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Abstract
This paper presents a comprehensive simulation study on estimating parameters for
the popular Heston stochastic volatility model. Leveraging high-frequency data, we
explore, in a data-science type exercise, various spot-volatility estimation and sam-
pling techniques, improving existingmethods to enhance parameter accuracy. Through
extensive simulations, we report difficulties in generating correct parameter estimates
for realistic parameter settings where the volatility dynamic does not satisfy the Feller
condition. This study contributes valuable insights into the practical implementation of
the Heston model and its applicability to high-frequency data. We find that the scheme
of Azencott et al. (2020) with uniform kernel weighting provides reliable and efficient
parameter estimates. It is advised to also apply a Jackknife estimation to corroborate
the findings.

Keywords Spot volatility · Square-root process · Method of moments ·
Maximum-likelihood · High-frequency data
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1 Introduction

The paper presents an extensive simulation study focused on estimating parameters
in the Heston stochastic volatility model, Heston (1993) and of the volatility process
modeled as a Cox-Ingersoll-Ross process, (Cox, Ingersoll and Ross, 1985). We sim-
ulate data corresponding to high-frequency observations and attempt to accurately
estimate the parameters of this model, especially in practical scenarios where volatil-
ity does not satisfy the Feller condition. In this realistic case, volatility can approach
zero in finite time, complicating parameter estimation and increasing the risk of bias
in methods reliant on conditional moments.

The idea of using high-frequency data to estimate the spot volatility goes back
to work by Andersen et al. (2001); Barndorff-Nielsen and Shephard (2002), who
developed estimates using sums of squared returns, also named realized volatility.
The work by Andersen and Lund (1997); Chib et al. (2002) was pathbreaking because
they demonstrated that volatility models could be estimated on raw returns. Andersen
et al. (2003); Bollerslev and Zhou (2002) went one step further by using integrated
volatility as a proxy for spot volatility to estimate the dynamic of volatility. The idea
of filtering realized volatility using kernels appears to go back to Renò (2006), then
to Kanaya and Kristensen (2016).

A couple of years later, the work by Bandi and Renò (2016, 2018) suggested
taking spot volatility and sampling it at relatively distant periods. For instance, one
uses observations every 20s to estimate volatility over a window of one hour; this
yields one estimate of spot volatility. One repeats this process one day later. The daily
sampled volatility estimates will then be used to estimate some parametric or non-
parametric models. Observations sampled in this way are called pseudo-observations.
This research leaves, however, open the question of what an optimal period for the
pseudo sampling is. Research by Azencott et al. (2020) (ART) indicates how to select
the frequency of returns for the spot volatility estimation and at which frequency
this spot volatility estimate should be sub-sampled for the estimation of a parametric
model. They also provide closed-form solutions for the parameter estimates based on
the method of moments for Heston’s volatility-process parameters. Then no iterative
method like in Generalized Method of Moments (GMM) or Maximum Likelihood
(ML) estimation is required.

In this paper, we want to summarize an extensive empirical exercise examining the
quality of various spot-volatility estimates in a simulation setting. Additional results
on the simulation and an application to actual data is provided in an online appendix.
We also want to investigate if it is possible to estimate correctly the parameters of
Heston’s model, i.e. the stochastic volatility dynamic and the correlation between
innovations. Our first contribution combines ART’s pseudo sampling scheme with
spot volatility estimation, Kanaya and Kristensen (2016); Bandi and Renò (2018). We
study the quality of various weighting schemes in this setting and find that a uniform
scheme outperforms the Gaussian, Epanechnikov, and a one-sided Kernel. We also
find that the pseudo-sampling scheme of ART dominates other ad-hoc schemes.

Next, we perform an extensive simulation exercise involving 18 realistic parameter
vectors for the volatility dynamic. We use the ART method of moments as well as 12
GMM and Minimum Distance estimation methods. We also consider 6ML or Pseudo
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ML approaches. The key finding is that the estimation scheme of Shoji and Ozaki
(1998), possibly with a jackknive extension, is particularly successful. We also find
that the method of ART is fast and yields stable parameter estimations.

As we inspect the quality of the parameter estimates of the stochastic volatility
dynamic, we find that the long-run variance parameter is most straightforward to
estimate, which is unsurprising since this parameter does not require a model and
is essentially estimated as a mean of squared log-returns. We find that parameter
constellations where the process may come near 0 will yield worse estimates of the
mean reversion and the volatility of the volatility parameter. Conditions for the variance
process to come close to zero are a low long-term variance, a high variance variability,
and a more persistent mean reversion. A low Feller ratio will be indicative of such
conditions.

An additional approach is the Markov Chain Monte Carlo (MCMC) estimation
method. Among others (Eraker et al. 2003; Jacquier et al. 2004; Johannes and Polson
2010) discuss theoretical aspects. We also implemented this methodology in a pre-
liminary exercise. Unfortunately, we found this method computationally costly (we
perform thousands of estimations in our simulationswith long time series) and decided
to restrict ourselves to non-Bayesian estimation.

In summary, this paper contributes to the literature on how to estimate the parame-
ter’s of Heston’s model, a notoriously difficult exercise. In it we: (i) combine Azencott
et al. (2020) scheme and bucket-based approaches for spot variance estimation, (ii)
rigorously evaluate a list of estimation methods under realistic parameter settings, and
(iii) provide recommendations for parameter estimation in HF financial modeling.
Those estimates are interesting per se to understand the underlying asset dynamic.
They can help improve Value at Risk and Expected shortfall estimates for porfolios
containing a stock. They can be used to forecast volatility wich is relevant for hedging
strategies or optimal trading strategies. Last, for situations with scarce or noisy option
data, our investigation provides an alternative approach to obtain parameters.

In the next section, we describe the data-generating process. In Sect. 3 we indicate
how to estimate the spot variance. In Sect. 4,we indicate themethodswe use to estimate
the parameters of the model. In Sect. 5 we discuss the results. Finally, 6 concludes this
paper.

2 Main data generating process

Throughout this paper, we will assume that observed (log-)returns are generated by
the following system of stochastic differential equations (SDEs):

dSt = μStdt + √
vt St dW

x
t , (1)

dXt =
(

μ − 1

2
vt

)
dt + √

vt dW
x
t , (2)

dvt = κ (θ − vt ) dt + σ
√

vt dW
v
t , (3)

E[dWx
t dW v

t ] = ρ dt, (4)
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where (1) is the price (St ), (2) is the log-price (Xt )process useful for the construction of
log-returns, with Xt = log(St ). The terms dWx

t and dW v
t are increments of Brownian

motions that are correlated via (4) with constant correlation ρ ∈ (−1,+1). The
parameter μ controls the drift of the price process. The complete system is known as
Heston’s model, see Heston (1993). A possible extension with jumps can be found in
Bates (1996); Duffie et al. (2000). In this study, we focus on estimating the parameters
in Heston’s model using high-frequency data. For an estimation on real data, one may
have to filter out possible jumps in returns. For this reason, we do not present the
extended versions of this model incorporating jumps.

The evolution of latent spot variance vt is modeled by thewell-knownCox Ingersoll
Ross (CIR) process (3) [seeCox et al. (1985)],where κ is the speed ofmean reversion, θ
is the long-runmean, andσ is the volatility of variance. In addition, as shownalreadyby
Feller (1951), if the Feller ratio defined by 2κθ/σ 2 ≥ 1, which is the Feller condition,
then the process will not reach 0. For 0 ≤ 2κθ/σ 2 < 1, the origin will be reached in
finite time but is instantaneously reflecting, and for the theoretical case where θ = 0,
the origin is absorbing.

From Cox et al. (1985), the expression for the first two conditional moments is also
known, E [vt |v0] = v0 e−κt + θ

(
1 − e−κt

)
, and V [vt |v0] = σ 2θ

(
1 − e−κt

)2
/2κ +

v0σ
2
(
e−κt − e−2κt

)
/κ . The unconditional mean is θ , and the unconditional variance

is σ 2θ/2κ , as can be seen by letting t → ∞. A historical discussion and expressions
for conditional and unconditional higher(co-) moments to this process can be found
in Okhrin et al. (2022).

3 Spot variance estimation

We will assume the availability of n equidistant, discrete sampled observations of
log-prices generated by the system of stochastic differential equations (2) - (4) over
the time span [0, T ]. Therefore, the time between two observations is �HF = T /n
for a large n. We will refer to parameter estimation with data sampled with a time span
between observations of �HF as a high-frequency estimation. In practice this can be
seconds up to a few minutes between trades.

Since the spot variance can not be observed, it has to be filtered from the available
high-frequency (log)-return data. In the literature, there are mainly two ways to do
so. In the first approach, by using kernel-based estimates, one can generate a high-
frequency series of spot volatility estimates. In the second approach, one estimates
over lower frequency spaced windows points of spot volatility. The volatility process
is then estimated with traditional methods using those volatility estimates.
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3.1 Continuous spot variance estimation

This approach can be found in Kanaya and Kristensen (2016) who presents a kernel-
based approach. With our notations, the spot variance estimator is defined as

v̂KK
j = 1

h

n∑
k=1

K
[
(k − 1)�HF − j�HF

h

]
r2k , j ∈ {1, · · · , n − 1} ,

where K (·) is some kernel function, h some bandwidth and rk = Xk − Xk−1 the
high frequency log-return at step k. Intuitively, in this approach, one uses all available
returns to estimate an instantaneous volatility based on adjacent returns. Depending
on the kernel, those returns may be rather distant. It results that the spot volatility can
be determined at the given (log-)return frequency and, therefore, without any loss in
sample size.

There are potentially two issues with this approach. The first one is that since
potentially all datapoints have to be considered for evaluating one spot volatility, the
numerical effort may become overwhelming. By using truncated windows, one can
mitigate this issue. Another issue is that themethod requires selection of the bandwidth
parameter h, which can be done with cross-validation. The time required to do so in
a simulation with thousands of series may represent a significant burden.

3.2 Bucket based spot variance estimation

An alternative approach can be found in Bandi and Renò (2018) who present an
approach based on buckets collecting J high-frequency observations and estimating
point estimates of variance. In practice, this could involve sampling data every day at a
low frequency, such as for a single hour.Within this one-hour window, high-frequency
data–for instance, minute-by-minute observations–would then be used to compute the
realized volatility.

To illustrate their procedure, let �LF = m�HF , m < n define some lower fre-
quency within the sample. That is for each m-th high frequent observation we select a
low frequency estimate. Consequently, we will have a sample of M = T /(m�HF ) =
n/m low-frequency observations. In this approach, the spot variance estimator is
constructed using squared returns, as in

v̂BR
i = 1

J�HF

J∑
k=1

r2i,k, i = {1, · · · , M} ,

where J denotes the number of high-frequency data points within the bucket at each
low-frequency time step which are effectively used to estimate the variance, and ri,k =
Xim−J+k − Xim−J+k−1 is the k-th high-frequency log-return observation within the
i-th bucket. It is important to note that Bandi and Renò (2018) recommend choosing
J << m and therefore the length of each bucket expressed in physical time is ξ =
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J�HF << �LF . Explicitly, they suggest to only use around 1/7 of the m high-
frequency observations included within a low frequent step. For this reason, define
Jgap = m − J > 0, that is the number of high-frequency observations in each low
frequency interval that are not used in the estimation of spot volatility.

Azencott et al. (2020) (ART) starts in very different manner. In their paper, they
assume that the econometrician imposes the size of the window over which realized
volatility is to be estimated, denoted as above ξ , say one day. They then provide
theoretical results on the optimal number of high-frequency observations needed to
compute an estimate of realized volatility. Additionally, they derive results on the
optimal spacing between realized volatility estimates and the number of such windows
required to ensure parameter estimates converge at a known rate. Thus, their approach
introduces a structured framework for sampling and highlights the associated trade-
offs, thereby extending (Bandi and Renò 2018). One trade-off involves balancing the
size of the window used to estimate realized volatility against the total number of
observations needed. Since their bounds require an unrealistic large sample size, it is
simulation exercises like ours that validate this method for practical purposes.

More formally, let ξ denote the window length over which realized volatility should
be estimated. They then demonstrate that the optimal number of high-frequency returns
is given by Jopt = 1/ξ2.1

Furthermore, their paper reveals that the number of low frequency estimates should
be m ∼ ξ−3/2, and �LF ∼ ξ1/2, with Jopt as above, there will be convergence in
probability at a speed of convergence proportional to

√
ξ .

Eventually, and as already suggested by ART, we wish to bring together the
approaches of Bandi and Renò (2018) by weighting the J return observations used
with various kernels. The estimator is then defined as

v̂New
i = 1

J�HF

J∑
k=1

wkr
2
i,k, i ∈ {1, · · · , M} , (5)

withwk = JK(k)∑J
j=1 K( j)

and J ≤ m, thus Jgap ≥ 0. TheART (Azencott et al. 2020) paper

contributes along two dimensions. The most innovative dimension is the derivation
of an optimal sampling scheme relating the high frequency time interval and the
high frequency number of observations per bucket and the optimal distance between
buckets to generate series of realized volatility. The second contribution is to provide
explicit method of moment estimates of the parameters of the volatility dynamics.
These estimates are to be found below.

4 Estimating the volatility dynamic: �, � and �

If one has true or estimated observations of the variance process (3) there is a vast range
of estimation approaches with which the underlying parameters can be estimated. In
this section, we discuss some of the most promising approaches, before conducting an

1 Since 1/ξ2 is a very large number, they empirically show that the smaller 1/ξ is also satisfactory.
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exhaustive Monte Carlo study to investigate the quality of the discussed estimators.
Since the parameter θ is the long-termvolatilitywe estimate this parameter in a separate
step as the average volatility. This has the advantage that the estimation only requires
the estimation of two additional parameters κ and σ .

4.1 Method of moment approach

Azencott et al. (2020) (ART) derive explicit parameter estimators of the process from
the first two unconditional central moments and the unconditional auto-covariance
function K (b) = Cov(vt , vt+b), where b is a time lag given by a real number.
Introducing

K̂ (b) = 1

M − B

M−B∑
k=1

v̂k v̂k+B − m̂2,

where M is the size of a sample and where B is the index of the high-frequency time

interval approximating the actual time lag. Formally B =
⌊

b
�LF

⌋
. The estimators

are given by κ̂ = − 1
b log

K̂ (b)
K̂ (0)

, θ̂ = m̂, σ̂ 2 = 2K̂ (0)κ̂
θ̂

, with m̂ = M−1 ∑M
i=1 v̂i . The

parameter b is a hyper-parameter that represents the time lag in physical time, and,
thus, has to be chosen a priori. ART suggests a value of b ≈ 0.6 independent of �LF .
In any case, it has to be chosen so that the estimator functions can be evaluated which
will only be the case for K̂ (b) > 0. However, this will not hold for large values of B,
that is large values of b.

4.2 GMM approaches

Another branch of estimation methods of the CIR process is given by the GMM
approach of Hansen (1982). For example, Bollerslev and Zhou (2002) estimate the
process via a GMM procedure using the conditional moments of integrated vari-
ance. Eventually, since general and closed form expressions for the (un)conditional
(co)moments of the processes solution are known from Cox et al. (1985), and more
recently (Okhrin et al. 2022), we will also experiment below with GMM moment
conditions that we have not encountered so far in the literature.

Let us briefly review the GMM approach. Assume all the parameters of a model are
grouped in a p-component vector ψ = (κ, σ )
 and that Xi denotes the vector of data.
Define ui = u (Xi ;ψ) , for i = {1, . . . , M}. Then define an r × 1 vector of moment
conditions, where r ≥ p. It is assumed that E [ui ] = 0, ∀ i . Further, introduce the
vector of means gM (ψ) = 1

M

∑M
i=1 ui . It is assumed that asymptotically, the mean

vector converges to a theoretical moment vector, gM (ψ)
a.s.−→ E [ui ]. The objective

function of the GMM procedure is defined as

ψ̂ = argmin
ψ

gM (ψ)
 WgM (ψ) , (6)
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where W is some positive definite weighting matrix. Hansen (1982) determines that
the optimal choice for W is S−1, where S = E

[
uiu


i

]
is the long-run covariance

matrix of u. From Newey and West (1987) it is known that S can be estimated via

Ŝ = Ŝ0 + ∑	
j=1 ω j

(
Ŝ j + Ŝ


j

)
, with weights ω j usually defined as Bartlett weights

ω j = 1− j
	+1 and Ŝ j = 1

n

∑n
i= j+1 uiu



i− j , j = 0, 1, · · · , 	. The maximum lag 	 has

to be chosen beforehand, for example, as described in Newey and West (1994).
Since the computation of S requires knowledge of an estimate of ψ the objective

function (6) is maximized in two steps. In a first step, referred to as phase 1, one takes
W = I , an identity matrix. Denote the resulting parameter vector ψ̂(1) with which S
can be estimated. In a second step, also called phase 2, it is possible to get the overall
estimator of (6).

Phase 2 can be iterated a certain number of times. In our empirical work, we will
stop iterating when the L2 distance of two consecutive parameter vectors ψ̂(s) does
not evolve by more than 10−3 or when the algorithm has iterated 30 times. It should
be noticed that, in theory, already after a first iteration, asymptotic efficiency has been
reached.

For the following, it is helpful to introduce

u powers
i (κ, σ ) = [

vi+1 − E[vi+1], · · · , v
pow
i+1 − E[v pow

i+1 ]]
 ,

uco.powi (κ, σ ) =
[
v1i+1v

1
i − E[vi+1vi ], · · · , v1i+1v

1
i+1−lag − E[v1i+1v

1
i+1−lag],

· · · , v
cpo
i+1v

1
i − E[vcpoi+1v

1
i ], · · · , v

cpo
i+1v

1
i+1−lag − E[vcpoi+1v

1
i+1−lag],

· · · , v
cpo
i+1v

cpo
i+1−lag − E[vcpoi+1v

cpo
i+1−lag]

]

,

umoms
i (κ, σ ) =

[
ui (κ, σ )powers
, ui (κ, σ )co.pow


]

.

In the first equation, pow denotes the highest power of volatility to be included in
the estimation. We will take pow = 2 or 3. In the second equation, we denote by
cpo the highest co-power. That is the power to which we will raise the volatilities.
If the parameter cpo = 0 then, by definition, there is no co-power term. In the last
equation, we stack the moments. The true moments are the unconditional moments
of the CIR process, which we take from Okhrin et al. (2022), and which depend on
the parameters of the process κ and σ . An implementation of the conditional and
unconditional moments can be found in a GitHub depository.2

With those definitions, we can introduce various estimation methods. To simplify,
we focus in terms of notation only on phase 2 estimates from GMM. By removing a
W in the label of the following methods, one obtains the phase 1 estimates.

gmmW denotes the estimate of the GMM as outlined above. In method gmm we use
the first four powers of the data, i.e., ui = [vi+1 − E[vi+1], v2i+1 − E[v2i+1], v3i+1 −
E[v3i+1], v4i+1 − E[v4i+1]]
. This corresponds to setting pow = 4 and cpo = 0.3

2 https://github.com/mrockinger/HigherMoments.
3 For faster estimation, we generated the explicit expression of the objective function using a symbolic
language (Mathematica).
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gmmW.c2.p3.l2 generates the minimum-distance estimator where we set the
power pow = 3, the copower cop = 2, and where we allow for up to 2 lags. All
moments combined, this estimation will involve 12 moment conditions.

gmmW.c3.p4.l6 generates the minimum-distance estimator where pow = 4,
cop = 2, and where we allow for up to 6 lags. This method will involve 46 moment
conditions.

In his book Iacus (2008) discusses how one can exploit orthogonality conditions
resulting from a linearization of the CIR process. This yields the following moment
conditions.

For model gmmW.1.c, we consider conditional moments and their orthogonality
conditions

ugmm.1.c
i (κ, σ ) = [

vi+1 − E
[
vi+1|Fi

]
, vi

(
vi+1 − E

[
vi+1|Fi

])
,

V
[
vi+1|Fi

] − (
vi+1 − E

[
vi+1|Fi

])2
,

vi

{
V

[
vi+1|Fi

] − (
vi+1 − E

[
vi+1|Fi

])2}]

.

The model gmmW.2.c augments the previous moment conditions by third moments.
We can write explicitly

ugmm.2.c
i (κ, σ ) =

[
ugmm.1.c
i , v3i+1 − E

[
v3i+1|Fi

]
, vi

(
v3i+1 − E

[
v3i+1|Fi

])]


Using the same logic model gmmW.3.c increments the previous model by fourth-
order moments. This can be written as

ugmm.3.c
i (κ, σ ) =

[
ugmm.2.c
i , v4i+1 − E

[
v4i+1|Fi

]
, vi

(
v4i+1 − E

[
v4i+1|Fi

])]

.

So far, we have been dealing with conditional moments. It is also possible to use
similar orthogonality conditions generated from unconditional moments. This yields
the first model gmmW.1.uc with moments as

ugmm.1.uc
i (κ, σ ) = [

vi+1 − E
[
vi+1

]
, vivi+1 − E

[
vivi+1

]
,

V
[
vi+1

] − (
vi+1 − E

[
vi+1

])2
,(

E

[
(vivi+1)

2
]

− E
[
vivi+1

]2) − (
vivi+1 − E

[
vivi+1

])2]
.

We can again extend this model by using third-order moments. Explicitly this gives
model gmmW.2.uc with as moments

ugmm.2.uc
i (κ, σ ) =

[
ugmm.1.uc
i , v3i+1 − E

[
v3i+1

]
, viv

3
i+1 − E

[
viv

3
i+1

]]
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As previously, we can extend the above by introducing fourth-order moments. This
gives us a model gmmW.3.uc written as

ugmm.1.uc
i (κ, σ ) =

[
ugmm.2.uc
i , v4i+1 − E

[
v4i+1

]
, viv

4
i+1 − E

[
viv

4
i+1

]]

.

With those various moment in mind, it is possible to generate moment conditions

gM (κ, σ ) = 1

M

M∑
i=1

umodel
i (κ, σ ).

Eventually, the parameter can be estimated using the objective function (6).
This concludes our list of moment-based estimates. Let us now turn to maximum

likelihood methods.

4.3 ML and pseudo-ML approaches

In the literature, several ML-type methods are available ranging from exact to some
approximation.ml.ex implements the exact likelihood. As already discussed in Zhou
(2001); Bollerslev and Zhou (2002); Andersen (2008) the evaluation of the exact like-
lihood requires evaluation of the noncentral chi-squared density. This in turn requires
evaluating a Bessel function, and a slow iterative process achieves this. In many cases,
this iteration fails to converge correctly.

As an alternative, Pseudo-ML approaches have been developed. Here, the true
transition density is replaced by another, simpler density. Mostly, this replacement is
based on some specific discretization of (3). For instance a transition density can be
obtained using an Euler discretization. Having two low-frequency points in time, say
s and t , with s ≤ t , let �LF = t − s, then after using a direct Euler approximation
of (3) one obtains, under the assumption of Gaussian innovations, the conditional
distribution

ṽt |ṽs ∼ N
(
ṽs + κ (θ − ṽs)�LF , σ 2ṽs�LF

)
. (7)

From this point onward, a ML procedure can be easily implemented; essentially it
boils down to OLS.We denote by ml.eu the Peusdo-ML approach based on an Euler
discretization of the original variance process.

A different branch of Pseudo-ML approaches is generated by local linearization.
Shoji and Ozaki (1998) linearize the drift term of (3). A justification of their method
and indications on how to implement it can be found in their paper and will not be
repeated here. Connected to these Pseudo-ML ideas, Pedersen (1995) presented a
simulated or in-fill likelihood method. This approach will make the approximation
error to the original distribution, which is naturally arising from any discretization,
arbitrarily small. This is done by isntroducing simulated observations between the
observed points in time. The efficiency of this method was discussed and further
improved by Durham and Gallant (2002). Additionally, several Quasi-ML approaches
are available. The difference between Pseudo- and Quasi-ML approaches is that in the
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latter, the target transition density is approximated rather than replaced by a closed-
form density based on some specific discretization approach to the original diffusion.
For example, Kessler (1997) uses an Ito-Taylor expansion while Aït-Sahalia (2002)
uses a Hermite expansion.

ml.sh will denote the estimates resulting from using the pseudo-ML method
proposed by Shoji and Ozaki (1998).

Since it is well-known that for small sample sizes, all of the discussed ML-related
methods tend to overestimate the value of κ , Phillips and Yu (2009) introduced a
Jackknife procedure to improve those estimates.4 Formally, let M be as above the total
number of filtered variance observations. We can split this sample into L consecutive
subsamples with 	 observations, that is M = �L × 	
. The jackknife estimator is then
defined as

ψ̂ jack = L

L − 1
ψ̂M −

∑L
i=1 ψ̂	i

L2 − L
,

where ψ denotes the parameter vector (κ , θ , σ ), ψ̂M the corresponding ML-type
estimator based on the complete sample and ψ̂	i the respectively chosen ML-type
estimator based on the i-th subsample of size 	. In a preliminary investigation we
found that L = ⌊

M1/7
⌋
seems to be an appropriate choice for partitioning the original

sample. In the case where one estimates the parameters ψ̂M and ψ̂	,i under constraints,
it is possible that the jackknife estimator provides an estimate beyond the constraints.
This is not astonishing since the goal of the jackknife method is to project parameters
into a region which is otherwise difficult to reach.

Since the jackknife method can be applied to various settings, we introduce the fol-
lowing acronyms: jk.ex is the jackknife procedure applied to the exact ML method,
ml.ex. jk.eu is the jackknife method applied to the ml.eu approach, which uses
the Euler discretization. And jk.sh finally, is the jackknife applied to the method
proposed by Shoji and Ozaki (1998) and therefore extends ml.sh.

Now that the estimation methods are defined, let us discuss the overall simulation
setting.

5 Simulation framework

5.1 Choice of parameters and choice of simulation algorithm

In Table 1 we present, for the volatility dynamic parameters θ, κ , and σ , estimates
that can be found in the literature. We also present the correlation parameter for cases
where the estimation is for the entire Heston model. The caption of the table provides
the references to where the parameters can be found.

We notice that the Feller ratio ranges from 0.02 to 653 and therefore covers an
extensive range of values. Out of the ten models presented in this table, five do not
satisfy the Feller condition. This important observation implies that research related
to the CIR process, be it theoretical, or about the discretization of this process, its

4 This issue is the same as estimating the autoregressive parameter of an AR(1) process, in particular when
the parameter is close to one (meaning that the AR(1) process is close to being an integrated, I(1), process).
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Table 1 Various parameter constellations found in the literature for various assets

Model
par 1 2 3 4 5 6 7 8 9 10

κ 0.500 0.300 1.000 6.210 2.000 5.300 0.013 0.026 0.200 0.240

θ 4% 5% 9% 2% 9% 24% 53% 2% 6% 3%

σ 1 0.9 1 0.019 1 0.38 0.0734 0.2155 0.0415 0.0269

ρ −0.9 −0.5 −0.3 −0.7 −0.3 −0.57 −0.58 −0.268 – –
2κθ

σ2 0.04 0.04 0.18 653.68 0.36 17.76 2.56 0.02 13.47 16.58

Models 1–3 are as in Andersen (2008), models 4–5 are as in Duffie et al. (2000). For stocks, model 6
is found in Pan (1999). Model 7 is in Andersen et al. (2002) for daily SP data, and model 8 is for daily
NASDAQ data and is obtained by Eraker et al. (2003). Estimates for models 9 and 10 are in Pan (1999) for
weekly interest rates and dividend yields. Here, the volatility dynamic (CIR process) is the focus instead
of log-returns. The ratio 2κθ/σ 2 defines the Feller ratio; values below 1 indicate that a process may come
close to 0 and stay there for significant time

simulation, and its estimation should all encompass the casewhere the Feller condition
is not satisfied.

We observe that a κ as small as 0.013 for SP500 returns implies a half life of
log(2)/κ of 53 days; thus that the volatility dynamic will be very persistent and that
for stock market data, by analogy with AR processes close to the unit root case, one
may expect in general difficulties in the estimations due to a bias.

Based on the values in Table 1 and since this parameter can be estimated easily just
using a mean (since it represents the long-run volatility), we decided to use two levels
of θ , namely 0.4 and 2. We select κ ∈ {0.5, 3.5, 7} and finally, pick σ ∈ {0.1, 2.05, 4}.
This allows for a collection of 18 combinations.

Let us now define the setup of the Monte Carlo study. There is a large literature
on how to simulate the Heston process. The methods range from simple Euler-type
linearizations to sophisticated exact schemes, see Kahl and Jäckel (2006); Broadie and
Kaya (2006); Lord et al. (2010); Glasserman and Kim (2011); Zhu (2011), and more
recently (Okhrin et al. 2022) which contains further references.

The difficulty in all those situations is to find a compromise between exact sampling
as in Broadie and Kaya (2006), which is, however, rather slow due to the necessity
to simulate from a Gamma distribution, and discrete approximations like the Euler
scheme, which is fast but less accurate, if the time step is relatively large. In the
following, we use the scheme proposed by Andersen (2008) with the correction for
skewness byOkhrin et al. (2022),which seems to be a good compromise, being fast and
accurate at the same time. An implementation may be found in a GitHub depository.5

5.2 Spot variance estimation quality

The first step in our empirical investigation is to discuss the estimation of spot variance.
To do so, we start our investigations by examining the quality of the estimates of (5)
using four different kernels. Those are a uniform kernel, as suggested in ART, as well

5 https://github.com/mrockinger/CIR-Heston-Simulation.
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Table 2 RMSE for the spot variance. We simulate 500 time-series of length 99,990 and obtain the RMSE
along each trajectory of the estimated spot variance and the actual variance

J = 100, Jgap = 10 J = 16, Jgap = 96

κ = 0.5 κ = 3.5 κ = 7 κ = 0.5 κ = 3.75 κ = 7

σ θ = 0.4 2 0.4 2 0.4 2 0.4 2 0.4 2 0.4 2

0.1 U 0.09 0.29 0.07 0.29 0.07 0.29 0.21 0.73 0.16 0.71 0.17 0.71

G 0.11 0.38 0.09 0.37 0.08 0.37 0.28 0.98 0.21 0.96 0.22 0.96

E 0.09 0.32 0.07 0.31 0.07 0.31 0.24 0.83 0.18 0.81 0.19 0.81

OS 0.18 0.63 0.13 0.62 0.13 0.62 0.45 1.53 0.33 1.50 0.32 1.49

2.05 U 0.37 0.77 0.27 0.64 0.25 0.60 0.66 1.54 0.44 1.15 0.40 1.08

G 0.43 0.91 0.30 0.74 0.28 0.70 0.80 1.93 0.49 1.36 0.44 1.28

E 0.39 0.82 0.28 0.68 0.26 0.64 0.72 1.70 0.46 1.23 0.42 1.16

OS 0.53 1.15 0.26 0.79 0.24 0.76 1.15 2.76 0.61 1.88 0.54 1.78

4 U 0.70 1.44 0.51 1.15 0.47 1.07 1.30 2.78 0.82 1.90 0.73 1.73

G 0.83 1.69 0.57 1.29 0.53 1.21 1.57 3.44 0.89 2.11 0.78 1.92

E 0.75 1.54 0.54 1.22 0.50 1.14 1.41 3.06 0.85 1.98 0.76 1.81

OS 1.02 2.03 0.46 1.16 0.41 1.06 2.27 4.77 1.06 2.68 0.90 2.38

We present the average of those RMSE. Letters U, G, E, and OS represent the following kernels: Uniform,
Gaussian, Epanechnikov, and One-Sided. The number of observations in the estimation windows is J . Each
observation window is separate from the other by Jgap observations. Bold font indicates the best average
estimate (the ranking involves all decimals)

as a Gaussian, Epanechnikov, and a One-Sided kernel. In the remainder, we will refer
to these weighting schemes as U, G, E, and OS.

For this comparison, we simulate from a general high-frequency sampling scheme
setting �HF = 0.001, which refers to roughly four observations per trading day.
Further, we will simulate a sample size of n = 99, 990, which is approximately
100 years of data. Such a large sample is required since we also want to discuss the
consequence of bucket size and distance between buckets as discussed in Sect. 3.

On the one hand, inspired by ART, we will set J = 100 and Jgap = 10 which
results in M = 909 and �LF = 0.11. This choice of J and Jgap corresponds to one
estimated variance observation per month and then waiting 2.5 days. Note that in this
aggregation setup, we are at the upper bound of an optimal J , which naturally causes
a relatively large �LF . Nevertheless, this is still near the optimal lower bound of ξ .

On the other side, corresponding to Bandi and Renò (2018), we will set J = 16 and
Jgap = 94. This corresponds to an estimation of volatility by sampling the variance
process for four days and then waiting for 23.5 days.

We report the average of the RMSE of the point-wise estimators. The RMSE is
the square root of the (L2) mean squared distance between the filtered and the actual
variance for every low-frequency point in time for each of the 500 samples and the
18 process parameter combinations. The results can be found in Table 2. Overall, one
can see that the RMSEs are naturally bigger for larger values of θ , the long-run mean.
Notice that the ratio of RMSE over θ also increases demonstrating that this increase is
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a genuine phenomenon. Also, the RMSE seems to be an increasing function of σ and
a moderate decreasing function of κ . Aggregation-wise, it seems that more significant
errors occur for the second setup, that is, when J is chosen smaller than Jgap.

In terms of the kernel, which represents an important choice for the following
estimations, the uniform kernel of ART dominates the other approaches except for
five cases out of 36, where the one-sided kernel leads to a smaller RMSE. Having
these results at hand, the overall conclusion is that the approach of ART, in terms of
averaging, kernel-wise as well as in terms of J and Jgap, delivers the best estimation
results. In the following, building on the conclusion of this preliminary investigation,
we will be using the uniform kernel to estimate spot volatility.

5.3 Analysis of the simulation

Apreliminary remark is thatwedonot report results for the estimation of themean level
θ , since this estimator was nearly unbiased for all considered parameter combinations
with only minor RMSEs.

We also try two ways of determining the starting values for these procedures: In the
first case, we set the starting values equal to the parameters estimated by the method
of ART. In the second case, we draw starting values for κ, σ as U (0.01, 10) that is as
a uniform distribution with a range of 0.01 up to 10. For each set of parameters, we
draw 10,000 starting values and perform for each set the estimation. Eventually, we
retain the ten best estimates based on the value of the objective function, for which we
run a final BFGS optimization routine. The objective of this procedure is to capture as
many local minima as possible and then retain as a final estimate the overall minima.
We will refer to the latter procedure by suffixing an ‘.rs’ (for random starting value)
to the original method’s abbreviation.

At this stage, we wish to discuss the results of the estimation on simulated data. All
the estimations were done in R, with the optimizer set to use the BFGS algorithm. The
lower boundaries of the parameters were set to 0.01 and the upper boundaries to 10.
Together we have 18 parameter sets as stated in Sect. 5.1, there are 19 basic estimation
methods, and in addition, we experimented with random starting values.

Some methods, like ART, deliver directly parameters, by construction. Thus, for
this model, the estimator is not based on a numerical optimization and since there is
no starting value, we also do not need to experiment with random starting values.

Other methods like the jackknife combine estimations from sub-samples and there-
fore the choice of starting values is less relevant. Altogether, this generates some
18 × 32 = 576 models. We also ran those models either on spot variance processes
or the corresponding true volatility, sampled on the low frequency. This doubles the
model estimations. Each model simulation involves 500 samples with n = 99, 990
observations. The resulting estimation study is, therefore, a demanding task, for which
we used a dedicated server with 48 cores.

Our programs return for each of the models the root mean square error (RMSE) and
a count of the number of times an estimation succeeded.We consider that an estimation
succeeded when all the parameters remained within their respective boundaries. The
analysis of those 576 × 2 estimations can therefore be viewed as a data analysis that
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we are going to discuss presently.6 We structure our discussion as follows. First, we
will inspect graphically the objective functions obtained from a random draw. Next,
we present for all models the number of times we had a convergence out of these
500 simulations, and will eventually select all those models where the number of
conversions exceeds a certain threshold.

Once we have selected models that converge sufficiently often, we will ask if for
certain parameter constellations, the parameter estimates are better or worse than for
others. The intuition why certain parameter constellations could be worse than others
comes from the fact that in some instances the Feller condition does not hold. If this
is the case, we have observed graphically that volatility can come close to zero and
remain there for a long time. Then, one fits a model on a series of data containing lots
of zeros resulting in poor estimates.

Similarly, we can neglect the parameters and focus on the overall RMSE for a given
model. This will allow us to rank the various models and to select, at least in theory,
the best model.

As discussed, let us start by graphically comparing the objective functions for a
random draw.

5.3.1 Inspection of the objective function

In Figure 1, we display the profiles of the objective function of several GMM and
ML methods. We have chosen θ = 0.4, κ takes as value 0.5 and σ is set to 4. This
corresponds to a situation where the Feller ratio equals 0.15 and, therefore, where
the Feller condition is not satisfied. The sample is purely random, and the presented
figures reflect a scenario where the estimation complexity is initially unknown.

Those plots contain the true parameters as a big red dot. The blue diamond is
the ART estimation. The red star denotes the estimation when we use perform several
thousand estimations with random initial parameters. The legend in the figure presents
other methods.

As those plots reveal, the minimum of the objective function can lay relatively far
away from the true values. This is due to the finite sample size of the simulation. Next,
we inspect the shape of the objective functions. If we focus on gmmW.c2.p3.l2
we notice that the objective function can take elongated banana-shaped forms. This
is reminiscent of the Rosenbrock function, a textbook case of a difficult-to-optimize
function. Similarly, when we switch to the ML-based methods, we notice that the log-
likelihood function can be either extremely flat as it is for the exact ML method. For
the Euler or local-linearized (Shoji and Ozaki 1998) type methods, the log-likelihood
maximum is somehow squished to the domain’s boundary. Thus, given the shape of
the objective function, there is no chance for even the best opimizers to converge to
the true values.

In this figure, we also present the estimates obtained by the deterministic ART
model. We also perform a grid-based research of the optimum instead of a numerical
optimization. As the estimates demonstrate, we are confronted with a rather compli-
cated situation. Given the shape of the objective function, it will be a daunting task

6 In an online Appendix the interested reader can find the outputs from those runs.
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Fig. 1 Objective functions for the estimation methods given the parameters κ = 0.5, σ = 4.0 and θ = 0.4.
In this setting, the Feller condition is not satisfied. The simulated series are of length 99,990. The red dot
is the true value. We notice huge differences in the shapes of the objective functions

to find a satisfactory estimate whatever the estimation method used. This observation
will follow us along in the remaining discussion of this paper.

Let us presently turn to discussing the convergence properties of the variousmodels.

5.3.2 Methods retained based on convergence

In the following analysis, we select a given set of parameters (κ, θ, σ ), perform 500
simulations, and count the number of converged simulations. In Table 3, we display
on the left side the results of the estimations when we use as starting values of the
estimations the parameter estimates produced by ART’s method, and in the right part
when we use the ‘.rs’ scheme described above.7

7 In some rare cases when ART failed to generate finite numbers, we set arbitrarily κ = 2 and σ = 1 as
starting values.
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Table 3 We present the selected estimation methods along with their acronyms and provide statistics on
the number of convergences achieved during the numerical optimizations

fix starting values random starting values

model min mean max model min mean max

gmmW 276 488 500 gmm.rs 500 500 500

gmm 299 486 500 gmmW.rs 500 500 500

ml.sh 0 471 500 ml.sh.rs 0 476 500

art 2 471 500 gmm.c2.p3.l2.rs 0 476 500

gmmW.2.c 212 470 500 gmmW.2.c.rs 226 471 500

gmmW.3.c 106 468 500 gmmW.3.c.rs 182 469 500

gmm.c3.p4.l6 110 466 500 gmmW.1.uc.rs 48 459 500

gmm.c2.p3.l2 0 465 500 gmmW.1.c.rs 21 457 500

gmmW.1.c 21 458 500 gmmW.c2.p3.l2.rs 0 446 500

gmmW.c3.p4.l6 0 457 500 ml.eu.rs 0 443 500

jk.sh 0 457 500 gmmW.3.uc.rs 116 426 500

gmmW.1.uc 18 456 500 gmmW.2.uc.rs 116 410 500

gmmW.c2.p3.l2 0 451 500 ml.ex.rs 0 19 482

ml.eu 0 443 500

jk.eu 0 434 500

gmmW.3.uc 117 421 500

gmmW.2.uc 115 408 500

jk.ex 0 15 252

ml.ex 0 14 249

In the left part of the table, we initialize the parameters using parameter estimates resulting from Azencott
et al. (2020). In the right part, we estimate the model with random starting values and retain the best fitting
model. Heston’s model is simulated 500 times for a given set of parameters. A set of parameter estimates
results for each of those 500 simulations unless the algorithm hits boundaries or does not converge after a
predetermined amount of iterations. Min, average, and max indicate the number of minimal, average, and
maximal number of convergencies across all sets of parameters. We consider that an estimation converged
if the resulting parameters did not hit the upper or lower boundaries which needed to be incorporated in the
numerical optimizations to ensure convergence

If we focus on the left part, themethod resulting in the highest average convergences
is gmmW (across all parameter combinations) closely followed by gmm. For gmmW,
we notice that across all parameter sets, in the worst constellation, 276 estimations
converged. On average, 489 converged. For some parameters, convergence occurred in
all 500 simulations. It is interesting to notice that addingmore lags and thus information
to theGMM, such as in gmm.c2.p3.l2 does not necessarily lead to better estimates.
Adding complexity thus does not seem to help to get good estimates. It seems to help
to use the structure of a process as much as possible, for instance, measuring how
two consecutive observations are linked via their conditional distribution. This can
explain the relative success of the gmmW.2.c and gmmW.3.c methods, which use
conditional information instead of unconditional one.
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At the bottom of the Table 3, we find the exact ML estimation, ml.ex. Since this
method has difficulties converging, see Zhou (2001); Bollerslev and Zhou (2002), it
does not come as a surprise that the jackknife method jk.ex, which is a portfolio of
ML estimations, fails also. For the ML-based methods, one can conclude that ml.sh
seems preferable to ml.eu. Those findings align with the literature, see, for example,
Durham and Gallant (2002).

When we turn to the RHS of the Table 3, we notice that for certain methods at
the top of the table, the use of random starting values permits obtaining more conver-
gences than in the deterministic starting-value case. For the models in the lower part
of the table, using random starting values improves the number of convergences only
marginally if at all.

At this stage, we decided to reduce the number of models by eliminating those
where across all parameter values, there were fewer than 90% successful estimations
on average, out of the 500 possible ones. This led to the elimination of 6 models:
gmmW.2uc, gmmW.3uc, ml.ex, jk.ex, ml.eu, jk.eu.

By eliminating those models, we obtain parameter estimates that are not on the
boundaries, and, therefore, we can investigate the parameters themselves. One obvious
question is if all parameter sets can be estimated with the same ease or if there are
settings where it is more difficult to find correct estimates.

5.3.3 Are some parameters more complicated to estimate?

Across estimation methods, we address the issue if there are constellations of param-
eters where the estimation is more complicated? This investigation is important since
it demonstrates that it will be more challenging to estimate some or all the parameters
for some parameter combinations, and this will not depend on the method used.

To formally investigate this issue, we regress the root mean squared error of the
estimations on the parameters as in:

RMSE(x̂)i = β0 + βθθi + βκκi + βσ σi + βVolT IVolT ,i + βFeller log(Feller)i + ui .

Here, i runs over all methods and all parameter constellations.8 IVolT is a dummy
variable indicating if we estimate the parameters on the actual variances, in which
case it takes the value 1, or if we use spot volatility in which case its value will be 0.
Thus, VolT denotes the volatility type.

The estimates of this model are found in Table 4.We first notice that the parameter κ
and σ tend to be less well estimated than θ . Intuitively, if κ is underestimated, meaning
that the process is closer to being integrated than it theoretically is, the volatility will
also be large. The parameter βVolT in that table is slightly negative but insignificant.
This important result demonstrates that if it is difficult to obtain reasonable estimations,
it is not because of the bad estimation of volatility but because the available estimation
methods have difficulties finding the correct parameters.

We notice that βθ is insignificant for the estimation of θ and κ . However, higher
levels of θ yield better estimates of the σ , the variability of the variance process.

8 For this exercise we used the deterministic starting values.
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Intuitively, if θ is large, the process will evolve far from zero, and it will be more
difficult for the process to come to the neighborhood of zero, which might result in
a pathological trajectory. The parameter βκ is slightly significant for the RMSE of θ̂

and σ̂ but not of its value κ . A larger value of κ represents faster mean reversion of
the process, implying that the processes oscillate more around the mean and, thus, θ
should be better estimated. With a better mean estimation, the volatility of volatility
should also be better estimated. Those are all well-known features from estimating
processes close to I (1).

The parameter βσ is always positive and highly significant for κ̂ and σ̂ , except
for θ̂ where it is significantly only at the 5% level. More variability in the dynamic of
variance, becauseσ is larger,will translate into aworse estimation of all the parameters.
The intuition is that for larger σ , the process comes closer to 0, in which case the
trajectory may become pathological and estimating the parameters more difficult.

In the following three columns of Table 4, we introduce in addition the Feller ratio.
As the coefficient βFeller shows, this addition does not matter for the estimations
beyond the information already provided by the parameters. Only for κ̂ does a larger
Feller ratio lead to a larger RMSE. The coefficient of determination remains, however,
very small.

Having concluded this investigation, we will investigate the best functioning model
regarding overall RMSE.

5.3.4 Horse-race of models

Table 5 presents the various remaining estimation methods and indicates the overall
RMSE. In the left part of each pair of columns, we indicate the value of the RMSE.
In the right part, we show the rank of the model. Rank 1 is the model with the overall
smallest RMSE. The columns labeled ‘actual vol’ are less representative of a real-life
application since the true variance process is unknown.

We notice that the jackknife method of Shoji and Ozaki (1998), namely jk.sh is
ranked first in terms of smallest overall RMSE, followed by the maximum likelihood
estimate ml.sh. However, on actual variance data, ml.sh would seem less suc-
cessful. Concerning the GMM methods, no clear winner emerges. In their simulation
(Bollerslev and Zhou 2002) report very good estimates for GMM estimates. Their
processes satisfy the Feller condition and may be easier to estimate.9

While being very quick, the method by ART is also on the podium with a third
place for the estimation of κ . It is 6th out of 12 for σ . We also notice that the best
RMSE for κ is 0.92, which is about three times larger than the best estimate of σ ,
emphasizing the difficulty of measuring this parameter correctly.

As we could expect from our discussion of the objective functions in Figure 1, it is
generally challenging to estimate the parameters of the volatility process. No method
uniformly dominates all the other methods. So, whichmodel should one retain?Model
art is the fastest since it does not require numerical optimization. Its average RMSE
remains similar to the ones obtained by the best model, namely 1.01 versus 0.92 for κ

9 Their scenarios are {κ, θ, σ } taking the sets of values (0.03, 0.25, 0.1), (0.1, 0.25, 0.1), and (0.1, 0.25,
0.2) with associated Feller ratio 1.5, 5, and 1.25.
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Table 5 Which model performs best? We split the estimations according to κ and σ and the estimation
method

κ σ

spot vol. actual vol. spot vol. actual vol.

average rank average rank average rank average rank
method RMSE est RMSE est RMSE est RMSE est

art 1.01 3 1.33 8 0.41 6 0.34 3

gmm 1.38 9 1.33 9 0.45 7 0.38 6

gmm.c2.p3.l2 1.27 7 1.21 7 0.47 9 0.40 8

gmm.c3.p4.l6 1.52 11 0.89 3 0.33 5 0.60 11

gmmW 1.11 4 1.15 6 0.46 8 0.43 9

gmmW.1c 1.18 6 1.13 5 0.63 11 0.39 7

gmmW.1uc 1.75 12 0.83 2 0.54 10 0.80 12

gmmW.2c 1.14 5 1.65 12 0.31 3 0.34 4

gmmW.3c 1.39 10 1.40 10 0.86 12 0.36 5

gmmW.c3.p4.l6 1.34 8 1.01 4 0.27 1 0.31 2

jk.sh 0.92 1 0.82 1 0.33 4 0.25 1

ml.sh 0.92 2 1.47 11 0.28 2 0.52 10

We then present the average RMSE of the parameter estimates for all the models investigated. We also
stratify the estimation results based on whether actual volatility or estimated spot volatility was used. Each
group of estimates gets ranked. For instance for the estimation of κ on estimated spot volatility, jk.sh
produced the smallest RMSE and gets therefore the rank 1. The models are sorted according to alphabetical
order

and 0.41 versus 0.28 for σ . It is for those reasons that we use model art to generate
starting values for the estimations involving iterative methods (besides the involved
‘.rs’ random starting value approach).

At this stage, we have discussed the difficulties in estimating the parameters from
the variance process. It is time to discuss the estimation of the remaining parameters of
themodel. There is themean of the returns and the correlation between the innovations,
ρ. The mean is easy to obtain, with the usual caveat that means of log-returns tend to
be unstable, but the estimation of correlation is more involved.

6 Conclusion

In this paper,wemodel and sample spot variance by combining twodominant strategies
of the literature:Thekernel-basedmethod introducedbyKanaya andKristensen (2016)
and the bucket approach presented inBandi andRenò (2018) andAzencott et al. (2020)
(ART). First, we perform a broad Monte Carlo study, investigating the impact of the
aggregation level on the estimator on the one hand and the goodness of four different
kernels on the other side. Overall, we find that the aggregation level should be chosen
as high as possible, thus one should use as many high-frequency observations given in
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one low-frequent time interval as possible. Weighting-wise, we found that the uniform
kernel of ART performs best.

Next, we discuss several ML-, MM- and GMM-type parameter estimation
approaches within the framework of Heston’s stochastic volatility model. We pro-
pose a novel GMM-type estimator involving moment conditions that utilize higher
(un)conditional (co)moments of the spot volatility. In a second Monte Carlo study, we
analyze the performance of those estimation methods on actual variance realizations
and on spot variance estimates. For a situation where the characteristics of the data
are not known, either the method of ART or of Shoji and Ozaki (1998), possibly in a
jackknifed version should be best. We can also conclude that using higher moments
in the general GMM procedure does not give better estimation results in most cases
but increases the estimators’ RMSE.
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