect
of the j th object on the kth agent. Defining the q × d adjacency matrix A by

Akj = 1{k∼j}Wkj ,

the total exposure of the banks/agents (think of negative log-returns on market eq-
uity value) is given by X = (X1, . . . , Xq)�, where Xk = ∑d

j=1 fk(Zj ) can be
represented as

X = AZ. (1.1)

We may assume that the graph creation process is independent of Z, i.e., A and Z are
independent. Now the behaviour of X will be governed by both the network repre-
sented by A and the underlying distribution of Z, the risk related to the assets/objects.
The goal of this paper is to study risk contagion in terms of the extremal behaviour
of X under reasonable assumptions on Z and A.

In order to model Z, the returns from the asset, we note that financial returns have
often been empirically observed to be heavy-tailed; see Adler et al. [3, Chap. 1],
Resnick [57, Chap. 1.3], Embrechts et al. [27, Chap. 6.5]. For this paper, we model
the distribution of Z to be heavy-tailed using the paradigm of multivariate regular
variation (Bingham et al. [10, Chap. 8], Resnick [57, Chap. 6]); further details are
given in Sect. 2. To model the dependence between the components of Z, we resort
to a few popular multivariate dependence structures, namely (i) the asymptotically
strongly dependent case, (ii) the Gaussian dependence, an erstwhile popular model
for dependence in many domains including finance (Fischer et al. [30], Malevergne
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and Sornette [46]) and (iii) the Marshall–Olkin dependence, which is often used in re-
liability/failure modelling in large systems (Marshall and Olkin [48], Yuge et al. [58]).
Our key results are more generally applicable, and we only provide explicit expres-
sions for the above examples. Interestingly, the latter dependence structures, i.e., the
Gaussian copula and the Marshall–Olkin copula, possess the property of (pairwise)
asymptotic independence in the tails, i.e., extreme values are less likely to occur si-
multaneously; see Das and Fasen-Hartmann [19] for details. This property of asymp-
totic independence has also been empirically observed in international equity markets
(Bradley and Taqqu [11], Poon et al. [54]).

We note as well that a linear dependence structure similar to (1.1) is also found in
certain factor models. For example, in the popular single-index factor model, namely
the capital asset pricing model (CAPM), the rate of return of an asset is divided
into a market return and an idiosyncratic risk of the return, which are assumed to be
independent, and the weights are the β’s introduced in the CAPM (see Zhou [59],
de Vries and Hyung [24], Huschens and Kim [37] for details). If the idiosyncratic
risks have heavier tails than the market returns of the assets, then the assets turn
out to be asymptotically independent, which is again a modelling component of the
present paper.

Finally, our key goal is to assess risk contagion in financial systems. Regulatory
bodies like the Basel Committee on Banking Supervision, Solvency II and the Swiss
Solvency Test for insurance regulations have regularly recommended monitoring of
individual measures of risk exposure like value-at-risk (VaR) and expected short-
fall (ES) for financial and insurance institutions so that adequate capital is reserved
to avoid catastrophic losses; see Artzner et al. [6], Jorion [39, Chap. 1.3]. It is ap-
parent that for capturing risk contagion, we need to assess the potential loss for en-
tities/institutions of interest conditioning on an extreme loss event pertaining to one
or more other financial institution(s). In this regard, conditional risk measures like
CoVaR (Adrian and Brunnermeier [4], Girardi and Ergün [32]), marginal expected
shortfall (MES) (Acharya et al. [2]), marginal mean excess (MME) (Das and Fasen-
Hartmann [16, 17]), systemic risk (SRISK) (Brownlees and Engle [13]) have become
extremely popular in the years following the 2007–2009 crisis. In this paper, we fo-
cus on one particular measure of risk contagion, namely CoVaR. Naturally, comput-
ing such risks requires an appropriate modelling of joint tail risks which captures the
marginal risk behaviour as well as inter-dependencies between financial entities.

We properly define this particular measure of risk contagion, CoVaR, in the fol-
lowing. For a random variable Y , the value-at-risk or VaR at level 1 − γ ∈ (0, 1) is
defined as

VaRγ (Y ) := inf{y ∈ R : P[Y > y] ≤ γ } = inf{y ∈ R : P[Y ≤ y] ≥ 1 − γ }.
Note that we chose γ as the subscript instead of the usual 1 − γ for brevity and
notational convenience. Now, given two random variables Y1, Y2 and constant levels
1 − γ1, 1 − γ2 ∈ (0, 1), we define the Conditional-VaR or Contagion-VaR (CoVaR)
of Y1 (at level 1 − γ1) given Y2 (at level 1 − γ2) as

CoVaRγ1|γ2(Y1|Y2) = inf{y ∈ R : P[Y1 > y|Y2 > VaRγ2(Y2)] ≤ γ1}. (1.2)
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Here, CoVaRγ1|γ2(Y1|Y2) represents the VaR at level 1 − γ1 ∈ (0, 1) of Y1 given that
Y2 is above its own VaR at level 1 − γ2 ∈ (0, 1). Although we concentrate on CoVaR
throughout the paper, it is clear that other conditional risk measures like MES/MME
(Acharya et al. [2], Das and Fasen-Hartmann [16]) and SRISK (Brownlees and En-
gle [13]) are viable options. The risk measure CoVaR was introduced to capture risk
contagion as well as systemic risk by Adrian and Brunnermeier [4] who used the
conditioning event to be {Y2 = VaRγ2(Y2)}. This was later modified by Girardi and
Ergün [32] to {Y2 > VaRγ2(Y2)} with the restriction that γ1 = γ2; this latter definition
has been shown to have nicer properties for dependence modelling and is used widely
for modelling and estimation (Nolde et al. [51], Mainik and Schaanning [45], Härdle
et al. [33]). We use the more general definition given in (1.2) following Girardi and
Ergün [32], but allowing γ1 and γ2 to be not necessarily equal; see Bianchi et al. [9],
Reboredo and Ugolini [55], Kley et al. [41] for related work using this definition.

The computation of CoVaR under a bipartite network framework has been ad-
dressed in Kley et al. [41], where the authors have particularly concentrated on dis-
tributions of risk exposures that are either asymptotically co-monotone or asymptoti-
cally independent. In addition, some of their proofs in the asymptotically independent
case are based on an i.i.d. assumption and, more importantly, may often lead to null
estimates for the relevant measures.

In this paper, we provide an enhanced characterisation of risk contagion using
CoVaR, not only addressing the asymptotically strongly dependent case (which in-
cludes the co-monotone case), but especially emphasising models with asymptotic
independence which are natural and popular and have not been particularly addressed
before; here we use the characterisation for tail asymptotics of random linear func-
tions of regularly varying vectors developed in Das et al. [21]. Our results show that
the asymptotic behaviour of CoVaR is affected by both the structure of the bipartite
network as well as the strength of dependence of the underlying distribution of risk
factors.

The paper is structured as follows. In Sect. 2, we characterise multivariate heavy-
tailed models and in particular investigate Gaussian and Marshall–Olkin copula mod-
els with Pareto-type marginals. In Sect. 3, we characterise the asymptotic behaviour
of CoVaRg(γ )|γ (Y1|Y2) as γ ↓ 0 for some function g(γ ), where Y1 is heavy-tailed
(note that both marginals need not be heavy-tailed). We also introduce here the ex-
treme CoVaR index (ECI), which is a measure of the strength of risk contagion from
Y1 to Y2 and is particularly useful when they are asymptotically independent. The
bipartite network with asymptotically strongly dependent underlying assets is ad-
dressed in an example in this section as well. For the remainder of the paper, we in-
vestigate the more challenging case of asymptotically independent assets. In Sect. 4,
we compute joint and conditional probabilities for extreme events pertaining to the
agent’s/bank’s total exposure modelled by X = AZ and the asymptotic behaviour of
CoVaR as well as the ECI. This requires an appropriate understanding of transfor-
mations of various kinds of sets in the presence of the bipartite network model. We
conclude in Sect. 5 with indications for future work. All proofs of relevant results are
relegated to the Appendix.
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1.1 Notations

The following notations are used throughout the paper. We denote by Id = {1, . . . , d}
an index set with d elements; the subscript is dropped when evident from the
context. For a given vector z ∈ R

d and S ⊆ Id , we denote by z� the trans-
pose of z and by zS ∈ R

|S| the vector obtained by deleting the components of z
in Id\S. Similarly, for non-empty I, J ⊆ Id , ΣIJ denotes the appropriate sub-
matrix of a given matrix Σ in R

d×d , and we write ΣI for ΣII . Vector oper-
ations are understood componentwise, e.g. for vectors v = (v1, . . . , vd)� and
z = (z1, . . . , zd)�, v ≤ z means vj ≤ zj , ∀j . We also have the following nota-
tions for vectors in R

d : 0 = (0, . . . , 0)�, 1 = (1, . . . , 1)�, ∞ = (∞, . . . ,∞)� and
ej = (0, . . . , 1, . . . , 0)�, j ∈ Id , where ej has only one non-zero entry 1 at the j th
coordinate.

For a random vector Z = (Z1, . . . , Zd)�, we write Z ∼ F if Z has distribution
function F ; moreover, we understand that marginally Zj ∼ Fj for j ∈ Id . We call
the random vector Z ∼ F to be tail-equivalent if for all j, � ∈ Id, j �= �, we have
limt→∞(1 −Fj (t))/(1 −F�(t)) = cj� for some cj� > 0; moreover, if cj� = 1 for all
j, � ∈ Id , we say that Z is completely tail-equivalent. Analogously, we call the associ-
ated random variables Zj ,Z� tail-equivalent or completely tail-equivalent. For func-
tions f, g, we write f (t) ∼ g(t) as t → ∞ if limt→∞ f (t)/g(t) = 1. The cardinality
of a set S ⊆ Id is denoted by |S|. The indicator function of an event A is denoted
by 1A, and for a constant t > 0 and a set A ⊆ R

d+, we define tA := {tz : z ∈ A}.

2 Multivariate heavy tails

In this paper, the framework that we use for modelling heavy tails is that of multi-
variate regular variation. We start with a brief primer on multivariate regular variation
and then explicitly derive necessary model parameters, limit measures and their sup-
ports for our two primary model examples, the Gaussian and Marshall–Olkin copula
models.

2.1 Preliminaries: multivariate regular variation

Regular variation is a popular theoretical framework for modelling heavy-tailed dis-
tributions; for the models in this paper, we assume this property for all our marginal
risk variables.

A measurable function f : R+ → R+ is regularly varying (at +∞) with some
fixed β ∈ R if limt→∞ f (tz)/f (t) = zβ,∀ z > 0. We write f ∈ RVβ , and if
β = 0, we call f a slowly varying function. A real-valued random variable Z ∼ F

is regularly varying (at +∞) if the tail F := 1 − F ∈ RV−α for some α > 0.
Alternatively, if Z ∼ F , the property F ∈ RV−α is equivalent to the existence of a
measurable function b : R+ → R+ with b(t) → ∞ as t → ∞ such that

tP[Z > b(t)z] = tF
(
b(t)z

) −→ z−α as t → ∞,∀ z > 0.



Risk contagion in networks 713

Consequently, we have b ∈ RV1/α , and a canonical choice for b is

b(t) = F←(1 − 1/t) = F
←

(1/t)

where F←(z) = inf{y ∈ R : F(y) ≥ z} is the generalised inverse of F . Well-known
distributions like Pareto, Lévy, Fréchét, Student-t which are used to model heavy-
tailed data are all in fact regularly varying; see Embrechts et al. [27, Chap. 1.3],
Resnick [57, Chap. 2] for further details.

For multivariate risks, our interest is in high (positive) risk events, and hence we
concentrate on characterising tail behaviour on the positive quadrant Rd+ := [0,∞)d ;
risk events in any other quadrant can be treated similarly. Multivariate regular vari-
ation on such cones and their subsets are discussed in detail in Das and Fasen-
Hartmann [18], Hult and Lindskog [36], Das et al. [22], Lindskog et al. [44].
We briefly introduce the ideas, notations and tools here. We focus particularly on
subcones of Rd+ of the form

O
(i)
d := R

d+ \ {z ∈ R
d+ : z(i) = 0} = {z ∈ R

d+ : z(i) > 0}, i ∈ Id ,

where z(1) ≥ z(2) ≥ · · · ≥ z(d) is the decreasing order statistic of z1, . . . , zd .

Here O
(i)
d represents the subspace of R

d+ with all (i − 1)-dimensional co-ordinate
hyperplanes removed; the 0-dimensional hyperplane is the point {0}. Clearly,

O
(1)
d ⊇ O

(2)
d ⊇ · · · ⊇ O

(d)
d . (2.1)

The type of convergence we use here is called M-convergence of measures [36, 22],
of which multivariate regular variation on O

(i)
d is only a special example; see [44, 18].

For a subspace O
(i)
d , let B(O

(i)
d ) denote the collection of Borel sets in O

(i)
d . Note that

two sets A,B ⊆ R
d+ are bounded away from each other if A ∩ B = ∅, where A, B

are the closures of A,B.

Definition 2.1 Let i ∈ Id . A random vector Z ∈ R
d is multivariate regularly varying

(MRV) on O
(i)
d if there exist a regularly varying function bi ∈ RV1/αi

, αi > 0, and a
non-null (Borel) measure μi which is finite on Borel sets bounded away from the set
{z ∈ R

d+ : z(i) = 0} such that

lim
t→∞ t P

[
Z

bi(t)
∈ B

]

= μi(B) (2.2)

for all sets B ∈ B(O
(i)
d ) which are bounded away from {z ∈ R

d+ : z(i) = 0} with

μi(∂B) = 0. We write Z ∈ MRV(αi, bi, μi,O
(i)
d ), where some parameters may be

dropped for convenience.

The limit measure μi defined in (2.2) turns out to be homogeneous of order −αi ,
i.e., μi(λB) = λ−αi μi(B), ∀ λ > 0. Moreover, if Z ∈ MRV(αi, bi, μi,O

(i)
d ),

∀ i ∈ Id , then a direct conclusion from (2.1) is that

α1 ≤ α2 ≤ · · · ≤ αd,
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implying that as i ∈ Id increases, the rate of decay of probabilities of tail sets in O
(i)
d

either remains the same or becomes faster.

2.2 Regular variation under a Gaussian copula

Probabilities of tail subsets of Rd+ for heavy-tailed models using the popular Gaussian
dependence structure have been discussed in detail in Das and Fasen-Hartmann [20].
Here, we concentrate on such models where the tails are asymptotically power-law
(Pareto-like); this allows explicit computations and insights into this model. To fix
notations, if ΦΣ denotes the distribution function of a d-variate normal distribution
with all marginal means zero, variances being one and positive semi-definite correla-
tion matrix Σ ∈ R

d×d , and Φ denotes a standard normal distribution function, then
let

CΣ(u1, . . . , ud) = ΦΣ

(
Φ−1(u1), . . . , Φ

−1(ud)
)
, 0 < u1, . . . , ud < 1,

denote the Gaussian copula with correlation matrix Σ. Next, we define the following
model analogous to the RVGC model defined in [20] and analyse its MRV behaviour.

Definition 2.2 An R
d -valued random vector Z = (Z1, . . . , Zd)� ∼ F follows a

Pareto-tailed distribution with Gaussian copula with index α > 0, scaling parameter
θ > 0 and positive definite correlation matrix Σ if the following hold:

(i) The marginal distributions Fj of Zj are continuous and strictly increasing with
tail Fj (t) := 1 − Fj (t) ∼ θt−α , ∀ j ∈ Id , for some θ, α > 0.

(ii) The joint distribution function F of Z is given by

F(z) = CΣ

(
F1(z1), . . . , Fd(zd)

)
, z = (z1, . . . , zd)� ∈ R

d,

where CΣ is the Gaussian copula with correlation matrix Σ ∈ R
d×d . We write

Z ∈ P-GC(α, θ,Σ), where some parameters may be dropped for convenience.

Remark 2.3 The above structure admits a wide variety of distributional behaviour.
(a) The Pareto, Lévy, Student-t and Fréchét distributions have a tail satisfying

Fj (t) ∼ θt−α (Embrechts et al. [27, Example 3.3.10], Nair et al. [50, Part I]), thus
allowing a few popular heavy-tailed marginals to be chosen from.

(b) A special case here is when the correlation matrix Σ = Id and all marginals
Z1, . . . , Zd are identically Pareto-distributed, thus covering the case with i.i.d. margi-
nals as well.

(c) If the Gaussian dependence is defined by an equicorrelation matrix given by

Σρ :=

⎛

⎜
⎜
⎜
⎝

1 ρ . . . ρ

ρ 1 . . . ρ
...

...
. . .

...

ρ . . . . . . 1

⎞

⎟
⎟
⎟
⎠

with − 1
d−1 < ρ < 1 (making Σρ positive definite), we write Z ∈ P-GC(α, θ,Σρ).

This correlation matrix is the only choice if d = 2.



Risk contagion in networks 715

(d) If Z ∈ P-GC(α, θ,Σ), then any subvector ZS , S ⊆ Id , satisfies the property
that ZS ∈ P-GC(α, θ,ΣS).

For the P-GC model, although we have only assumed a Pareto-like tail for the
marginal distributions, it turns out that along with the Gaussian dependence, this
suffices for the random vectors to admit multivariate regular variation (MRV) on the
various subcones O(i)

d ⊂ R
d+; this was derived in further generality in Das and Fasen-

Hartmann [20]. We recall and reformulate some of the related results. The following
result is from Hashorva and Hüsler [34, Proposition 2.5 and Corollary 2.7] and is
used to state and prove Proposition 2.5 below.

Lemma 2.4 Suppose Σ ∈ R
d×d is a positive definite correlation matrix. Then the

quadratic programming problem

PΣ−1 : min
z≥1

z�Σ−1z

has a unique solution e∗ = e∗(Σ) ∈ R
d such that

γ := γ (Σ) := min
z≥1

z�Σ−1z = e∗�Σ−1e∗ > 1.

Moreover, there exists a unique non-empty index set I := I (Σ) ⊆ {1, . . . , d} = Id

with J := J (Σ) := Id \ I such that the unique solution e∗ is given by

e∗
I = 1I and e∗

J = −(
(Σ−1)JJ

)−1
(Σ−1)J I 1I = ΣJI (ΣI )

−11I ≥ 1J ,

and 1IΣ
−1
I 1I = e∗�Σ−1e∗ = γ > 1 as well as z�Σ−1e∗ = z�

I Σ−1
I 1I for any

z ∈ R
d . Also, defining hi := hi(Σ) := e�

i Σ−1
I 1I > 0 for i ∈ Id , we have hi > 0

for i ∈ I . If Σ−11 ≥ 0, then 2 ≤ |I | ≤ d and e∗ = 1.

With the notations and definitions of Lemma 2.4, we can state the main re-
sult on MRV for P-GC models which summarises Das and Fasen-Hartmann [20,
Theorems 3.1 and 3.4].

Proposition 2.5 Let Z ∈ P-GC(α, θ,Σ), where Σ is positive definite. Fix a non-empty
set S ⊆ Id with |S| ≥ 2.

(i) Let γS := γ (ΣS), IS := I (ΣS), e∗
S := e∗(ΣS) and hS

s := hs(ΣS), s ∈ IS , be
defined as in Lemma 2.4.

(ii) Let JS := Id \ IS . Now define YJS
∼ N (0JS

,ΣJS
− ΣJSIS

(ΣIS
)−1ΣISJS

) if
JS �= ∅, and YJS

= 0JS
if JS = ∅.

(iii) If JS �= ∅, define lS := limt→∞ t (1JS
−e∗

JS
), a vector in R

|JS | with components
either 0 or −∞, and if JS = ∅, define lS := 0S .

Let ΓzS
= {v ∈ R

d+ : vs > zs,∀s ∈ S} for zS = (zs)s∈S with zs > 0,∀s ∈ S.
Then as t → ∞,

P[Z ∈ tΓzS
] = (

1 + o(1)
)
ϒS(2π)

γS
2 θγS t−αγS (2α log t)

γS−|IS |
2

∏

s∈IS

z
−αhS

s
s



716 B. Das, V. Fasen-Hartmann

with ϒS = (2π)−|IS |/2|ΣIS
|−1/2 ∏

s∈S(hS
s )−1

P[YJS
≥ lS]. Moreover, the follow-

ing hold:
(a) We have Z ∈ MRV(α1, b1, μ1,O

(1)
d ) with α1 = α, b1(t) = (θt)1/α , t > 0, and

μ1([0, z]c) = ∑d
j=1 z−α

j , ∀ z ∈ R
d+.

(b) Let 2 ≤ i ≤ d . Define

Si :=
{
S ⊆ Id : |S| ≥ i, 1IS

(ΣIS
)−11IS

= min
S̃⊆Id ,|S̃|≥i

1IS̃
(ΣIS̃

)−11IS̃

}
,

Ii := arg min
S∈Si

|IS |,

where Ii is not necessarily unique. Then Z ∈ MRV(αi, bi, μi,O
(i)
d ), where

γi = γ (ΣIi
) = 1�

Ii
(ΣIi

)−11Ii
= min

S⊆Id ,|S|≥i
min

zS≥1S

z�
S (ΣS)−1zS,

αi = αγi, b←
i (t) = (2π)−

γi
2 θ−γi tαγi (2α log t)

|Ii |−γi
2 ,

μi(ΓzS
) =

{
ϒS

∏
s∈IS

z
−αhS

s
s , if S ∈ Si and |IS | = |Ii |,

0, otherwise.
(2.3)

First, we note that in this model, the parameters or indices of regular variation in
each subspace O(i)

d are indeed all different. The proof of this result and the following
results of this section are given in Appendix A.

Proposition 2.6 Let Z ∈ P-GC(α, θ,Σ), where Σ is positive definite and the assump-
tions and notations of Proposition 2.5 hold. Then with Z ∈ MRV(αi, bi, μi,O

(i)
d ),

∀ i ∈ Id , we have

α1 < α2 < · · · < αd,

and in particular bi(t)/bi+1(t) → ∞ as t → ∞ for i = 1, . . . , d − 1.

Thus the rate of convergence of tail sets in O
(i)
d for different i ∈ Id are different.

Next, we investigate the support of the limit measure μi .

Example 2.7 For any positive definite correlation matrix Σ = (ρj�), we have

1�{j,�}(Σ{j,�})−11{j,�} = 2

1 + ρj�

, j �= � ∈ Id ,

and the right-hand side above does not have the same value for all j �= � ∈ Id

unless Σ is an equicorrelation matrix. Hence if Σ is not an equicorrelation matrix,
using the notation from Proposition 2.5, there exists a set S = {j∗, �∗} /∈ S2, and

μ2({z ∈ R
d+ : zj > 0,∀ j ∈ S, z� = 0,∀ � ∈ Id\S}) = 0.
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In the following, we present a general result characterising the support of the limit
measure on each of the Euclidean subcones for the P-GC model.

Proposition 2.8 Let the assumptions and notations of Proposition 2.5 hold and fix
some i ∈ Id .

(a) Suppose that for all S ⊆ Id with |S| = i, we have Σ−1
S 1S > 0S and

1�
S Σ−1

S 1S = γi . Then the support of the limit measure μi on O
(i)
d defined in (2.3) is

⋃

S⊆Id ,|S|=i

{z ∈ R
d+ : zj > 0,∀ j ∈ S, z� = 0,∀ � ∈ Id\S}.

(b) Suppose that for some S ⊆ Id with |S| = i, Σ−1
S 1S > 0S and γi �= 1�

S Σ−1
S 1S .

Then

μi({z ∈ R
d+ : zj > 0,∀ j ∈ S, z� = 0,∀ � ∈ Id\S}) = 0.

2.3 Regular variation under a Marshall-Olkin copula

Another important example of multivariate tail risk modelling is the Marshall–Olkin
copula. The Marshall–Olkin distribution is often used in reliability theory to capture
the dependence between the failure of subsystems in an entire system and hence
is a candidate model for measuring systemic risk. We consider a particular type of
Marshall–Olkin survival copula; cf. Lin and Li [43] and Das and Fasen-Hartmann
[18, Example 2.14]. Assume that for every non-empty set S ⊆ Id , there exists a
parameter λS > 0 and Λ := {λS : ∅ �= S ⊆ Id}. Then the generalised Marshall–Olkin
survival copula with rate parameter set Λ is given by

ĈMO
Λ (u1, . . . , ud) =

d∏

i=1

∏

|S|=i

∧

j∈S

u
ηS
j

j , 0 < uj < 1,

where

ηS
j = λS

∑
J⊇{j} λJ

, j ∈ S ⊆ Id .

Similarly to the P-GC model, we define a Pareto–Marshall–Olkin copula (P-MOC)
model next.

Definition 2.9 An R
d -valued random vector Z = (Z1, . . . , Zd)� ∼ F follows a

Pareto-tailed distribution with Marshall–Olkin copula with index α > 0, scaling
parameter θ > 0 and rate parameters Λ = {λS : ∅ �= S ⊆ Id} if the following hold:

(i) The marginal distributions Fj of Zj are continuous and strictly increasing with
tail Fj (t) := 1 − Fj (t) ∼ θt−α , ∀ j ∈ Id , for some θ, α > 0.

(ii) The joint survival distribution function F of Z is given by

F(z) = P[Z1 > z1 . . . , Zd > zd ] = ĈMO
Λ

(
F 1(z1), . . . , F d(zd)

)
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for z = (z1, . . . , zd)� ∈ R
d , where ĈMO

Λ denotes the Marshall–Olkin survival copula
with rate parameter set Λ. We write Z ∈ P-MOC(α, θ,Λ), where some parameters
may be dropped for convenience.

It is also possible to show that Z ∈ P-MOC(α, θ,Λ) with any feasible rate param-
eter set Λ is multivariate regularly varying on the cones O

(i)
d , but finding the exact

parameters and limit measures requires some involved combinatorial computations;
hence we concentrate on two specific choices of Λ, cf. Das and Fasen-Hartmann [18,
Example 2.14]:

(a) Equal parameter for all sets. Here, λS = λ for all non-empty sets S ⊆ Id ,
where λ > 0. We denote this model by P-MOC(α, θ, λ=).

(b) Parameters proportional to the cardinality of the sets. Here, λS = |S|λ for all
non-empty sets S ⊆ Id , where λ > 0. We denote this model by P-MOC(α, θ, λ∝).

Note that in both cases, the Marshall–Olkin copula and hence the P-MOC model
do not depend on the value of λ.

Remark 2.10 If Z ∈ P-MOC(α, θ, λ=), then any subvector ZS with S ⊆ Id also sat-
isfies ZS ∈ P-MOC(α, θ, λ=), implying a nested structure across dimensions. How-
ever, in the case of a Marshall–Olkin copula with proportional parameters where
Z ∈ P-MOC(α, θ, λ∝), such a nested property does not hold anymore.

In each of these cases, we can explicitly compute all the relevant parameters of the
multivariate regular variation, and in fact, the limit measures have positive mass on all
feasible support regions in these cases. The result given next is adapted from Das and
Fasen-Hartmann [18, Example 2.14] and characterises multivariate regular variation
for the P-MOC models for the choices of equal rate parameters and proportional
rate parameters. These are also known as Caudras–Augé copulas [15] and have been
used in Lévy frailty models for survival analysis.

Proposition 2.11 The following statements hold:
(i) Let Z ∈ P-MOC(α, θ, λ=). Then Z ∈ MRV(αi, bi, μi,O

(i)
d ) for i ∈ Id , where

αi = (2 − 2−(i−1))α, bi(t) = θ
1
α t

1
αi ,

and for sets Γ
(d)
zS

= {v ∈ R
d+ : vs > zs,∀ s ∈ S} with zs > 0,∀s ∈ S ⊆ Id , |S| ≥ i,

we have

μi(Γ
(d)
zS

) =
{∏i

j=1 z(j)
−α2−(j−1)

, if |S| = i,

0, otherwise,

where z(1) ≥ · · · ≥ z(i) denote the decreasing order statistic of (zj )j∈S .

(ii) Let Z ∈ P-MOC(α, θ, λ∝). Then Z ∈ MRV(αi, bi, μi,O
(i)
d ) for i ∈ Id , where

αi = α

d + 1

(

2d − d − i

2i−1

)

, bi(t) = θ
1
α t

1
αi ,
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and for sets Γ
(d)
zS

= {v ∈ R
d+ : vs > zs,∀ s ∈ S} with zs > 0,∀s ∈ S ⊆ Id , |S| ≥ i,

we have

μi(Γ
(d)
zS

) =
⎧
⎨

⎩

∏i
j=1 z

−α(1− j−1
d+1 )2−(j−1)

(j) , if |S| = i,

0, otherwise.

In both cases, we have α1 < α2 < · · · < αd and in particular bi(t)/bi+1(t) → ∞
as t → ∞ for i = 1, . . . , d − 1.

It is easy to check that if Z ∈ P-MOC(α, θ,Λ) with the rate parameters either
all equal or proportional (to the size of the sets) as in Proposition 2.11, and if
the marginals are identically distributed, then Z is an exchangeable random vector
(Durrett [25, Example 4.7.8]). This implies that in these two cases, μi actually puts
positive mass on

{z ∈ R
d+ : zj > 0,∀ j ∈ S, z� = 0,∀ � ∈ Id\S}

for all S ⊆ Id with |S| = i for any fixed i ∈ Id .

3 Measuring CoVaR

Risk contagion is often assessed using conditional measures of risk, and in this regard,
CoVaR has turned out to be both reasonable and popular; cf. Sect. 1 and also see
Kley et al. [41], Bianchi et al. [9] for computations of CoVaR in various setups. By
its definition, CoVaR measures the effect of severe stress of one risk factor, say Y2, on
the risk behaviour of another factor, say Y1. To facilitate the computation of CoVaR
in the bipartite network setup described previously, we first provide a result on its
asymptotic behaviour for a bivariate random vector assuming appropriate multivariate
tail behaviour, i.e., multivariate regular variation. Proofs of the results in this section
are given in Appendix B.

Theorem 3.1 Let Y = (Y1, Y2)
� be a bivariate random vector with marginals F1

and F2, respectively. Suppose Y′ := (Y1, F
←
1 ◦ F2(Y2))

� ∈ MRV(αi, bi, μ
′
i ,O

(i)
2 )

for i = 1, 2. Define the functions h, hγ : (0,∞) → (0,∞) as

h(y) := μ′
2

(
(y,∞) × (1,∞)

)
,

hγ (y) := γ b←
2

(
VaRγ (Y1)

)
P[Y1 > y VaRγ (Y1)|Y2 > VaRγ (Y1)]

for fixed 0 < γ < 1. By the MRV assumptions, we have hγ (y) → h(y) as γ ↓ 0
for y ∈ (0,∞) and h is decreasing with limy↑∞ h(y) = 0. Further, assume the
following:

(i) Let limy↓0 h(y) = r ∈ (0,∞] and for some � ≥ 0, h : (�,∞) → (0, r) is
strictly decreasing and continuous with inverse h−1.

(ii) Let g : (0, 1) → (0,∞) be a measurable function with

g(γ )γ b←
2

(
VaRγ (Y1)

) ∈ (0, r).
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Now let one of the following three conditions hold:

(a) 0 < lim inf
γ↓0

g(γ )γ b←
2

(
VaRγ (Y1)

)

≤ lim sup
γ↓0

g(γ )γ b←
2

(
VaRγ (Y1)

)
< r; (3.1)

(b) lim
γ↓0

g(γ )γ b←
2

(
VaRγ (Y1)

) = 0

and h←
γ (v)/h−1(v) → 1 uniformly on (0, R] as γ ↓ 0, for some 0 < R < r;

(c) lim
γ↓0

g(γ )γ b←
2

(
VaRγ (Y1)

) = r

and h←
γ (v)/h−1(v) → 1 uniformly on [L, r) as γ ↓ 0, for some 0 < L < r .

Then for any 0 < υ < 1,

CoVaRυg(γ )|γ (Y1|Y2) ∼ VaRγ (Y1)h
−1

(
υg(γ )γ b←

2

(
VaRγ (Y1)

))
, γ ↓ 0.

Remark 3.2 A few remarks may aid in understanding the assumptions and conse-
quences of the above result.

(a) If F2 is continuous, then F2(Y2) is uniform on (0, 1). Hence the tail behaviour
of Y2 has no influence on the asymptotic behaviour of CoVaRυg(γ )|γ (Y1|Y2), as is
expected.

(b) If F 1 ∈ RV−α , the condition (Y1, F
←
1 ◦ F2(Y2))

� ∈ MRV(αi, bi, μ
′
i ,O

(i)
2 ),

i = 1, 2, can be formulated as a condition on the survival copula Ĉ of (Y1, Y2)
�.

Necessary and sufficient conditions on Ĉ are given in Das and Fasen-Hartmann [17,
Theorems 3.11 and 3.12].

(c) Suppose (Y1, Y2)
� ∈ MRV(αi, bi, μi,O

(i)
2 ) for i = 1, 2, and that for

some K > 0, we have P[Y2 > t] ∼ KP[Y1 > t] as t → ∞. Then
Y′ := (Y1, F

←
1 ◦ F2(Y2))

� is in MRV(αi, bi, μ
′
i ,O

(i)
2 ) for i = 1, 2, and

h(y) = μ′
2

(
(y,∞) × (1,∞)

) = μ2
(
(y,∞) × (K1/α,∞)

)
. (3.2)

(d) The assumption 0 < υ < 1 is only sufficient and not necessary. Indeed, if
r = ∞ and g(γ ) → 0 as γ ↓ 0 (which is the standard case), then for any υ ∈ (0,∞),
we have υg(γ ) ∈ (0, 1) for small γ , and thus υ ∈ (0,∞) is allowed as well.

(e) In general, we cannot guarantee that as γ ↓ 0, we have h←
γ (v)/h−1(v)

converging uniformly to 1 on bounded but non-compact intervals. However, such
a uniform convergence does hold for compact intervals; cf. Lemma 3.3. The need
for assuming uniform convergence on non-compact intervals becomes evident from
the proof of Proposition 3.12(a)(i), thus providing a justification for the additional
assumptions in Theorem 3.1(b,c).
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Lemma 3.3 Let the assumptions of Theorem 3.1 hold. Then for any closed interval
[a1, a2] ⊆ (0, r), we have

sup
v∈[a1,a2]

∣
∣
∣
∣
h←

γ (v)

h−1(v)
− 1

∣
∣
∣
∣ −→ 0, γ ↓ 0.

Example 3.4 Prior to discussing further implications of Theorem 3.1, it is instructive
to note the behaviour of CoVaR when Y1 = Y2 a.s. and when Y1 and Y2 are indepen-
dent. For convenience, assume that Y1, Y2 are identically Pareto(α1)-distributed and
g : (0, 1) → (0, 1) is a measurable function. Using the notations in Theorem 3.1, we
have the following:

(a) If Y1 = Y2 a.s., then (α1, b1, μ1) = (α2, b2, μ2) and

hγ (y) = h(y) = max(y, 1)−α1 .

For any 0 < υ < 1, we have

CoVaRυg(γ )|γ (Y1|Y2) = (
υg(γ )

)− 1
α1 VaRγ (Y1) = (

υγg(γ )
)− 1

α1 , 0 < γ < 1.

In particular, if g(γ ) = γ , then

CoVaRυγ |γ (Y1|Y2) = VaRυγ 2(Y1), 0 < γ < 1,

and if g(γ ) ≡ 1, then

CoVaRυ|γ (Y1|Y2) = VaRυγ (Y1) = υ−1/α1 VaRγ (Y1), 0 < γ < 1. (3.3)

(b) If Y1, Y2 are independent, then α2 = 2α1 and the canonical choice of taking
b←

2 (t) = (b←
1 (t))2 results in hγ (y) = h(y) = y−α1 . Hence for 0 < υ < 1,

CoVaRυg(γ )|γ (Y1|Y2) = VaRυg(γ )(Y1), 0 < γ < 1.

In particular, if g(γ ) = γ , then

CoVaRυγ |γ (Y1|Y2) = VaRυγ (Y1) = υ−1/α1 VaRγ (Y1), 0 < γ < 1. (3.4)

Comparing (3.3) and (3.4), we observe that for different levels of strength of
dependence between Y1 and Y2, there exist different choices of g(γ ) allowing the
asymptotic behaviour

CoVaRυg(γ )|γ (Y1|Y2) ∼ υ−1/α1 VaRγ (Y1), γ ↓ 0.

Such a characterisation may be obtained for a variety of dependence behaviours, and
hence we define the following quantity.

Definition 3.5 Let Y = (Y1, Y2)
� be a bivariate random vector. Suppose some

measurable function g : (0, 1) → (0, 1) with g(t−1) ∈ RV−β, β ≥ 0, satisfies

lim
γ↓0

CoVaRg(γ )|γ (Y1|Y2)

VaRγ (Y1)
= c > 0 (3.5)
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for some constant c. If the index β is unique for all regularly varying functions g satis-
fying (3.5), then we call β−1 the extreme CoVaR index of Y1 given Y2, or ECI(Y1|Y2)

in short.

Remark 3.6 The index ECI(Y1|Y2) provides a value to assess the strength of risk
contagion from Y2 to Y1 and may take any value between 0 and ∞.

(a) In Example 3.4, we observed that when Y1 and Y2 are strongly dependent and
g(γ ) = υγ 0 ≡ υ ∈ (0, 1), that CoVaRg(γ )|γ (Y1|Y2) ∼ c VaRγ (Y1) for some c > 0
as γ ↓ 0, and hence the ECI is 1/0 = ∞. On the other hand, if Y1 and Y2 are
independent and g(γ ) = γ , we have CoVaRg(γ )|γ (Y1|Y2) = VaRγ (Y1) and hence
ECI(Y1|Y2) = 1.

(b) The ECI of Y1 given Y2 provides a measure of risk contagion between Y1
and Y2, in particular for systemic risks. Given Y2 has a value larger than its VaR at
level γ , ECI allows us to compute the level g(γ ) = �(γ )γ 1/ ECI for Y1 which makes
CoVaRυg(γ )|γ (Y1|Y2) to be of the same order as VaRγ (Y1), where � is some slowly
varying function. Lower values of ECI reflect lower values of CoVaRγ |γ (Y1|Y2).

If Y′ := (Y1, F
←
1 ◦ F2(Y2))

� ∈ MRV(αi, bi, μi,O
(i)
2 ) for i = 1, 2 satisfies the

assumptions of Theorem 3.1, the choice of a function g satisfying (3.1) must also
satisfy g(t−1) ∈ RV−β with β = α2/α1 − 1, and hence (3.5) is satisfied. Let us
summarise this result.

Proposition 3.7 Let Y = (Y1, Y2)
� be a bivariate random vector with marginals F1

and F2, respectively. Suppose Y′ := (Y1, F
←
1 ◦ F2(Y2))

� ∈ MRV(αi, bi, μi,O
(i)
2 ),

i = 1, 2 satisfies the assumptions of Theorem 3.1. Then

ECI(Y1|Y2) = α1

α2 − α1
,

where α1/0 := ∞.

Remark 3.8 Note that for (Y1, Y2)
� ∈ MRV(αi, bi, μi,O

(i)
2 ), i = 1, 2, the index α2

is often called the parameter of hidden regular variation in bivariate regularly varying
models (Resnick [56], Maulik and Resnick [49]) and is closely related to the coef-
ficient η of tail-dependence, which is defined in Ledford and Tawn [42] under the
assumption α1 = 1. If α1 = 1 and Y1, Y2 are tail-equivalent, then we have the rela-
tion η = 1/α2 = ECI(Y1|Y2)/(1 + ECI(Y1|Y2)). An important difference is as well
that we only require the MRV of (Y1, F

←
1 ◦ F2(Y2))

� on O
(i)
2 for i = 1, 2 and not of

(Y1, Y2)
�.

Remark 3.9 Suppose (Y⊥
1 , Y⊥

2 )� is a bivariate random vector with independent com-
ponents, but with the same marginal distribution as (Y1, Y2)

�, which satisfies the
assumptions of Theorem 3.1. Then by the definition of the ECI, the function g in
Definition 3.5 and Remark 3.6 (a), we have

CoVaRg(γ )|γ (Y1|Y2) ∼ c VaRγ (Y1) = c CoVaRγ |γ (Y⊥
1 |Y⊥

2 ), γ ↓ 0,
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for some c > 0. Thus the value of g(γ ) helps in assessing the probability or con-
fidence with which CoVaR(Y1|Y2) will have the same asymptotic behaviour as the
CoVaR of the independent model, i.e., CoVaR(Y⊥

1 |Y⊥
2 ). In other words, higher val-

ues of ECI (and hence, g(γ )) imply a higher risk contagion of Y2 on Y1; by definition,
this also means that with probability 1 − g(γ ), the value of CoVaRg(γ )|γ (Y1|Y2) is
sufficient to cover the losses of Y1 if the value of Y2 is already above VaRγ (Y2).
Clearly, larger values of α2 result in weaker tail-dependence between Y1 and Y2 and
in a smaller ECI.

A similar phenomenon may also be observed for the popular systemic risk measure
marginal-mean-excess (MME) defined as

MMEγ (Y1|Y2) := E
[(

Y1 − VaRγ (Y2)
)+∣∣Y2 > VaRγ (Y2)

]
.

We know from Das and Fasen-Hartmann [16, 17] that under some mild assumptions,
for some c1, c2 > 0,

g(γ )−1 MMEγ (Y1|Y2) ∼ c1 VaRγ (Y1) ∼ c2γ
−1 MMEγ (Y⊥

1 |Y⊥
2 ), γ ↓ 0.

We can check that for example the P-GC and the P-MOC model satisfy these assump-
tions. To summarise, under some regularity conditions, for increasing values of ECI
and hence g, the MME increases as well to attain the same confidence level 1 − γ as
in the independent model, implying higher risk contagion of Y2 on Y1. In particular,
a conclusion of the asymptotic behaviour of CoVaR and MME is that although the
underlying models exhibit asymptotic independence, there is still a certain amount
of dependence on the tails which will have an influence on risk contagion, and this
strength of tail-dependence is measured using the function g and finally reflected in
the ECI.

3.1 Measuring CoVaR under different model assumptions

In this section, we show the direct consequences of Theorem 3.1 for various un-
derlying distributions discussed in this paper, in particular asymptotically depen-
dent, Gaussian copula and Marshall–Olkin copula models. These models provide a
flavour of expected results, although computations for complex networks are more
complicated, as we shall see in Sect. 4.

First, we consider the asymptotically dependent case, where α1 = α2 and the
result is a direct consequence of Theorem 3.1 and the definition of the function h

in (3.2).

Proposition 3.10 Let Y = (Y1, Y2)
� ∈ R

2 be a bivariate tail-equivalent random
vector with

Y ∈ MRV(α, b, μ,O
(1)
2 ) ∩ MRV(α, b, μ,O

(2)
2 )

and h(y) = μ((y,∞) × (K1/α,∞)) with

K = μ(R+ × (1,∞))

μ((1,∞) × R+)
and c = μ

(
(1,∞) × R+

)
.
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Suppose h : (�,∞) → (0, r) is strictly decreasing and continuous for some r, � > 0.
Then for 0 < υ < min{r/c, 1}, we have

CoVaRυ|γ (Y1|Y2) ∼ h−1(υc) VaRγ (Y1), γ ↓ 0.

Moreover, ECI(Y1|Y2) = ∞.

For the bipartite network model of Sect. 1 where Z has asymptotically dependent
pairs, we obtain directly the following result, some restricted versions of which have
been shown in Kley et al. [40, 41].

Example 3.11 Here we consider a bipartite network with asymptotically dependent
objects. Let Z ∈ R

d+ be a random vector, A ∈ R
2×d+ a random matrix and X = AZ.

Now also assume Z ∈ MRV(α, b, μ,O
(1)
d ) ∩ MRV(α, b, μ,O

(2)
d ) and Z has com-

pletely tail-equivalent marginals. Then due to Basrak et al. [7, Proposition A.1],
which generalises Breiman’s theorem to the multivariate setup, we have

X = AZ ∈ MRV(α, μ,O
(1)
2 ) ∩ MRV(α, μ,O

(2)
2 )

with μ( · ) = E[μ(
A−1( · ))]. Define h(y) = μ((y,∞) × (K1/α,∞)), where

K = μ(R+ × (1,∞))

μ((1,∞) × R+)
and c = μ

(
(1,∞) × R+

)
.

Suppose h : (�,∞) → (0, r) is strictly decreasing and continuous for some r, � > 0.
Then a conclusion of Proposition 3.10 is that for 0 < υ < min{r/c, 1},

CoVaRυ|γ (X1|X2) ∼ h−1(υc) VaRγ (X1), γ ↓ 0.

Moreover, ECI(X1|X2) = ∞.
In Kley et al. [40, 41], the authors investigate the asymptotically co-monotone

case μ([0, x]c) = maxj=1,...,d (Kjx
−α
j ) for x = (x1, . . . , xd)� ∈ R

d+ with positive
constants K1, . . . , Kd > 0. Our result turns out to be more general.

In the next two results, we investigate the asymptotically independent case with
α1 < α2, where the dependence is modelled by a Marshall–Olkin copula (Proposi-
tion 3.12) and a Gaussian copula (Proposition 3.14), respectively.

Proposition 3.12 Let Y = (Y1, Y2)
� ∈ R

2 be a random vector and 0 < υ < 1.
(a) Let Y ∈ P-MOC(α, θ, λ=) for λ > 0. Then ECI(Y1|Y2) = 2, and the following

statements hold:
(i) Suppose either

β = 1/2

or

β > 1/2 and
v1/αF

←
1 (vγ )

F
←
1 (γ )

converges uniformly on (0, 1] to 1 as γ ↓ 0.
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Then

CoVaRυγ β |γ (Y1|Y2) ∼ (υγ β)−
1
α γ

1
2α VaRγ (Y1), γ ↓ 0.

(ii) Suppose 0 ≤ β < 1/2 and v1/αF
←
1 (vγ )

F
←
1 (γ )

converges uniformly on [1,∞) to 1

as γ ↓ 0. Then

CoVaRυγ β |γ (Y1|Y2) ∼ (υγ β)−
2
α γ

1
α VaRγ (Y1), γ ↓ 0.

(b) Let Y ∈ P-MOC(α, θ, λ∝) for λ > 0. Then ECI(Y1|Y2) = 3, and the following
statements hold:

(i) Suppose either

β = 1/3

or

β > 1/3 and
v1/αF

←
1 (vγ )

F
←
1 (γ )

converges uniformly on (0, 1] to 1 as γ ↓ 0.

Then

CoVaRυγ β |γ (Y1|Y2) ∼ (υγ β)−
1
α γ

1
3α VaRγ (Y1), γ ↓ 0.

(ii) Suppose 0 ≤ β < 1/3 and v1/αF
←
1 (vγ )

F
←
1 (γ )

converges uniformly on [1,∞) to 1

as γ ↓ 0. Then

CoVaRυγ β |γ (Y1|Y2) ∼ (υγ β)−
3
α γ

1
α VaRγ (Y1), γ ↓ 0.

Remark 3.13 (a) Let Y ∈ P-MOC as in Proposition 3.12. Then the uniform con-
vergence of the quantity vαF

←
j (vγ )/F

←
j (γ ) on some set I ⊆ (0,∞) is necessary

and sufficient for the uniform convergence of h←
γ (v)/h−1(v) on I . However, we

can check that even if F
←
j (vγ )/F

←
j (γ ) converges uniformly to v−α on [1,∞), it

need not necessarily converge uniformly on (0, 1] (counterexamples exist). Never-
theless, exactly Pareto(α)-distributed marginals satisfy vαF

←
j (vγ )/F

←
j (γ ) = 1 for

any v > 0 and γ small, and hence the asymptotic behaviour of CoVaR holds for
Pareto marginals and any β ≥ 0 without any additional assumption.

(b) Suppose Y= ∈ P-MOC(α, θ, λ=) and Y∝ ∈ P-MOC(α, θ, λ∝) are bivariate
random vectors. Then Proposition 3.12 implies that ECI(Y∝

1 |Y∝
2 ) > ECI(Y=

1 |Y=
2 ),

and thus the risk contagion in the P-MOC(α, θ, λ=)-model is higher than in the
P-MOC(α, θ, λ∝)-model if CoVaR is used as risk measure. Even though both models
exhibit asymptotic independence, the result shows that there is still some dependence
on the tails influencing CoVaR.
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Proposition 3.14 Let Y = (Y1, Y2)
� ∈ P-GC(α, θ,Σρ) with ρ ∈ (−1, 1) and

suppose g(γ ) = γ
1−ρ
1+ρ (− log γ )

− ρ
1+ρ . Then ECI(Y1|Y2) = 1+ρ

1−ρ
, and for 0 < υ < 1,

CoVaRυg(γ )|γ (Y1|Y2) ∼ B∗υ− 1+ρ
α VaRγ (Y1), γ ↓ 0,

where B∗ = B∗(ρ, α) = (4π)−
ρ
α (1 + ρ)

3(1+ρ)
2α (1 − ρ)−

1+ρ
2α .

Remark 3.15 (a) Although the logarithm is a slowly varying function, log(vt)/ log t

converges uniformly only on compact intervals. Hence for the Gaussian dependence
case, it seems that h←

γ (v)/h−1(v) need not converge uniformly on intervals of the
form (0, R] or [L,∞) for any L,R > 0. Thus we do not attempt to verify conditions
(b) or (c) in Theorem 3.1.

(b) The measure ECI(Y1|Y2) = 2/(1 − ρ) − 1 is increasing in ρ, suggesting, not
quite surprisingly, that as the Gaussian correlation ρ increases, the risk contagion
measured by CoVaR increases as well; in fact, as ρ increases from −1 to 1, ECI
increases from 0 to ∞.

4 Risk contagion in a bipartite network with asymptotically
independent objects

Recall the bipartite network structure defined in Sect. 1, where the risk exposure
of q entities of a financial system given by X ∈ R

q
+ is captured by using the risk

exposure of the underlying assets Z ∈ R
d+ and the bipartite network is defined via the

matrix A ∈ R
q×d
+ . In this section, we derive asymptotic tail probabilities of the risk

exposure X = AZ, where the objects in Z are asymptotically independent; the case
of pairwise asymptotically dependent objects was already covered in Example 3.11.
We are particularly interested in tail probabilities of rectangular sets

Γ
(q)
xS

= {v ∈ R
q
+ : vs > xs,∀s ∈ S},

where xs > 0 for all s ∈ S ⊆ Iq and xS = (xs)s∈S , as these help us first in computing
conditional probabilities and eventually conditional risk measures like CoVaR. In the
bivariate setup, the rectangular sets are of the form [0, x]c and (x,∞), x ∈ R

2+. The
proofs for the results in this section are given in Appendix C.

Before stating the results, we need some definitions and notations following Das
et al. [21]. Recall that we denote by A = Iq the set of agents/entities and by O = Id

the set of assets/objects.

Definition 4.1 For k ∈ Iq and i ∈ Id , the functions τ(k,i) : Rq×d
+ → R+ are defined as

τ(k,i)(A) = sup
z∈O(i)

d

(Az)(k)

z(i)

.
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The functions τ(k,i) are meant to be like norms for the matrices A ∈ R
q×d
+ . Al-

though the τ(k,i) are not necessarily norms (or even semi-norms) on the induced
vector space (see Horn and Johnson [35, Sect. 5.1]), they do admit some useful
properties; cf. Das et al. [21, Lemma 3.4].

Definition 4.2 Let A ∈ R
q×d
+ be a random matrix. For k ∈ Iq and ω ∈ Ω, define

Aω := A(ω) and

ik(Aω) := max{j ∈ Id : τ(k,j)(Aω) < ∞},

which creates a partition Ω(k)(A) = (Ω
(k)
i (A))i=1,...,d of Ω given by

Ω
(k)
i := Ω

(k)
i (A) := {ω ∈ Ω : ik(Aω) = i}, i ∈ Id .

We write P
(k)
i [ · ] := P[ · ∩ Ω

(k)
i ] and E

(k)
i [ · ] := E[ · 1

Ω
(k)
i

].

Now we are ready to characterise the asymptotic probabilities of X = AZ for
various tail sets C of Rq

+; cf. [21, Theorem 3.4 and Proposition 3.2] and the details in
Appendix C.

Theorem 4.3 Let Z ∈ R
d+ be a random vector, A ∈ R

q×d
+ a random matrix and

X = AZ. Moreover, for fixed k ∈ Iq , let C ⊆ O
(k)
q be a Borel set bounded away from

{x ∈ R
q
+ : x(k) = 0}. Now also assume the following:

(i) Z ∈ MRV(αi, bi, μi,O
(i)
d ) for all i ∈ Id and limt→∞ bi(t)/bi+1(t) = ∞ for

i = 1, . . . , d − 1.
(ii) A has almost surely no trivial rows and is independent of Z.
(iii) E(k)

i [μi(∂A−1(C))] = 0 for all i ∈ Id .

(iv) For all i ∈ Id , we have E
(k)
i [(τ(k,i)(A))αi+δ] < ∞ for some δ = δ(i, k) > 0.

Then the following hold:
(a) Define i∗k := arg min{i ∈ Id : P[Ω(k)

i ] > 0}. Then we have

b←
i∗k

(t)P[X ∈ tC] −→ E
(k)

i∗k

[
μi∗k

(
A−1(C)

)] = μi∗k ,k(C) =: μk(C), t → ∞.

Moreover, if μk is a non-null measure, then AZ ∈ MRV(αi∗k , μk,O
(k)
q ).

(b) Define

ῑ := ῑC := min
{
d, inf

{
i ∈ {i∗k , . . . , d} : E(k)

i

[
μi

(
A−1(C)

)]
> 0

}}
.

Suppose for all i = i∗k , . . . , ῑ − 1 and ω ∈ Ω
(k)
i that A−1

ω (C) = ∅. Then we have

P[X ∈ tC] = (
b←̄
ι (t)

)−1
E

(k)
ῑ

[
μῑ

(
A−1(C)

)] + o
((

b←̄
ι (t)

)−1
)
, t → ∞.

Remark 4.4 Assumption (i) of Theorem 4.3 is satisfied by many popular models:
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(a) For both Z ∈ P-GC(α, θ,Σ) with Σ positive definite (cf. Proposition 2.6) and
Z ∈ P-MOC(α, θ, λ=) or Z ∈ P-MOC(α, θ, λ∝), respectively (cf. Proposition 2.11),
assumption (i) of Theorem 4.3 is satisfied.

(b) Assumption (i) in Theorem 4.3 excludes the asymptotically dependent case,
where Z ∈ MRV(α, b, μ,O

(i)
d ) for i = 1, 2 with μ(O

(2)
d ) > 0. But in this case,

we can use the well-known Breiman theorem generalised to the multivariate setup in
Basrak et al. [7, Proposition A.1]; see Example 3.11.

Remark 4.5 If A = A0 is a deterministic matrix, we have a few direct consequences:
(a) First, i∗k = ik(A0) and also Ω

(k)
j = ∅ for all j �= i∗k .

(b) If C = Γ
(q)
xS

⊆ O
(k)
q is a rectangular set, then the intersection of A−1

0 (Γ
(q)
xS

)

with the support of μi∗k is a finite union of rectangular sets; however, it is clearly not
necessarily a rectangular set itself (Das et al. [21, Example 3.2]). When d is large, the
number of sets in this union might be quite large, and hence it may be computation-
ally expensive not only to get an explicit expression for μk(Γ

(q)
xS

), but even to assess

whether μk(Γ
(q)
xS

) > 0. Nevertheless, it turns out that there are reasonable sufficient

conditions under which we can guarantee μk(Γ
(q)
xS

) > 0, where |S| = k; see the next
result which is a consequence of Das et al. [21, Proposition 3.1].

Lemma 4.6 Suppose the assumptions of Theorem 4.3 hold. For any rectangular
set Γ

(q)
xS

with |S| = k, we have μk(Γ
(q)
xS

) > 0 with |S| = k if μi∗k has mass on

all
(
d
i∗k

)
coordinate hyperplanes comprising O

(i∗k )

d .

Remark 4.7 With regard to Lemma 4.6, the following examples satisfy μk(Γ
(q)
xS

) > 0

for any rectangular set Γ
(q)
xS

with |S| = k ≥ 2 and any random matrix A with non-
trivial rows:

(i) Z is exchangeable (including independence).
(ii) Z ∈ P-GC(α, θ,Σρ), where ρ ∈ (−1/(d − 1), 1).

(iii) Z ∈ P-MOC(α, θ, λ=).
(iv) Z ∈ P-MOC(α, θ, λ∝).

Note that the distributions of Z in (ii)–(iv) are close to exchangeability (they become
exchangeable if we assume that the marginals are identically distributed instead of
completely tail-equivalent).

For a P-GC(α, θ,Σ)-model, Proposition 2.8 gives sufficient criteria on the cor-
relation matrix Σ such that μi has mass on all

(
d
i

)
coordinate hyperplanes compris-

ing O
(i)
d , naturally indicating that there exist PG-C models which may not satisfy this

criterion; see Example 2.7. However, if Z ∈ P-GC(α, θ,Σ), we can often use a tech-
nique of dimension reduction as in the proof of Proposition 4.15 to obtain the correct
tail probability rates.
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4.1 Risk contagion between two portfolios

In the context of risk contagion, an important task is to understand the probability
of an extremely large loss for a single asset or a linear combination of assets, given
an extremely large loss for some other asset or a linear combination of assets. This
allows us to concentrate on A ∈ R

q×d
+ with q = 2. For a particular type of event, we

should also concentrate on risk exposures of pairs of financial entities that may invest
in disjoint sets of assets; but because of the dependence of the underlying variables,
the joint probability is not necessarily a product measure. First, we obtain a general
result for such joint tail probabilities characterising limit measures μ1 and μ2 as
obtained in Theorem 4.3.

Proposition 4.8 Let Z ∈ R
d+ be a random vector with Z ∈ MRV(αi, bi, μi,O

(i)
d ) for

i = 1, 2 and b1(t)/b2(t) → ∞ as t → ∞. Let A ∈ R
2×d+ be a random matrix which

has almost surely no trivial rows and is independent of Z. With the notations from
Theorem 4.3, the following hold for μ1 and μ2:

(a) Suppose E[‖A‖α1+ε] < ∞ for some ε > 0. Then i∗1 = 1 and for x ∈ R
2+,

μ1([0, x]c) =
d∑

�=1

E
[
μ1

({
z ∈ R

d+ : max{a1�z�/x1, a2�z�/x2} > 1
})]

.

(b) Suppose max�∈Id P[min{a1�, a2�} > 0] > 0 and E[‖A‖α1+ε] < ∞ for some
ε > 0. Then i∗2 = 1 and for x ∈ (0,∞),

μ2
(
(x,∞)

) =
d∑

�=1

E
[
μ1

({
z ∈ R

d+ : min{a1�z�/x1, a2�z�/x2} > 1
})]

.

(c) Suppose max�∈Id P[min{a1�, a2�} > 0] = 0 and E[‖A‖α2+ε] < ∞ for some
ε > 0. Then i∗2 = 2 and for x ∈ (0,∞),

μ2
(
(x,∞)

) =
d∑

�,j=1

E
[
μ2

({
z ∈ R

d+ : min{a1�z�/x1, a2j zj /x2} > 1
})]

.

In particular, if Z is exchangeable, each measure in (a)–(c) is non-zero.

Note that in Proposition 4.8, it is sufficient to assume Z ∈ MRV(αi, bi, μi,O
(i)
d )

for i = 1, 2 instead of i = 1, . . . , d as in Theorem 4.3 because X is a bivariate
random vector.

Next, we provide sufficient conditions for the limit measures in Proposition 4.8 to
be positive so that our probability approximations for X = AZ belonging to some
extreme rectangular set are non-trivial. These approximations turn out to be suffi-
cient for obtaining the asymptotic behaviour of CoVaR under the given assumptions
as well.
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Proposition 4.9 Let the assumptions of Proposition 4.8 hold. Let α := α1. Suppose
further that Z is completely tail-equivalent and E[‖A‖α+ε] < ∞ for some ε > 0.
Then the following hold:

(a) We have X = (X1, X2)
� ∈ MRV(α, b1, μ1,O

(1)
2 ), where

μ1([0, x]c) = μ1([0, 1]c)
d

d∑

�=1

E[max{a1�/x1, a2�/x2}α], x ∈ R
2+.

(b) If max�∈Id P[min{a1�, a2�} > 0] > 0, then X ∈ MRV(α, b1, μ2,O
(2)
2 ), where

μ2
(
(x,∞)

) = μ1([0, 1]c)
d

d∑

�=1

E[min{a1�/x1, a2�/x2}α], x ∈ (0,∞).

Moreover, as t → ∞,

P[X1 > tx1|X2 > tx2] ∼ xα
2

∑d
�=1 E[min{a1�/x1, a2�/x2}α]

∑d
�=1 E[aα

2�]
. (4.1)

With

h(y) = μ([0, 1]c)
d

d∑

�=1

E[min{a1�/y, a2�/K
1/α}α],

K =
∑d

�=1 aα
2�

∑d
�=1 aα

1�

and c = μ([0, 1]c)
d

d∑

�=1

aα
1�,

we have for 0 < υ < min{h(0)/c, 1} that

CoVaRυ|γ (X1|X2) ∼ h−1(υc) VaRγ (X1), γ ↓ 0.

Additionally, if the non-zero components of A have bounded support, bounded away
from zero, there exists υ∗ ∈ (0, 1) such that for all 0 < υ < υ∗, we have

CoVaRυ|γ (X1|X2) ∼ υ− 1
α VaRγ (X1), γ ↓ 0. (4.2)

Finally, ECI(X1|X2) = ∞.

Remark 4.10 (a) The multivariate regular variation of X on O
(1)
2 is a direct conse-

quence of the multivariate version of Breiman’s theorem from Breiman [12] in Basrak
et al. [7, Proposition A.1]; see as well Kley et al. [40, Proposition 3.1].

(b) If Z1, . . . , Zd are completely tail-equivalent with marginals being exactly
Pareto distributions and Z = (Z1, . . . , Zd)� ∈ MRV(α1 = α, b1, μ1,O

(1)
2 ) with μ1

having only mass on the axes (which is satisfied if α1 < α2), statement (4.1) is a
special case of Kley et al. [41, Corollary 2.6] and (4.2) of [41, Theorem 3.4]. The
CoVaR results obtained in [41] address the specific case where ECI(X1|X2) = ∞.
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(c) If bank/agent 1 (with risk variable X1) is connected to object j (with risk
variable Zj ), then by defining X2 = Zj , we can directly apply Proposition 4.9 to
obtain the tail behaviour of (X1, Zj ) and (Zj ,X1), respectively. Hence we can get the
asymptotic behaviour of CoVaRυ|γ (X1|Zj ) and CoVaRυ|γ (Zj |X1); in other words,
we are able to measure the risk contagion between agents and their connected objects.
If additional new objects are introduced into the market (i.e., d increases), this has
no impact on the asymptotic behaviour of CoVaRυ|γ (X1|Zj ) and CoVaRυ|γ (Zj |X1)

even if the agent, in this case agent 1, connects to these new objects.

Incidentally, if max�∈Id P[min{a1�, a2�} > 0] = 0, reflecting that the two banks or
agents are not connected to the same asset or object at the same time, the right-hand
side of (4.1) turns out to be 0, ECI(X1|X2) becomes finite leading to the asymptot-
ically independent model, and the CoVaR approximation of Proposition 4.9 is not
valid anymore. In the next few results, we concentrate on the case where

max
�∈Id

P[min{a1�, a2�} > 0] = 0,

which relates to a scenario where the aggregate returns of financial entities are rep-
resented by disjoint sets of assets. For example, this covers as well the case where
we want to understand the influence of an asset/object on a bank/agent with which
it is not connected. Note that although the two banks/agents may be represented by
almost surely disjoint assets, they are nevertheless related by the dependence assump-
tion on the underlying set of assets whose risk is given by Z. We provide explicit tail
rates and eventually also CoVaR computations under such a setup, assuming differ-
ent dependence structures for the underlying random vector Z. The following result
assumes that Z has i.i.d. components.

Proposition 4.11 Let Z ∈ R
d+ be a random vector with i.i.d. components Z1, . . . , Zd

having distribution function Fα , where Fα ∈ RV−α , α > 0, b1(t) = F←
α (1 − 1/t)

and b←
i (t) = (b←

1 (t))i . Further, let A ∈ R
2×d+ be a random matrix which has almost

surely no trivial rows and is independent of Z and suppose that

max
�∈Id

P[min{a1�, a2�} > 0] = 0

and E[‖A‖2α+ε] < ∞ for some ε > 0. Then (X1, X2)
� ∈ MRV(2α, b2, μ2,O

(2)
2 ),

where

μ2
(
(x,∞)

) = (x1x2)
−α

d∑

�,j=1

E[aα
1�a

α
2j ], x ∈ (0,∞).

Moreover, as t → ∞,

P[X1 > tx1|X2 > tx2] ∼ (
b←

1 (t)
)−1

x−α
1

∑d
�,j=1 E[aα

1�a
α
2j ]

∑d
j=1 E[aα

2j ]
.
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Additionally, for 0 < υ < 1, we have

CoVaRυγ |γ (X1|X2) ∼ υ− 1
α

(
∑d

�,j=1 E[aα
1�a

α
2j ])

1
α

(
∑d

�=1 E[aα
1�]

∑d
j=1 E[aα

2j ])
1
α

VaRγ (X1), γ ↓ 0.

Finally, ECI(X1|X2) = 1.

Remark 4.12 The arrival of new independent assets/objects to the financial market
has no influence on the ECI or the asymptotic behavior (rate) of CoVaR. Regardless
of whether the new asset/object connects to one of the banks/agents, we still have
CoVaRυγ,γ (X1|X2) = O(VaRγ (X1)) as γ ↓ 0. In case at least one of agents 1 and 2
happens to connect to a new object, the only change may appear in the value of the
finite positive limit of CoVaRυγ |γ (X1|X2)/ VaRγ (X1) as γ ↓ 0.

The next result assumes a Marshall–Olkin dependence.

Proposition 4.13 Let Z ∈ P-MOC(α, θ,Λ) and A ∈ R
2×d+ be a random matrix which

has almost surely no trivial rows, is independent of Z and satisfies

max
�∈Id

P[min{a1�, a2�} > 0] = 0.

(a) Suppose Z ∈ P-MOC(α, θ, λ=) and E[‖A‖ 3α
2 +ε] < ∞ for some ε > 0. Then

X = AZ ∈ MRV(α2, b2, μ2,O
(2)
2 ),

where α2 = 3α
2 , b2(t) = θ

1
α t

2
3α and for x = (x1, x2) ∈ (0,∞),

μ2
(
(x,∞)

) =
d∑

�,j=1

E[min{a1�/x1, a2j /x2}α max{a1�/x1, a2j /x2}α/2].

Moreover, as t → ∞,

P[X1 > tx1|X2 > tx2] ∼ (θt−α)
1
2 xα

2 μ2
(
(x,∞)

)
( d∑

j=1

E[aα
2j ]

)−1

.

Additionally, if the non-zero components of A have bounded support, bounded away
from zero, then there exist 0 < υ∗

1 < υ∗
2 < ∞ such that for all 0 < υ < υ∗

1 , we have

CoVaR
υγ

1
2 |γ (X1|X2)

∼ υ− 1
α

(
∑d

�,j=1 E[aα
1�a

α/2
2j ]) 1

α

(
∑d

�=1 E[aα
1�])

1
α (
∑d

j=1 E[aα
2j ])

1
2α

VaRγ (X1), γ ↓ 0,



Risk contagion in networks 733

and for all υ∗
2 < υ < ∞, we have

CoVaR
υγ

1
2 |γ (X1|X2)

∼ υ− 2
α

(
∑d

�,j=1 E[aα/2
1� aα

2j ])
2
α

(
∑d

�=1 E[aα
1�])

1
α (
∑d

j=1 E[aα
2j ])

2
α

VaRγ (X1), γ ↓ 0.

Finally, ECI(X1|X2) = 2.

(b) Suppose Z ∈ P-MOC(α, θ, λ∝) and E[‖A‖α 3d+2
2(d+1)

+ε] < ∞ for some ε > 0.
Then

X = AZ ∈ MRV(α2, b2, μ2,O
(2)
2 ),

where α2 = α 3d+2
2(d+1)

, b2(t) = θ
1
α t

2(d+1)
(3d+2)α and for x = (x1, x2) ∈ (0,∞),

μ2
(
(x,∞)

) =
d∑

�,j=1

E[min{a1�/x1, a2j /x2}α max{a1�/x1, a2j /x2}
dα

2(d+1) ].

Moreover, as t → ∞,

P[X1 > tx1|X2 > tx2] ∼ (θt−α)
d

2(d+1) xα
2 μ2

(
(x,∞)

)
( d∑

j=1

E[aα
2j ]

)−1

.

Additionally, if the non-zero components of A have bounded support, bounded away
from zero, then there exist 0 < υ∗

1 < υ∗
2 < ∞ such that for all 0 < υ < υ∗

1 , we have

CoVaR
υγ

d
2(d+1) |γ

(X1|X2)

∼ υ− 1
α

(
∑d

�,j=1 E[aα
1�a

dα
2(d+1)

2j ]) 1
α

(
∑d

�=1 E[aα
1�])

1
α (
∑d

j=1 E[aα
2j ])

d
2(d+1)α

VaRγ (X1), γ ↓ 0,

and for all υ∗
2 < υ < ∞, we have

CoVaR
υγ

d
2(d+1) |γ

(X1|X2)

∼ υ− 2(d+1)
dα

(
∑d

�,j=1 E[a
dα

2(d+1)

1� aα
2j ])

2(d+1)
dα

(
∑d

�=1 E[aα
1�])

1
α (
∑d

j=1 E[aα
2j ])

2(d+1)
dα

VaRγ (X1), γ ↓ 0.

Finally, ECI(X1|X2) = 2 + 2
d

.

Remark 4.14 (a) If Z ∈ P-MOC(α, θ, λ∝), then as the number of assets/objects in-
creases, i.e., if d increases, ECI(X1|X2) = 2 + 2/d decreases and hence the rate
of convergence of CoVaRγ,γ (X1|X2) to ∞ as γ ↓ 0 becomes slower. In this case,
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the dependence of X1 and X2 in the tails gets weaker as the network becomes more
diversified. It is important to note here that the P-MOC(α, θ, λ∝)-model does not
have a nested structure, in contrast to P-MOC(α, θ, λ=) which is nested. In the
P-MOC(α, θ, λ=)-model, an increase in the value of d has no influence on the ECI
value.

(b) Under the assumption of independent objects, we have ECI(X1|X2) = 1,
which is less than ECI(X1|X2) = 2 when the objects have a Marshall–Olkin de-
pendence structure with equal parameters (Proposition 4.13(a)), which is again less
than ECI(X1|X2) = 2 + 2/d when the objects have a Marshall–Olkin copula with
proportional parameters (Proposition 4.13(b)), reflecting that the dependence in the
tails becomes progressively stronger.

(c) Note that the degree of tail-dependence plays a role only if A contains a col-
umn with all entries zero; otherwise the entries of A do not influence ECI. In other
words, although it is important to know if agents are connected to the same object,
the weights or magnitudes of the connections are not essential for the value of ECI.
However, this is not always the case as we can see in Proposition 4.15 under a Gauss-
ian copula model, where the location (index) of the zero column is also important.
Note that if Z ∈ P-GC(α, θ,Σ) and Σ is not an equicorrelation matrix, then Z is not
exchangeable, in contrast to the other examples above (assuming identical marginals).

Finally, we provide a result where the components of Z have Gaussian depen-
dence.

Proposition 4.15 Let Z ∈ P-GC(α, θ,Σ) with Σ = (ρ�j )1≤�,j≤d positive definite. Let
A ∈ R

2×d+ be a random matrix which has almost surely no trivial rows, is independent
of Z and satisfies max�∈Id P[min{a1�, a2�} > 0] = 0. Also, define

ρ∨ = max{ρ�j : �, j ∈ Id , � �= j},
ρ∗ = max{ρ�j : �, j ∈ Id , � �= j and P[min{a1�, a2j } > 0] > 0}.

(a) Suppose ρ∗ = ρ∨ and E[‖A‖ 2α
1+ρ∨ +ε] < ∞ for some ε > 0. Then we have

X = AZ ∈ MRV(α2, b2, μ2,O
(2)
2 ),

with

α2 = 2α

1 + ρ∨ , b←
2 (t) = C(ρ∨, α)(θt−α)

− 2
1+ρ∨ (log t)

ρ∨
1+ρ∨ ,

μ2
(
(x,∞)

) = D(ρ∨, α, A)(x1x2)
− α

1+ρ∨ , x = (x1, x2) ∈ (0,∞),

where for ρ ∈ (−1, 1), α > 0, θ > 0 and A ∈ R
2×d+ , we define

C(ρ, α) = (2π)
− 1

1+ρ (2α)
ρ

1+ρ ,

D(ρ, α, A) = 1

2π

(1 + ρ)3/2

(1 − ρ)1/2

∑

(�,j): ρ�j =ρ

E
[
a

α
1+ρ

1� a
α

1+ρ

2j

]
. (4.3)
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Moreover, as t → ∞,

P[X1 > x1t |X2 > x2t]

∼ (θt−α)
1−ρ∨
1+ρ∨ (log t)

− ρ∨
1+ρ∨ x

− α
1+ρ∨

1 x

αρ∨
1+ρ∨
2

C(ρ∨, α)−1D(ρ∨, α, A)
∑d

j=1 E[aα
2j ]

.

Additionally, with g(γ ) = γ
1−ρ∨
1+ρ∨ (−α−1 log γ )

− ρ∨
1+ρ∨ and 0 < υ < ∞, we have

CoVaRυg(γ )|γ (X1|X2)

∼ υ− 1+ρ∨
α

(C(ρ∨, α)−1D(ρ∨, α, A))
1+ρ∨

α

(
∑d

�=1 E[aα
1�]

∑d
j=1 E[aα

2j ])
1
α

VaRγ (X1), γ ↓ 0.

Finally, g(t−1) ∈ RV− 1−ρ∨
1+ρ∨

and hence ECI(X1|X2) = 1+ρ∨
1−ρ∨ .

(b) Suppose ρ∗ < ρ∨ and E[‖A‖ 2α
1+ρ∗ +ε] < ∞ for some ε > 0. Then μ2 as defined

in Theorem 4.3 is identically zero. But X = AZ ∈ MRV(α∗
2 , b∗

2, μ∗
2,O

(2)
2 ), with

α∗
2 = 2α

1 + ρ∗ ,

b∗←
2 (t) = C(ρ∗, α)(θt−α)

− 2
1+ρ∗ (log t)

ρ∗
1+ρ∗ ,

μ∗
2

(
(x,∞)

) = D(ρ∗, α, A)(x1x2)
− α

1+ρ∗ , x = (x1, x2) ∈ (0,∞),

and as t → ∞,

P[X1 > x1t |X2 > x2t]

∼ (θt−α)
1−ρ∗
1+ρ∗ (log t)

− ρ∗
1+ρ∗ x

− α
1+ρ∗

1 x

αρ∗
1+ρ∗
2

C(ρ∗, α)−1D(ρ∗, α, A)
∑d

j=1 E[aα
2j ]

,

where C( · ) and D( · ) are as defined in (4.3). Additionally, with the function g given

by g(γ ) = γ
1−ρ∗
1+ρ∗ (−α−1 log γ )

− ρ∗
1+ρ∗ and 0 < υ < ∞, we have

CoVaRυg(γ )|γ (X1|X2)

∼ υ− 1+ρ∗
α

(C(ρ∗, α)−1D(ρ∗, α, A))
1+ρ∗

α

(
∑d

�=1 E[aα
1�]

∑d
j=1 E[aα

2j ])
1
α

VaRγ (X1), γ ↓ 0.

Finally, g(t−1) ∈ RV− 1−ρ∗
1+ρ∗

and hence ECI(X1|X2) = 1+ρ∗
1−ρ∗ .

Remark 4.16 (a) Suppose ρ∗ < ρ∨. Then there exist �∗, j∗ ∈ I with �∗ �= j∗ and

ρ∗ < ρ�∗m∗ = ρm∗�∗ ≤ ρ∨.
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By the definition of ρ∗, we have

P[min{a1�∗ , a2j∗} > 0] = 0 = P[min{a1j∗ , a2�∗} > 0],

resulting in a1�∗ = a1j∗ = a2�∗ = a2j∗ = 0 a.s. Hence the �th and j th columns of
A ∈ R

2×d+ are a.s. zero columns.

(b) Both values ρ∗ and ECI(X1|X2) = 1+ρ∗
1−ρ∗ depend, on the one hand, on the

location of the non-zero entries of A and, on the other hand, on the dependence struc-
ture of the underlying object Z modelled by the correlation matrix Σ. Naturally, the
dependence in the network becomes stronger if either the off-diagonal entries of Σ

increase or if the zero components of A are replaced by non-zero components, i.e.,
we have more connections between the agents and the objects. Both effects might
increase as well the tail-dependence of the agents and the ECI.

(c) If an additional object, which is not connected to any of the two agents, is in-
troduced into the market, this has no influence on the CoVaR behaviour. However, if
the new object does connect with one of the agents, say agent 1, then the change in
behaviour of CoVaR depends on the correlation of this new object with the other ex-
isting objects which are connected to the other agent, namely agent 2, in the Gaussian
copula model.

Remark 4.17 Note that the limit measures μ1 and μ2 found in Propositions 4.11–4.15
are all non-zero measures, and hence the computed conditional probabilities are
asymptotically non-trivial as well.

4.2 Risk contagion between various aggregates

In Sect. 4.1, we obtained asymptotic conditional tail probabilities with two portfolios
in a bipartite structure. For a financial institution with more than two portfolios, it is
also interesting to assess systemic risk between the entire system and a part of the
system in terms of aggregate risks. Therefore, suppose that T , S ⊆ Iq are groups of
agents and g : (0, 1) → (0, 1) is a measurable function. Given that the aggregate risk∑

m∈T Xm of the agents in T is above its VaR at level γ , we may be interested in
finding the VaR of the aggregate risk

∑
k∈S Xk of the agents in S at level υg(γ ), i.e.,

CoVaRυg(γ )|γ
(∑

k∈S

Xk

∣
∣
∣
∣

∑

m∈T

Xm

)

. (4.4)

Of course, the following special cases are of particular interest:
– CoVaR of the kth entity at level υg(γ ) given the aggregate of the entire system

at level γ ,

CoVaRυg(γ )|γ
(

Xk

∣
∣
∣
∣

q∑

m=1

Xm

)

,
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– CoVaR of the aggregate of the entire system at level υg(γ ) given a particular
entity k at level γ ,

CoVaRυg(γ )|γ
( q∑

m=1

Xm

∣
∣
∣
∣Xk

)

.

Incidentally, the results obtained in the previous sections suffice for computations of
the CoVaR asymptotics of (4.4), as well as computing the corresponding ECI. Indeed,
by defining eS ∈ R

q as eS
S := 1S and eS

Sc := 0Sc , which is a vector containing only
1’s and 0’s (similarly eT ∈ R

q ), and finally, by defining A∗ := (eS, eT )�A, we obtain

(Y1, Y2)
� :=

(∑

k∈S

Xk,
∑

m∈T

Xm

)�
= (eS, eT )�AZ = A∗Z.

Thus if A∗ and Z satisfy the assumptions of Sect. 4.1, we can directly apply the
associated tail probability results and CoVaR asymptotics. Since

max
�∈Id

P[min{a∗
1�, a

∗
2�} > 0] = max

�∈Id
P

[

min

{∑

k∈S

a∗
k�,

∑

m∈T

a∗
m�

}

> 0

]

,

the essential condition max�∈Id P[min{a∗
1�, a

∗
2�} > 0] = 0 (or > 0) for determining

the MRV on O
(2)
2 and hence the CoVaR rate and ECI is equivalent to

max
�∈Id

max
k∈S

max
m∈T

P
[

min{ak�, am�} > 0] = 0 (or > 0). (4.5)

Thus subject to determining (4.5), the asymptotic behaviour of CoVaR in (4.4) and
the value of its associated ECI are direct consequences of the results in Sect. 4.1.

4.3 Risk contagion in more than two portfolios

In this section, for a financial system with two or more portfolios, we assess the risk of
one financial entity performing poorly given that at least one other entity in the system
is under stress. Alternatively, given that an individual entity has high negative returns,
what is the effect of this to the entire system? We use the ideas from the results in
the bivariate structure developed previously in Sect. 4.1 to obtain the asymptotics
here. Clearly, the sparsity of the matrix defining the bipartite network given by A
has a role to play. For this section, we concentrate on Z ∈ R

d+ which are completely
tail-equivalent.

Proposition 4.18 Let Z ∈ R
d+ be a completely tail-equivalent random vector and

Z ∈ MRV(αi, bi, μi,O
(i)
d ), ∀ i ∈ Id , with bi(t)/bi+1(t) → ∞ as t → ∞ for

i = 1, . . . , d − 1. Let A ∈ R
q×d
+ be a random matrix which has almost surely no triv-

ial rows and is independent of Z. Moreover, let E[‖A‖α+ε] < ∞, where α := α1. De-
fine X = AZ. Then for a fixed k ∈ Iq and Y := (Y1, Y2)

� := (Xk, maxm∈Iq\{k} Xm)

the following hold:
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(a) We have Y ∈ MRV(α, b1, μ
∗
1,O

(1)
2 ), where for x ∈ R

2+,

μ∗
1([0, x]c) = μ1([0, 1]c)

d

d∑

�=1

E

[
max

{
ak�/x1, max

m∈Iq\{k}
am�/x2

}α]
.

(b) If maxm∈Iq\{k} max�∈Id P[min{ak�, am�} > 0] > 0, then

Y ∈ MRV(α, b1, μ
∗
2,O

(2)
2 ),

where for x ∈ (0,∞),

μ∗
2

(
(x,∞)

) = μ1([0, 1]c)
d

d∑

�=1

E

[
max

m∈Iq\{k}
{

min{ak�/x1, am�/x2}
}α

]
.

Moreover, as t → ∞,

P[Y1 > tx1|Y2 > tx2] ∼ xα
2

∑d
�=1 E[maxm∈Iq\{k}{min{ak�/x1, am�/x2}}α]

∑d
�=1 E[maxm∈Iq\{k} aα

m�]
,

P[Y2 > tx2|Y1 > tx1] ∼ xα
1

∑d
�=1 E[maxm∈Iq\{k}{min{ak�/x1, am�/x2}}α]

∑d
�=1 E[aα

k�]
.

Additionally, if the non-zero components of A have a bounded support, bounded away
from zero, then there exist 0 < υ∗

1 , υ∗
2 < 1 such that for all 0 < υ < υ∗

1 , we have

CoVaRυ|γ (Y1|Y2) ∼ υ− 1
α VaRγ (Y1), γ ↓ 0,

and for all 0 < υ < υ∗
2 , we have

CoVaRυ|γ (Y2|Y1) ∼ υ− 1
α VaRγ (Y2), γ ↓ 0.

Finally, ECI(Y1|Y2) = ECI(Y2|Y1) = ∞.

The first part of the proof is a direct application of Theorem 4.3 and the mapping
theorem in Lindskog et al. [44, Theorem 2.3]. The second part of the proof then
follows from Theorem 3.1. Hence the detailed proof of this proposition is omitted.

Remark 4.19 Note that if for fixed k ∈ Iq , we have

max
m∈Iq\{k}

max
�∈Id

P[min{ak�, am�} > 0] > 0,

then the measure μ∗
2 in Proposition 4.18 is defined via μ1, the limit measure of Z

on O
(1)
d . On the other hand, if

max
m∈Iq\{k}

max
�∈Id

P[min{ak�, am�} > 0] = 0,
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then μ∗
2 will as well involve μ2, the limit measure of Z on O

(2)
d ; thus the dependence

structure of Z plays a role here. The CoVaR and ECI results for Z with an i.i.d., P-GC
and P-MOC dependence structure are provided in Appendix D and follow a similar
pattern to the results obtained in Sect. 4.1.

5 Conclusion

The goal of this paper has been to understand the tail risk behaviour in complex finan-
cial network models and to use this knowledge to provide asymptotic approximations
for conditional risk measures like CoVaR. We have used the framework of a bipartite
network to assess risk contagion in this regard. In our study, we have managed to
accomplish a few things:

(i) For modelling via bipartite networks, it is natural to assume that various banks
will invest in different assets, possibly non-overlapping; however, the exposure of
these assets to the market may still make them dependent (regardless of whether they
are asymptotically dependent or independent). We have shown that modelling via
such distributions still allows us to compute conditional tail probabilities, which ear-
lier computations have shown to be negligible. Moreover, the computed CoVaR mea-
sures can be drastically different depending on the behaviour of the joint distribution
of the assets.

(ii) We have proposed the extreme CoVaR index which measures the strength of
risk contagion between entities in a system; this is especially useful when the risks of
underlying objects are asymptotically independent.

We have restricted to CoVaR measures, but we surmise that other conditional risk
measures like mean expected shortfall (MES), mean marginal excess (MME) and
systemic risk (SRISK) can also be computed under such models; we have briefly dis-
cussed some connections with MME. We have also particularly focused on Pareto
or Pareto-like tails in this paper for convenience; naturally, some of the results can
be extended to general regularly varying marginal tails as well. For Gaussian cop-
ulas with regularly varying tails, we still need certain restrictions on the marginal
tail behaviour (see Das and Fasen-Hartmann [20] for details); on the other hand, for
Marshall–Olkin copulas, assuming tail-equivalent regularly varying marginals will
lead to similar results. In this paper, we focused on these particular copula models
because of their flexibility and inherent connections with risk, reliability and specif-
ically systemic risk. Clearly, our results need not be restricted to these copulas only.
Although bivariate copula families are usually popular, Joe [38, Chap. 4] lists multi-
ple extensions of bivariate copulas to general high dimensions. We believe that many
such copulas can be explored for creating models with particular levels of asymptotic
independence as necessitated by the context. Finally, we have left model calibration
and statistical estimation to be pursued in future work.

Appendix A: Proofs of Sect. 2

For the proof of Proposition 2.6, we use the following auxiliary result given in Das
and Fasen-Hartmann [19, Lemma A.2].
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Lemma A.1 Let Σ ∈ R
d×d be positive definite and γ (Σ), I (Σ) be defined as in

Lemma 2.4.
(a) Suppose Σ−11 > 0. Then for any S ⊆ Id with S �= Id , we have the inequality

γ (Σ) > γ (ΣS).

(b) Suppose Σ−11 ≯ 0. Then I (Σ) �= Id and for any S �= Id with I (Σ) ⊆ S ⊆ Id ,
we have

γ (Σ) = γ (ΣS).

For S ⊆ Id with Sc ∩ I (Σ) �= ∅, we have I (Σ) = I (ΣS) and

γ (Σ) > γ (ΣS).

Proof of Proposition 2.6 Note that

γi = min
S⊆Id ,|S|≥i

min
zS≥1S

z�
S Σ−1

S zS

by definition (see Proposition 2.5). Hence there exists a set S ⊆ Id with |S| ≥ i

and γi = minzS≥1S
z�
S Σ−1

S zS . However, due to Lemma A.1, there exists as well a set
M ⊆ S with |M| = |S| − 1 ≥ i − 1 and

γi = γ (ΣS) > γ (ΣM) ≥ γi−1,

and finally, αi = αγi > αγi−1 = αi−1 and bi(t)/bi−1(t) → ∞ as t → ∞ for
i = 2, . . . , d . □

Proof of Proposition 2.8 (a) Suppose that for all S ⊆ Id with |S| = i, we
have Σ−1

S 1S > 0S and 1�
S Σ−1

S 1S = γi . Then I (ΣS) = IS = S and
γ (ΣS) = 1�

S Σ−1
S 1S = γi . Thus Si = {S ⊆ Id : |S| = i} and the statement follows

directly from Proposition 2.5.
(b) Suppose that for some S ⊆ Id with |S| = i, we have Σ−1

S 1S > 0S and
γi �= 1�

S Σ−1
S 1S . Then IS = S, but γi �= 1�

IS
Σ−1

IS
1IS

, giving S /∈ Si , and finally, the
statement follows again from Proposition 2.5. □

Appendix B: Proofs of Sect. 3

Proof of Theorem 3.1 (a) Case 1. Suppose F1 = F2. Then we obviously obtain
VaRγ (Y1) = VaRγ (Y2) and Y = Y′ ∈ MRV(αi, bi, μi,O

(i)
2 ) for i = 1, 2. For
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0 < γ < 1 and 0 < υ < 1, we get

CoVaRυg(γ )|γ (Y1|Y2)

= inf{y ∈ R : P[Y1 > y|Y2 > VaRγ (Y2)] ≤ υg(γ )}
= VaRγ (Y1) inf{y ∈ R : P[Y1 > y VaRγ (Y1)|Y2 > VaRγ (Y1)] ≤ υg(γ )}
= VaRγ (Y1) inf

{
y ∈ R : hγ (y) ≤ υg(γ )γ b←

2

(
VaRγ (Y1)

)}

= VaRγ (Y1)h
←
γ

(
υg(γ )γ b←

2

(
VaRγ (Y1)

))
.

Due to our assumption, there exist constants 0 < a1 < a2 < r such that

a1 < lim inf
γ↓0

g(γ )γ b←
2

(
VaRγ (Y1)

) ≤ lim inf
γ↓0

g(γ )γ b←
2

(
VaRγ (Y1)

)
< a2,

and hence there exists γ0 ∈ (0, 1) such that

g(γ )γ b←
2

(
VaRγ (Y1)

) ∈ [a1/2, (a2 + min{r, a2})/2] for 0 < γ < γ0.

Due to Lemma 3.3, as γ ↓ 0, h←
γ (y)/h−1(y) → 1 uniformly on the compact interval

[a1/2, (a2 + min{r, a2})/2], and thus

lim
γ↓0

h←
γ (υg(γ )γ b←

2 (VaRγ (Y1))

h−1(υg(γ )γ b←
2 (VaRγ (Y1))

= 1.

Therefore we have

lim
γ↓0

CoVaRυg(γ )|γ (Y1|Y2)

VaRγ (Y1)h−1(υg(γ )γ b←
2 (VaRγ (Y1)))

= lim
γ↓0

h←
γ (υg(γ )γ b←

2 (VaRγ (Y1))

h−1(υg(γ )γ b←
2 (VaRγ (Y1)))

= 1.

Case 2. Suppose F2 is arbitrary. Define Y′ := (Y ′
1, Y

′
2) := (Y1, F

←
1 ◦ F2(Y2));

by assumption, we have Y′ ∈ MRV(αi, bi, μi,O
(i)
2 ), i = 1, 2, and Y ′

1
d= Y ′

2. Since
F←

1 ◦ F2 is an increasing function,

CoVaRυg(γ )|γ (Y1|Y2) = CoVaRυg(γ )|γ (Y ′
1|Y ′

2)

and we can directly apply Case 1 to CoVaRυg(γ )|γ (Y ′
1|Y ′

2) and obtain the statement.
(b), (c) By the assumption that h←

γ (v)/h−1(v) converges uniformly on appropriate
intervals, the proof follows analogously as the proof of (a). □

Proof of Lemma 3.3 From the fact that
(
Y1, F

←
1 ◦ F2(Y2)

) ∈ MRV(α1, b1, μ1,O
(1)
2 ) ∩ MRV(α2, b2, μ2,O

(2)
2 )

and the continuity of h, it follows that VaRγ (Y1) → ∞ as γ ↓ 0 and for any y > 0,

hγ (y) → h(y), γ ↓ 0.
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Since h is continuous and decreasing, we know from de Haan and Ferreira [23,
Lemma 1.1.1] (taking −h, which is increasing) that for any v ∈ (0, r),

h←
γ (v) → h−1(v), γ ↓ 0. (B.1)

Note that h−1 is a strictly decreasing, continuous function due to (i) such that

0 < h−1(a2) = inf
v∈[a1,a2]

h−1(v) ≤ sup
v∈[a1,a2]

h−1(v) = h−1(a1) < ∞.

Therefore it is sufficient to prove that

sup
v∈[a1,a2]

|h←
γ (v) − h−1(v)| −→ 0, γ ↓ 0,

or equivalently with v = w−1,

sup
w∈[a−1

2 ,a−1
1 ]

|h←
γ (w−1) − h−1(w−1)| −→ 0, γ ↓ 0.

Define

Fγ (w) = h←
γ (w−1)

h←
γ (a1)

and F(w) = h−1(w−1)

h−1(a1)
for w ∈ [a−1

2 , a−1
1 ],

with Fγ (w) = F(w) = 1 for w > a−1
1 and Fγ (w) = F(w) = 0 for w < a−1

2 .
Then Fγ and F are distribution functions (in particular, Fγ is right-continuous with
left limits since h←

γ is left-continuous with right limits), and due to (B.1), we have
as well limγ↓0 Fγ (w) = F(w) for every w ∈ R. Since F is continuous, Polya’s
theorem [53] actually gives the uniform convergence

lim
γ↓0

sup
v∈[a1,a2]

∣
∣
∣
∣
h←

γ (v)

h←
γ (a1)

− h−1(v)

h−1(a1)

∣
∣
∣
∣ = lim

γ↓0
sup

w∈[a−1
2 ,a−1

1 ]
|Fγ (w) − F(w)| = 0.

Finally,

sup
v∈[a1,a2]

|h←
γ (v) − h−1(v)|

≤ sup
v∈[a1,a2]

∣
∣
∣
∣h

←
γ (v) − h−1(v)

h←
γ (a1)

h−1(a1)

∣
∣
∣
∣ + sup

v∈[a1,a2]

∣
∣
∣
∣h

−1(v)
h←

γ (a1)

h−1(a1)
− h−1(v)

∣
∣
∣
∣

= h←
γ (a1) sup

v∈[a1,a2]

∣
∣
∣
∣
h←

γ (v)

h←
γ (a1)

− h−1(v)

h−1(a1)

∣
∣
∣
∣ +

∣
∣
∣
∣
h←

γ (a1)

h−1(a1)
− 1

∣
∣
∣
∣ sup
v∈[a1,a2]

|h−1(v)|

→ 0 as γ ↓ 0,

which gives the statement. □
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Proof of Proposition 3.12 (a)(i) First of all,

hγ (y) := b←
2

(
VaRγ (Y1)

)
P[Y1 > y VaRγ (Y1), Y2 > VaRγ (Y1)],

and due to Proposition 2.11, we have h(y) = y−α for y ≥ 1 and h−1(v) = v−1/α for
v ∈ (0, 1]. Define η = 1

2 . Since

b←
2 (t) = θ−(η+1)t (η+1)α ∼ (

F 1(t)F 2(t)
η
)−1

, t → ∞,

we take without loss of generality b←
2 (t) = (F 1(t)F 2(t)

η)−1. Then we have for
y ≥ 1 that

b←
2 (t)P[Y1 > yt, Y2 > t] = b←

2 (t)ĈMO
Λ

(
F 1(yt), F 2(t)

)

= b←
2 (t)F 1(yt)F 2(t)

η

= F 1(yt)

F 1(t)
=: h̃t (y).

Moreover,

h̃←
t (v)

v− 1
α

= F
←
1 (vF 1(t))

v− 1
α t

= F
←
1 (vF 1(t))

v− 1
α F

←
1 (F 1(t))

F
←
1 (F 1(t))

t
.

The first factor converges to 1 uniformly on (0, 1] as t → ∞ by our assumption, and
the second factor converges to 1 as t → ∞ as well. Hence h̃←

t (v)/h−1(v) converges
uniformly on (0, 1] to 1 as t → ∞. Finally, h←

γ (v)/h−1(v) converges uniformly
on (0, 1] to 1 as γ ↓ 0 so that the assumption in Theorem 3.1(b) is satisfied. Since

υγ β+1b←
2 (VaRγ (Y1)) ∼ υγ β−η, we have h−1(υγ β+1b←

2 (VaRγ (Y1)) ∼ υ− 1
α γ − β−η

α

as γ ↓ 0. The final statement is then an application of Theorem 3.1(b).
(a)(ii) For 0 < y ≤ 1, we have h(y) = y−αη, and for v ∈ [1,∞), we have

h−1(v) = v
− 1

αη . Furthermore,

b←
2 (t)P[Y1 > yt, Y2 > t] = b←

2 (t)F 1(yt)ηF 2(t).

The rest of the proof follows analogously as the proof of (i) by using Theorem 3.1(c).
(b) The proof is analogous to that of part (a) by taking η = 1/3. □

Proof of Proposition 3.14 In the bivariate case, we have the parameters I2 = {1, 2},
γ2 = 2

1+ρ
, α2 = 2α

1+ρ
and hS

s = 1
1+ρ

for S = {1, 2}; cf. Das and Fasen-Hartmann
[20, Example 3.8]. Define

b←
2 (t) = (θt−α)

− 2
1+ρ (2α log t)

ρ
1+ρ (2π)

ρ
1+ρ

(1 − ρ)
1
2

(1 + ρ)
3
2

,

μ2
(
(z,∞)

) = (z1z2)
− α

1+ρ , z = (z1, z2)
� ∈ R

2+,

h−1(v) = v− 1+ρ
α , v > 0.
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A conclusion of Proposition 2.5 is that (Y1, Y2)
� ∈ MRV(α2, b2, μ2,O

(2)
2 ) (note that

the constant ϒ{1,2} is moved to b2). The proof follows now by applying the forms of
b2, μ2 in Theorem 3.1(a). □

Appendix C: Proofs of Sect. 4

Proof of Theorem 4.3 Define b∗
i (t) = F←

Z(i)
(1 − 1/t). Then

lim
t→∞

b←
i (t)

b∗←
i (t)

= lim
t→∞ b←

i (t)P[Z(i) > t]

= μi({z ∈ R
d+ : z(i) > 1}) =: ci ∈ (0,∞). (C.1)

Thus Z ∈ MRV(αi, bi, μi,O
(i)
d ) is equivalent to Z ∈ MRV(αi, b

∗
i , μ

∗
i ,O

(i)
d )

with the measure μ∗
i = (ci)

−1μi . Furthermore, due to (C.1), we also have
b∗
i (t)/b

∗
i+1(t) → ∞ as t → ∞, i = 1, . . . , d − 1. Thus (a) is a consequence of Das

et al. [21, Theorem 3.4] and (b) of [21, Proposition 3.2] in combination with (C.1)
and the fact that Z ∈ MRV(αi, b

∗
i , μ

∗
i ,O

(i)
d ) for all i ∈ Id . □

Proof of Proposition 4.8 (a) First of all, τ(1,1)(A) < ∞ and τ(1,2)(A) = ∞ a.s. so that

i∗1 = 1 and P[Ω(1)
1 ] = 1. Since [0, x]c ∈ B(O

(1)
2 ), we obtain by the definition of μ1

that

μ1([0, x]c) = E
[
μ1

(
A−1([0, x]c))]. (C.2)

Furthermore, from Das et al. [21, Remark 7], we already know that due to

Z ∈ MRV(αi, bi, μi,O
(i)
d ), i = 1, 2,

with b1(t)/b2(t) → ∞, the support of μ1 is restricted to

{z ∈ R
d+ : z(2) = 0}\{0} =

d⋃

�=1

{
z ∈ R

d+ : z� > 0, zj = 0, ∀ j ∈ Id\{�}} =:
d⋃

�=1

T�,

which is a disjoint union. Together with (C.2), this implies that

μ1([0, x]c) = E
[
μ1

(
A−1([0, x]c))]

=
d∑

�=1

E
[
μ1

(
A−1([0, x]c) ∩ T�

)]

=
d∑

�=1

E[μ1({z ∈ R
d+ : a1�z� > x1 or a2�z� > x2})]

=
d∑

�=1

E
[
μ1

({
z ∈ R

d+ : max{a1�z�/x1, a2�z�/x2} > 1
})]

.
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(b) The set (x,∞) is in B(O
(2)
2 ). When k = 2, we have

Ω
(2)
1 =

{
min
�∈Id

{a1�, a2�} > 0
}

and Ω
(2)
2 =

{
min
�∈Id

{a1�, a2�} = 0
}
.

Now P[Ω(2)
1 ] > 0 by our assumption and hence i∗2 = 1. A consequence of the

definition of μ2 and (x,∞) ∈ B(O
(2)
2 ) is then that

μ2
(
(x,∞)

) = E

[
μ1

(
A−1((x,∞)

) ∩ Ω
(2)
1

)]

=
d∑

�=1

E[μ1({z ∈ R
d+ : a1�z� > x1, a2�z� > x2} ∩ Ω

(2)
1 )]

=
d∑

�=1

E
[
μ1

({
z ∈ R

d+ : min{a1�z�/x1, a2�z�/x2} > 1
} ∩ Ω

(2)
1

)]

=
d∑

�=1

E
[
μ1

({
z ∈ R

d+ : min{a1�z�/x1, a2�z�/x2} > 1
})]

.

(c) By assumption, we have P[Ω(2)
1 ] = 0 so that i∗2 = 2 and P[Ω(2)

2 ] = 1. Hence
the definition of μ2 implies that

μ2
(
(x,∞)

) = E

[
μ2

(
A−1((x,∞)

) ∩ Ω
(2)
2

)]
= E

[
μ2

(
A−1((x,∞)

))]
.

Again from Das et al. [21, Remark 7], we already know that the support of μ2 is
restricted to

{z ∈ R
d+ : z(3) = 0}\{z ∈ R

d+ : z(2) = 0}
=

⋃

1≤�<j≤d

{
z ∈ R

d+ : z� > 0, zj > 0, zm = 0, ∀ m ∈ Id\{�, j}}

=:
⋃

1≤�<j≤d

T�,j

so that

μ2
(
(x,∞)

) =
∑

1≤�<j≤d

E

[
μ2

(
A−1((x,∞)

)) ∩ T�,j

]

=
d∑

�,j=1
��=j

E
[
μ2

({
z ∈ R

d+ : min{a1�z�/x1, a2j zj /x2} > 1
})]

,

completing the proof. □
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Proof of Proposition 4.9 (a) Since Z1, . . . , Zd are completely tail-equivalent, we have

μ1({z ∈ R
d+ : z� > 1}) = μ1({z ∈ R

d+ : z1 > 1}), � ∈ Id,

and by the choice of b1,

μ1([0, 1]c) = μ1

(

[0, 1]c ∩
d⋃

�=1

T�

)

=
d∑

�=1

μ1({z ∈ R
d+ : z� > 1})

= dμ1({z ∈ R
d+ : z1 > 1}).

This implies

μ1({z ∈ R
d+ : z� > 1}) = μ1([0, 1]c)

d
, � ∈ Id . (C.3)

Furthermore, μ1 is homogeneous of order −α so that, together with Proposi-
tion 4.8(a), we obtain

μ1([0, x]c) =
d∑

�=1

E
[
μ1

({
z ∈ R

d+ : max{a1�z�/x1, a2�z�/x2} > 1
})]

=
d∑

�=1

E[(max{a1�/x1, a2�/x2})α]μ1({z ∈ R
d+ : z� > 1})

= μ1([0, 1]c)
d

d∑

�=1

E[(max{a1�/x1, a2�/x2})α].

Finally, the almost surely non-zero rows of A imply that the right-hand side above is
strictly positive, and hence μ1 is a non-null measure. From i∗1 = 1 and Theorem 4.3,

we then conclude that (X1, X2)
� ∈ MRV(α1, b1, μ1,O

(1)
2 ).

(b) From Proposition 4.8(b), we already know that i∗2 = 2 and

μ2
(
(x,∞)

) = E
[
μ1

({
z ∈ R

d+ : min{a1�z�/x1, a2�z�/x2} > 1
})]

.

Again the homogeneity of μ1 of order −α and (C.3) give

μ2
(
(x,∞)

) = μ1([0, 1]c)
d

d∑

�=1

E[(min{a1�/x1, a2�/x2})α],
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which is strictly positive because of max�∈Id P[min{a1�, a2�} > 0] > 0. Then a

consequence of Theorem 4.3 is that (X1, X2)
� ∈ MRV(α1, b1, μ2,O

(2)
2 ). Finally,

P[X1 > tx1|X2 > tx2] = P[X1 > tx1, X2 > tx2]
P[X2 > tx2]

∼ μ2((x,∞))

μ1([0,∞) × (x2,∞))

= xα
2
E[(min{a1�/x1, a2�/x2})α]

∑d
�=1 E[aα

2�]
as t → ∞

by the former results. The asymptotic behaviour of CoVaR is then a consequence of
Theorem 3.1(a) and (3.2). □

Proof of Proposition 4.11 First note that

μ2({z ∈ R
d+ : z� > v�, zj > vj }) = (v�vj )

−α, z ∈ (0,∞).

Plugging this into Proposition 4.8(c) results in

μ2
(
(x,∞)

) =
d∑

�,j=1
��=j

E[μ2({z ∈ R
d+ : a1�z� > x1, a2j zj > x2})

=
d∑

�,j=1

E

[(
a1�a2j

x1x2

)α]

,

where we used in the last step the assumption max�∈Id P[min{a1�, a2�} > 0] = 0.
Furthermore, b←

1 (t) = 1/Fα(t) and b←
2 (t) = 1/Fα(t)2 so that as t → ∞,

P[X1 > tx1|X2 > tx2] = b←
1 (t)

b←
2 (t)

b←
2 (t)P[X1 > tx1, X2 > tx2]

b←
1 (t)P[X2 > tx2]

∼ Fα(t)
μ2((x,∞))

μ1((x1,∞) × R+)

= Fα(t)xα
2

∑d
�,j=1 E[( a1�

x1

a2j

x2
)α]

∑d
j=1 E[aα

2j ]
.

Again the asymptotic behaviour of CoVaR follows then from Theorem 3.1(a)
and (3.2) with similar arguments as in Proposition 4.9. □

Proof of Proposition 4.13 Similarly as in Proposition 4.11, the proof of the MRV is a
combination of Proposition 4.8(c) and Proposition 2.11, and the asymptotic behaviour
of CoVaR can be derived from Theorem 3.1(a). □
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Proof of Proposition 4.15 For any set S = {�, j} ⊆ Id with |S| = 2, we have

Σ−1
S = 1

1 − ρ2
�j

(
1 −ρj�

−ρ�j 1

)

,

Σ−1
S 1S > 0S and 1�

S Σ−1
S 1S = 2

1+ρ�j
. Thus S2 defined in Proposition 2.5 is equal to

S2 =
{

{�, j} ⊆ Id : 2

1 + ρ�j

= 2

1 + ρ∨

}

= {{�, j} ⊆ Id : ρ�j = ρ∨},

|I (ΣS)| = |IS | = |S| = 2 and γS = 2
1+ρ∨ for any S ∈ S2. Finally, with α2, b2 as

given above, z�, zj > 0 and

μ2({z ∈ R
d+ : z� > v�, zj > vj }) =

⎧
⎨

⎩

1
2π

(1+ρ∨)3/2

(1−ρ∨)1/2 (v�vj )
− α

1+ρ�j , if ρ�j = ρ∨,

0, otherwise,

we have due to Proposition 2.5 that Z ∈ MRV(α2, b2, μ2,O
(2)
d ). The representation

of μ2 and Proposition 4.8(c) imply that for x = (x1, x2) ∈ (0,∞), we have

μ2
(
(x,∞)

) = 1

2π

(1 + ρ∨)3/2

(1 − ρ∨)1/2

∑

(�,j): ρ�j =ρ∨
E

[(
a1�a2j

x1x2

) α
1+ρ∨ ]

. (C.4)

(a) If ρ∗ = ρ∨, then of course μ2((x,∞)) > 0 and it follows from Theo-
rem 4.3 that (X1, X2)

� ∈ MRV(α2, b2, μ2,O
(2)
2 ). Finally, the asymptotic behaviour

of the conditional probability can be calculated as in the previous statements, and the
CoVaR asymptotics follow from Theorem 3.1(a).

(b) If ρ∗ < ρ∨, then (C.4) results in μ2((x,∞)) = 0. Then define

M := {� ∈ Id : ρ�j ≤ ρ∗ ∀ j ∈ Id}.
For any � ∈ Id\M , there exists j ∈ Id , j �= �, with ρ�j > ρ∗, and hence Remark 4.16
gives that the �th column of A is a.s. a zero column. Therefore we define A{1,2},M by
deleting the �th column in A for all � ∈ Id\M and similarly, we define ZM . Then

X = AZ = A{1,2},MZM.

But ZM ∈ P-GC(α, θ,ΣM) and ρ∗ = max�,j∈M,� �=j ρ�j . Hence X = A{1,2},MZM

satisfies the assumption of (a), and an application of (a) gives the statement. □

Appendix D: Risk contagion with more than two portfolios

In Sect. 4.3, we obtained asymptotic conditional tail probabilities and CoVaR asymp-
totics comparing the risk of high negative returns for one single entity in the system
versus the worst (or at least one other entity in the entire system) having poor returns,
for a general regularly varying underlying distribution Z. In this section, we detail
results for particular choices of Z. First, we consider the case with i.i.d. components.
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Proposition D.1 Let Z ∈ R
d+ be a random vector with i.i.d. components Z1, . . . , Zd

with distribution function Fα , where Fα ∈ RV−α , α > 0, b1(t) = F←
α (1 − 1/t) and

b←
i (t) = (b←

1 (t))i . Further, let A ∈ R
q×d
+ be a random matrix which has almost

surely no trivial rows and is independent of Z, and suppose for fixed k ∈ Iq that

max
m∈Iq\{k}

max
�∈Id

P[min{ak�, am�} > 0] = 0

and E[‖A‖2α+ε] < ∞ for some ε > 0. Define X = AZ. Then

Y = (Y1, Y2)
� =

(
Xk, max

m∈Iq\{k}
Xm

)� ∈ MRV(2α, b2, μ
∗
2,O

(2)
2 ),

where

μ∗
2

(
(x,∞)

) = (x1x2)
−α

d∑

�,j=1

E

[
aα
k� max

m∈Iq\{k}
aα
mj

]
, x = (x1, x2) ∈ (0,∞).

Moreover, as t → ∞,

P[Y1 > tx1|Y2 > tx2] ∼ (
b←

1 (t)
)−1

x−α
1

∑d
�,j=1 E[aα

kj maxm∈Iq\{k} aα
m�]

∑d
�=1 E[maxm∈Iq\{k} aα

m�]
,

P[Y2 > tx2|Y1 > tx1] ∼ (
b←

1 (t)
)−1

x−α
2

∑d
�,j=1 E[aα

kj maxm∈Iq\{k} aα
m�]

∑d
j=1 E[aα

kj ]
.

Additionally, for 0 < υ < 1, we have as γ ↓ 0 that

CoVaRυγ |γ (Y1|Y2) ∼ υ− 1
α

(
∑d

�,j=1 E[aα
kj maxm∈Iq\{k} aα

m�])
1
α

(
∑d

j=1 E[aα
kj ]

∑d
�=1 E[maxm∈Iq\{k} aα

m�])
1
α

VaRγ (Y1),

CoVaRυγ |γ (Y2|Y1) ∼ υ− 1
α

(
∑d

�,j=1 E[aα
kj maxm∈Iq\{k} aα

m�])
1
α

(
∑d

j=1 E[aα
kj ]

∑d
�=1 E[maxm∈Iq\{k} aα

m�])
1
α

VaRγ (Y2).

Finally, ECI(Y1|Y2) = ECI(Y2|Y1) = 1.

Next we consider an underlying vector Z with Marshall–Olkin dependence.

Proposition D.2 Let Z ∈ P-MOC(α, θ,Λ) and A ∈ R
q×d
+ be a random matrix which

has almost surely no trivial rows, is independent of Z and for fixed k ∈ Iq , we have

max
m∈Iq\{k}

max
�∈Id

P[min{ak�, am�} > 0] = 0.

Further, let X = AZ and Y = (Y1, Y2)
� = (Xk, maxm∈Iq\{k} Xm)�.
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(a) Suppose Z ∈ P-MOC(α, θ, λ=) and E[‖A‖ 3α
2 +ε] < ∞ for some ε > 0. Then

we have Y ∈ MRV(α2, b2, μ
∗
2,O

(2)
2 ), where α2 = (3α)/2, b2(t) = θ

1
α t

2
3α , and for

any x = (x1, x2) ∈ (0,∞), we have

μ∗
2

(
(x,∞)

) =
d∑

�,j=1

E

[

min

{
ak�

x1
, max
m∈Iq\{k}

amj

x2

}α

max

{
ak�

x1
, max
m∈Iq\{k}

amj

x2

} α
2
]

.

Moreover, as t → ∞,

P[Y1 > tx1|Y2 > tx2] ∼ (θt−α)
1
2 xα

2 μ∗
2

(
(x,∞)

)
( d∑

j=1

E[ max
m∈Iq\{k}

aα
mj ]

)−1

,

P[Y2 > tx2|Y1 > tx1] ∼ (θt−α)
1
2 xα

1 μ∗
2

(
(x,∞)

)
( d∑

�=1

E[aα
k�]

)−1

.

Additionally, if the non-zero components of A have bounded support, bounded away
from zero, then there exist 0 < υ∗

1 < υ∗
2 < ∞ such that for all 0 < υ < υ∗

1 ,

CoVaR
υγ

1
2 |γ (Y1|Y2)

∼ υ− 1
α

(
∑d

�,j=1 E[aα
k� maxm∈Iq\{k} a

α/2
mj ]) 1

α

(
∑d

�=1 E[aα
k�])

1
α (
∑d

j=1 E[maxm∈Iq\{k} aα
mj ])

1
2α

VaRγ (Y1), γ ↓ 0,

and for all υ∗
2 < υ < ∞,

CoVaR
υγ

1
2 |γ (Y1|Y2)

∼ υ− 2
α

(
∑d

�,j=1 E[aα/2
k� maxm∈Iq\{k} aα

mj ])
2
α

(
∑d

�=1 E[aα
k�])

1
α (
∑d

j=1 E[maxm∈Iq\{k} aα
mj ])

2
α

VaRγ (Y1), γ ↓ 0.

Finally, ECI(Y1|Y2) = ECI(Y2|Y1) = 2.

(b) Suppose Z ∈ P-MOC(α, θ, λ∝) and E[‖A‖α 3d+2
2(d+1)

+ε] < ∞ for some ε > 0.

Then we have Y ∈ MRV(α2, b2, μ
∗
2,O

(2)
2 ), where α2 = α 3d+2

2(d+1)
, b2(t) = θ

1
α t

2(d+1)
(3d+2)α ,

and for any x = (x1, x2) ∈ (0,∞), we have

μ∗
2

(
(x,∞)

) =
d∑

�,j=1

E

[

min

{
ak�

x1
, max
m∈Iq\{k}

amj

x2

}α

max

{
ak�

x1
, max
m∈Iq\{k}

amj

x2

}α d
2(d+1)

]

.
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Moreover, as t → ∞,

P[Y1 > tx1|Y2 > tx2] ∼ (θt−α)
d

2(d+1) xα
2 μ∗

2

(
(x,∞)

)
( d∑

j=1

E[ max
m∈Iq\{k}

aα
mj ]

)−1

,

P[Y2 > tx2|Y1 > tx1] ∼ (θt−α)
d

2(d+1) xα
1 μ∗

2

(
(x,∞)

)
( d∑

�=1

E[aα
k�]

)−1

.

Additionally, if the non-zero components of A have bounded support, bounded away
from zero, then there exist 0 < υ∗

1 < υ∗
2 < ∞ such that for all 0 < υ < υ∗

1 ,

CoVaR
υγ

d
2(d+1) |γ

(Y1|Y2)

∼ υ− 1
α

(
∑d

�,j=1 E[aα
k� maxm∈Iq\{k} a

αd
2(d+1)

mj ]) 1
α

(
∑d

�=1 E[aα
k�])

1
α (
∑d

j=1 E[maxm∈Iq\{k} aα
mj ])

d
2(d+1)α

VaRγ (Y1), γ ↓ 0,

and for all υ∗
2 < υ < ∞,

CoVaR
υγ

d
2(d+1) |γ

(Y1|Y2)

∼ υ− 2(d+1)
dα

(
∑d

�,j=1 E[a
αd

2(d+1)

k� maxm∈Iq\{k} aα
mj ])

2(d+1)
dα

(
∑d

�=1 E[aα
k�])

1
dα (

∑d
j=1 E[maxm∈Iq\{k} aα

mj ])
2(d+1)

dα

VaRγ (Y1), γ ↓ 0.

Finally, ECI(Y1|Y2) = ECI(Y2|Y1) = 2 + 2
d

.

Finally, we consider an underlying vector Z with Gaussian dependence.

Proposition D.3 Let Z ∈ P-GC(α, θ,Σ) with Σ = (ρ�j )1≤�,j≤d positive definite.

Suppose A ∈ R
q×d
+ is a random matrix which has almost surely no trivial rows, is

independent of Z and for fixed k ∈ Iq , we have

max
m∈Iq\{k}

max
�∈Id

P[min{ak�, am�} > 0] = 0.

Also, define

ρ∗ = max
{
ρ�j : �, j ∈ Id , � �= j and max

m∈Iq\{k}
P[min{ak�, amj } > 0] > 0

}
.

Suppose E[‖A‖ 2α
1+ρ∗ +ε] < ∞ for some ε > 0 and let X = AZ. Then we have

Y = (Y1, Y2)
� =

(
Xk, max

m∈Iq\{k}
Xm

)� ∈ MRV(α∗
2 , b∗

2, μ∗
2,O

(2)
2 ),
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with

α∗
2 = 2α

1 + ρ∗ ,

b∗←
2 (t) = C∗(ρ∗, α)(θt−α)

− 2
1+ρ∗ (log t)

ρ∗
1+ρ∗ ,

μ∗
2

(
(x,∞)

) = D∗(ρ∗, α, A)(x1x2)
− α

1+ρ∗ , x = (x1, x2) ∈ (0,∞),

where for ρ ∈ (−1, 1), α > 0, θ > 0 and A ∈ R
2×d+ , we define

C∗(ρ, α) = (2π)
− 1

1+ρ (2α)
ρ

1+ρ ,

D∗(ρ, θ, A) = 1

2π

(1 + ρ)3/2

(1 − ρ)1/2

∑

(�,j):ρ�j =ρ

E

[
a

α/(1+ρ)
k� max

m∈Iq\{k}
a

α/(1+ρ)
mj

]
.

Moreover, as t → ∞,

P[Y1 > x1t |Y2 > x2t]

∼ (θt−α)
1−ρ∗
1+ρ∗ (log t)

− ρ
1+ρ x

− α
1+ρ∗

1 x

αρ∗
1+ρ∗
2

C∗(ρ∗, α)−1D∗(ρ∗, α, A)
∑d

j=1 E[maxm∈Iq\{k} aα
mj ]

,

P[Y2 > tx2|Y1 > tx1]

∼ (θt−α)
1−ρ∗
1+ρ∗ (log t)

− ρ
1+ρ x

αρ∗
1+ρ∗
1 x

− α
1+ρ∗

2
C∗(ρ∗, α)−1D∗(ρ∗, α, A)

∑d
�=1 E[aα

k�]
.

Additionally, with g(γ ) = γ
1−ρ∗
1+ρ∗ (−α−1 log γ )

− ρ∗
1+ρ∗ and 0 < υ < 1, we have

CoVaRυg(γ )|γ (Y1|Y2)

∼ υ− 1+ρ∗
α

(C∗(ρ∗, α)−1D∗(ρ∗, α, A))
1+ρ∗

α

(
∑d

�=1 E[aα
k�]

∑d
j=1 E[maxm∈Iq\{k} aα

mj ])
1
α

VaRγ (Y1), γ ↓ 0,

and

CoVaRυg(γ )|γ (Y2|Y1)

∼ υ− 1+ρ∗
α

(C∗(ρ∗, α)−1D∗(ρ∗, α, A))
1+ρ∗

α

(
∑d

�=1 E[aα
k�]

∑d
j=1 E[maxm∈Iq\{k} aα

mj ])
1
α

VaRγ (Y2), γ ↓ 0.

Finally, g(t−1) ∈ RV− 1−ρ∗
1+ρ∗

and hence ECI(Y1|Y2) = ECI(Y2|Y1) = 1+ρ∗
1−ρ∗ .
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