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Abstract
This article considers existence and uniqueness of infinite-horizon Epstein–Zin
stochastic differential utility (EZ-SDU) for the case that the coefficients R of rela-
tive risk aversion and S of elasticity of intertemporal complementarity (the reciprocal
of elasticity of intertemporal substitution) satisfy ϑ := 1−R

1−S
> 1. In this sense, this

paper is complementary to (Herdegen et al., Finance Stoch. 27, pp. 159–188). The
main novelty of the case ϑ > 1 (as opposed to ϑ ∈ (0, 1)) is that there is an infinite
family of utility processes associated to every nonzero consumption stream. To deal
with this issue, we introduce the economically motivated notion of a proper utility
process, where, roughly speaking, a utility process is proper if it is nonzero when-
ever future consumption is nonzero. We proceed to show that for a very wide class of
consumption streams C, there exists a proper utility process V associated to C. Fur-
thermore, for a wide class of consumption streams C, the proper utility process V is
unique. Finally, we solve the optimal investment–consumption problem for an agent
with preferences governed by EZ-SDU who invests in a constant-parameter Black–
Scholes–Merton financial market and optimises over right-continuous consumption
streams that have a unique proper utility process associated to them.
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1 Introduction

In an infinite-horizon investment–consumption problem, the goal is to maximise the
discounted expected utility of consumption, where maximisation takes place over
consumption streams that can be financed by trading in a financial market (such that
the resulting wealth process is nonnegative for all time). Merton [22] solved this
problem for a constant-parameter financial market and constant relative risk aversion
(CRRA) utility. In this article, we build on the prior works of the authors [12, 13] and
analyse the investment–consumption problem for Epstein–Zin stochastic differential
utility (EZ-SDU). EZ-SDU is a generalisation of time-additive CRRA utility that
allows a disentanglement of the agent’s risk aversion parameter from their temporal
variance aversion preferences; see for example Duffie and Epstein [8], Schroder and
Skiadas [24] and Herdegen et al. [12].

For SDU, the utility process is given in implicit form as the solution of a backward
stochastic differential equation (BSDE), and before we can attempt to optimise over
consumption streams, we must first decide how to associate a utility process to a given
consumption stream. The issue is complicated by the fact that there is no terminal
condition for the BSDE since we work with an infinite horizon. For some parameter
combinations, Herdegen et al. [13] show that there exists a unique utility process for
every consumption stream (perhaps taking values in R). However, in the parameter
combinations studied in the present paper, uniqueness fails. Thus to make progress,
we must first decide which utility process to associate to a given consumption stream;
only then can we attempt to optimise over investment–consumption pairs.

The goals of the paper are as follows: first, to illustrate non-uniqueness using a
class of consumption streams given by geometric Brownian motion as an example,
showing that non-uniqueness is generic and not an aberration; second, to introduce
the economically motivated concept of a proper solution and argue that it gives the
“true” utility process to associate to a consumption stream; third, to prove that for a
wide class of consumption streams, there exists a (unique) proper utility process; and
fourth, to show that if we restrict attention to consumption streams for which there
exists a unique proper utility process, we can prove a verification argument for the
investment–consumption problem in a constant-parameter Black–Scholes–Merton
market, and that the candidate optimal strategy is indeed optimal.

EZ-SDU is parametrised by two coefficients R and S which take values in
(0, 1) ∪ (1,∞); they correspond to the agent’s risk aversion and their elasticity of
intertemporal complementarity (the reciprocal of which is better known as elasticity
of intertemporal substitution). The parameter ϑ := 1−R

1−S
is critical. First, it is argued

in [12] that ϑ > 0 is necessary for the Epstein–Zin SDU equation to have a mean-
ingful solution over the infinite horizon. Second, the mathematics of the problem is
vastly different depending on whether ϑ ∈ (0, 1) or ϑ ∈ (1,∞). (The boundary case
of ϑ = 1, or equivalently R = S, is CRRA utility.)

The parameter combinations leading to ϑ ∈ (0, 1] are studied in [13] over the
infinite horizon and by Kraft et al. [19], Seiferling and Seifried [25], Kraft and
Seifried [17] and Matoussi and Xing [20] over a finite time horizon. In all these
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papers, the case ϑ > 1 is avoided due to mathematical difficulties. One (highly desir-
able) property of EZ-SDU when ϑ ∈ (0, 1] is that all evaluable consumption streams
are uniquely evaluable – if there exists a solution to the EZ-SDU equation, it is neces-
sarily unique. This follows from a comparison theorem (see for example [13, Theo-
rem 5.8]) which shows that a subsolution to the EZ-SDU equation always lies below
a supersolution; since a solution is both a subsolution and a supersolution, applying
the comparison theorem twice to two such solutions yields uniqueness.

This paper deals with the case ϑ > 1. In this case, the requirements of the com-
parison theorem in [13] are not met. It is tempting to hope that this is a technical
issue and that by being smarter, it is possible to extend the comparison theorem to
the case ϑ > 1, thus resolving issues of uniqueness. However, this is not the case –
the problem with ϑ > 1 is fundamentally different to the problem with ϑ < 1. When
ϑ > 1, it is not just that the comparison theorem fails, but rather that non-uniqueness
is endemic to the problem. (Indeed, the only right-continuous consumption stream
with a unique utility process is the zero process.) Note that the same issue of non-
uniqueness arises in finite-horizon EZ-SDU as well, unless a nonzero bequest func-
tion is added at the terminal time. The main goals of this paper are to illuminate how
non-uniqueness occurs, to provide an economically motivated criterion for selecting
an economically meaningful solution, to show that such economically meaningful so-
lutions exist and are unique, and finally to solve the investment–consumption problem
in a Black–Scholes–Merton market.

We begin by studying under EZ-SDU the utility processes associated to consump-
tion streams given by a geometric Brownian motion. In this case, an explicit, time-
homogeneous utility process can be found. However, we show in Sect. 3.2 that this
solution is not the only solution and there exists an infinite family of (equally explicit,
but time-inhomogeneous) utility processes.

It is clear that to be able to formulate Merton’s optimal investment–consumption
problem for EZ-SDU, there must be a rule which assigns a particular utility process
to each consumption stream over which we maximise. Various candidates for this
assignation rule are plausible. Perhaps the most obvious choice is the maximal util-
ity process. The rationale behind this would be that the agent gets to choose which
utility process they associate to a given consumption stream, and so they naturally
choose the best one. However, when R > 1, the maximal utility process associated
to any consumption stream is the zero process, rendering the problem degenerate. An
alternative choice might be the “game-theoretic” or minimax version of the Merton
problem, where the agent maximises over the worst utility process associated to each
consumption stream. However, when R < 1, the minimal utility process associated
to any consumption stream is the zero process, again rendering the problem degener-
ate. Instead, one of the key contributions of the paper is to introduce the notion of a
proper solution.

It will follow from the discussion in Sect. 3.2 below that if C is a consumption
stream given by a geometric Brownian motion (and if E[∫ ∞

0 e−δϑsC1−R
s ds] < ∞,

where δ is the discount parameter), then for each T ∈ [0,∞], there exists a utility
process associated to C which is nonzero for t < T and zero for t ≥ T . (In particular,
zero is a solution, and corresponds to T = 0.) Economically, this may be interpreted
as saying that the amount consumed after time T has no effect on the agent’s utility.
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This may be considered to be undesirable and motivates the definition of a proper
solution: a solution V = (Vt )t≥0 (of the defining equation for an EZ-SDU utility
process, see (2.2) below) is proper if E[∫ ∞

t
e−δϑsC1−R

s ds | Ft ] > 0 implies that
(1 − R)Vt > 0.

The main results of the paper for the case ϑ > 1 are as follows (more precise
statements follow as Theorems 4.7, 4.9 and 7.5, respectively).

Main Result 1 For a very wide class of consumption streams C, there exists a proper
utility process V associated to C.

Main Result 2 For a wide class of consumption streams, the proper utility process is
unique.

Main Result 3 In the constant-parameter Black–Scholes–Merton model, if we max-
imise over attainable consumption streams which admit a unique proper utility pro-
cess, then the investment–consumption problem is solved by a constant proportional
investment–consumption strategy (whose parameters may be identified in terms of the
parameters of the EZ-SDU and the financial market).

These results can be compared with those of Melnyk et al. [21], where we re-
strict the comparison to the case ϑ > 1 – the subject of the present paper. The main
focus of [21] is to understand the impact of transaction costs on the investment–
consumption problem under EZ-SDU. However, the frictionless case is also covered
and [21] presents some of the most complete results in the current literature. Mel-
nyk et al. [21] do not prove any existence results and instead choose to optimise
over the abstract class of consumption streams for which a solution exists. When
ϑ > 1, they further restrict to consumption streams C = (Ct )t≥0 whose utility pro-
cess V = (Vt )t≥0 satisfies (1 − R)Vt ≥ e−δϑtC1−R

t for all t ≥ 0 as well as the
transversality condition limt→∞ e−γ t

E[|Vt |] = 0 for a well-chosen discount fac-
tor γ . It is unclear exactly how large this class is, but there are many consumption
streams which we show to have a unique proper solution and which do not lie in
this class. In particular, the bound on V and the transversality condition together rule
out the candidate optimal strategy for some parameter combinations, forcing [21] to
impose additional restrictions on the parameter values [21, Assumption 3.3]. Finally,
their approach only works when R > 1. A more thorough comparison of our results
with those in [21] is provided in Appendix A.2.

The main results of the present paper may also be compared with the prior results
of the authors for the case ϑ < 1. In that setting, in [13], the authors show:

[13, Theorem 10.8] For every consumption stream C, there exists a unique utility
process V associated to C, if we allow the utility process to take values in [−∞,∞].
[13, Theorem 11.1] In the constant-parameter Black–Scholes–Merton model, if we
maximise over attainable consumption streams, the investment–consumption problem
is solved by a constant proportional strategy (whose parameters may be identified in
terms of the parameters of the EZ-SDU and the financial market).

Note that the results of the present paper are less complete than those of [13].
We do not show existence (and uniqueness) of a utility process for every consump-
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tion stream, but only for a wide class; similarly, when we consider the investment–
consumption problem, we cannot optimise over every consumption stream, but only
over a wide class. But this lack of completeness must be set against the additional
complexity of the problem we consider here – the non-uniqueness of the utility
process is an unavoidable and major issue.

The remainder of the paper is structured as follows. In Sect. 2, we introduce
EZ-SDU. In Sect. 3, we give examples to show that in the case ϑ > 1, utility
processes under EZ-SDU are not unique. In particular, we show that to consump-
tion streams given by a geometric Brownian motion, we may associate a family of
EZ-SDU utility processes indexed by T ∈ [0,∞], each of which corresponds to
ignoring consumption from time T onwards.

In Sect. 4, we give a precise definition of a proper solution and restate the main
existence and uniqueness results precisely. Then in Sect. 5, we describe a change of
coordinates which is very useful in simplifying the problem, and we introduce some
additional solution concepts of a more mathematical nature. In Sect. 6, we are then in
a position to give the main existence and uniqueness results (with some of the more
technical material and proofs relegated to the appendices).

Finally, in Sect. 7, we apply our results on the existence and uniqueness of utility
processes associated to consumption streams to the Merton investment–consumption
problem for EZ-SDU in a Black–Scholes–Merton financial market. We derive a can-
didate solution to the Merton problem and then provide a verification theorem proving
that the candidate solution is optimal within the class of all attainable consumption
streams to which we may assign a unique proper solution, thus completing the study
of the infinite-horizon investment–consumption problem for EZ-SDU.

Some mathematical material and some proofs are deferred to the appendices. In
Appendix A, we compare our results in detail with the existing results of the au-
thors [12, 13] and with Melnyk et al. [21]. In Appendix B, we introduce subsolu-
tions and supersolutions to the EZ-SDU equation, which, roughly speaking, differ
from solutions by replacing the equality in the EZ-SDU equation with an inequal-
ity. We then prove an important and useful comparison theorem which provides a
sufficient criterion under which subsolutions are dominated from above by super-
solutions. Appendix C proves results about two extra solution concepts, which are
analytically easier to work with than proper solutions. Based on the results of Ap-
pendix C, Appendix D proves the results from Sect. 6 via some very technical re-
sults on the existence of proper solutions. Appendix E gives the proof of the final
verification theorem.

2 Epstein–Zin stochastic differential utility

We work throughout on a filtered probability space (Ω,F ,F = (Ft )t≥0,P) such
that F0 is P-trivial and the filtration F is complete and continuous. Note that this
is slightly stronger than the right-continuity of the filtration assumed in the usual
conditions. However, it is a necessary assumption for the existence arguments in Ap-
pendix D to go through. Let P denote the set of progressively measurable processes,
and let P+ and P++ be those processes in P that take nonnegative and strictly
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positive values, respectively. Moreover, denote by S the set of all semimartingales.
We identify processes in P or S that agree up to indistinguishability.

2.1 Stochastic differential utility

To understand Epstein–Zin stochastic differential utility (EZ-SDU), it is beneficial
to introduce stochastic differential utility (SDU) in its more general form. We con-
trast SDU with time-additive utility. We consider infinite-horizon (lifetime) stochastic
differential utility.

A time-additive (or expected) utility is characterised by a utility function

U : R+ × R+ → V,

where V ⊆ R = [−∞,+∞], is the range of U . A consumption stream C = (Ct )t≥0
is a nonnegative progressively measurable process, i.e., an element of P+. The cor-
responding utility is given by E[∫ ∞

0 U(t, Ct ) dt] (provided this expectation is well
defined), and the utility process V = (Vt )t≥0 – which measures the utility starting
from a given time onward – is defined by Vt = E[∫ ∞

t
U(s, Cs) ds|Ft ]. Under SDU,

the utility function U is generalised to become an aggregator g : R+×R+×V → V.
The SDU process V C = (V C

t )t≥0 associated to a consumption stream C and an
aggregator g is then the solution to

Vt = E

[ ∫ ∞

t

g(s, Cs, Vs) ds

∣
∣
∣
∣Ft

]

, t ≥ 0. (2.1)

This creates a feedback effect in which the value at time t may depend in a nonlinear
way on the value at future times and permits the modelling of a much wider range
of preferences. However, in addition to issues about whether the conditional expecta-
tion is well defined, there are new issues concerning the existence and uniqueness of
solutions to (2.1) which are not present for additive utilities.

Definition 2.1 An aggregator is a function g : R+ × R+ × V → V. For C ∈ P+,
define I(g, C) := {V ∈ P : E[∫ ∞

0 |g(s, Cs, Vs)| ds] < ∞}. Further, let UI(g, C) be
the set of elements of I(g, C) which are uniformly integrable. Then V ∈ I(g, C) is
a utility process associated to the pair (g, C) if it has càdlàg paths and satisfies (2.1)
for all t ∈ [0,∞).

Remark 2.2 It can be easily shown that all utility processes are uniformly integrable
(see [12, Remark 3.2]).

2.2 Epstein–Zin stochastic differential utility

The Epstein–Zin stochastic differential utility (see Duffie and Epstein [8], Herdegen
et al. [12], Kraft and Seifried [18], Schroder and Skiadas [24]) is parametrised by
δ, R and S, where δ ∈ R and R, S ∈ (0, 1) ∪ (1,∞) and, with V = (1 − R)R+, the
Epstein–Zin aggregator gEZ : R+ × R+ × V → V is defined as

gEZ(t, c, v) = e−δt c1−S

1 − S

(
(1 − R)v

) S−R
1−R .
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It is convenient to introduce the parameters ϑ = 1−R
1−S

and ρ = S−R
1−R

= ϑ−1
ϑ

so that

gEZ(t, c, v) = e−δt c1−S

1−S
((1 − R)v)ρ . Note that when S = R, the aggregator reduces

to the discounted CRRA utility function U(t, c) = e−δt c1−R

1−R
. This case corresponds

to ϑ = 1 and ρ = 0.

Remark 2.3 One of the advantages of the aggregator gEZ is that it is one-signed
and hence the conditional expectation E[∫ ∞

t
g(s, Cs, Vs) ds|Ft ] is always well de-

fined in [−∞, 0] or [0,∞]. Other authors have used a slightly different aggregator

gΔ
EZ(c, v) := c1−S

1−S
((1 − R)v)ρ − δϑv; see e.g. Duffie and Epstein [8, Appendix C] or

Melnyk et al. [21]. While the two formulations are essentially equivalent, our choice
is slightly more general. Indeed, if V Δ solves (2.1) for consumption C and aggre-
gator gΔ

EZ , then V given by Vt = e−δϑtV Δ
t solves (2.1) for consumption C and

aggregator gEZ . However, the converse is not true: if V , for given C, solves (2.1) for
the aggregator gEZ , it need not follow that V Δ given by V Δ

t = eδϑtVt solves (2.1) for
the aggregator gΔ

EZ because the integrals and expectations need not be well defined.
A fuller discussion of this issue can be found in [12, Sect. 5.2].

Definition 2.4 A process V C = V = (Vt )t≥0 is an EZ-SDU utility process associated

to a consumption stream C ∈ P+ if
∫ ∞

0 e−δs C1−S
s

1−S
((1 − R)Vs)

ρ ds ∈ L1 and if for
each t ≥ 0, it satisfies

Vt = E

[ ∫ ∞

t

e−δs C1−S
s

1 − S

(
(1 − R)Vs

)ρ ds

∣
∣
∣
∣Ft

]

. (2.2)

Implicit in the form of gEZ is the fact that in order to define ((1−R)V )ρ , we must
have sgn(V ) = sgn(1 − R) and hence that V ⊆ (1 − R)R+. Then for there to be
equality in (2.2), we must at least have that the signs of the left- and right-hand sides
of (2.2) agree, i.e., sgn(V ) = sgn(1 − S). This forces sgn(1 − R) = sgn(1 − S) or
equivalently ϑ > 0. Some authors, including Bansal and Yaron [1], have considered
the case ϑ < 0, but as argued in [12, Sect. 7.3], the solutions they find are utility
bubbles and thus economically questionable. For the rest of the paper, we assume
ϑ > 0.

The case 0 < ϑ < 1 was considered in [13], and when ϑ = 1, EZ-SDU reduces to
the widely studied CRRA utility. In this paper, we consider parameter combinations
leading to ϑ > 1; either we have R < S < 1 or 1 < S < R.

Standing Assumption 2.5 The parameters R and S are chosen in such a way that
ϑ := 1−R

1−S
> 1.

Remark 2.6 There is no universal agreement in the economics literature on the
range of plausible values for the parameters R and S. Chetty [3] writes that
“most economists believe based on introspection that [the relative risk aversion is
in] (1, 5) while others contend that higher values [. . . ] are reasonable”, and Vissing–
Jørgensen [26] adds (recall that the elasticity of intertemporal substitution (EIS) is
the reciprocal of the elasticity of intertemporal complimentarity, as represented by
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our parameter S) “[. . . ], it seems fair to say that there is no consensus on whether [the
elasticity of intertemporal substitution] is significantly above zero and, if so, what its
value is,” although implicit in her statement is the fact that the EIS is below 1. Indeed,
[26] estimates the elasticity of intertemporal substitution to be between 0.3 and 0.4
for stockholders and between 0.8 and 1 for bondholders, both of which are below 1,
and Guvenen [9] reports similar conclusions. In terms of our parameters, this means
that there is general agreement that R > 1 and S > 1 so that ϑ > 0, but no consensus
on whether S > R > 1 (0 < ϑ < 1) or R > S > 1 (ϑ > 1). Prominent papers that
make the assumption that ϑ > 1 include Kandel and Stambaugh [16] and Campbell
and Mankiw [2].

3 Non-uniqueness of utility processes when ϑ > 1

In this section, we give a simple illustrative example highlighting a key issue with
stochastic differential utility when ϑ > 1 – the non-uniqueness of utility processes.

3.1 An explicit utility process associated to geometric Brownian motion
consumption streams

We begin by finding an explicit utility process associated to a consumption stream
C = (Ct )t≥0 given by a geometric Brownian motion. For the solution to exist and be
finite, we need that (e−δϑtC1−R

t )t≥0 – which is also a geometric Brownian motion –
has negative drift. Explicitly, we assume that for some σ ≥ 0 and φ > 0,

e−δϑtC1−R
t = C1−R

0 exp

(

σBt −
(
φ + σ 2

2

)
t

)

. (3.1)

In particular, since our analysis allows σ = 0, this assumption includes the case
of constant consumption streams provided the agent’s discount factor δ is strictly
positive. Making the ansatz that the EZ utility process is of the form

Vt = A

1 − R
e−δϑtC1−R

t

(see [12, Sect. 5.3] for why this is the correct ansatz), a solution to (2.2) is given by

A

1 − R
e−δϑtC1−R

t = E

[ ∫ ∞

t

e−δs C1−S
s

1 − S
Aρe−δρϑtCρ(1−R)

s ds

∣
∣
∣
∣Ft

]

= Aρ

1 − S
E

[ ∫ ∞

t

e−δϑsC1−R
s ds

∣
∣
∣
∣Ft

]

, (3.2)
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where we have used that ρϑ = ϑ − 1 and ρ(1 − R) = S − R. Furthermore, since
E[e−δϑsC1−R

s |Ft ] = e−δϑtC1−R
t e−φ(s−t), this reduces to

A

1 − R
e−δϑtC1−R

t = Aρ

1 − S
e−δϑtC1−R

t E

[ ∫ ∞

t

e−φ(s−t)

∣
∣
∣
∣Ft

]

= Aρ

φ(1 − S)
e−δϑtC1−R

t . (3.3)

Thus A1−ρ = ϑ
φ

, and since 1 − ρ = 1
ϑ

, one utility process associated to a geometric

Brownian motion C = (Ct )t≥0 (such that (e−δϑtC1−R
t )t≥0 has drift −φ < 0) is

given by

Vt =
(

ϑ

φ

)ϑ
e−δϑtC1−R

t

1 − R
. (3.4)

3.2 A family of utility processes indexed by absorption time

In this section, we show that when ϑ > 1, for each consumption stream C = (Ct )t≥0
such that C1−R satisfies (3.1) with φ > 0, there exists a family of associated EZ
utility processes, parametrised by the first time they hit zero (and are absorbed).

We postulate a time-dependent form for the utility process V = (Vt )t≥0 given by
Vt = A(t)

1−R
e−δϑtC1−R

t for a nonnegative function A = (A(t))t≥0. Then as in (3.2)
and (3.3), finding a utility process associated to C boils down to solving the integral
equation

A(t)e−δϑtC1−R
t = ϑE

[ ∫ ∞

t

A(s)ρe−δϑsC1−R
s ds

∣
∣
∣
∣Ft

]

= ϑe−δϑtC1−R
t

∫ ∞

t

A(s)ρe−φ(s−t) ds.

Cancelling the e−δϑtC1−R
t terms and taking derivatives with respect to t shows that

A solves the ODE

A′(t) = φA(t) − ϑA(t)ρ. (3.5)

Note that one solution is the constant solution A(t) ≡ (ϑ
φ
)ϑ , giving (3.4). More

generally, the ODE (3.5) is separable and can be solved to give

A(t) =
(

ϑ − (ϑ − φA(0)1/ϑ )e
φ
ϑ

t

φ

)ϑ

.

If we assume that A(0) < (ϑ
φ
)ϑ , then A hits zero at t = T := ϑ

φ
log ϑ

ϑ−φA(0)1/ϑ . Since
(A(t))t≥T ≡ 0 is a solution on [T ,∞), we can define a family of solutions to (3.5)
and hence to (2.2), indexed by A(0), such that

A(t) =
⎧
⎨

⎩
(
ϑ−(ϑ−φA(0)1/ϑ )e

φ
ϑ

t

φ
)ϑ for t < T = ϑ

φ
log ϑ

ϑ−φA(0)1/ϑ ,

0 for t ≥ T .
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(Note that if A(0) > (ϑ
φ
)ϑ , then A diverges to ∞, but this is not consistent with

the fact that E[Vt ] → 0.) Alternatively, the family of solutions can be thought of as
indexed by T , where T = inf{t ≥ 0 : A(t) = 0}. Effectively, for the solution indexed
by T , consumption after T does not yield any utility, and the utility process is zero
thereafter. It is hard to argue, when considering the infinite time horizon, that this
represents an economically meaningful solution of the problem. Hence intuitively
the “correct” utility process should correspond to T = ∞ (i.e., A(0) = (ϑ

φ
)ϑ ) and be

given by (3.4).

Remark 3.1 The same issue also arises for finite-horizon EZ-SDU. A variant of the
Merton problem for finite-horizon EZ-SDU and ϑ > 1 is considered by Matoussi
and Xing [20], Schroder and Skiadas [24], Seiferling and Seifried [25], Xing [28],
among others. In [20, 25, 28], the issue of uniqueness is addressed by incorporating

a strictly positive bequest function Uε(CT ) = ε
C1−R

T

1−R
with ε > 0 at the finite time

horizon T (and either restricting to consumption streams that are strictly positive or
only considering the case R > 1), so that the EZ-SDU equation in this case is

Vt = E

[ ∫ T

t

e−δs C1−S
s

1 − S

(
(1−R)Vs

)ρ
ds+e−δT Uε(CT )

∣
∣
∣
∣Ft

]

, 0 ≤ t ≤ T . (3.6)

This is not a viable approach in the infinite-horizon case as a bequest “at infinity”
has no meaning. In [24], the authors claim that EZ-SDU utility processes are unique
by finding a solution to (3.6), letting ε ↘ 0 and then claiming that the limiting
process – which is an EZ-SDU utility process for (3.6) with zero bequest – is the
unique EZ-SDU utility process. As we have seen in this section, this is not the case.

The approach taken in the present paper is to embrace the existence of multiple
utility processes and distinguish the proper utility process (which we introduce in the
next section) from other utility processes. The definition of the proper utility process
rules out solutions which ignore the utility gained from consumption from some finite
time onwards.

4 Existence and uniqueness results

This section introduces some key definitions used throughout the paper and states the
main existence (Theorem 4.7) and uniqueness (Theorem 4.9) results. Proofs of the
key theorems are given in Sect. 6.

4.1 Proper solutions

The following definition of a proper solution to the EZ-SDU equation is motivated
by the arguments of the previous section.

Definition 4.1 Let C ∈ P+ and suppose that V = (Vt )t≥0 is a solution to (2.2). Then
V is called a proper solution if up to nullsets,

(1 − R)Vt > 0 on

{

E

[ ∫ ∞

t

C1−R
s ds

∣
∣
∣
∣Ft

]

> 0

}

for all t ≥ 0.
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The notion of a proper solution immediately excludes the time-inhomogeneous
utility processes found in Sect. 3.2.

Remark 4.2 Note that E[∫ ∞
t

C1−R
s ds|Ft ] > 0 on {(1 − R)Vt > 0} up to nullsets

for all t ≥ 0. Indeed, seeking a contradiction, suppose there are t ≥ 0 and D ∈ Ft

with P[D] > 0 such that (1 − R)Vt > 0 on D, but 1DE[∫ ∞
t

C1−R
s ds|Ft ] = 0 P-a.s.

Then E[1D

∫ ∞
t

C1−S
s ds] = 0, which yields C = 0 for (P ⊗ dt)-almost every (ω, t)

in D × [t,∞). Consequently, E[1DVt ] = E[1D

∫ ∞
t

gEZ(s, Cs, Vs) ds] = 0, and we
arrive at a contradiction.

4.2 Self-order consumption streams

We proceed to introduce an important class of consumption streams that will play a
key role throughout the paper.

Definition 4.3 Suppose that X = (Xt )t≥0 and Y = (Yt )t≥0 are nonnegative progres-

sive processes. We say that X has the same order as Y (and write X
O= Y , noting that

O= is an equivalence relation) if there exist constants k,K ∈ (0,∞) such that

0 ≤ kY ≤ X ≤ KY. (4.1)

The set of progressive processes with the same order as X is denoted by O(X) ⊆ P+.

Definition 4.4 For each X ∈ P+, define the process JX = (JX
t )t≥0 by setting

JX
t = E[∫ ∞

t
Xs ds|Ft ]. Then the self-order consumption streams are given by

SO :=
{

X ∈ P++ : E
[ ∫ ∞

0
Xt dt

]

< ∞ and X
O= JX

}

.

On some occasions, we need a slightly stronger condition. Define

SOν := {X ∈ SO : (eνtXt )t≥0 ∈ SO} for ν ≥ 0,

SO+ :=
⋃

ν>0

SOν .

We proceed to show that a geometric Brownian motion with decreasing mean lies
in SO and even in SO+. This class of processes turns out to be important in the
study of the candidate optimal consumption in the constant-parameter investment–
consumption problem; see Sects. 7.3 and 7.4.

Example 4.5 Let X = (Xt )t≥0 satisfy Xt = xeσWt−μt , where μ > 1
2σ 2 ≥ 0. Note

that we allow the case σ = 0, i.e., where X is an exponentially decreasing determin-
istic process. Then E[∫ ∞

0 Xt dt] < ∞ and Xt = kJX
t for k = 1

μ−σ 2/2
. Taking K = k

in (4.1), we obtain X ∈ SO. Moreover, it is straightforward to check that X ∈ SOν

for all ν ∈ [0, μ − σ 2/2), whence X ∈ SO+.
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Remark 4.6 There are two immediate and two subsidiary reasons why it is natural to
work with the space SO.

First, the definition of a utility process is such that it relates the current value of
a utility process to the integrated future values of consumption. If the current con-
sumption Ct is related to the current value of the utility process Vt , then we expect
a relationship between the current consumption and the expected integrated future
values of (a transformation of) consumption, i.e., Z ∈ SO, where Z is some process
derived from C. (The heuristics of Sect. 3.1 show that the appropriate transformation
is Zt = e−δϑtC1−R

t .)
Second, in Sect. 7, we study utility processes in the context of the Merton

investment–consumption problem. There, the optimal consumption rate
process C = (Ct )t≥0 is a constant multiple of the optimal wealth process, which is a
geometric Brownian motion. In particular, if ZC is defined by ZC

t = e−δϑtC1−R
t ,

then ZC
t = kJZC

t so that we can take k = K in (4.1).
Third, in principle, it is straightforward to check whether (e−δϑtC1−R

t )t≥0 lies
in SO (or SO+) — the condition relates to C alone, rather than say to C and some
combination of the associated utility process, the investment strategy or the wealth
process.

Fourth, and very pragmatically, using the space SO, we can use the results of
Herdegen et al. [13] to deduce the existence of a utility process associated to C; see
Proposition 5.4.

4.3 Existence and uniqueness of proper solutions

Theorems 4.7 and 4.9 correspond to Main Results 1 and 2 presented in the introduc-
tion. Proofs of these are given in later sections. The first result shows that we may
find a proper solution associated to a large class of consumption streams.

Theorem 4.7 Suppose C ∈ P+ is a right-continuous consumption stream satisfying
e−δϑtC1−R

t ≤ Yt for some Y ∈ SO+. Then there exists a proper solution to (2.2).

Proper solutions are an economically meaningful concept that allow us to choose
from the many solutions to the EZ-SDU equation, and Theorem 4.7 provides a large
class of consumption streams which have proper solutions. However, we have not
yet discussed their uniqueness. If the property of being proper does not provide a
criterion for selecting a unique solution, then it does not help to overcome the issues
of non-uniqueness intrinsic to EZ-SDU when ϑ > 1. The following definition is
therefore of great importance.

Definition 4.8 We say that C ∈ P+ is uniquely proper if there exists a unique proper
solution to (2.2). Let UP denote the set of uniquely proper consumption streams.

Theorem 4.9 Suppose that C ∈ P+ is such that (e−δϑtC1−R
t )t≥0 ∈ SO+. Then C is

uniquely proper.
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4.4 Examples

In this section, we provide examples of consumption streams that are uniquely proper.
We first consider examples of consumption streams that are of geometric Brownian
motion type.

Proposition 4.10 Suppose C ∈ P+ is bounded above and below by a constant
multiple of a geometric Brownian motion Z = (Zt )t≥0 such that the process
(e−δϑtZ1−R

t )t≥0 has negative drift. Then C is uniquely proper.

If we allow the geometric Brownian motion Z to have zero volatility, we immedi-
ately obtain the following corollary.

Corollary 4.11 Suppose that δ > 0. Suppose C ∈ P+ is bounded above and below
by positive constants. Then C is uniquely proper.

Remark 4.12 In Sect. 7, we study utility processes in the context of the Mer-
ton investment–consumption problem. There, the optimal consumption rate process
C = (Ct )t≥0 is a constant multiple of the optimal wealth process, which is a geomet-
ric Brownian motion. Further, if the problem is well posed, then (e−δϑtC1−R

t )t≥0 has
negative drift. Hence by Proposition 4.10, we can associate a unique proper solution
to C.

We proceed to present a much wider class of “factor-model” consumption streams
that are uniquely proper. To this end, suppose that Y = (Yt )t≥0 is a time-
homogeneous, non-explosive, regular diffusion with state space R and dynamics

dYt = aY (Yt ) dBY
t + bY (Yt ) dt,

where aY , bY : R → R are sufficiently regular and BY = (BY
t )t≥0 is a Brownian

motion. Suppose a consumption process C ∈ P+ satisfies

dCt = Ct

(
α(Yt ) dBt + β(Yt ) dt

)
, (4.2)

where α, β : R → R are sufficiently regular functions so that C > 0. Here
B = (Bt )t≥0 is another Brownian motion, and the covariation between B and BY

satisfies 〈B,BY 〉t = ∫ t

0 ρ(Ys) ds, where ρ : R → [−1, 1] is a sufficiently regular
function. Then we have the following result.

Proposition 4.13 Suppose that aY , bY , α, β : R → R are continuous and bounded
functions. Moreover, assume that aY is positive and bounded away from zero and
there exists χ > 0 such that for all y ∈ R,

δϑ − (1 − R)β(y) + R(1 − R)

2
α2(y) ≥ χ.

Then C is uniquely proper with proper utility process V C = (V C
t )t≥0 given by

V C
t = e−δϑt C1−R

t

1 − R
Γ(Yt ),
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where Γ ∈ C2(R) is the unique solution to the ODE

ϑΓ−1/ϑ + bY

Γ′

Γ
+ a2

Y

Γ′′

2Γ
+ (1 − R)aY αρ

Γ′

Γ
− δϑ + (1 − R)β − R(1 − R)

2
α2

= 0 (4.3)

in the class of positive functions that are bounded from above and away from zero
and have a bounded derivative.

Remark 4.14 When considering the Merton investment–consumption problem for
a factor model, the candidate optimal consumption process has dynamics of the
form (4.2); see Sect. 7.5. Hence if the coefficients are sufficiently regular, Propo-
sition 4.13 shows that the candidate optimal consumption process is uniquely proper.

5 A change of coordinates and additional solution concepts of a
mathematical nature

The notion of a proper solution is based on the economic idea that a strictly positive
bounded consumption should imply a nonzero utility. In this section, we introduce
other notions of a solution which are of a more mathematical nature. These solu-
tion concepts are economically less meaningful, but aid in proving key results about
proper solutions. First, however, to simplify the proofs in this and later sections, we
introduce a change of coordinates.

5.1 A change of coordinates

Define the nonnegative processes W = (Wt )t≥0 and U = UC = (UC
t )t≥0 via

Wt = (1 − R)Vt and Ut = UC
t = ϑe−δtC1−S

t and define the aggregator

hEZ(u,w) = uwρ. (5.1)

Further define J = JUϑ
by

Jt = E

[ ∫ ∞

t

Uϑ
s ds

∣
∣
∣
∣Ft

]

for all t ≥ 0. (5.2)

Then V solves (2.2) if and only if W solves

Wt = E

[ ∫ ∞

t

hEZ(Us,Ws) ds

∣
∣
∣
∣Ft

]

, t ≥ 0. (5.3)

Note that V ∈ I(gEZ,C) if and only if W ∈ I(hEZ,UC). Hence V C is a util-
ity process associated to a consumption stream C with aggregator gEZ if and only
if W = WUC

is a utility process associated to the consumption stream UC with
aggregator hEZ .
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Remark 5.1 It is immediate that V = (Vt )t≥0 is a proper solution associated to (g, C)

if and only if W = (Wt)t≥0 is a solution associated to (hEZ,U) such that up to
nullsets,

Wt > 0 on

{

E

[ ∫ ∞

t

Uϑ
s ds

∣
∣
∣
∣Ft

]

> 0

}

for all t ≥ 0.

In a slight abuse of the definition, we then also refer to W as being proper. Similarly,
we say U ∈ P+ is uniquely proper if there exists a unique proper solution W to (5.3).
It follows that Theorem 4.9 is equivalent to the statement that if U ∈ SO+, then U is
uniquely proper.

5.2 The order-ϑ solution

The first additional solution concept that will be useful is an order-ϑ solution. Proofs
not given in this section can be found in Appendix C.

Definition 5.2 Let U ∈ P+ and suppose that W = (Wt)t≥0 is a solution to (5.3). We

say that W is an order-ϑ solution if W
O= J , where J is defined by (5.2).

Remark 5.3 It follows directly from the definition of J in (5.2) that if W is an order-ϑ
solution, then W is a proper solution.

We proceed to establish existence and uniqueness of order-ϑ solutions. To this
end, define the operator FU : I(hEZ,U) → P+ by

FU(W)t = E

[ ∫ ∞

t

UsW
ρ
s ds

∣
∣
∣
∣Ft

]

for all t ≥ 0, (5.4)

where we always choose a càdlàg version for the right-hand side of (5.4). Note that W

is a solution associated to (hEZ,U) if and only if it is a fixed point of the opera-
tor FU . We want to show existence of a fixed point of FU , but in order to also prove
existence of a maximal solution associated to (hEZ,U) (see Sect. 5.3), it will instead
be beneficial to consider existence of a fixed point to a more general (perturbed)
operator.

The following result is [13, Theorem B.2], which we recall for the convenience of
the reader.

Proposition 5.4 Let ε ≥ 0 and let U
O= Λ for some Λ ≥ 0 with Λϑ ∈ SO. Then

Fε
U,Λ : I(hEZ,U) → P+ defined by

Fε
U,Λ(W)t = E

[ ∫ ∞

t

(UsW
ρ
s + εΛϑ

s ) ds

∣
∣
∣
∣Ft

]

(5.5)

has a fixed point W ∈ I(hEZ,U). It is the unique fixed point such that W
O= J , where

J = (Jt )t≥0 is defined by (5.2).
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Assuming that Uϑ ∈ SO and applying Proposition 5.4 with Λ = U , we obtain a

fixed point W of the operator FU = F 0
U,U satisfying W

O= J
O= Uϑ . Moreover, this

solution is the order-ϑ solution.
The following result is [13, Theorem 4.6], which we recall for the convenience of

the reader.

Proposition 5.5 Let U ∈ P+ be such that Uϑ ∈ SO. Then there exists a unique
order-ϑ solution to (5.3).

5.3 The maximal solution

The second additional solution concept is that of a maximal solution. Such solutions
frequently appear in BSDE theory; see e.g. Drapeau et al. [6, 7], Peng [23]. Proofs
not given in this section can be found in Appendix C.

Definition 5.6 Let U ∈ P+ and suppose that W = (Wt)t≥0 is a solution to (5.3).
Then W is a maximal solution if W ≥ Y for any other solution Y = (Yt )t≥0.

Remark 5.7 If there exists a proper solution, then every maximal solution is proper.
This follows from Remark 5.1 and Definitions 4.1 and 5.6: if Y is a proper solution
and W is a maximal solution, then up to nullsets, for each t ≥ 0,

Wt ≥ Yt > 0 on

{

E

[ ∫ ∞

t

U1−R
s ds

∣
∣
∣
∣Ft

]

> 0

}

.

Proposition 5.8 If a maximal solution exists, it is unique.

Proof Suppose for contradiction that there are two maximal solutions W 1 and W 2.
Then for all t ≥ 0, W 1

t ≥ W 2
t since W 1 is maximal in the class of solutions and

W 2
t ≥ W 1

t since W 2 is maximal, too. Thus W 1
t = W 2

t for all t ≥ 0. Since both
W 1 and W 2 are càdlàg, they are indistinguishable. □

We now turn to the existence of a maximal solution associated to (hEZ,U).

Proposition 5.9 Suppose U ∈ P+ satisfies U ≤ Λ for Λ with Λϑ ∈ SO+. Then
there exists a unique maximal solution associated to (hEZ,U).

The next result is a comparison result for maximal solutions.

Proposition 5.10 Let hEZ be the aggregator defined in (5.1) and suppose
U1, U2 ∈ P+ satisfy U1 ≤ U2 ≤ Λ for some Λ with Λϑ ∈ SO+. If W 1,W 2 are
the maximal solutions associated to hEZ and consumption U1, U2, respectively, then
W 1

t ≤ W 2
t for all t ≥ 0.
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5.4 Relating the different solution concepts

The next result, whose proof is given in Appendix C, shows that the solution found
by a fixed point argument in Proposition 5.4 for ε = 0 is the unique maximal solution
for (hEZ,U).

Proposition 5.11 Let hEZ be the aggregator defined in (5.1). Suppose U is such that
Uϑ ∈ SO+. Then the order-ϑ solution associated to (hEZ,U) found in Proposi-
tion 5.4 (with ε = 0) is the maximal solution.

Finally, we show that for U such that Uϑ ∈ SO+, all three solution concepts
coincide. This result is useful in the proof of Theorem 7.5, the verification theorem
in the Black–Scholes–Merton market.

Theorem 5.12 Suppose that Uϑ ∈ SO+. Then the following three solutions to (5.3)
all coincide and are unique:

1) the order-ϑ solution;
2) the maximal solution;
3) the proper solution.

Proof Let W be the (unique) order-ϑ solution from Proposition 5.5. Then W is a
maximal solution by Proposition 5.11 and a proper solution by Remark 5.3. More-
over, uniqueness in the three classes follows from Propositions 5.5 and 5.8 and
Theorem 4.9 and Remark 5.1, respectively. □

6 Existence and uniqueness of proper solutions

6.1 Existence of proper solutions

The goal of this section is to prove Theorem 4.7. To this end, we exploit the change of
coordinates described in Sect. 5.1. We first prove that there exists a proper solution W

associated to the aggregator hEZ and consumption stream U given by a discounted in-
dicator function of a stochastic interval, i.e., Ut = e−γ t1{σ≤t<τ } for σ and τ stopping
times such that σ ≤ τ . Since any right-continuous consumption stream can locally be
approximated from below by (a scaled version of) these processes, we can show that
there exists a proper solution associated to right-continuous processes. All proofs not
included in this section can be found in Appendix D.1.

Proposition 6.1 Let γ > 0 and σ and τ be stopping times such that σ ≤ τ . Let
U = (Ut )t≥0 be given by Ut := e−γ t1{σ≤t<τ }. Then there exists a proper solution
W = (Wt)t≥0 associated to U , for which

Wt ≥
(

1

γϑ
E

[

e−γ (t∨σ) − e−γ (t∨τ)

∣
∣
∣
∣Ft

])ϑ

.
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To prove Theorem 4.7, we introduce two technical lemmas.

Lemma 6.2 Suppose that W is a utility process associated to (hEZ,U) and suppose
there exists t0 ≥ 0 such that Ut = 0 for t < t0. If A ∈ Ft0 and Ũ = (Ũt )t≥0 is
given by Ũt = E[1A|Ft ]Ut , then W̃t = E[1AWt∨t0 |Ft ], t ≥ 0, is a utility process
associated to (hEZ, (Ũt )t≥0).

Lemma 6.3 Suppose U ∈ P+ is right-continuous. Fix t ≥ 0 and let

At = {JUϑ

t > 0} and Bt =
⋃

T ≥t
T ∈Q

⋃

ε>0
ε∈Q

{E[1{UT ≥ε}|Ft ] > 0}.

Then P[At \ Bt ] = 0.

We may now prove Theorem 4.7. To show that W is proper, we must show that if
AJ

t = {JUϑ

t > 0} and AW
t = {Wt > 0}, then P[AJ

t \ AW
t ] = 0. By Lemma 6.3, since

AJ
t ⊆ Bt up to nullsets, we may instead prove that P[Bt \ AJ

t ] = 0.

Proof of Theorem 4.7 Since e−δϑtC1−R
t ≤ Yt for some Y ∈ SO+, it follows

that U := ϑC1−S ≤ ϑY
1
ϑ . It is further easy to check that Y ∈ SO+ implies that

ϑϑY ∈ SO+. Therefore by Proposition 5.9, there exists a maximal solution W as-
sociated to (hEZ,U). We now show that W is proper.

Fix t∗ ≥ 0. Set AJ
t∗ := {JUϑ

t∗ > 0} and AW
t∗ = {Wt∗ > 0}. By Lemma 6.3, it

suffices to show that P[Bε
T \ AW

t∗ ] = 0 for all rational T ≥ t∗ and ε > 0, where
Bε

T = {E[1{UT ≥ε}|Ft∗ ] > 0}. So fix rational T ≥ t∗ and ε > 0. Define the stopping
time τε = inf{t ≥ T : Ut ≤ ε

2 } and note that τε > T on {UT ≥ ε} by right-continuity
of U . Define the process Ũ = (Ũt )t≥0 by Ũt := ε

2e−γ t
E[1{UT ≥ε}|Ft ]1{t∈[T ,τε)}.

Then Ũ is dominated by U . Moreover, Proposition 6.1 for Ût = e−γ t1{T ≤t<τε} with
corresponding solution Ŵ , Lemma 6.2 for t0 = T and A = {ÛT ≥ ε} and Jensen’s
inequality show that there exists a solution W̃ associated to Ũ = (Ũt )t≥0 such that
for all t ≥ 0,

W̃t ≥ E

[

1{UT ≥ε}
(

ε

2γϑ
E[(e−γ (t∨T ) − e−γ (t∨τε))|Ft ]

)ϑ ∣
∣
∣
∣Ft

]

≥
(

ε

2γϑ
E[1{UT ≥ε}|Ft ]E[(e−γ (t∨T ) − e−γ (t∨τε))|Ft ]

)ϑ

.

Since τε > T on {UT ≥ ε}, it follows that W̃t∗ > 0 on {UT ≥ ε}. Now the claim
follows from the fact that Wt∗ ≥ W̃t∗ by Proposition 5.10. □

6.2 Uniqueness of proper solutions

We now turn to the uniqueness of proper solutions. The aim of this section is to prove
Theorem 4.9. The following two lemmas will be useful. Their proofs are given in
Appendix D.2.
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Lemma 6.4 Fix X ∈ SO and let JX = (JX
t )t≥0 be defined by

JX
t = E

[ ∫ ∞

t

Xs ds

∣
∣
∣
∣Ft

]

for t ≥ 0.

Then there exists a martingale M = (Mt)t≥0 with JX
t = Mte

− ∫ t
0 (Xs/J

X
s )ds .

Lemma 6.5 Let α > 0, β ∈ (0, 1) and let G = (Gt )t≥0 be a càdlàg submartingale.
Suppose that X = (Xt )t≥0 is a right-continuous process such that X0 = β and
Xt ≤ 1 for all t ≥ 0. Define τ = inf{t ≥ 0 : Xt = 1} and suppose that

dXt ≥ αXt dt + dGt for all t < τ, (6.1)

where this expression (and similar ones below) are to be interpreted in integral form.
Then there exist ν ∈ (0, 1) and T ∈ (0,∞) such that P[τ < T ] > ν.

Proof of Theorem 4.9 We work in the (U,W)-coordinates in which case by Re-
mark 5.1, it is sufficient to prove that if Uϑ ∈ SO+, then U is uniquely proper.

Fix U ∈ P+ such that Uϑ ∈ SO+ and recall that J = (Jt )t≥0 is given by
Jt = E[∫ ∞

t
Uϑ

s ds|Ft ]. Suppose that kJ ≤ Uϑ ≤ KJ and let W ∈ O(J ) be the
solution associated to (hEZ,U) found in Proposition 5.4 (after setting ε = 0 and
U = Λ), whose bounds are explicitly given in Corollary C.5. By Proposition 5.11,
W is the unique maximal solution, and as we saw in the proof of Theorem 4.7, it is
also proper. We now prove uniqueness.

For contradiction, assume that there exists a proper solution Y = (Yt )t≥0 such that
Y �= W . Since W is maximal, Y ≤ W . Then since W is unique in the class O(J ) by

Proposition 5.4, it follows that Y
O�= J . Hence there exist t ≥ 0, B ∈ Ft and ε > 0

such that P[B] > ε and Yt < kK−ϑJt on B. For ease of exposition, assume that
t = 0, B = Ω and Y0 = y = (1 − ε)kK−ϑJ0. The general case is similar.

Define Z = (Zt )t≥0 by Zt = Yt (kK−ϑJt )
−1 and note that Z is càdlàg by Re-

mark B.3 and that Z0 = 1 − ε. Since kK−ϑJZ = Y is a utility process and since
Uϑ ≥ kJ , for all t ≤ T ,

kK−ϑJtZt = Yt = E

[ ∫ T

t

UsY
ρ
s ds + YT

∣
∣
∣
∣Ft

]

≥ E

[ ∫ T

t

(kJs)
1
ϑ (kK−ϑJsZs)

ρ ds + kK−ϑJT ZT

∣
∣
∣
∣Ft

]

.

By Lemma 6.4, we find that Jt = Mte
−At for At = ∫ t

0 (Uϑ
s /Js) ds. Hence dividing

by kK−ϑMt and collecting terms gives

e−At Zt ≥ 1

Mt

E

[ ∫ T

t

KMse
−As Zρ

s ds + MT e−AT ZT

∣
∣
∣
∣Ft

]

.
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Define Z̃t = e−At Zt and consider the equivalent measure P̃ defined by dP̃
dP

∣
∣
Ft

= Mt ,
so that

Z̃t ≥ Ẽ

[ ∫ T

t

Ke−(1−ρ)As Z̃ρ
s ds + Z̃T

∣
∣
∣
∣Ft

]

for all t ≤ T .

If we define O by Ot = Z̃t + ∫ t

0 Ke−(1−ρ)As Z̃
ρ
s ds, then O is a càdlàg P̃-super-

martingale. By the Doob–Meyer decomposition, O can therefore be decomposed as
O = N + P , where N is a local P̃-martingale and P a decreasing process with
P0 = 0, both of which are càdlàg. In particular, rearranging gives

dZ̃t = −Ke−(1−ρ)At Z̃
ρ
t dt + dNt − dPt .

Let σ := inf{t ≥ 0 : Zt /∈ (0, 1)} and set Ẑt = Zt∧σ , N̂t = ∫ t∧σ

0 eAs dNs as well

as P̂t = ∫ t∧σ

0 eAs dPs . Then applying the product rule to Ẑt = eAt Z̃t up to t ≤ σ and

noting that dAt

dt
= Uϑ

t

Jt
≤ K , we obtain

dẐt = Ẑt dAt − KẐ
ρ
t dt + dN̂t − dP̂t ≤ K(Ẑt − Ẑ

ρ
t ) dt + dN̂t ≤ dN̂t .

Since N̂t ≥ Ẑt − Ẑ0 ≥ −Ẑ0, N̂ is a P̃-supermartingale.
Let Xt = 1 − Ẑ

1−ρ
t ≤ 1. Then X = (Xt )t≥0 is càdlàg and for t < σ ,

dXt = −(1 − ρ)Ẑ
−ρ
t dẐt + ρ(1 − ρ)

2
Ẑ

−(ρ+1)
t d〈Z〉t

= −(1 − ρ)(Ẑ
1−ρ
t dAt − K dt) + dLt + dQt

≥ K(1 − ρ)Xt dt + dLt + dQt

≥ dLt ,

where

Lt := −(1 − ρ)

∫ t

0
Ẑ−ρ

s dN̂s,

Qt := (1 − ρ)

∫ t

0
Ẑ−ρ

s dP̂s +
∫ t

0

ρ(1 − ρ)

2
Ẑ−(ρ+1) d〈Z〉s .

Since Lt ≤ Xt − X0 ≤ 1, L is a (continuous) P̃-submartingale. Hence G := L + Q

is a continuous P̃-submartingale. The result that X explodes to 1 in finite time with
positive probability follows from Lemma 6.5. This implies that Z hits zero in finite
time and consequently that Y is not proper. □

7 The Merton investment–consumption problem

In this section, we consider a frictionless Black–Scholes–Merton financial market.
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7.1 The financial market and attainable consumption streams

The market consists of a risk-free asset with interest rate r ∈ R, whose price process
S0 = (S0

t )t≥0 is given by S0
t = S0

0ert , and a risky asset given by geometric Brownian
motion with drift μ ∈ R, volatility σ > 0 and initial value S0 = s0 > 0. Explicitly,
the price process S = (St )t≥0 of the risky asset is given by

St = s0 exp(σBt + (μ − 1

2
σ 2))

for a Brownian motion B = (Bt )t≥0.
At each time t ≥ 0, the agent chooses to consume at a rate Ct ∈ R+ per unit time

and to invest a proportion Πt ∈ R of their wealth into the risky asset. The proportion
they invest in the risk-free asset S0 at time t is then given by 1 − Πt . It follows that
the wealth process X = (Xt )t≥0 of the agent satisfies the SDE

dXt = XtΠtσ dBt +
(
Xt

(
r + Πt(μ − r)

) − Ct

)
dt, (7.1)

subject to the initial condition X0 = x, where x > 0 is the agent’s initial wealth.

Definition 7.1 Given x > 0, an admissible investment–consumption strategy is a pair
(Π,C) = (Πt , Ct )t≥0 of progressively measurable processes, where Π is real-valued
and C is nonnegative, such that the SDE (7.1) has a unique strong solution Xx,Π,C

that is P-a.s. nonnegative. We denote the set of admissible investment–consumption
strategies for x > 0 by A (x).

Since the value associated to a strategy only depends on consumption and not on
the amount invested in each of the assets, we introduce the following definition.

Definition 7.2 A consumption stream C ∈ P+ is called attainable for initial wealth
x > 0 if there exists a progressively measurable process Π = (Πt )t≥0 such
that (Π,C) is an admissible investment–consumption strategy. Denote the set of
attainable consumption streams for x > 0 by C (x).

7.2 The Merton investment–consumption problem for Epstein–Zin stochastic
differential utility

The Merton investment–consumption problem for an agent with EZ-SDU preferences
consists in choosing an admissible investment–consumption strategy so as to max-
imise their subjective utility. Naively, one might wish to consider the problem of
finding

V ∗(x) = sup
C∈C (x)

V C
0 , (7.2)

where V C = (V C
t )t≥0 solves (2.2). However, in the case ϑ > 1 considered in the

present paper, there does not exist a unique solution to (2.2) and so the problem (7.2)
is not well defined. Instead, we restrict to the set of right-continuous consumption
streams for which there exists a unique proper solution.
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Definition 7.3 Let UP∗ be the restriction of UP to right-continuous processes.

The problem then becomes that of finding

V ∗(x) = sup
C∈C (x)∩UP∗

V C
0 ,

where V C = (V C
t )t≥0 is the unique proper solution associated to the consumption C.

7.3 A candidate optimal investment–consumption strategy

In this section, we give a quick derivation of the optimal strategy for the Merton
problem with preferences given by Epstein–Zin stochastic differential utility. This is
by no means a novel contribution, and a more detailed exposition can be found in [12,
Sect. 5.3].

From the scaling properties of the problem, it is to be expected that the optimal
strategy is to invest a constant proportion of wealth in the risky asset and to consume a
constant proportion of wealth. Consider therefore the investment–consumption strat-
egy Π ≡ π ∈ R and C ≡ ξX for ξ ∈ R+. Fixing a proportional strategy determined
by (π, ξ) and using Itô’s lemma and the dynamics of X given in (7.1), we find

X1−R
t = x1−R exp

(

πσ(1 − R)Bt + (1 − R)
(
r + (μ − r)π − ξ − π2σ 2

2

)
t

)

.

In particular, since Ct = ξXt , we have E[C1−R
s |Ft ] = C1−R

t e−H(π,ξ)(s−t), where
with λ = μ−r

σ
,

H(π, ξ) = (R − 1)

(

r + λσπ − ξ − π2σ 2

2
R

)

.

Provided that δϑ + H(π, ξ) > 0, C = (Ct )t≥0 is a geometric Brownian motion such
that (e−δϑtC1−R

t )t≥0 has negative drift – the case considered in Sect. 3.1. Hence the
proper utility process associated to it (a specific case of (3.4)) is given by

Vt = h(π, ξ)e−δϑtX1−R
t , where h(π, ξ) = ξ1−R

1 − R

(
ϑ

δϑ + H(π, ξ)

)ϑ

. (7.3)

Furthermore, by taking derivatives of h(π, ξ) with respect to each of its arguments,
the maximum value of h is attained when π = π̂ := λ

σR
and ξ = ξ̂ := η, where

η = 1

S

(

δ + (S − 1)r + (S − 1)
λ2

2R

)

.

In this case, Vt = V̂ (t, Xt ), where V̂ : R+ × R+ → R is given by

V̂ (t, x) = η−ϑSe−δϑt x1−R

1 − R
. (7.4)

This section can be summarised by the following result, which is [12, Proposi-
tion 5.4].
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Proposition 7.4 Define D = {(π, ξ) ∈ R × R++ : δϑ + H(π, ξ) > 0}. Consider
constant proportional strategies with parameters (π, ξ) ∈ D. Suppose ϑ > 0 and
η > 0. Then:

(i) For (π, ξ) ∈ D, one EZ-SDU utility process V = (Vt )t≥0 associated to the
strategy (π, ξX) is given by (7.3).

(ii) The maximum of h(π, ξ) over the set D is attained at (π, ξ) = ( λ
σR

, η), and

the maximum value is η−ϑS

1−R
.

(iii) If we only consider constant proportional strategies and associate to each
such strategy the utility process given in (7.3), then the optimal strategy within

that class is (π̂ , ξ̂ ) = ( λ
σR

, η) and satisfies V
π̂,ξ̂X
0 = η−ϑS x1−R

1−R
= V̂ (0, x), where

x denotes initial wealth.

7.4 Verification of the candidate optimal strategy

The following verification theorem gives conditions under which the candidate strat-
egy given in Proposition 7.4 is indeed optimal in the class of all admissible strategies.

Theorem 7.5 Suppose that ϑ > 1. Let the initial wealth be x > 0 and suppose
that η > 0. If V C is the unique proper utility process associated to C ∈ UP

∗ and
V̂ (0, x) is the candidate utility given in (7.4), then

sup
C∈C (x)∩UP∗

V C
0 = V Ĉ

0 = V̂ (0, x),

and the optimal investment–consumption strategy is (Π̂, Ĉ) = (π̂ , ξ̂Xx,π̂,ξ̂X), where

π̂ := μ − r

σ 2R
,

ξ̂ := η = 1

S

(

δ + (S − 1)r + λ2 (S − 1)

2R

)

.

The proof of this theorem follows the approach detailed in [13] which has the

following steps. First, we show that if X̂ = XΠ̂,Ĉ is the wealth process under the
candidate optimal strategy, then V̂ ( · , X + εX̂) is a supersolution for (gEZ,C). (In
essence, V is a supersolution (for C and g) of an equation such as (2.1) if the equality
in (2.1) is replaced by greater than or equal to. See Appendix B for a definition of
sub- and supersolutions and useful results about them. The reasons that we perturb the
input of V̂ = V̂ ( · , X) by the candidate optimal wealth process are to ensure that we
can apply Itô’s lemma to V̂ since the argument is now strictly positive, to make sure
that the local martingale part of V̂ is a supermartingale, and to ensure that V̂ satisfies
the supersolution transversality condition. This is explained in more detail in Herde-
gen et al. [11], [13, Sect. 8].) Second, we use a version of the comparison theorem
(Corollary B.7) for sub- and supersolutions to conclude that V̂ (0, x(1 + ε)) ≥ V C

0 .
Third and finally, we let ε ↘ 0 to give V̂ (0, x) ≥ V C

0 . Optimality follows since

V Ĉ
0 = V̂ (0, x) by Proposition 7.4.
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However, the approach is not quite this simple for two main reasons. The most
pressing reason is that when ϑ > 1, the utility process V C fails to be unique. The
optimisation therefore takes place over those attainable and right-continuous con-
sumption streams for which there exists a unique proper solution to the EZ-SDU
equation. As we have argued in Sect. 6, the proper solution is the economically mean-
ingful solution, and we may only consider those consumption streams that have a
unique proper solution associated to them. The assumption of right-continuity, which
is necessary for the proof, is not overly restrictive.

The next issue is that the hypotheses of the relevant comparison theorem (Corol-
lary B.7) are not satisfied, even for right-continuous consumption streams with a
unique proper solution. To overcome this issue, one must approximate an arbi-
trary consumption stream in UP

∗ by a series of consumption streams satisfying the
conditions and then take limits. The requirement of right-continuity ensures that
we may choose right-continuous approximating consumption streams, which then
have an associated proper solution V n by Theorem 4.7. Since the limiting process
V = limn→∞ V n is a proper solution associated to C, it must agree with the unique
proper solution V C . The full proof for Theorem 7.5 is given in Appendix E.

7.5 Beyond the frictionless, constant parameter case

Our goal in this paper was to highlight an important issue concerning non-uniqueness
of utility functions/value processes in the context of stochastic differential utility
which heretofore has been overlooked, and to propose a potential remedy, namely
the concept of a proper solution.

We have shown that this concept is useful in the setting of the classical (infinite-
horizon) Merton problem in a Black–Scholes financial market setting for Epstein–Zin
stochastic differential utility. Indeed, in the well-posed case, the optimal strategy is
to consume at a rate which is proportional to current wealth and to invest a constant
fraction of wealth in the risky asset. Then the wealth process X = Xx,C,Π = (Xt )t≥0
is a geometric Brownian motion, as is (e−δϑtC1−R

t )t≥0, and one can check that the
latter lies in SO and even in SO+, whence C is a uniquely proper solution.

A natural next question is to ask to what extent our approach (in particular the
classes SO and SO+) can be used in more general settings. In some cases, it may
be that the results we provide are already sufficient, while in others, it may be that
new proofs and new ideas are required (in particular to extend the set of consumption
streams which can be shown to have a unique proper solution).

Here, we briefly discuss two examples where our ideas may be applied more or
less directly.

The first example is a factor model, in which the dynamics of the stock price are
driven by a factor process. We began a discussion of this example in Sect. 4.4 and
Proposition 4.13 where we saw that for a wide class of consumption processes C,
there exists a unique proper utility process V C associated to C. Now we embed this
into a consumption–investment problem. Assume that the price S = (St )t≥0 of the
risky asset satisfies the SDE

dSt = Stσ (Yt ) dBt + Stμ(Yt ) dt,
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where as before, the (regular, non-explosive, time-homogeneous diffusion) process
Y = (Yt )t≥0 valued in R is given by the SDE

dYt = aY (Yt ) dBY
t + bY (Yt ) dt

and d〈B,BY 〉t = ρ(Yt ) dt . Then the wealth process X = XxΠ,C of the agent satisfies
(compare (7.1))

dXt = XtΠtσ (Yt ) dBt +
(

Xt

(
r + Πt

(
μ(Yt ) − r

)) − Ct

)

dt

subject to X0 = x. We can define admissible strategies (Π,C) and attainable con-
sumption streams C very much as in Definitions 7.1 and 7.2. Then using the ansatz
Vt = e−δϑt

1−R
X1−R

t A(Yt ) and Ct = Xtξ(Yt ), it is possible to derive a candidate optimal
consumption process which is of the form given in (4.2), but where α and β depend
on A. Then A satisfies an ODE which is similar to (4.3), except that the fact that α

and β depend on A introduces further non-linearities. Nonetheless, if there is a solu-
tion A which is bounded above and away from zero, we can conclude that there exists
a unique proper utility process associated with the candidate solution. In principle,
the programme can then be completed by extending the verification theorem (see the
proof of Theorem 7.5 in Appendix E) to show that the candidate solution is indeed op-
timal (amongst the class of uniquely proper, attainable consumption processes). The
resolution of the remaining issues is an interesting topic for future research, and it
would be insightful to compare and contrast the results with those given in Xing [28]
for the finite-horizon problem.

The second example is an extension of the Black–Scholes financial market of
Sect. 7 to include proportional transaction costs; see Melnyk et al. [21] and Herdegen
et al. [14]. In that case, under stochastic differential utility, the candidate optimal in-
vestment strategy is to keep the two-dimensional process (cash wealth, value of risky
assets) in a wedge, and the candidate optimal consumption strategy is to consume
at a rate which is a stochastic multiple of wealth, where the stochastic multiple is a
function of the fraction of wealth in the risky asset. The utility process in turn can
be written as the product of a power of total wealth and a function of the fraction of
wealth in the risky asset. Then at least for the candidate strategy, we can directly use
the results of this paper to define the unique proper utility process associated with C.
Of course, to carry out this programme rigorously and to give a complete verification
argument requires some care – but all this can be done, see [14] for details. Of course,
there are also other significant challenges in addressing the transaction cost problem,
including identifying the boundaries of the no-transaction wedge and deciding when
the problem is well posed.

Appendix A: Comparisons with the literature

It is interesting to contrast the results of this paper with those of Herdegen et al. [13]
and Melnyk et al. [21].
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A.1 A comparison with Herdegen et al

In [13], the authors consider existence and uniqueness of the utility process and the
investment–consumption problem in the case 0 < ϑ < 1. The fundamental exis-
tence result [13, Theorem 4.6] is re-used in the present paper to give existence for
ϑ > 1 when the consumption stream satisfies a self-order condition. Thereafter, the
methodology and approach of [13] and this paper differ considerably. In [13], the
authors prove a comparison lemma [13, Theorem 5.8] whose use is threefold. First,
it gives a simple proof of uniqueness of the solution to the equation for the utility
process. Second, it can be used to prove a monotonicity result which can be used to
generalise the existence result for consumption streams satisfying the self-order con-
dition to all consumption streams. Third, the comparison theorem plays a crucial role
in the verification lemma.

When ϑ > 1, the hypotheses of the comparison lemma in [13] are not satisfied.
Indeed, the result cannot be true when ϑ > 1 as then uniqueness would follow –
and we have seen that uniqueness fails in general. Hence we need to introduce a
new concept to identify the economically relevant solution. In the present paper, we
named these proper solutions. Our goal was then to prove existence and uniqueness of
such solutions. This required a new and fundamentally different comparison lemma
and new ideas to prove existence and uniqueness. Finally, some of the arguments
used in the verification lemma need to be modified since we are discussing proper
solutions. In particular, we need to prove an important result which says that we may
approximate C ∈ UP by a sequence (Cn)n∈N of consumption streams with associated
proper solutions.

A.2 A comparison with Melnyk et al

It is also interesting to compare the results and techniques of the present paper with
those of the recent and wide-ranging paper by Melnyk et al. [21]. The ultimate focus
of [21] is to consider the investment–consumption problem for EZ-SDU with trans-
action costs. However, they first consider the frictionless case. They use a slightly dif-
ferent setup and a reduced set of parameter combinations – in particular, they require
that R > 1.

The main result in [21] regarding the optimal investment–consumption strategy
(Theorem 3.4) involves calculating the optimal strategy in a space A 0 [21, Defini-
tion 3.1]. For a strategy to belong to this class, the wealth and investment process must
satisfy some integrability conditions, and there must exist a unique utility process.
(Although uniqueness of the utility process is considered via a comparison lemma,
which is different in both statement and proof to those in the present paper and [12],
existence is not considered in [21]). Finally, for the case ϑ > 1, results are proved
under three extra conditions. The first is that consumption streams C = (Ct )t≥0
must be strictly positive; the second [21, Eq. (5)] is that the associated utility process
V = (Vt )t≥0 satisfies (1−R)Vt ≥ e−δϑtC1−R

t for t ≥ 0; the third [21, Eq. (3)] is that
the utility process satisfies the transversality condition limt→∞ e−γ t

E[|Vt |] = 0 for
an appropriate γ ∈ R. The second and third of these assumptions are rather ad-hoc
conditions, but form a crucial element of the proof of the comparison theorem. Com-
bining the first and second of the trio of assumptions ensures that (1 − R)Vt > 0 for
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all t ≥ 0. This has the effect of identifying the proper solution within the class of util-
ity processes; however, these extra assumptions rule out many consumption streams
for which there exists a proper utility process. Furthermore, for certain parameter
combinations, the second and third assumptions even rule out the candidate optimal
strategy. As a consequence, the authors of [21] are forced to require additional re-
strictions on the parameters [21, Assumption 3] beyond those which are necessary to
ensure that the problem is well posed.

Appendix B: Subsolutions and supersolutions

This section introduces subsolutions and supersolutions and then proves that under
certain conditions, subsolutions are bounded above by supersolutions. This impor-
tant result is key in many of the proofs given in the appendices. In particular, it is
crucial in the construction of a utility process associated to the limit of a sequence
of consumption streams, and in the verification theorem when we compare the utility
process for an arbitrary consumption to that associated with the candidate optimal
consumption.

We recall from [13, Definition 5.1] the definition of an aggregator random field (a
generalisation of the aggregator that is allowed to depend on the state of the world
ω ∈ Ω) as well as the definition of a sub- and supersolution.

Definition B.1 An aggregator random field g : R+ × Ω × R+ × V → V is a pro-
duct-measurable map such that for each fixed ω ∈ Ω, g( · , ω, · , · ) is an aggregator,
and for progressively measurable processes C = (Ct )t≥0 and V = (Vt )t≥0, the
process (g(t, ω, Ct (ω), Vt (ω)))t≥0 is progressively measurable.

We need the more general notion of an aggregator random field since it permits us
to stochastically perturb our Epstein–Zin aggregator; cf. [13, Definition 5.3].

Definition B.2 Let C ∈ P+ and g an aggregator random field such that g takes only
one sign, i.e., V ⊆ R+ or V ⊆ R−. A V-valued làd optional process V is called

– a subsolution for the pair (g, C) if lim supt→∞ E[Vt+] ≤ 0 and for all bounded
stopping times σ ≤ τ ,

Vσ ≤ E

[

Vτ+ +
∫ τ

σ

g(s, ω,Cs, Vs) ds

∣
∣
∣
∣Fσ

]

;

– a supersolution for the pair (g, C) if lim inft→∞ E[Vt+] ≥ 0 and for all bounded
stopping times σ ≤ τ ,

Vσ ≥ E

[

Vτ+ +
∫ τ

σ

g(s, ω,Cs, Vs) ds

∣
∣
∣
∣Fσ

]

;

– a solution for the pair (g, C) if it is both a subsolution and a supersolution and
V ∈ I(g, C).
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Remark B.3 By taking the limit as τ → ∞ and using the (combined) transversal-
ity condition limt→∞ E[Vt+] = 0, it is clear that a solution V for the pair (g, C)

satisfies (2.1). We then choose a càdlàg version of V so that V is a utility pro-
cess associated to (g, C). This implies in particular that if V is a solution for the
pair (g, C), then

Vσ = E

[

Vτ +
∫ τ

σ

g(s, ω,Cs, Vs) ds

∣
∣
∣
∣Fσ

]

for all bounded stopping times σ ≤ τ , since Vτ = Vτ+.

B.1 Comparison of subsolutions and supersolutions

It is shown in [13, Theorem 5.8] that when g is decreasing in its last argument, if V 1 is
a subsolution and V 2 a supersolution (both associated to g and some C ∈ P+) and
one of V 1, V 2 is in UI(g, C), then V 1

τ ≤ V 2
τ for all finite stopping times τ . However,

when ϑ > 1, the Epstein–Zin aggregator gEZ is increasing in its last argument so that
this theorem does not apply.

The next proposition shows that we may weaken the condition that the aggregator
has a negative derivative with respect to its last argument, and instead assume that it
has a derivative which is bounded above by some positive decreasing exponential.

We introduce the following condition on a pair (V 1, V 2) of stochastic processes
which will be a requirement for the subsequent comparison theorems.

Condition B.4 Let g : R+ × Ω × R+ × V → V be an aggregator random field and
C ∈ P+. The pair (V 1, V 2) satisfies Condition B.4 for the pair (g, C) if one of
V 1, V 2 is in UI(g, C) and (V 1 − V 2)+ is bounded in L1.

Remark B.5 Note that for a subsolution V 1 and a supersolution V 2 associated to the
pair (g, C), a sufficient condition for the pair (V 1, V 2) to satisfy Condition B.4 for
the pair (g, C) is that V 1, V 2 ∈ UI(g, C). This is because for every t ≥ 0,

E[(V 1
t − V 2

t )+] ≤ |V 1
0 | + |V 2

0 | + E

[ ∫ ∞

0
|g(s, ω,Cs, V

1
s )| ds

]

+ E

[ ∫ ∞

0
|g(s, ω,Cs, V

2
s )| ds

]

< ∞.

However, Condition B.4 is more general.

Proposition B.6 Let g : R+ × Ω × R+ × V → V be an aggregator random field
that is concave and nondecreasing in its last argument. Let C ∈ P+. Suppose V 1

is a subsolution and V 2 a nonzero supersolution for the pair (g, C) and that the
pair (V 1, V 2) satisfies Condition B.4 for (g, C). Also assume that for P-a.e. ω, we
have gv(t, ω, Ct (ω), V 2

t (ω)) ≤ κe−νt for all t ≥ 0 for some κ, ν > 0. Here, we
interpret gv to be the right derivative of g with respect to v, which exists everywhere
for v �= 0 by the concavity assumption. Then V 1

σ ≤ V 2
σ P-a.s. for all finite stopping

times σ .
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Proof Seeking a contradiction, suppose there is a finite stopping time σ such that
P[V 1

σ > V 2
σ ] > 0. By replacing σ with σ ∧ T for T sufficiently large, we may as-

sume without loss of generality that σ is bounded. Set A := {V 1
σ > V 2

σ }. Since
V 1 and V 2 are làd, we may define the right-continuous processes (V 1

t+)t≥0 and
(V 2

t+)t≥0. Further, define the stopping time τ := inf{t ≥ σ : V 1
t+ ≤ V 2

t+}. Then
(V 1

τ+ − V 2
τ+)1{τ<∞} ≤ 0 by the right-continuity of (V 1

t+)t≥0 and (V 2
t+)t≥0.

First, we show that P[A ∩ {σ < τ }] > 0. Indeed, otherwise if 1{σ=τ }∩A = 1A

P-a.s., the definition of sub- and supersolutions yields

1A(V 1
σ − V 2

σ ) ≤ E[1A(V 1
σ+ − V 2

σ+)|Fσ ]
= E[1A(V 1

τ+ − V 2
τ+)1{τ<∞}|Fσ ] ≤ 0,

and we arrive at a contradiction.
Next, by the definition of sub- and supersolutions and Jensen’s inequality for

f (x) = x+ = max{x, 0}, we get for t ≤ T and Bt = A ∩ {σ ≤ t < τ } that

1Bt (V
1
t − V 2

t )+ ≤ E[1Bt (V
1
(T ∧τ)+ − V 2

(T ∧τ)+)+|Ft ]

+ E

[

1Bt

∫ T ∧τ

t

(
(s, ω,Cs, V

1
s ) − g(s, ω,Cs, V

2
s )

)+ ds

∣
∣
∣
∣Ft

]

where the right-hand side is well defined since one of V 1, V 2 is in UI(g, C). Taking
expectations yields

E[1Bt (V
1
t − V 2

t )+]
≤ E[1Bt (V

1
(T ∧τ)+ − V 2

(T ∧τ)+)+]

+ E

[

1Bt

∫ T ∧τ

t

(
g(s, ω,Cs, V

1
s ) − g(s, ω,Cs, V

2
s )

)+ ds

]

. (B.1)

Taking the lim sup as T → ∞ and using 1Bt 1{τ≤T }(V 1
τ+ − V 2

τ+)+ = 0 P-a.s. for
all T ≥ 0 and the transversality condition of sub- and supersolutions gives

lim sup
T →∞

E[1Bt (V
1
(T ∧τ)+ − V 2

(T ∧τ)+)+]

= lim sup
T →∞

E[1Bt 1{T <τ }(V 1
T + − V 2

T +)+] + lim sup
T →∞

E[1Bt 1{τ≤T }(V 1
τ+ − V 2

τ+)+]

≤ lim sup
T →∞

E[(V 1
T + − V 2

T +)+] ≤ lim sup
T →∞

E[(V 1
T +)+ + (V 2

T +)−] ≤ 0,

where the last inequality follows since either V = R+ (and (V 2
T +)− = 0) along with

the transversality condition for supersolutions, or V = R− (and (V 1
T +)+ = 0) along

with the transversality condition for supersolutions. Thus taking in (B.1) the lim sup
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as T → ∞, using the positivity of the integrand, we obtain

E[1Bt (V
1
t − V 2

t )+] ≤ E

[

1Bt

∫ τ

t

(
g(s, ω,Cs, V

1
s ) − g(s, ω,Cs, V

2
s )

)+ ds

]

≤ E

[ ∫ ∞

t

1Bs gv(s, ω,Cs, V
2
s )(V 1

s − V 2
s )+ ds

]

≤ E

[ ∫ ∞

t

κe−νs1Bs (V
1
s − V 2

s )+ ds

]

,

where the middle line uses that g is concave and nondecreasing in its last argument
and V 2

s �= 0. Setting Γ(t) := E[1Bt (V
1
t − V 2

t )+], it follows that Γ = (Γ(t))t≥0

is a nonnegative function such that Γ(t) ≤ ∫ ∞
t

κe−νsΓ(s) ds. Note that we have
Γ(t) ≤ E[(V 1

t − V 2
t )+] ≤ γ for some γ > 0 by the L1-boundedness of (V 1 − V 2)+.

Therefore, since

∫ ∞

0
κe−νt dt = κ

ν

and
∫ ∞

0 κe−νsΓ(s) ds ≤ γ κ
ν

, we can apply Gronwall’s inequality for Borel functions
([10, Theorem 2.5] with y(t) = Γ(−t) and μ(A) = ∫

A∩R− κeνt dt) to conclude that
Γ(t) = 0 for all t > 0.

Note that 1Bt (V
1
t − V 2

t )+ ≥ 0 for each t ≥ 0. Hence by Fatou’s lemma,

0 ≤ E[1Bt (V
1
t+ − V 2

t+)+] ≤ lim inf
s⇊t

E[1Bs (V
1
s − V 2

s )+] = 0. (B.2)

Furthermore, since 1Bt (V
1
t+ − V 2

t+) = 1Bt (V
1
t+ − V 2

t+)+ ≥ 0 for each t ≥ 0 by
the definition of τ , it follows from (B.2) that Pt = 1Bt (V

1
t+ − V 2

t+) = 0 P-a.s.
for all t ≥ 0. Since (V 1

t+)t≥0, (V 2
t+)t≥0 and (1Bt )t≥0 are right-continuous, the pro-

cess P = (Pt )t≥0 is right-continuous and therefore indistinguishable from zero. In
particular, 1A1{σ<τ }(V 1

σ+ − V 2
σ+) = 1Bσ (V 1

σ+ − V 2
σ+) = 0 P-a.s. But then the

definition of sub- and supersolutions implies that

1A1{σ<τ }(V 1
σ − V 2

σ ) ≤ E[1A1{σ<τ }(V 1
σ+ − V 2

σ+)|Fσ ] = 0, (B.3)

and we arrive at a contradiction. □

Corollary B.7 Let gEZ be the Epstein–Zin aggregator, R < 1 and C ∈ P+. Sup-
pose V 1 is a subsolution and V 2 a positive supersolution for the pair (gEZ,C)

and that the pair (V 1, V 2) satisfies Condition B.4 for (gEZ,C). Also assume that
e−δϑtC1−R

t ≤ Ke−γ t (1 − R)V 2
t for some K, γ > 0 and all t ≥ 0. Then V 1

σ ≤ V 2
σ

for all finite stopping times σ ≥ 0.



Proper solutions for Epstein–Zin SDU 915

Proof Taking derivatives of gEZ with respect to its second argument gives, for v > 0,

∂gEZ

∂v
(t, c, v) = (ϑ − 1)e−δt c1−S

(
(1 − R)v

)− 1
ϑ ≥ 0, (B.4)

∂2gEZ

∂v2
(t, c, v) = −ρe−δt (1 − R)c1−S

(
(1 − R)v

)−(1+ 1
ϑ

) ≤ 0.

Hence using (B.4), ∂gEZ

∂v
(s, Cs, V

2
s ) ≤ (ϑ − 1)K

1
ϑ e− γ

ϑ
t and the conditions of

Proposition B.6 are met with κ = (ϑ − 1)K
1
ϑ and ν = γ

ϑ
. □

Note that Corollary B.7 is only stated in the case R < 1. Corollary B.7 is used
in the proof of the verification theorem (Theorem 7.5), but in that setting, we use a
separate argument for R > 1.

Appendix C: Order-ϑ and extremal solutions

In this section, we state and prove some results about order-ϑ and extremal solutions.

Lemma C.1 For 0 ≤ μ ≤ ν, SOμ ⊇ SOν .

Proof This is straightforward and hence omitted. □

Remark C.2 For each ν ≥ 0, let (k(ν),K(ν)) be the tightest interval such that

k(ν)E

[ ∫ ∞

t

eν(s−t)Xs ds

∣
∣
∣
∣Ft

]

≤ Xt ≤ K(ν)E

[ ∫ ∞

t

eν(s−t)Xs ds

∣
∣
∣
∣Ft

]

for all t ≥ 0. It is easy to see that k(ν) and K(ν) are decreasing in ν. Furthermore,
since X ∈ SO, we have k(ν) ≤ k(0) < ∞. By a symmetric argument, one can show
that K(ν) is decreasing in ν as well.

Proof of Proposition 4.10 Let the process G = (Gt )t≥0 be given by

Gt = e−δϑtZ1−R
t .

Suppose G has drift −φ for φ > 0. Then for ν ≥ 0, G(ν) defined by G
(ν)
t = eνtGt

is also a geometric Brownian motion and satisfies E[G(ν)
s |Ft ] = G

(ν)
s e(ν−φ)(s−t) for

s ≥ t . Let ν ∈ [0, φ). Then JG(ν) = 1
φ−ν

G(ν) and G(ν) ∈ SO.

Define H(ν) by H
(ν)
t = e(ν−δϑ)tC1−R

t . Then H(ν) O= G(ν) because C
O= Z.

Integrating from time T onward and taking conditional expectations, we obtain

JH(ν) O= JG(ν)
. Combining these and using that

O= is an equivalence relation gives

H(ν) O= G(ν) O= JG(ν) O= JH(ν)

.

Taking ν = 0 implies that (e−δϑtC1−R
t )t≥0 ∈ SO, and then taking ν ∈ (0, φ), we

conclude that (e−δϑtC1−R
t )t≥0 ∈ SOν ⊆ SO+. The result of the proposition then

holds by Theorem 4.9. □
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Lemma C.3 Let δ ∈ (0, 1] and let g, h : R → R be continuous functions. Assume that
g is bounded, h is positive and there are constants 0 < h ≤ h < ∞ with h ∈ [h, h].
Then the ODE

y′′(x) = g(x)y′(x) + h(x)−δy(x) − y(x)1−δ (C.1)

has a solution y ∈ C2(R) with bounded first derivative that satisfies y ∈ [h, h].

Proof Set En := [−n, n] × [h, h] × R, define the function fn : En → R by
fn(x, u, v) := g(x)v + h(x)−δu − u1−δ as well as the function ϕ : R+ → R

by ϕ(v) = (h)−δh + (h)1−δ + supx∈R |g(x)|v. Then |fn(t, u, v)| ≤ ϕ(|v|) for all

(x, u, v) ∈ En. Set rn := h−h

2n
and let R > 0 be such that

∫ R

r1

s
ϕ(s)

ds ≥ h − h.

Note that this implies that
∫ R

rn

s
ϕ(s)

ds ≥ h − h for all n ∈ N. Define the functions

αn, βn : [−n, n] → R by αn := h and βn := h. Then

α′′
n(x) = 0 ≥ fn

(
x, αn(x), α′

n(x)
) = h

(
h(x)−δ − (h)−δ

) ≥ h
(
(h)−δ − (h)−δ

)
,

β ′′
n(x) = 0 ≤ fn

(
x, βn(x), β ′

n(x)
) = h

(
h(x)−δ − (h)−δ

) ≤ h
(
(h)−δ − (h)−δ

)
.

It follows from De Coster and Habets [4, Theorem 4.3 and proof of Proposition 4.2]
that the ODE (C.1) on [n, n] with Neumann boundary conditions has a solution

yn ∈ C2([n, n])
satisfying yn ∈ [h, h] and |y′

n(x)| ≤ R for all x ∈ [−n, n].
Let (u∞, v∞) ∈ [h, h] × [−R,R] be an accumulation point of the sequence

((yn(0), y′
n(0))n∈N.

Consider the initial value problem for the ODE (C.1) with y(0) = u∞ and
y′(0) = v∞. Then for each m ∈ N and ε > 0, by the stability result for initial
value problems (see e.g. Walter [27, Theorem 13.X]) and the fact that there exists a
subsequence (nk)k∈N with limk→∞((ynk

(0), y′
nk

(0)) = (u∞, v∞), there exists k ∈ N

such that |y(x) − ynk
(x)| ≤ ε for all x ∈ [−m,m], which letting ε → 0 implies that

y ∈ [h, h] on [−m,m]. Now the claim follows by letting m → ∞. □

Proof of Proposition 4.13 First we note that by Lemma C.3, the ODE (4.3) admits a
positive solution Γ that is bounded from above and away from zero and has a bounded
derivative.

We proceed to show that the process V = (Vt )t≥0 defined by

Vt = e−δϑt C1−R
t

1 − R
Γ(Yt )

is a uniquely proper utility process. This in turn automatically yields uniqueness of Γ

in the class of positive functions that are bounded from above and away from zero
and have a bounded derivative.
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We first show that V is a utility process for C. Set Ṽ := (1 − R)V . It suffices to
show that Ṽ solves, for 0 ≤ t ≤ T < ∞,

Ṽt = E

[

ṼT +
∫ T

t

ϑe−δuC1−S
u Ṽ ρ

u du

∣
∣
∣
∣Ft

]

(C.2)

as well as limt→∞ E[ṼT ] = 0. The latter condition follows from the fact that by the
dynamics (4.2) of C and the fact that α is bounded, for each T ≥ 0,

E[ṼT ] = E

[

exp

(

−
∫ T

0

(
δϑ − (1 − R)β(Yt ) + R(1 − R)

2
α2(Yt )

)
dt

)]

≤ e−χT . (C.3)

To establish (C.2), it suffices to show that the process M = (Mt)t≥0 given by

Mt = Ṽt +
∫ t

0
ϑe−δuC1−S

u Ṽ ρ du (C.4)

is a martingale. Itô’s formula, the identity e−δtC1−S
t Ṽ

ρ
t = ṼtΓ

ρ(Yt ) and the fact
that Γ solves the ODE (4.3) give

dMt = Ṽt

(

ϑΓ− 1
ϑ (Yt ) − δϑ + Γ′(Yt )

Γ(Yt )
bY (Yt ) + Γ′′(Yt )

2Γ(Yt )
aY (Yt )

2 + (1 − R)β(Yt )

− R(1 − R)

2
α(Yt )

2 + (1 − R)αY (Yt )ρ(Yt )α(Tt )
Γ′(Yt )

Γ(Yt )

)

dt

+ e−δϑtC1−R
t

(
Γ′(Yt )aY (Yt ) dBY

t + (1 − R)Γ(Yt )α(Yt ) dBt

)

= Ṽt

(
Γ′(Zt )

Γ(Yt )
aY (Yt )dBZ

t + (1 − R)α(Yt ) dBt

)

,

which shows that M is a local martingale. Using that E[Ṽ 2
t ] ≤ (1 − R)2 exp(ξ t) for

some ξ ≥ 0 by the dynamics of C and boundedness of α and β, it follows from the
properties of Γ and the fact that aY is bounded that M is even a square-integrable
martingale.

Finally, fix ν ∈ (0, χ ∧ ϑγ −1/ϑ ), where γ is an upper bound for Γ. To show
that C is uniquely proper, we show that Ṽ ∈ SOν , and then the result follows by
Theorem 4.9.

Define the process M(ν) = (M
(ν)
t )t≥0 by M

(ν)
t = ∫ t

0 eνsdMs , where M is defined
in (C.4). Then M(ν) is like M a square-integrable martingale, and using that

d(eνt Ṽt ) = dM
(ν)
t + eνt Ṽt

(
ν − ϑΓ(Yu)

−1/ϑ
)

dt,

it follows that

eνt Ṽt = E

[

eνT ṼT +
∫ T

t

eνuṼu

(
ϑΓ(Zu)

−1/ϑ − ν
)

du

∣
∣
∣
∣Ft

]

.
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Letting T → ∞, the definition of ν, monotone convergence and the fact that

lim
t→∞E[eνT ṼT ] = 0

by (C.3) give

eνt Ṽt = E

[ ∫ ∞

t

eνuṼu

(
ϑΓ(Zu)

−1/ϑ − ν
)

du

∣
∣
∣
∣Ft

]

.

Since ϑΓ(Zu)
−1/ϑ − ν is bounded above and below by positive constants and

E[
∫ ∞

0
eνuṼudu] < ∞

by (C.3), it follows that Ṽ ∈ SOν . □

The following result shows that there is a natural ordering for subsolutions and
supersolutions to (5.5) for different values of ε and U . In particular, since a solution
is both a subsolution and a supersolution, it follows that for ε > 0, the solution found
in Proposition 5.4 is the unique solution, and not just the unique solution of order J .
Recall Condition B.4 of Appendix B which is an integrability condition on pairs of
stochastic processes.

Corollary C.4 Fix ν > 0. Suppose Λϑ ∈ SOν and define the perturbed aggregator

h
ε,ν,Λ
EZ (t, ω, u,w) = uwρ + εeνtΛϑ

t (ω), for ε > 0. (C.5)

Fix ε2 > 0 and 0 ≤ ε1 ≤ ε2. Let U1, U2 ∈ P+ satisfy U1 ≤ U2 ≤ Λ. Sup-
pose that W 1 is a subsolution for the pair (h

ε1,ν,Λ
EZ ,U1) and W 2 is a supersolution

for (h
ε2,ν,Λ
EZ ,U2) such that W 1, W 2 take values in [0,∞) and (W 1,W 2) satisfies

Condition B.4 for the pair (h
ε1,ν,Λ
EZ ,U1). Then W 1

σ ≤ W 2
σ for all finite stopping

times σ ≥ 0.

Proof First note that W 2 is a supersolution for (h
ε1,ν,Λ
EZ ,U1) since

W 2
σ ≥ E

[ ∫ τ

σ

h
ε2,ν,Λ
EZ (U2

s ,W 2
s ) ds + W 2

τ+
∣
∣
∣
∣Ft

]

≥ E

[ ∫ τ

σ

h
ε1,ν,Λ
EZ (U1

s ,W 2
s ) ds + W 2

τ+
∣
∣
∣
∣Ft

]

.

As Λϑ ∈ SOν , there is KΛ with W 2
t ≥ E[∫ ∞

t
ε2eνsΛϑ

s ds|Ft ] ≥ ε2
KΛ

eνtΛϑ
t .

Therefore, since U1 ≤ Λ and W 2 > 0,

∂h
ε1,ν,Λ
EZ

∂w
(t, ω,U1

t ,W 2
t ) = ρU1

t (W 2
t )−

1
ϑ ≤ ρ

(
KΛ

ε2

) 1
ϑ

e− ν
ϑ

t .
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Furthermore,
∂2h

ε1,ν,Λ

EZ

∂w2 (u,w) = −ϑ−1
ϑ2 uw−(1+ 1

ϑ
) ≤ 0 for w > 0 so that h

ε1,ν,Λ
EZ

is concave. Since (W 1,W 2) satisfies Condition B.4 for the pair (h
ε1,ν,Λ
EZ ,U1), the

assumptions of Proposition B.6 are met and the conclusion follows. □

Denote by O(Y ; k,K) the set of processes such that (4.1) holds for pre-specified k

and K . Let

SO(k,K) =
{

X ∈ P++ : E
[ ∫ ∞

0
Xt dt

]

< ∞ and 0 ≤ kJX ≤ X ≤ KJX

}

.

The following result gives explicit bounds k̂, K̂ > 0 such that the fixed point W

found in Proposition 5.4 satisfies k̂J ≤ W ≤ K̂J .

Corollary C.5 Let ε ≥ 0 and suppose that Uϑ ∈ SO
(
k,K

)
. For ε > 0, suppose that

A and B solve

A = K−1(Aρ + ε), B = k−1(Bρ + ε), (C.6)

and if ε = 0, set A = K−ϑ and B = k−ϑ (the positive solution to (C.6)). Then the
fixed point W of Fε

U,U found in Proposition 5.4 is in O(J ; kA,KB).

Proof We first show that Fε
U,U maps O(Uϑ ; A,B) to itself. We only prove the upper

bound as the lower bound is symmetric. Suppose that W ≤ BUϑ . Then

Fε
U,U (W)t = E

[ ∫ ∞

t

(UsW
ρ
s + εUϑ

s ) ds

∣
∣
∣
∣Ft

]

≤ E

[ ∫ ∞

t

(UsB
ρUϑρ

s + εUϑ
s ) ds

∣
∣
∣
∣Ft

]

= (Bρ + ε)E

[ ∫ ∞

t

Uϑ
s ds

∣
∣
∣
∣Ft

]

= (Bρ + ε)Jt ≤ 1

k
(Bρ + ε)Uϑ

t = BUϑ
t .

The proof of Proposition 5.4 given in [13, Theorem B.2] first shows that the map-
ping Fε

U,U : O(Uϑ) → O(Uϑ) is a contraction and then uses Banach’s fixed point

theorem. Hence if we choose an initial process W 0 ∈ O(Uϑ ; A,B), then re-
peated application of Fε

U,U yields a fixed point W ∗ ∈ O(Uϑ ; A,B). Since the

fixed point W found in Proposition 5.4 is unique in the class O(Uϑ), we get
W = W ∗ ∈ O(Uϑ ; A,B). Finally, since kJ ≤ Uϑ ≤ KJ , it follows that
O(Uϑ ; A,B) ⊆ O(J ; kA,KB). □

Proof of Proposition 5.9 Since Λϑ ∈ SO+, there exists ν > 0 such that Λϑ ∈ SOνϑ .
For such ν, let Λ(ν) = (Λ

(ν)
t )t≥0 be given by Λ

(ν)
t = eνtΛt . It follows that

(Λ(ν))ϑ ∈ SO. For each n ∈ N, let Un := max{U, 1
n
Λ(ν)}. Then Un O= Λ(ν) as

Un ≤ Λ ≤ Λ(ν). Let (εn)n∈N be a sequence in (0,∞) with εn ↘ 0.



920 M. Herdegen et al.

By Proposition 5.4, for each n ∈ N, there exists a solution Wn associated to
(h

εn,νϑ,Λ
EZ ,Un), where h

εn,νϑ,Λ
EZ is defined in (C.5). Furthermore, Wn is decreasing in n

by Corollary C.4 and Un(Wn)ρ is dominated by U1(W 1)ρ . Hence by the dominated
convergence theorem, we find that W := limn→∞ Wn satisfies

Wt = lim
n→∞E

[ ∫ ∞

t

(
Un

s (Wn
s )ρ + εne

νϑsΛϑ
s

)
ds

∣
∣
∣
∣Ft

]

= E

[ ∫ ∞

t

UsW
ρ
s ds

∣
∣
∣
∣Ft

]

,

so that W ∈ I(hEZ,U) is a solution associated to (hEZ,U).
Suppose that W ′ ∈ I(hEZ,U) is a solution (or an L1-bounded subsolution) as-

sociated to (hEZ,U). Then (W ′,Wn) satisfies Condition B.4 for the pair (hEZ,U),
since Wn ∈ UI(h

εn,νϑ,Λ
EZ ,Un) ⊆ UI(hEZ,U) and (W ′ − Wn)+ ≤ W ′, where W ′

is L1-bounded. Hence Wn ≥ W ′ for each n ∈ N by Corollary C.4 and W ≥ W ′
is a maximal (resp. L1-bounded sub-)solution. Uniqueness in the class of maximal
solutions follows from Proposition 5.8. □

Proof of Proposition 5.10 Let ν be such that Λϑ ∈ SOνϑ . Define

Λ(ν) = (Λ
(ν)
t )t≥0

by Λ
(ν)
t = eνtΛt and for n ∈ N and i ∈ {1, 2}, define Ui,n = max{Ui, 1

n
Λ(ν)} and

εn = 1
n

. Then by Proposition 5.4, there exists a solution Wi,n associated to

(h
εn,νϑ,Λ
EZ ,Ui,n).

Furthermore, for all n ∈ N and t ≥ 0, W
1,n
t ≤ W

2,n
t by Corollary C.4.

As in Proposition 5.9, the unique maximal solution associated to Ui is given by
Wi := limn→∞ Wi,n for i ∈ {1, 2}. Thus we may conclude that for all t ≥ 0, we
have W 1

t = limn→∞ W
1,n
t ≤ limn→∞ W

2,n
t = W 2

t . □

Proof of Proposition 5.11 Fix ϑ > 1. Since Uϑ ∈ SO+, there exists ν̂ > 0 such that
Uϑ ∈ SOν̂ϑ . By Lemma C.1, it follows that Uϑ ∈ SOνϑ for all ν ≤ ν̂. Moreover,
for each ν ≤ ν̂, define U

(ν)
t = eνtUt and J

(ν)
t = E[∫ ∞

t
eνϑsUϑ

s ds|Ft ]. Remark C.2
then gives 0 < k(ν) ≤ K(ν) with k(ν)J (ν) ≤ (U(ν))ϑ ≤ K(ν)J (ν) and the estimates
0 < k(ν̂) ≤ limν→0 k(ν) = k(0) =: k < ∞ as well as

0 < K(ν̂) ≤ lim
ν→0

K(ν) = K(0) =: K < ∞,

where both limits are decreasing in ν.
Moreover, for each ε > 0 and 0 < ν ≤ ν̂, there exists by Proposition 5.4 a so-

lution Wε,ν associated to (h
ε,νϑ,Λ
EZ ,U(ν)). Furthermore, by Corollary C.5, we have

W
ε,ν
t ≤ K(ν)Bε,νJ

(ν)
t , where B = Bε,ν solves B = k(ν)−1(Bρ + ε). By Proposi-

tion 5.9, the unique maximal solution associated to U is given by W := limε→0 Wε,ν .
Since limε→0 Bε,ν = B0,ν = k(ν)−ϑ , it follows that Wt ≤ K(ν)k(ν)−ϑJ (ν) for
all ν ≤ ν̂. Now taking the limit as ν ↘ 0 gives Wt ≤ Kk−ϑJ (0) =: Kk−ϑJ .

Similarly, maximality of W and the lower bound found in Corollary C.5 give
W ≥ kK−ϑJ . Hence the maximal solution is in O(J ). Since the solution from
Proposition 5.4 is unique in O(J ), it is equal to the maximal solution. □
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Appendix D: The proper solution: proofs

D.1 Proving Proposition 6.1

This rather intricate section is dedicated to proving Proposition 6.1. In this section,
we emphasise the role that the filtration F = (Ft )t≥0 plays in determining the utility
process V = (Vt )t≥0 associated to a pair (g, C). To this end, if F = (Ft )t≥0 is the
filtration used in Definition 2.1, we refer to V as the utility process associated to the
triple (g, C,F).

Let F = (Ft )t≥0 be a filtration and T = {t0, t1, t2, . . . , tn} a finite ordered set. We
assume without loss of generality that t0 = 0 and tn = ∞.

Definition D.1 An (F,T)-stopping time is an F-stopping time with values in T.

Throughout this section, for an (F,T)-stopping time τ = ∑n
i=0 ti1Ai

for some
family (Ai)i∈{0,...,n} of disjoint sets such that P[⋃n

i=0 Ai] = 1 and Ai ∈ Fti , we

define B
T,τ
i := {τ > ti} = ⋃n

j=i+1 Aj and i(t;T) := max{i : ti ≤ t}. When it is
clear which T and τ we are referring to, we drop the extra indices T and τ and write
i(t) = i(t;T) and Bi = B

T,τ
i . Note that {τ > t} = {τ > ti(t;T)} for all t ≥ 0.

For the first results in this section, we crucially need that the filtration is constant
between the points in T.

Condition D.2 The pair (F,T) satisfies Condition D.2 if Ft = Fti(t;T)
for all t ≥ 0.

We first prove the existence of a proper solution associated to (hEZ,U,F), where
U = (Ut )t≥0 is given by Ut = e−γ t1{t<τ }. Here γ > 0, and τ is an (F,T)-stopping
time, where (F,T) satisfies Condition D.2.

Proposition D.3 Let F = (Ft )t≥0 be a filtration and T a finite ordered set such
that (F,T) satisfies Condition D.2. Let τ be an (F,T)-stopping time and define
U = (Ut )t≥0 by Ut = e−γ t1{t<τ }. Then there exists a proper solution W = (Wt)t≥0

associated to (hEZ,U,F) such that

Wt ≥
(

1

γϑ
E[e−γ t − e−γ (t∨τ)|Ft ]

)ϑ

for all t ≥ 0. (D.1)

The proof of Proposition D.3 relies on the following lemma.

Lemma D.4 Suppose that τ = ∑n
i=0 ti1Ai

is an (F,T)-stopping time. Then

E[e−γ t − e−γ (t∨τ)|Ft ] = 1Bi(t)
(e−γ t − e−γ ti(t)+1)

+
n−1∑

j=i(t)+1

E[1Bj
|Ft ](e−γ tj − e−γ tj+1).
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Proof Using the definition of τ and Bj , the fact that Bi(t) ∈ Ft and rearranging the
telescoping sum gives

E[e−γ t − e−γ (t∨τ)|Ft ]

=
n∑

j=i(t)+1

(e−γ t − e−γ tj )P[Aj |Ft ]

= e−γ t
P[Bi(t)|Ft ] −

n∑

j=i(t)+1

e−γ tj (P[Bj−1|Ft ] − P[Bj |Ft ])

= 1Bi(t)
(e−γ t − e−γ ti(t)+1) +

n−1∑

j=i(t)+1

E[1Bj
|Ft ](e−γ tj − e−γ tj+1).

This establishes the claim. □

Proof of Proposition D.3 Define W = (Wt )t≥0 recursively backwards by
W∞ = 0 P-a.s. and Wt = 1Bi(t)

w(t, ξti(t)+1) for t < ∞, where

w(t, y) =
(

y
1
ϑ + 1

γϑ
(e−γ t − e−γ ti(t)+1)

)ϑ

,

ξti(t)+1 = E[Wti(t)+1 |Fti(t) ]. (D.2)

We first show that W is a solution associated to (hEZ,U,F). We then show that (D.1)
holds and W is proper.

First, note that

FU(W)∞ := lim
t→∞ FU(W)t ≤ lim

t→∞

∫ ∞

t

e−γ s

(
exp(−γϑs)

γ s

)ρ

ds = 0 = W∞.

We now show that Wt = FU(W)t = E[∫ ∞
t

UsW
ρ
s ds|Ft ] for all t ≥ 0 by backward

induction. For the inductive step, fix k ∈ {0, . . . , n − 1} and assume that W satis-
fies Wtk+1 = FU(W)tk+1 and that tk ≤ t < tk+1. By the definition of Wtk+1 , since
1Bk

1Bk+1 = 1Bk+1 and by Condition D.2,

E[Wtk+1 |Ft ] = E[1Bk
Wtk+1 |Ft ] = 1Bk

E[Wtk+1 |Ftk ] = 1Bk
ξtk+1 .

Hence combining this with the induction hypothesis yields

FU(W)t = E

[ ∫ tk+1

t

UsW
ρ
s ds + Wtk+1

∣
∣
∣
∣Ft

]

= 1Bk

( ∫ tk+1

t

e−γ s
(
w(s, ξtk+1)

)ρ
ds + ξtk+1

)

.

If ω ∈ Bc
k , then clearly Wt(ω) = 0 = FU(W)t (ω). If ω ∈ Bk , then ξ := ξtk+1(ω) is

known. Using the fact that limt↗tk+1 w(t, ξ) = ξ and ∂w
∂t

(t, ξ) = −e−γ t (w(t, ξ))ρ
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for tk ≤ t < tk+1 and integrating yields

w(t, ξ) =
∫ tk+1

t

e−γ s
(
w(s, ξ)

)ρ ds + ξ.

In particular,

Wt(ω) = w(t, ξ) =
∫ tk+1

t

e−γ s
(
w(s, ξ)

)ρ ds + ξ = FU(W)t (ω).

Consequently, Wt = FU(W)t for tk ≤ t ≤ tk+1, and hence for all t ≥ 0 by induction.
We now show that W = (Wt )t≥0 defined in (D.2) is proper by proving the follow-

ing statement by backward induction for k ∈ {0, . . . , n − 1}: If tk ≤ t < tk+1, then

W
1
ϑ
t ≥ 1Bk

γ ϑ

( n−1∑

j=k+1

E[1Bj
|Ft ](e−γ tj − e−γ tj+1) + e−γ t − e−γ tk+1

)

. (D.3)

Here, we define
∑n−1

n a = 0 for arbitrary a ∈ R. Hence the statement holds true
for k = n − 1 by the definition of W in (D.2). For the induction step, assume that
it holds true for k + 1 and let tk ≤ t < tk+1 so that i(t) = k. Using the definition
of W given in (D.2), Jensen’s inequality, the inductive hypothesis and the fact that
1Bi

E[1Bj
|Fti ] = E[1Bi

1Bj
|Fti ] = E[1Bj

|Fti ] for i ≤ j , we obtain

W
1
ϑ
t = 1Bk

(

(E[Wtk+1 |Ft ]) 1
ϑ + e−γ t − e−γ tk+1

γϑ

)

≥ E[1Bk+1 |Ft ]
γϑ

( n−1∑

j=k+2

E[1Bj
|Ft ](e−γ tj − e−γ tj+1) + e−γ tk+1 − e−γ tk+2

)

+ 1Bk

e−γ t − e−γ tk+1

γϑ

= 1

γϑ

n−1∑

j=k+1

E[1Bj
|Ft ](e−γ tj − e−γ tj+1) + 1Bk

γ ϑ
(e−γ t − e−γ tk+1).

Hence (D.3) holds for all t with tk ≤ t < tk+1, and therefore by induction for
all t < tn = ∞.

As the right-hand side of (D.3) is equal to 1
γϑ

E[e−γ t − e−γ (t∨τ)|Ft ] by
Lemma D.4, equation (D.1) holds and W is proper. □

We now show that for any continuous filtration F and F-stopping time τ , we can
find a proper utility process associated to Ut = e−γ t1{t<τ } by approximating (F,T)

by a monotone sequence of pairs (Fn,Tn) satisfying Condition B.

Lemma D.5 Let F = (Ft )t≥0 be a continuous filtration and τ an F-stopping time. Let
T

n = {k2−n : k = 0, 1, . . . , n2n} ∪ {∞} and define F
n = (Fn

t )t≥0 by

Fn
t = F(2−n�2nt�)∧n
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for t ≥ 0. Then

τn := 2−n�2nτ�1{τ≤n} + ∞1{τ>n}

is an (Fn,Tn)-stopping time. Furthermore, (Fn,Tn) satisfies Condition D.2 for
each n ∈ N, τn ↘ τ and Fn

t ↗ Ft for all t ≥ 0.

Proof Note that τn takes values in T
n and

{τn ≤ t} = {τ ≤ n} ∩ {2−n�2nτ� ≤ t} = {τ ≤ (2−n�2nt�) ∧ n} ∈ Fn
t

so that τn is an (Fn,Tn)-stopping time. In addition, for each n ∈ N and t ≥ 0, we have
ti(t;Tn) = (2−n�2nt�) ∧ n. Hence Fn

t = Fti(t;Tn)
= Fn

ti(t;Tn)
so that (Fn,Tn) satisfies

Condition D.2. It is easily checked that τn ↘ τ and Fn
t ↗ Ft for all t ≥ 0. □

To prove Proposition 6.1, we need the following result, which is a variant of Hunt’s
lemma and the reverse Fatou lemma. Its proof is standard and hence omitted.

Lemma D.6 Let (Ω,G,P) be a probability space and (Xn)n∈N a sequence of random
variables bounded in absolute value by an integrable random variable Y . Let (Gn)n∈N
be an increasing family of σ -algebras and G∞ := σ(

⋃∞
n=1 Gn). Then

lim sup
n→∞

E[Xn |Gn] ≤ E[lim sup
n→∞

Xn |G∞] P-a.s.

Proposition D.7 Let F = (Ft )t≥0 be a continuous filtration, τ an F-stopping time and
γ > 0. Let U = (Ut )t≥0 be given by Ut = e−γ t1{t<τ }. Then there exists a proper
solution W = (Wt )t≥0 associated to the triple (hEZ,U,F) such that

Wt ≥ (
1

γϑ
E[e−γ t − e−γ (t∨τ)|Ft ])ϑ

for all t ≥ 0.

Proof By Lemma D.5, we may choose a sequence (Fn = (Fn
t )t≥0,T

n)n∈N such that
(Fn,Tn) satisfies Condition D.2 for each n ∈ N and an (Fn,Tn)-stopping time τn

such that τn ↘ τ and Fn
t ↗ Ft for t ≥ 0. Since the pair (Fn,Tn) satisfies for

each n ∈ N the conditions of Proposition D.3, there exists for Un = (Un
t )t≥0

defined by Un
t = e−γ t1{t<τn} a proper solution Wn = (Wn

t )t≥0 associated to the
triple (hEZ,Un,Fn) such that

Wn
t ≥

(
1

γϑ
E[e−γ t − e−γ (t∨τn)|Fn

t ]
)ϑ

. (D.4)

Since Wn is a solution (and therefore càdlàg by Remark B.3), for all bounded
stopping times σ ≤ τ ,

Wn
σ = E

[ ∫ τ

σ

Un
s (Wn

s )ρ ds + Wn
τ

∣
∣
∣
∣F

n
σ

]

. (D.5)
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Consider u = (u(t))t≥0 defined by u(t) = e−γ t for t ≥ 0. Then by taking deriva-

tives, one finds that Wu = (Wu
t )t≥0 defined by Wu

t = e−γϑt

γ ϑϑϑ is a solution associated

to (hEZ, u) (and any filtration). Furthermore, using Juϑ

t = ∫ ∞
t

(u(s))ϑ ds = e−γϑt

γ ϑ
,

it follows that Wu O= Juϑ = (J uϑ

t )t≥0 and Wu is the maximal solution associated
to u by Proposition 5.11. Therefore, since Un

t ≤ u(t) for t ≥ 0, Proposition 5.10
gives Wn

t ≤ Wu
t ≤ Wu

0 = 1
γ ϑϑϑ < ∞ for all t ≥ 0 and Wn is bounded. Similarly,

Ut(W
n
t )ρ ≤ u(t)(Wu

t )ρ and E[∫ ∞
0 u(t)(Wu

t )ρ dt] = Wu
0 < ∞.

Define W ∗
t = lim supn→∞ Wn

t for each t ≥ 0. We will show that W ∗ = (W ∗
t )t≥0

is a subsolution associated to (hEZ,U,F). Taking the lim sup in (D.5) and using
Lemma D.6 gives

W ∗
σ = lim sup

n→∞
E

[ ∫ τ

σ

Un
s (Wn

s )ρ ds + Wn
τ

∣
∣
∣
∣F

n
σ

]

(D.6)

≤ E

[ ∫ τ

σ

Us(W
∗
s )ρ ds + W ∗

τ

∣
∣
∣
∣Fσ

]

.

Let Yt = W ∗
t + ∫ t

0 Us(W
∗
s )ρ ds. Then by (D.6), Y = (Yt )t≥0 is an optional strong

submartingale. It is therefore làdlàg (see Dellacherie and Meyer [5, Theorem A1.4])
and by the strong submartingale property, Yτ ≤ E[Yτ+|Fτ ] for all stopping times τ .
Consequently W ∗ is làdlàg and

W ∗
τ = Yτ −

∫ τ

0
Us(W

∗
s )ρ ds ≤ E[Yτ+|Fτ ] −

∫ τ

0
Us(W

∗
s )ρ ds = E[W ∗

τ+|Fτ ].

Thus W ∗
σ ≤ E[∫ τ

σ
Us(W

∗
s )ρ ds + W ∗

τ+|Fσ ]. In addition, the transversality condition
for subsolutions holds since lim supt→∞ E[W ∗

t+] ≤ limt→∞ Wu
t = 0, so that W ∗ is

a subsolution for (hEZ,U,F).
Since W ∗ is nonnegative and P-a.s. bounded above by Wu

0 < ∞, it is bounded
and a fortiori L1-bounded. Moreover, (D.4), the fact that τn ≥ τ for all n ∈ N and
the L1-martingale convergence theorem give

W ∗
t ≥ lim

n→∞

(
1

γϑ
E[e−γ t − e−γ (t∨τn)|Fn

t ]
)ϑ

≥
(

1

γϑ
lim

n→∞E[e−γ t − e−γ (t∨τ)|Fn
t ]

)ϑ

=
(

1

γϑ
E[e−γ t − e−γ (t∨τ)|Ft ]

)ϑ

. (D.7)

Let WU = (WU
t )t≥0 be the maximal solution associated to (hEZ,U,F). Then by

Proposition 5.9, WU is the maximal L1-bounded subsolution. Combining with (D.7),
this gives that WU is a proper solution and

WU
t ≥ W ∗

t ≥
(

1

γϑ
E[e−γ t − e−γ (t∨τ)|Ft ]

)ϑ

for all t ≥ 0.
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This ends the proof. □

Finally, we remove the assumption that σ = 0 and prove Proposition 6.1.

Proof of Proposition 6.1 Let Ut = e−γ t1{σ≤t<τ } and Ût = e−γ t1{t<τ }. Then by
Proposition D.7, there exists a proper solution Ŵ associated to the pair (hEZ, Û)

such that Ŵt ≥ ( 1
γϑ

E[e−γ t − e−γ (t∨τ)|Ft ])ϑ . First, consider the event {t ≥ σ }. Then

Us = Ûs for all s ≥ t , and hence the (unique) maximal solutions W and Ŵ associated
to U and Û coincide at t . Hence

Wt1{t≥σ } = Ŵt1{t≥σ } ≥
(

1

γϑ
E[e−γ t − e−γ (t∧τ)|Ft ]

)ϑ

1{t≥σ }.

Next, consider the event {t < σ }. Using that

Wσ = Ŵσ ≥
(

1

γϑ
E[(e−γ σ − e−γ τ )|Fσ ]

)ϑ

,

Jensen’s inequality and the tower property of conditional expectations give

Wt1{t<σ } = 1{t<σ }E[Wσ |Ft ]

≥ 1{t<σ }E
[(

1

γϑ
E[e−γ σ − e−γ τ |Fσ ]

)ϑ ∣
∣
∣
∣Ft

]

≥
(

1

γϑ
E[e−γ σ − e−γ τ |Ft ]

)ϑ

1{t<σ }.

Combining the above inequalities yields

Wt ≥
(

1

γϑ
E[e−γ (t∨σ) − e−γ (t∨τ)|Ft ]

)ϑ

.

This ends the proof. □

D.2 Further proofs for Sect. 6

Proof of Lemma 6.2 First, suppose that t ≥ t0. Then since W is a utility process
associated to U , we obtain

W̃t = 1AWt = 11+ρ
A Wt = E

[ ∫ ∞

t

1AUs(1AWs)
ρ ds

∣
∣
∣
∣Ft

]

= E

[ ∫ ∞

t

ŨsW̃
ρ
s ds

∣
∣
∣
∣Ft

]

.

Conversely, suppose that t < t0. Then since Ũs = 0 for s < t0 and both W̃t0 = 1AWt0

and W̃t0 = E[∫ ∞
t0

ŨsW̃
ρ
s ds|Ft0 ], we get

W̃t = E[1AWt0 |Ft ] = E

[ ∫ ∞

t0

ŨsW̃
ρ
s ds

∣
∣
∣
∣Ft

]

= E

[ ∫ ∞

t

ŨsW̃
ρ
s ds

∣
∣
∣
∣Ft

]

.

This ends the proof. □



Proper solutions for Epstein–Zin SDU 927

Proof of Lemma 6.3 Seeking a contradiction, suppose Ct := At \Bt has positive mea-
sure. Then E[1Ct J

U
t ] > 0 by the definition of At . For each rational T ≥ t , the defi-

nition of Bt gives E[1Ct UT |Ft ] ≤ E[1Bc
t
UT |Ft ] = 0 which yields 1Ct UT = 0 P-a.s.

Since U is right-continuous, 1Ct UT = 0 for all T ≥ t P-a.s. Taking expectations
yields E[1Ct J

U
t ] = E[∫ ∞

t
1Cs Us ds] = 0 and we arrive at a contradiction. □

Proof of Lemma 6.4 Let N = (Nt )t≥0 be the uniformly integrable martingale given by
Nt = E[∫ ∞

0 Xs ds|Ft ]. Then JX
t = Nt − ∫ t

0 Xs ds. Define the increasing process A

by At = ∫ t

0 (Xs/J
X
s ) ds. Since X ∈ SO, we have 0 < Xt ≤ KJX

t for some K and
hence 0 < At ≤ Kt .

Define M via Mt = eAt JX
t . Then dMt = eAt dJX

t + Xte
At dt = eAt dNt , and

all that remains to show is that the local martingale M is a martingale. Since A

is increasing and At ≤ Kt , we have E[‖eA‖T |NT |] ≤ E[(eKT − 1)|NT |] < ∞
for T ≥ 0, where ‖eA‖T is the total variation of eA = (eAt )t≥0 at time T . Hence M

is a martingale by Herdegen and Muhle-Karbe [15, Lemma A.1]. □

Proof of Lemma 6.5 First note that X is a (local) submartingale bounded above by 1
and so converges almost surely to an F∞-measurable random variable X∞ ≤ 1 by
the martingale convergence theorem.

Fix ξ ∈ (0, β). Let σ = inf{t ≥ 0 : Xt /∈ (ξ, 1)} ≤ τ . From the dynamics of X

given in (6.1),

Xt∧σ ≥ X0 +
∫ t∧σ

0
αXs ds + Gt∧σ − G0 ≥ β + αξ(t ∧ σ) + Gt∧σ − G0.

Then using that G is a càdlàg submartingale and the optional sampling theorem,

E[Xt∧σ ] ≥ β + αξE[t ∧ σ ]. (D.8)

Since X ≤ 1, taking the lim sup and using the reverse Fatou lemma on the left-hand
side of (D.8) and the monotone convergence theorem on the right-hand side gives

1 ≥ E[Xσ ] = E[1{σ<∞}Xσ ] + E[1{σ=∞}X∞] ≥ β + αξE[σ ] ≥ β.

Therefore E[σ ] ≤ 1−β
αξ

and P[σ = ∞] = 0. Consequently, since X is right-
continuous, Xσ has values in (−∞, ξ ] ∪ {1} P-a.s. and

1 − (1 − ξ)P[Xσ ≤ ξ ] = P[Xσ = 1] + ξP[Xσ ≤ ξ ] ≥ E[Xσ ] ≥ β.

In particular, P[Xσ ≤ ξ ] ≤ 1−β
1−ξ

and P[σ = τ ] = P[Xσ = 1] ≥ 1 − 1−β
1−ξ

= β−ξ
1−ξ

.
Furthermore,

P[σ ≥ T , σ = τ ] ≤ E

[
σ

T
1{σ≥T }1{σ=τ }

]

≤ 1

T
E[σ ] ≤ 1 − β

αξT
for all T ≥ 0,

as well as

P[τ < T ] ≥ P[σ < T, σ = τ ] = P[σ = τ ] − P[σ ≥ T , σ = τ ] ≥ β − ξ

1 − ξ
− 1 − β

αξT
.

Choose ν = 1
2

β−ξ
1−ξ

and T = 1−β
αξν

. Then P[τ < T ] ≥ ν. □
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Appendix E: Proof of Theorem 7.5

To prove Theorem 7.5, we first give analogues of the definitions of order-ϑ and max-
imal solutions in the original coordinates of discounted consumption streams and the
aggregator gEZ .

Definition E.1 Let C ∈ P+ and suppose that V = (Vt )t≥0 is a solution to (2.2). We
say that V is a CRRA-order solution if there exist 0 < k ≤ K < ∞ such that

kE

[ ∫ ∞

t

e−δϑsC1−R
s ds

∣
∣
∣
∣Ft

]

≤ Vt ≤ KE

[ ∫ ∞

t

e−δϑsC1−R
s ds

∣
∣
∣
∣Ft

]

.

Let C ∈ P+ and suppose that V = (Vt )t≥0 is a solution to (2.2). We say that V is an
extremal solution if (1 − R)V ≥ (1 − R)Y for any other solution Y = (Yt )t≥0.

Given the relationships between solutions to (2.2) and solutions to (5.3) and the
different coordinate systems, V is a CRRA-order solution (for C and gEZ) if and
only if W is an order-ϑ solution (for UC and hEZ), and V is extremal if and only
if W is maximal. The names CRRA-order and extremal are chosen to be suggestive
in the original coordinates – when we know the sign of 1 − R, we may also call a
solution V minimal if R < 1 or maximal if R > 1. The name CRRA-order arises
from the correspondence to the valuation problem under additive CRRA utility.

Applying Propositions 5.5, 5.9 and 5.10 in the setting of the original coordinate
system, we obtain the following two results, the first of which also appears in [13,
Theorem 4.6].

Proposition E.2 Suppose that (e−δϑtC1−R
t )t≥0 ∈ SO. Then there exists a unique

CRRA-order solution to (2.2).

Proposition E.3 For each C ∈ P+ such that e−δϑtC1−R
t ≤ Yt for some Y ∈ SO+,

there exists a unique extremal solution V C to (2.2). Furthermore, V C is increasing
in C.

It follows from the proof of Proposition 5.9 that the unique maximal solution as-
sociated to (hEZ,U) is maximal in the class of L1-bounded subsolutions. We can
restate this in the original coordinates.

Corollary E.4 Let C ∈ P+ be such that e−δϑtC1−R
t ≤ Yt for some Y ∈ SO+.

Then the extremal solution for (gEZ,C) is the maximal L1-bounded subsolution
when R < 1, and the minimal L1-bounded supersolution when R > 1.

The final result in this section is a direct analogue of Theorem 5.12.

Theorem E.5 Suppose that (e−δϑtC1−R
t )t≥0 ∈ SO+. Then the following three solu-

tions to (2.2) all coincide and are unique:

1) the CRRA-order solution;
2) the extremal solution;
3) the proper solution.
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To prove Theorem 7.5, we use the following result which is proved as an interme-
diate part of [13, Theorem 8.1]. The result in [13] is written for the case 0 < ϑ < 1
and δ = 0, but it is not difficult to check that the argument extends to the case ϑ > 1
and arbitrary δ ∈ R.

Lemma E.6 Let ε > 0 and let X̂ = XΠ̂,Ĉ denote the wealth process under our
candidate optimal strategy. Fix (Π,C) and let X = XΠ,C denote the corresponding
wealth process. Then V̂ ( · , X + εX̂) is a supersolution for the pair (gEZ,C + ηεX̂).

We may then prove Theorem 7.5. Note that V̂ ( · , X̂) is a solution for the pair
(gEZ, ηX̂) and by scaling, V̂ ( · , εX̂) is a solution for the pair (gEZ, ηεX̂). We expect
that V̂ ( · , XΠ,C) is a supersolution for (gEZ,C), but when R > 1, the transversality
condition might not hold. Furthermore, the conditions required for Proposition B.6
to hold may be impossible to verify. However, as we show in the proof below, by
considering the perturbed problem, the transversality condition is guaranteed and the
comparison theorem can be applied.

Proof of Theorem 7.5 It follows from Proposition 7.4 that V̂ ( · , X̂) is a utility process
associated to the candidate optimal strategy (Π̂, Ĉ). Since V̂ ( · , X̂) is a CRRA-order
solution to (2.2), it is the unique proper solution to (2.2) by Theorem E.5. Hence

V Ĉ
0 = V̂ (0, x). It therefore only remains to show that V C

0 ≤ V̂ (0, x) for all
C ∈ C (x) ∩ UP

∗. Fix an arbitrary C ∈ C (x) ∩ UP
∗ and let Π = (Πt )t≥0 be an

associated investment process.
We first prove the result when R > S > 1. (Note that in this case Corollary B.7

does not hold. However, it is not needed as the proof relies instead upon the mini-
mality of the unique proper solution to give the comparison result.) By Lemma E.6,
for each ε > 0, V̂ ( · , XC,Π + εX̂) is a supersolution associated to Cε = C + ηεX̂.
Since (Cε)1−S ≤ (ηε)1−SX̂1−S , there exists by Proposition E.3 a unique extremal
solution V Cε

associated to Cε, and V Cε
is increasing in ε. It is the minimal superso-

lution by Corollary E.4. Hence by minimality, V Cε

t ≤ V̂ ( · , XC,Π
t + εX̂t ) < 0 for

all t ≥ 0.
Let V ∗ = limε→0 V Cε

. Then V ∗
0 ≤ V̂ (0, x). Consequently, since gEZ is increas-

ing in its last two arguments and Cε and V Cε
are increasing in ε, gEZ( · , Cε, V Cε

)

is increasing in ε. Applying the monotone convergence theorem for conditional
expectations yields

V ∗
t = lim

ε→0
V Cε

t = lim
ε→0

E

[ ∫ ∞

t

gEZ(s, Cε
s , V

Cε

s ) ds

∣
∣
∣
∣Ft

]

= E

[ ∫ ∞

t

gEZ(s, Cs, V
∗
s ) ds

∣
∣
∣
∣Ft

]

.

Therefore V ∗ is a solution associated to (gEZ,C). Moreover, for each t ≥ 0, one has
V ∗

t < 0 P-a.s. due to the fact that V Cε

t < 0 P-a.s. for each ε and V Cε
is increasing

in ε. Thus V ∗ is proper. It therefore agrees with the unique proper solution V C so
that V C

0 ≤ V̂ (0, x).
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We now prove the result when R < S < 1. Fix an arbitrary C ∈ C (x) ∩UP
∗ with

associated investment process Π = (Πt )t≥0. First, in order to apply a comparison
theorem in the form of Corollary B.7, let 0 < ζ < η S

1−S
and define X̃t = eζ tX

C,Π
t ,

Yt = e
ζ
S
t X̂t and C̃t = eζ tCt for t ≥ 0. Note that if rζ = r + ζ and μζ = μ + ζ , then

dX̃t = X̃tΠtσ dBt +
(
X̃t

(
rζ + Πt(μζ − rζ )

) − C̃t

)
dt.

We may think of X̃ = (X̃t )t≥0 as the wealth process associated to the strategy
(Π, C̃ = (C̃t )t≥0) in a more favourable financial market with risk-free rate rζ ,
drift μζ of the risky asset and well-posedness parameter

ηζ = −1 − S

S

(

rζ + λ2

2R

)

= η − 1 − S

S
ζ ∈ (0, η).

The volatility is unchanged. Furthermore, since

dYt

Yt

= λ

R
dBt +

((
r + λ2

R
− η

)
+ ζ

S

)

dt = λ

R
dBt +

(

rζ + λ2

R
− ηζ

)

dt,

Y = (Yt )t≥0 is the wealth process under the optimal strategy in the new finan-

cial market with parameters rζ and μζ . Define V̂ ζ (t, x) = η−ϑS
ζ e−δϑt x1−R

1−R
. Then

V̂ ζ ( · , X̃ + εY ) is a supersolution for (gEZ, C̃ + ηεY ) by Lemma E.6 and then also
for (gEZ,C) since C̃ + ηεY ≥ C and gEZ is increasing in c.

Second, let Cn := C ∧ nX̂. Then there exists an extremal solution V Cn
as-

sociated to Cn which is increasing in n by virtue of Proposition E.3. Moreover,
V̂ ζ = V̂ ζ ( · , X̃ + εY ) is a fortiori a supersolution for (gEZ,Cn) since C ≥ Cn

and gEZ is increasing in c. Furthermore, since C is right-continuous, Cn is right-
continuous. The extremal solution V Cn

associated to Cn is therefore proper by
Theorem 4.7 and Remark 5.7.

Third, using that (Cn)1−R ≤ n1−RX̂1−R , we obtain

(1 − R)V̂ ζ (t, X̃t + εYt ) ≥ η−ϑS
ζ e−δϑt (εYt )

1−R

= η−ϑS
ζ ε1−Re(

ζ(1−R)
S

−δϑ)t X̂1−R

≥ η−ϑS
ζ ε1−R

n1−R
e(

ζ(1−R)
S

−δϑ)t (Cn
t )1−R.

Furthermore, since V Cn ∈ UI(gEZ,Cn) by Remark 2.2 and

E[(V Cn

t − V̂
ζ
t )+] ≤ E[V Cn

t ] = E

[ ∫ ∞

t

gEZ(s, Cn
s , V Cn

s ) ds

]

≤ E

[ ∫ ∞

0
gEZ(s, Cn

s , V Cn

s ) ds

]

< ∞,

Corollary B.7 gives V̂
ζ
t ≥ V Cn

t for all t ≥ 0. In particular, V̂
ζ
0 ≥ V Cn

0 .



Proper solutions for Epstein–Zin SDU 931

Fourth, set V ∗ = limn→∞ V Cn
. Using that gEZ is increasing both in c and v,

monotone convergence gives

V ∗
t = lim

n→∞ V Cn

t = lim
n→∞E

[ ∫ ∞

t

gEZ(s, Cn
s , V Cn

s ) ds

∣
∣
∣
∣Ft

]

= E

[ ∫ ∞

t

gEZ(s, Cs, V
∗
s ) ds

∣
∣
∣
∣Ft

]

, t ≥ 0.

Hence V ∗ is a solution for (gEZ,C). It is a proper solution since for each t ≥ 0,

V ∗
t > 0 if V Cn

t > 0 for some n, and V Cn

t > 0 on {J (Cn)1−R

t > 0} = {JC1−R

t > 0} up
to nullsets by the fact that each V Cn

is proper and X̂ is strictly positive. Therefore,
V ∗ must agree with the unique proper solution V C for C.

Finally, combining the above yields

V̂
ζ
0 = V̂ ζ

(
0, x(1 + ε)

) ≥ lim
n→∞ V Cn

0 = V ∗
0 = V C

0 ,

and taking ζ, ε ↘ 0 gives V̂ (0, x) ≥ V C
0 . □
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