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Abstract
Aerial drone delivery has great potential to improve package delivery time, as 
drones can fly autonomously over obstacles at a possibly higher speed than trucks. 
The benefits of drones in delivery can even be increased in a truck-and-drone tan-
dem where a truck carries multiple drones and releases them at advantageous places, 
i.e., the traveling salesman problem with multiple drones (TSPmD). We focus on 
a general version of this problem with makespan minimization, where the drones 
have two options after serving the customer: they can return to any node the truck 
visits at a later stage (sidekick) or return to the same node they were launched from 
(loop)  —  even at the depot. We introduce an efficient two-indexed mixed-integer 
linear program (MILP) for this TSPmD and show how to adapt the MILP to cover 
two problem variants, namely the multiple flying sidekick traveling salesman prob-
lem and the traveling salesman problem with drone. Our MILP formulation is an 
efficient formulation, as it outperforms eight state-of-the-art MILP formulations for 
these problem variants in nearly all larger instances. In a numerical study, we pro-
vide new optimal solutions with up to 28 nodes for benchmark purposes. Moreover, 
we analyze the impact of allowing drone loops on makespan minimization in gen-
eral and at the depot. We find that loops mainly become relevant when drones travel 
faster than trucks, resulting in average makespan savings of up to 2.7%.

Keywords Unmanned aerial vehicles · Routing · Last-mile delivery · Mixed-integer 
linear program · Benchmark instances
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1 Introduction

Parcel delivery via aerial drones is much considered in academia (e.g., Murray 
and Chu 2015) and also in practice (e.g., Gartner 2016) as drones can increase the 
delivery speed (e.g., Murray and Raj 2020). The benefits of drones can even be 
increased when a truck releases the drones at advantageous places to serve cus-
tomers. This problem was initially introduced by Murray and Chu (2015) under 
the name flying sidekick traveling salesman problem (FSTSP) and investigated 
by many publications (e.g., Ha et  al. 2018). In the FSTSP, drones have to per-
form a sidekick, meaning they return to a node the truck visits at any later stage 
in its tour (see Fig.  1a). This is contrasted by drones performing loops, which 
means that they return to the same node they are launched from (see Fig. 1b). We 
call the problem when a drone launched from a mobile truck may perform both 
sidekicks and loops traveling salesman problem with drone (TSPD) and trave-
ling salesman problem with multiple drones (TSPmD) if the truck is equipped 
with multiple drones. Only a few publications consider loops, thereby (Schermer 
et al. 2019) already found that drones perform loops in the final found routing if 
these are allowed. As truck-and-drone tandems are challenging to solve and only 
a few publications consider loops, the following question arises: How high is the 
impact of additionally considering loops on minimizing the total delivery time 
and, in contrast, how much effort (in terms of runtime increase) does it take?

In this paper, we introduce a general version of the TSPmD with sidekicks 
and loops while minimizing the makespan. The general version means that drone 
flights are not restricted by limitations that are not set physically (e.g., an endur-
ance limit), i.e., in our version, drones can launch and return to any truck’s node 
and even perform loops at the depot. These depot loops are, for example, not con-
sidered by Tiniç et  al. (2023). This problem is not represented in the literature, 
and thus, the literature also lacks suitable benchmark instances. We fill this gap 
and introduce a compact and efficient two-indexed mixed-integer linear program 
(MILP) formulation of this TSPmD. Moreover, we show how to adjust this MILP 
to cover the well-known variants multiple flying sidekick traveling salesman 
problem (mFSTSP) and the TSPD. The MILP formulations for the TSPmD and 
the two problem variants are easily implemented and outperform in total eight 
state-of-the-art MILP formulations for these problem variants, i.e., they find the 
optimal solution faster. As a result, the MILP allows us to present optimal solu-
tions with up to 28 nodes for all three problems for benchmark purposes. In a 
numerical study, we analyze the impact of allowing drone loops on minimizing 
the makespan and the runtime of a MILP solver. Moreover, we analyze the impact 

Fig. 1  Illustration of drone routes
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of loops performed at the depot and conduct an a-posteriori cost analysis to show 
the impact of loops on last-mile delivery costs.

This paper contributes to the literature as follows First, we introduce a general 
version of the TSPmD with makespan minimization. Second, we present an efficient 
MILP formulation with only two-indexed variables and adjust the MILP to cover 
the well-known problem variants mFSTSP and TSPD. We benchmark our MILP to 
four MILP formulations for the mFSTSP (three with three drones, one with a single 
drone) and four MILP formulations for the TSPD and find that our MILP formula-
tion outperforms all of them in larger instances. Third, we present new optimal solu-
tions for the TSPmD, the mFSTSP, and the TSPD for the instances of Murray and 
Chu (2015) and Bouman et al. (2018) for up to 28 nodes for benchmark purposes. 
Fourth, we present managerial insights on allowing drone loops in general and spe-
cifically performed at the depot - also including an a-posteriori cost analysis.

The structure of this paper is as follows. In Sect.  2, we describe the decisions 
and assumptions in detail. In Sect. 3, we present the relevant literature and delimit 
our problem setting and methodology to this literature. Next, we introduce the 
MILP in Sect. 4. We show how to adjust the MILP to cover the problem variants 
mFSTSP and TSPD in Sect. 5. In Sect. 6, we describe the instances for which we 
present benchmark results, analyze and benchmark the runtime, and give managerial 
insights on allowing drone loops. Last, in Sect. 7, we summarize the results and give 
a brief outlook.

2  Problem setting

We decide on the routing of one truck and its equipped multiple homogeneous 
drones that need to visit certain nodes, i.e., customers. Additionally, we decide if a 
customer is served by truck or by drone. For this, we minimize the makespan, i.e., 
the time until the last vehicle has returned to the depot, starting with the first release 
at time zero. The peculiarity of the considered problem setting is that we consider 
multiple drones, and these can perform both sidekicks and loops - even at the depot. 
Additionally, we make the following assumptions:

• Traveling times of the truck and the drones generally differ, and thus, different 
speeds and distance metrics can be considered.

• The truck has an unlimited capacity. It follows that all customers can be served 
by truck in one tour, and also the number of drones carried by the truck is unre-
stricted. This unlimited number of drones is also considered by (e.g., Tiniç 
et al. 2023). We show how to limit the number of drones in Sect. 5.3, but at the 
expense of allowing a single loop per node.

• Multiple drones can launch or land at the same time (e.g., Rave et al. 2023), i.e., 
we consider unlimited launch and return platforms. This might be a limitation to 
the proposed MILP formulation.

• Drones have an endurance limit, i.e., maximum flight time per flight.
• Assumptions regarding customers (e.g., Murray and Chu 2015):
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• All customers must be served once by truck or by drone.
• Some customers cannot be served by drones, but all by truck.
• A drone can serve one customer per trip and has to return to the truck after-

wards.

• Assumptions regarding synchronization:

• If drones return to a node, the truck continues its tour at this node as soon as 
all returning drones have landed.

• Drones must be picked up by the truck within a certain time (e.g., Murray and 
Chu 2015; Rave et al. 2023). This allows to avoid unrealistic routes where the 
drone has to wait for almost the complete truck’s tour at a node, for example, 
at the end of the tour. From a practical point of view, we assume that drones 
reduce their speed to a certain extent when arriving at a node before the truck, 
following the drone must be picked up within its endurance limit.

• Drones only return to the truck at a node the truck visits. This node must be 
the same node they are launched from (loop) or a node the truck visits later in 
its tour (sidekick).

• There may be multiple loops at each node.
• Drones can perform loops at the depot. Without loss of generality, these are 

performed at the end of the truck’s tour, which results in waiting times at the 
end of the tour (e.g., Dell’Amico et al. 2021). Note that in contrast to the liter-
ature, a solution might be that all customers are served by drones that perform 
a loop at the depot, and thus, the truck does not leave the depot provided that 
all customers can be served by drones and are in endurance range.

• There are no service, preparation, or rendezvous times for trucks and drones.
• We do not consider loading or battery change times for drones as this could be 

done while the truck is traveling (e.g., Rave et al. 2023). However, we show how 
to add manual battery change times to our MILP formulation.

• For benchmark tests and further analysis, we consider the following two problem 
variants:

• mFSTSP: We limit the number of drones to m and prevent drones from per-
forming loops.

• TSPD: We limit the number of drones to one.

2.1  Exemplary routing plan

For a better understanding of the problem setting, Fig. 2 presents an example routing 
of the truck and its equipped drones serving ten customers. Customers ( C1,...,C10 ) 
are numbered in the order of serving. Starting at the depot, C1 is served by the truck 
first, where one drone is launched to perform a sidekick to serve C2 . The truck and 
the drone meet again at C3 , where a second drone performs a loop and serves C4 . 
Note that the truck continues its tour as soon as both drones have returned from 
serving C2 and C4 . Next, the truck serves customer C5 and launches a drone to per-
form a sidekick to serve C7 . Note that the drone can return to any node, the truck 
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visits at a later stage as long as the flight time is within the endurance limit. At C6 , a 
second drone is launched to perform a sidekick to serve C8 . Both drones return to the 
truck at C9 . The truck and its drones return to the depot afterwards, where again, one 
drone is launched to serve C10 in a loop. The tour is finished as soon as this drone 
returns. Thus, the truck waits at the depot for the drone to return.

3  Related literature

In this section, we differentiate this paper from the relevant literature regarding 
truck-and-drone tandems, where one or multiple trucks are equipped with at least 
one drone. We mainly focus on literature that includes a MILP formulation without 
complex assumptions that are not considered in our problem setting, e.g., battery 
consumption. First, we present the literature where drones only perform sidekicks, 
and second, we present the literature where drones can perform both sidekicks and 
loops. Last, we present further variants of truck-and-drone tandems. We recommend 
the paper of Otto et al. (2018) for an extensive review of drone operations and Boy-
sen et al. (2021) for a more recent literature review.

3.1  Sidekicks

The FSTSP is initially introduced by Murray and Chu (2015) who present a three-
indexed MILP formulation with makespan minimization, which has difficulties to 
be solved to optimality if instances with eleven nodes are considered. As a result, 
Dell’Amico et  al. (2021), Freitas et  al. (2023), Yu et  al. (2023) and Boccia et  al. 
(2023) introduced improved modeling approaches, which accelerate a standard 
solver. Boccia et  al. (2023) additionally introduce a branch-and-cut approach that 
outperforms their MILP formulation. Further, multiple publications consider close 
problem settings with either a different objective or extensions like an increased 
number of trucks or drones. So, Murray and Raj (2020) introduce the mFSTSP, 
where the truck is equipped with multiple drones. Multiple drones are also consid-
ered by Seifried (2019), Cavani et al. (2021), Dell’Amico et al. (2021) and Tamke 

Fig. 2  Exemplary routing plan for ten customers served by a truck and its equipped drones
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and Buscher (2021) additionally consider multiple trucks. The authors present a 
MILP formulation, and Cavani et al. (2021) and Tamke and Buscher (2021) also an 
exact method based on a branch-and-cut algorithm. Ha et al. (2018) (single truck) 
and Sacramento et al. (2019) (multiple trucks) focus on cost minimization and pre-
sent both a MILP and heuristic solution approaches. Moshref-Javadi et  al. (2020) 
consider an objective that minimizes the customers’ waiting times, which equals a 
makespan minimization but without consideration of the vehicles’ return times to 
the depot.

3.2  Sidekicks and loops

There are only a few publications considering both sidekicks and loops. However, 
Schermer et al. (2019) show that the final found routing might include drone loops 
as well. The authors analyze  —  among other things  —  the number of loops and 
sidekicks performed in a truck-and-drone tandem with multiple trucks and drones. 
Drones’ speed was found to be a significant influencing factor on performed loops. 
Tiniç et al. (2023) propose two MILP formulations and a branch-and-cut approach 
and analyze — among other things — the impact of loops on the objective of cost 
minimization if the truck is equipped with an unlimited number of drones. The 
authors find that allowing drones to perform loops can significantly reduce routing 
costs. However, an analysis of the impact of minimizing the makespan when per-
mitting loops, especially at the depot, is missing. Moreover, the authors have cer-
tain assumptions that restrict drone flights, e.g., drones are not permitted to perform 
loops at the depot.

Dell’Amico et al. (2021) derive multiple benchmark results for the instances of 
Murray and Chu (2015) for different drone settings, including loops, considering 
a single drone. Schermer et al. (2020), Roberti and Ruthmair (2021), El-Adle et al. 
(2021) and Dell’Amico et al. (2022) present two-indexed formulations of a TSPD. 
While Schermer et al. (2020) additionally introduce an exact brach-and-cut approach 
and Roberti and Ruthmair (2021) a branch-and-price approach that are capable of 
solving larger instances, El-Adle et al. (2021) accelerate the solver by adding upper 
and lower bounds by, e.g., starting with an initial solution that is generated by a 
greedy insertion heuristic and additionally assess the data in a pre-processing step 
to reduce the number of possible drone arcs. Dell’Amico et  al. (2022) present an 
enhanced 2-indexed MILP formulation and outperform state-of-the-art MILP for-
mulations from the literature, e.g., Roberti and Ruthmair (2021). Wang et al. (2017) 
analyze potential makespan savings by drones and derive multiple worst-case 
results. Considering multiple drone delivery options, Rave et al. (2023) present both 
a MILP formulation and heuristics solution approach for a problem setting where 
drones may launch from trucks and additionally from the depot or microdepots.

3.3  Variants of truck‑and‑drone tandems

Karak and Abdelghany (2019) and Moshref-Javadi et  al. (2020) evaluate truck-and-
drone tandems where the truck does not serve customers but only launches drones at 
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advantageous places to perform loops. Salama and Srinivas (2020) extend this prob-
lem by additionally allowing the truck to serve customers. Chang and Lee (2018) also 
only consider drone loops and set the drone launching spots flexible by making use of 
the k-means clustering algorithm. The truck routing is determined by solving the TSP 
in a second step. Agatz et al. (2018) (single drone) and Morandi et al. (2023) (multi-
ple drones) consider a variant where drones have the possibility of retraversing arcs. In 
addition, Morandi et al. (2023) allow drones to visit multiple nodes per trip. This is also 
considered by Poikonen and Golden (2020), who additionally take the drones’ energy 
consumption into account. Kitjacharoenchai et al. (2019) and İbroşka et al. (2023) con-
sider a multiple TSPD problem where the assumption that a drone might only return to 
the same truck is relaxed, and thus, drones can return to a different truck. On the con-
trary, the number of drone flights is restricted by considering at most one launch and 
return per node, and loops may be only performed at the depot. If a loop is performed 
at the depot, the drone is excluded from the truck’s tours.

3.4  Differentiation to the literature

Table 1 summarizes the major assumptions, the objective, the largest number of varia-
bles’ indices in the MILP formulation, and the largest instance size (including the depot 
once) solved to optimality with the MILP formulation and with other exact method if 
introduced. The literature of paragraph ”Variants of truck-and-drone tandems” is not 
included due to the large difference of the problem setting.

Our problem setting major differs from the literature by the unrestricted number of 
drones, the objective, and the general flight settings of drones, i.e., we also take drones 
performing loops at the depot into account. As a result, our problem setting is the most 
general TSPmD formulation so far.

From a methodological point of view, our MILP is the only one that has two-
indexed variables while considering drone loops and multiple drones. There are four 
two-indexed formulations for the TSPD (El-Adle et  al. 2021; Schermer et  al. 2020; 
Roberti and Ruthmair 2021; Dell’Amico et al. 2022) and one publication with a two-
indexed formulation for the mFSTSP (Seifried 2019). Moreover, we can solve instances 
with the largest number of customers without any pre-processing steps or lower and 
upper bounds.

The truck-and-drone tandem presented in this paper extends the one of Rave et al. 
(2023). In contrast to their paper, we minimize the makespan, have additional assump-
tions (e.g., we consider the return time of drones to the depot), and an enhanced mod-
eling version of some constraints accelerating the runtime of the solver.

4  Two‑indexed TSPmD formulation

In this section, we present the MILP formulation for the TSPmD. First, in Sect. 4.1, 
we describe the proceeding of creating the two-indexed formulation. Second, in 
Sect.  4.2, the used index sets, parameters, and variables are introduced. Third, in 
Sect. 4.3, the MILP formulation is presented.
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4.1  Proceeding of two‑indexed formulation

A full flight of a drone can be interpreted as a three-node sortie (i, c, j) including the 
launch node i, the served customer c, and the landing node j (Murray and Chu 2015), 
and thus consisting of the outbound flight to the customer and the return flight to the 

Table 1  Comparison of the relevant literature on truck-and-drone tandems

Note that each publication listed considers drones performing sidekicks. ∗ The authors added lower and 
upper bounds and a pre-processing step before running the MILP, ∗∗ no drone loops allowed at the depot, 
∗∗∗ drone loops allowed at the depot, but the drone is then excluded from its truck’s tour

Assumptions Objective Instance size

# Trucks # Drones 
(per 
truck)

Loops Costs Makespan # 
Variables’ 
indices

MILP Other 
exact 
method

Murray and Chu 
(2015)

1 1 ✓ 3 –

Ha et al. (2018) 1 1 ✓ 3 11
Dell’Amico et al. 

(2021)
1 1 ✓ 2 14

Freitas et al. (2023) 1 1 ✓ 5 11
Boccia et al. (2023) 1 1 ✓ 3 20 40
Yu et al. (2023) 1 1 ✓ 3 11
Sacramento et al. 

(2019)
n 1 ✓ 3 13

Seifried (2019) 1 m ✓ 2 14
Murray and Raj (2020) 1 m ✓ 4 9
Moshref-Javadi et al. 

(2020)
1 m 4 10

Cavani et al. (2021) 1 m ✓ 3 25 25
Dell’Amico et al. 

(2021)
1 m ✓ 3 11

Tamke and Buscher 
(2021)

n m ✓ 5 9 30

El-Adle et al. (2021) 1 1 ✓ ✓ 2 32∗

Dell’Amico et al. 
(2021)

1 1 ✓ ✓ 3 11

Roberti and Ruthmair 
(2021)

1 1 ✓ ✓ 2 10 40

Dell’Amico et al. 
(2022)

1 1 ✓ ✓ 2 20

Schermer et al. (2020) 1 1 ✓ ✓ 2 20 20
Tiniç et al. (2023) 1 ∞ ✓∗∗ ✓ 3 13 20
Wang et al. (2017) n m ✓ ✓

Schermer et al. (2019) n m ✓
∗∗∗ ✓ 3 11

Rave et al. (2023) n m ✓ ✓ 3 15
This paper 1 ∞ ✓ ✓ 2 28
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truck. To formulate it mathematically using only two-indexed variables, the drone’s 
flights are split up into two variables instead of one: one for the outbound �⃗yi,c and 
one for the return flights �⃖yc,j and these flights are matched in the constraints (e.g., 
Dell’Amico et al. 2021).

Considering multiple drones per truck, typically an index set for vehicles is intro-
duced (e.g., Murray and Raj 2020), which is, however, not necessary, i.e., the drone 
routing can be formulated without the index set for vehicles. Each drone flight can 
be defined over the same variables �⃗yi,c and �⃖yc,j with a flow formulation (Seifried 
2019), instead. On the contrary, it should be noted that an index per vehicle allows 
the use of heterogeneous vehicles.

To also include loops in the MILP, which only affect the truck’s waiting time, a 
variable for the truck’s waiting time �i,j is defined with two indices. �i,j determine 
the truck’s waiting time at node j for each node i where a drone is launched, and thus 
the variable includes sidekicks ( i ≠ j ) and loops ( i = j ). The truck’s waiting time at 
node j results from the variable �i,j for each i. Thus, in contrast to the literature for 
the TSPD (e.g., El-Adle et al. 2021; Roberti and Ruthmair 2021), there is no need 
for variables that track drones traveling an arc while staying on the truck, i.e., the 
drone is not flying.

4.2  Decisions and relevant parameters

We consider the index set for customers I  , customers including the depot I0 , and 
customers that can be served by both the truck and drones ID . In contrast to, e.g., 
Dell’Amico et al. (2021), we include the depot only once in the index set I0 . There-
fore, constraints regarding a launch or return at the depot are handled differently.

The main decisions taken are the routing of the truck ( xi,j ), the routing of the 
drones ( �⃗yi,c , �⃖yc,j ), and the decision if a customer is served in a loop ( �i,c ). Addition-
ally, the model decides on the customers served by truck ( zT

c
 ) and drones ( zD

c
).

Drones have an endurance e per flight. Similar to, e.g., Dell’Amico et al. (2021), 
the different speeds or distance metrics of the truck and drones are also considered 
in tT

i,j
 , and tD

i,j
 , respectively.

Table 2 describes index sets, parameters, and decision and auxiliary variables in 
detail.

4.3  MILP

Objective function
The objective is to minimize the makespan.

Definition of the makespan
�∗ is defined in Constraint 2 as the truck’s accumulated travel time �i,0 when arriving 

at the depot plus the truck’s waiting time for returning drones at the depot, as these are 
not included in �i,0 when returning to the depot. This objective function results in runt-
ime issues, as a solver has a severe problem finding a lower bound (Seifried 2019). To 

(1)min �∗
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overcome this issue, we add another definition of the makespan (Constraint 3), which 
helps to find strong lower bounds, particularly in initial iterations. Note that either Con-
straint 2 or Constraint 3 can be chosen. The solver has the best runtime if both con-
straints are chosen.

Set partitioning problem
Constraints 4 ensure that the problem is a set partitioning problem. Constraints 5 

determine the customers that are served by truck, and Constraints 6 the customers that 
are served by drones.

(2)�∗ =
∑

i∈I0

(
�i,0 + �i,0

)

(3)�∗ =
∑

i,j∈I0

(
tT
i,j
⋅ xi,j + �i,j

)

(4)zT
i
+

{
zD
i
, i ∈ ID

0 , else

}
= 1 ∀i ∈ I

Table 2  Index sets, parameters, and decision and auxiliary variables. Note that binary variables have a 
value of 1 if they are true and 0 otherwise

Index sets
I  , I0 , ID Node sets for customers, customers and the depot, and customers that can be served 

by drones.
Parameters
e Endurance time for each drone flight

M
big

l
Big M for l = 1, 2, 3, 4

tT
i,j

 , tD
i,j

Truck’s (drones’) traveling time from node i ∈ I0 to node j ∈ I0

Decision variables
xi,j Binary variable indicating if the truck travels from node i to j ( i, j ∈ I0)
�⃗yi,c Binary variable indicating if a drone is launched at node i ∈ I0 to serve customer 

c ∈ ID

�⃖yc,j Binary variable indicating if a drone returns from customer c ∈ ID to node j ∈ I0

�i,c Binary variable indicating if customer c ∈ ID is served in a drone loop launched at 
node i ∈ I0

zT
c
 , zD

k
Binary variable indicating if customer c ∈ I  ( k ∈ ID ) gets served by truck (drone)

Auxiliary variables
uc Real-value variable for subtour elimination by Miller et al. (1960) ( c ∈ I)
�i,j Positive real-value variable indicating the accumulated travel time of the truck 

traveling from node i to j including the waiting times for drones at node j ∈ I  . 
Note that waiting times at the depot are excluded and must be considered sepa-
rately in the objective function

�∗ Positive real-value variable indicating the makespan
�i,j Positive real-value variable indicating the waiting times of the truck on the last 

returning drone at node j, if the drone performs a sidekick ( i ≠ j ) or a loop ( i = j)
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Note that the MILP can be formulated without variables zT
c
 and zD

c
 and, thus, without 

Constraints 5 and 6 (right side). However, the introduced MILP has a better runtime 
when these constraints are included.
Truck related constraints

Constraints 7 conserve the truck’s flow. Subtours are eliminated by Constraints 8 
(Miller et  al. 1960). Mbig

1
 can be set as the number of nodes |I0| . The truck is 

launched at maximum once from the depot (Constraint 9). Constraints 10 ensure that 
the truck only travels to a different node.

Drone related constraints
Drones may only launch and land at nodes the truck has visited (Constraints 11). 

Drone flights must not exceed the endurance (Constraints  12). Additionally, the 
truck must pick up the drone within the considered endurance limit (Constraints 13, 
if launched at node i ∈ I  and Constraints 14, if launched at the depot). Mbig

2
 can be 

set as the truck’s maximum possible tour length.

(5)
∑

i∈I0

xi,j = zT
j

∀j ∈ I

(6)
∑

i∈I0

�⃗yi,c =
∑

j∈I0

�⃖yc,j = zD
c

∀c ∈ ID

(7)
∑

i∈I0

xj,i −
∑

i∈I0

xi,j = 0 ∀j ∈ I0

(8)ui + 1 ≤ uj +M
big

1
⋅ (1 − xi,j) ∀i, j ∈ I

(9)
∑

j∈I0

x0,j ≤ 1

(10)
∑

i∈I0

xi,i = 0

(11)�⃗yj,c + �⃖yc,j ≤ 2 ⋅
∑

i∈I0

xi,j ∀c ∈ ID, j ∈ I

(12)tD
i,c
⋅ �⃗yi,c + tD

c,j
⋅ �⃖yc,j ≤ e ∀i, j ∈ I0, c ∈ ID

(13)
∑

f∈I0

(
𝜏f ,j − 𝜏f ,i

)
−M

big

2
⋅ (2 − �⃗yi,c − �⃖yc,j) ≤ e ∀i ∈ I, j ∈ I0, c ∈ ID

(14)
∑

f∈I0

𝜏f ,j −M
big

2
⋅ (2 − �⃗y0,c − �⃖yc,j) ≤ e ∀j ∈ I0, c ∈ ID
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Setting up the truck’s travel time
The truck’s accumulated travel times at the beginning of the tour are defined in Con-

straints 15. Constraints 16 define the lower and Constraints 17 the upper bound for the 
accumulated travel times during the truck’s tour. These are equal if the truck travels 
from node i to node j. The accumulated travel time is zero if the truck does not travel 
from i to j (Constraints 18).

Sidekicks
Constraints 19 (at the beginning of the tour) and Constraints 20 (during the tour) 

ensure that drones do not return to a node that was visited by the truck previously on its 
tour. Mbig

3
 can be set as twice the reciprocal value of the truck’s shortest travel time tT

i,j
 

between two nodes. Mbig

4
 is dependent on the values of Mbig

2
 and Mbig

3
 and has to be at 

least Mbig

2
⋅M

big

3
 . The lower bound of the truck’s waiting time arriving at node j is pre-

sented in Constraints 21 at the beginning of the tour and in Constraints 22 during the 
tour. The inequality exists since the truck waits at a node until the last drone has 
returned.

(15)�0,j = tT
0,j
⋅ x0,j ∀j ∈ I

(16)�i,j ≥ tT
i,j
⋅ xi,j +

∑

f∈I0

(
�f ,i + �f ,i

)
−M

big

2
⋅ (1 − xi,j) ∀i ∈ I, j ∈ I0

(17)�i,j ≤ tT
i,j
⋅ xi,j +

∑

f∈I0

(
�f ,i + �f ,i

)
+M

big

2
⋅ (1 − xi,j) ∀i ∈ I, j ∈ I0

(18)�i,j ≤ M
big

2
⋅ xi,j ∀i, j ∈ I0

(19)
�⃗y0,c + �⃖yc,j ≤ M

big

3
⋅

∑

f∈I0

𝜏f ,j

+M
big

4
⋅ (2 − �⃗y0,c − �⃖yc,j) ∀j ∈ I, c ∈ ID

(20)
�⃗yi,c + �⃖yc,j ≤ M

big

3
⋅

∑

f∈I0

(
𝜏f ,j − 𝜏f ,i

)

+M
big

4
⋅ (2 − �⃗yi,c − �⃖yc,j) ∀i ∈ I, j ∈ I0, i ≠ j, c ∈ ID

(21)
𝜙0,j ≥ tD

0,c
⋅ �⃗y0,c + tD

c,j
⋅ �⃖yc,j

−

∑

f∈I0

𝜏f ,j −M
big

2
⋅ (2 − �⃗y0,c − �⃖yc,j) ∀j ∈ I, c ∈ ID
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Loops
The truck waits at node i until all drones planned to return have returned to node i 

(Constraints 23). Constraints 24 set up �i,c if a customer is supplied in a loop. If a 
drone starts from node i to serve customer c and returns to node i, �i,c must be set 
to 1 (left side). If �i,c is set to 1, a drone must start from and return to node i (right 
side).

Definition of variables
Last, decision and auxiliary variables are defined.

As mentioned in our problem setting, batteries are recharged during the tour. If bat-
teries need to be changed manually, i.e., by the truck driver, a battery change time s 
needs to be added to the return flight in Constraints 21 and 22, i.e., (tD

c,j
+ s) instead 

of tD
c,j

 . If batteries, on the other hand, are swapped automatically, this only increases 
the makespan by s when a drone is the last vehicle to return to the depot. This is 
because there are no second flights for drones required for an unlimited fleet of 
drones, as there are always sufficient drones available.

5  Problem variants: mFSTSP and TSPD

In this section, we show how our MILP can be adopted to cover the problem vari-
ants mFSTSP, TSPD, and TSPmD when the drone fleet is limited. First, in Sect. 5.1, 
we limit the number of drones that are, moreover, only able to perform sidekicks as 
considered by, e.g., Murray and Raj (2020) and Dell’Amico et al. (2021) (mFSTSP). 
In Sect.  5.2, we adjust the MILP formulation to cover a single drone performing 
sidekicks and loops as considered by, e.g., Roberti and Ruthmair (2021), El-Adle 

(22)

𝜙i,j ≥ tD
i,c
⋅ �⃗yi,c + tD

c,j
⋅ �⃖yc,j

−

∑

f∈I0

(
𝜏f ,j − 𝜏f ,i − 𝜙f ,i

)

−M
big

2
⋅ (2 − �⃗yi,c − �⃖yc,j) ∀i ∈ I, j ∈ I0, c ∈ ID ∶ i ≠ j

(23)�i,i ≥ 2 ⋅ tD
i,c
⋅ �i,c ∀i ∈ I0, c ∈ ID

(24)
�⃗yi,c + �⃖yc,i

2
≥ 𝜆i,c ≥ �⃗yi,c + �⃖yc,i − 1 ∀i ∈ I0, c ∈ ID

(25)xi,j, �⃗yi,c, �⃖yc,j ∈ {0, 1},𝜙i,j, 𝜏i,j, 𝜏
∗
∈ ℝ

+
∀i, j ∈ I0, c ∈ ID

(26)zT
i
, zD

c
∈ {0, 1}, ui ∈ ℝ ∀i ∈ I, c ∈ ID

(27)�i,c ∈ {0, 1} ∈ ℕ ∀i ∈ I0, c ∈ ID
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et al. (2021), and Dell’Amico et al. (2022) (TSPD). Last, in Sect. 5.3, we adjust the 
MILP formulation for the TSPmD to cover a limited drone fleet.

5.1  mFSTSP: limited number of drones performing only sidekicks

To cover a problem with a limited number of drones m ∈ ℕ performing sidekicks, 
we add the variable �i,j that tracks if the drone travels on the truck from node i to j 
( i, j ∈ I0 , i ≠ j ) and thus does not serve a customer at that time. The following con-
straints need to be added to Constraints 2-22, 25 and 26:

Constraint 28 defines the number of drones the truck carries starting from the depot. 
Constraints 29 are balance constraints during the tour to ensure that the number of 
drones on the truck that leaves a node is equal to the number of drones that were 
previously on the truck minus launching plus landing drones. The number of drones 
carried by truck in its complete tour is limited in Constraints 30. There are at maxi-
mum m sidekicks per node (Constraints 31). Variable structures are generally cho-
sen such that drones might perform loops. Thus, Constraints 32 prevent drones from 
launching and returning to the same node. Last, variable �i,j is defined.

5.2  TSPD: single drone performing sidekicks and loops

To cover the TSPD with a drone performing sidekicks and loops, the following con-
straints need to be added to Constraints 2–22, 24–27, 29 and 33. Note that �i,j now 
tracks the number of drone loops at a node i, if i = j , following �i,j ∈ ℕ.

(28)
∑

j∈I

𝜋0,j +
∑

c∈ID

�⃗y0,c = m

(29)
∑

j∈I0∶i≠j

𝜋i,j =
∑

k∈I0∶k≠i

𝜋k,i +
∑

c∈ID

(
�⃖yc,i − �⃗yi,c

)
∀i ∈ I

(30)�i,j ≤ m ⋅ xi,j ∀i, j ∈ I0 ∶ i ≠ j

(31)
∑

c∈ID

�⃗yi,c ≤ m ∀i ∈ I0

(32)�⃗yi,c + �⃖yc,i ≤ 1 ∀i ∈ I0, c ∈ ID

(33)�i,j ∈ ℕ ∀i, j ∈ I0 ∶ i ≠ j

(34)
∑

j∈I

𝜋0,j +
∑

c∈ID

(
�⃗y0,c − 𝜆0,c

)
= 1
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Constraints  34–36 are variants of Constraints  28, 30 and 31 considering a single 
drone and loops. Constraints  37 ensure that the drone only launches to perform 
loops if it was carried by the truck at node j. There may be only loops if the drone 
returns from a sidekick or a drone travels on the truck to node j (Constraints 38). 
Last, Constraints 39 ensure that there may be multiple loops per node.

5.3  TSPmD: limited number of drones

To consider a TSPmD with a limited number of drones m ∈ ℕ , the following con-
straints need to be added to Constraints 2–27, 29, 33 and 37-39:

These constraints are similar to Constraints 34–36, however, they limit the number 
of drones used to m instead of 1. Note that a limitation of this formulation with mul-
tiple drones is that each drone can perform a maximum of one loop per node.

6  Numerical experiments

In this section, we describe the instances for which we present new benchmark solu-
tions (Sect. 6.1). Next, we analyze the runtime solving the MILP and compare the 
runtime of our MILP to MILPs for the mFSTSP and the TSPD from the literature 

(35)�i,j ≤ xi,j ∀i, j ∈ I0 ∶ i ≠ j

(36)
∑

c∈ID

(
�⃗yi,c − 𝜆i,c

)
≤ 1 ∀i ∈ I0

(37)
∑

i∈I0

𝜋i,j +
∑

c∈ID

(
�⃖yc,j − 2 ⋅ 𝜆j,c

)
≥ 0 ∀j ∈ I0

(38)𝜆j,k ≤
∑

c∈ID

(
�⃖yc,j − 𝜆j,c

)
+

∑

i∈I0∶i≠j

𝜋i,j ∀j ∈ I0, k ∈ ID

(39)�i,i ≥
∑

c∈ID

2 ⋅ tD
i,c
⋅ �i,c ∀i ∈ I0

(40)
∑

j∈I

𝜋0,j +
∑

c∈ID

(
�⃗y0,c − 𝜆0,c

)
= m

(41)�i,j ≤ m ⋅ xi,j ∀i, j ∈ I0 ∶ i ≠ j

(42)
∑

c∈ID

(
�⃗yi,c − 𝜆i,c

)
≤ m ∀i ∈ I0
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(Sect.  6.2). Last, we analyze the impact of loops in general and especially at the 
depot on makespan minimization. We also conduct an a-posteriori cost analysis.

The MILPs are implemented in OPL, solved using CPLEX v12.10., and executed 
on an AMD Ryzen 9 3950X with 32 GB of RAM (single thread). Each instance has 
a runtime limit of 3600 s.

6.1  Benchmark instances

For experiments, we consider the publicly available instance sets of Murray and Chu 
(2015) and Bouman et al. (2018). Detailed solutions of each individual instance for 
benchmark purposes can be found in Appendix A for the instances of Murray and 
Chu (2015) and in Appendix B for the instances of Bouman et al. (2018). We pre-
sent results for these instances for the TSPmD, the mFSTSP ( m = 3 ), and the TSPD.

6.1.1  Instances of Murray and Chu (2015)

Murray and Chu (2015) published twelve instances with eleven nodes (ten custom-
ers and the depot) whose locations are uniformly distributed in an 8 × 8 mile region. 
The authors consider two endurance limits of 20 and 40  min and three different 
drone-to-truck speed ratios � ∈ {0.6, 1.0, 1.4} . Similar endurance limits are consid-
ered by, e.g., Rave et al. (2023). Thus, there are 72 instances for which we present 
results for benchmark purposes. Within the instances, the truck follows a Manhattan 
distance while the drone flies the Euclidean path. 80–90% of all customers can be 
served via drones. Note that we do not consider the launching and rendezvous times 
that are included in these instances.

6.1.2  Instances of Bouman et al. (2018)

Bouman et  al. (2018) published instances with 20 and 50 customers that are uni-
formly distributed with coordinates from 0 to 100. From these instances, we con-
sider 16, 20, 24, 28, and 32 nodes as in El-Adle et al. (2021). These are drawn by 
taking the first 16, 20, 24, 28, and 32 nodes from the instance with the next-largest 
number of nodes, i.e., 16 and 20 nodes from instances with 20 nodes, and 24, 28, 
and 32 nodes from instances with 50 nodes. The endurance limit is set to 30, and 
drones have the same speed as the truck. Both drones and the truck travel the Euclid-
ean path. This is an uncommon assumption. However, the travel time is important, 
which depends on the speed and distance, so we vary the travel time by increasing 
the drone speed in the analyses. All customers can be served by drones.

6.2  Runtime analysis

To show the efficiency of our MILP formulation for the TSPmD and also for the 
two problem variants, we analyze their runtime in this section. First, in Sect. 6.2.1, 
we compare the runtime of the TSPmD, the mFSTSP, and the TSPD. Second, in 
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Sect. 6.2.2, we benchmark our MILP’s runtime with a total of eight MILP formula-
tions from the literature, solving our problem variants.

6.2.1  Runtime analysis for the TSPmD and the two problem variants

In this section, we analyze the runtime of solving our MILP for the TSPmD and the 
two problem variants, the mFSTSP with m = 3 and the TSPD. Table 3 reports the 
results for the instances aggregated by the number of nodes |I0| and the endurance 
e. The table shows the number of instances solved to optimality, the average runtime 
needed in seconds, and the average optimality gap if the solver could not find the 
optimal solution within 3600 s.

Findings For the instances of Murray and Chu (2015), we could find all optimal 
solutions except two if one drone is considered (TSPD). In particular, it is noticeable 
for all these instances that the optimal solution is found much faster when multi-
ple drones are considered and when the endurance is lower. This is because there 
are more drone flights in the optimal solution considering the TSPmD, resulting in 
shorter truck routes. In addition, a lower endurance reduces the number of feasible 
flight options.

For the instances of Bouman et al. (2018), we could find all optimal solutions for 
instances with 16 and 20 nodes, eight of ten optimal solutions for instances with 24 
nodes, and up to three optimal solutions for instances with 28 nodes when consider-
ing the TSPmD, the mFSTSP, and the TSPD. In contrast to the instances of Mur-
ray and Chu (2015), no significant change in runtime can be observed if multiple 
drones are considered. This is because drones are less competitive towards the truck 
in these instances as both follow the Euclidean path and, thus, the computation time 
mainly arises from the truck routing.

6.2.2  Runtime comparison to the literature

The two-indexed MILP formulation of the TSPmD, mFSTSP, and TSPD presented 
in this paper can solve instances with more nodes than the MILP formulations from 
the literature (see also Table 1). So, Murray and Chu (2015) could not solve one of 
the 72 instances with eleven nodes to optimality. Considering the instances of Bou-
man et al. (2018), El-Adle et al. (2021) could find optimal solutions for up to two 
out of the ten instances with 24 nodes. However, it is difficult to compare the MILPs 
based on results in the literature, as they have slightly different assumptions, a differ-
ent solver (or version of solver) is used, and they were run on a computer with dif-
ferent RAM. Thus, to show the efficiency of our MILP formulation in comparison to 
the literature, we implemented in total eight MILP formulations from the literature.

6.2.2.1 Problem variant: mFSTSP We implemented the four-indexed MILP of Mur-
ray and Raj (2020) with an automated launch and recovery system, the three-indexed 
MILP of Cavani et al. (2021), and the three-indexed MILP with crossing sortie vari-
ables of Dell’Amico et al. (2021) in OPL. The MILP formulations mainly differ from 
our MILP by the larger number of indices and constraints and by considering the 
depot twice, i.e., for the start and end of the tour. The MILP formulations were cho-
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sen, as Murray and Raj (2020) initially introduced the mFSTSP and Cavani et  al. 
(2021) and Dell’Amico et al. (2021) developed a MILP that is easier to solve. We 
tested the MILP formulations for the instances of Murray and Chu (2015) and Bou-
man et al. (2018). Note that the MILP of Cavani et al. (2021) requires a drone speed 
that is at least the truck’s speed. Thus, only a subset of the instances of Murray and 
Chu (2015) is considered. Furthermore, we adjusted the MILP of Cavani et al. (2021) 
by endurance constraints similar to Constraints 13 and 14, and we added constraints 
ensuring that some customers cannot be served by drone, but by truck. This is already 
included in the MILP formulations of Murray and Raj (2020) and Dell’Amico et al. 
(2021).

Table 4 presents the aggregated results solving all three MILPs and our MILP 
formulation for the mFSTSP. The column Gap shows the average optimality gap if 
the solver cannot find the optimal solution within 3600 s. Note that all MILP for-
mulations represent the same problem setting of the mFSTSP with three drones 
that can only perform sidekicks. For implementing the MILPs, we also consider 
the enhanced modeling assumptions to accelerate the MILP solver presented in the 
papers (similar to Constraint 3).

Findings The MILP of Murray and Raj (2020) cannot not solve any instance 
considered. For the instances of Bouman et al. (2018), the MILP cannot even find 
a single lower bound. This is in line with the findings of Murray and Raj (2020) 
themselves, who only found optimal solutions for 66% of the considered instances 
with eight customers. Contrary, the MILPs of Cavani et al. (2021) and Dell’Amico 
et al. (2021) can solve the instances of Murray and Chu (2015). Considering larger 
instances, the MILP of Cavani et al. (2021) solves up to two instances with 24 nodes, 
and the MILP of Dell’Amico et al. (2021) solves seven instances with 16 nodes to 
optimality. Our MILP formulation, however, not only finds all optimal solutions for 
the instances of Murray and Chu (2015) with a low runtime of 10  s but also up 
to three optimal solutions for instances of Bouman et al. (2018) with 28 nodes. If 
the optimal solution cannot be found, the gaps are rather small. Only the MILP of 
Cavani et al. (2021) has a lower runtime for the instances of Murray and Chu (2015) 
but can only solve a subset of all considered instances. Thus, our MILP formulation 
for the mFSTSP outperforms the MILP formulations of Murray and Raj (2020) and 
Dell’Amico et al. (2021) for all considered instances, and the MILP formulation of 
Cavani et al. (2021) for larger instances.

In “Appendix  C”, we further benchmark our MILP to the MILP of Boccia 
et al. (2023) for the special case of m = 1 , finding that we outperform it for larger 
instances.

6.2.2.2 Problem variant: TSPD We implemented the MILPs of Schermer et al. (2020), 
Roberti and Ruthmair (2021) and El-Adle et al. (2021), and the two-indexed MILP 
of Dell’Amico et al. (2022) for a TSPD in OPL. The formulations of Roberti and 
Ruthmair (2021) and El-Adle et al. (2021) differ from our MILP by considering addi-
tional variables tracking the drone’s tour, even if it is carried on the truck. Moreover, 
Schermer et al. (2020), Roberti and Ruthmair (2021) and Dell’Amico et al. (2022) 
consider the depot twice, i.e., for the start and end of the tour. The MILP formulations 
are chosen for comparison, as they are efficient MILP formulations for the TSPD.
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Again, we tested the MILP formulations for the instances of Murray and Chu 
(2015) and Bouman et al. (2018). However, only a subset of the instances of Murray 
and Chu (2015) is suitable for Roberti and Ruthmair (2021) and El-Adle et al. (2021) 
because both MILP formulations require a drone speed that is at least the same as 
the truck’s speed. The MILPs of Schermer et al. (2020) and El-Adle et al. (2021) are 
additionally adjusted by endurance constraints that limit the waiting times of drones 
(similar to Constraints 13 and 14). This is already considered by Roberti and Ruth-
mair (2021) and Dell’Amico et al. (2022). Note that for implementing the MILPs, 
we also consider the enhanced modeling assumptions to accelerate the MILP solver 
presented in the papers (similar to Constraint 3), but no lower or upper bounds or 
any pre-processing steps as in El-Adle et al. (2021). Table 5 presents the aggregated 
results solving the MILPs. Note that all MILP formulations represent the same prob-
lem setting of the TSPD with one drone that can perform both sidekicks and loops.

Findings The MILP of Roberti and Ruthmair (2021) works quite well for 
instances of Murray and Chu (2015), solving all of them to optimality. For larger 
instances, however, not one instance with 16 or more nodes could be solved. The 
MILP of Schermer et  al. (2020) works best for the instances of Murray and Chu 
(2015), as all 72 instances could be solved optimally with the lowest runtime on 
average, but, on the other hand, it has difficulties solving the instances with 16 or 
more nodes. The MILP of Dell’Amico et al. (2022) has a similar performance com-
pared to the MILP of Schermer et al. (2020) for the instances of Murray and Chu 
(2015) but works better for larger instances. Running the MILP of El-Adle et  al. 
(2021), it outperforms our MILP for instances of Murray and Chu (2015) where the 
drone has at least the truck’s speed. Furthermore, regarding the instances of Bouman 
et al. (2018), optimal solutions for all ten instances with 16 and 20 nodes and five 
out of ten instances with 24 nodes can be found. In contrast, our MILP formulation 
can additionally be solved to optimality for three more instances with 24 nodes and 
two instances with 28 nodes. Moreover, the average runtime and the optimality gap 
are significantly lower. Thus, our MILP formulation for the TSPD outperforms the 
literature for larger instances. Additionally, it should be noted that our MILP formu-
lation is more general compared to Roberti and Ruthmair (2021) and El-Adle et al. 
(2021) as drones might have lower speeds than trucks, and also in comparison to 
Schermer et al. (2020) and Dell’Amico et al. (2022) as multiple drones can be con-
sidered without any increase in runtime.

Summary Our two-indexed MILP formulation outperforms all eight considered 
MILP formulations from the literature for larger instances, finding solutions for 
instances with a larger number of nodes. If optimality cannot be proven, the optimal-
ity gap is, moreover, the lowest compared to all other MILPs. Only for the instances 
of Murray and Chu (2015) our MILP formulation does not perform best. Please note 
that other exact solution methods, e.g., the branch-and-price of Roberti and Ruth-
mair (2021), might still outperform our MILP formulation.

6.2.2.3 Value of linear relaxation at the root node Further, we compare the value 
of the linear relaxation at the root node for all considered MILPs for the mFSTSP 
and the TSPD. For this, Table 6 shows the gap between the optimal solution, if 
available, and else the best-found solution solving all MILPs and the value of the 
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linear relaxation at the root node. The results for all considered MILPs for the 
mFSTSP and the TSPD are reported.

Findings We observe that our MILP formulation never has the lowest gap of 
the linear relaxation at the root node for both the mFSTSP and the TSPD. Con-
sidering the mFSTSP Cavani et  al. (2021) has the lowest gap. Considering the 
TSPD, on the other hand, the MILP of El-Adle et  al. (2021) has the best value 
of linear relaxation for the instances of Murray and Chu (2015) (TSPD), and the 
MILP of Roberti and Ruthmair (2021) for the instances of Bouman et al. (2018). 
However, we find that the gap at the root node is not directly a good indicator for 
an efficient MILP formulation as Roberti and Ruthmair (2021) could not solve a 
single instance of Bouman et al. (2018) to optimality despite having a good value 
of the linear relaxation at the root node. Moreover, we observe that our MILPs’ 
value of the linear relaxation at direct subsequent nodes increases significantly for 
all considered problem variants.

6.3  Impact of drone loops

Drone loops as an additional routing option for drones might reduce the makespan 
�∗ , but on the other hand, considering loops might increase the solver’s runtime on 
average, which in turn can be problematic, as truck-and-drone tandems are difficult 
to solve even for heuristic solution approaches (e.g., Sacramento et  al. 2019). So, 
Schermer et al. (2019) already found that drones perform loops in the solutions, and 
Tiniç et  al. (2023) found that loops might reduce total routing costs. However, in 
the solutions presented by Dell’Amico et al. (2021), drones do not perform a single 
loop. Thus, in the following, we give detailed insights on the makespan reduction 
and the runtime increase when allowing loops compared to prohibiting all kinds of 
loops for the instances of Murray and Chu (2015) and Bouman et al. (2018) solv-
ing the TSPD and the TSPmD with varying endurance limits e, and truck-to-drone 
speed ratios � . For this, we only compare instances solved optimally for the case 
with and without drone loops.

6.3.1  Instances of Murray and Chu (2015)

Table 7 presents the reduction of the makespan �∗ and the increase in the runtime 
of the MILP solver in percent if drones can perform loops. For this, the makespan 
considering loops is compared to the makespan if loops are forbidden. We generate 
results for two endurance limits ( e = 20 , e = 40 ), and five speed factors ( � = 0.6 , 
� = 1.0 , � = 1.4 , � = 2.0 , � = 2.8 ). These are two additional speed factors ( � = 2.0 , 
� = 2.8 ) compared to the data considered in Murray and Chu (2015) as the speed 
has a significant impact on the number of performed loops (Schermer et al. 2019). 
Each entry presents the average �∗ reduction or runtime increase of up to twelve 
instances. Note that there might be less than twelve instances considered if they are 
not solved to optimality. A negative entry in column “Runtime increase [%]“ means 
there is a decrease in runtime.
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Findings Considering instances of Murray and Chu (2015) with eleven nodes, 
loops can reduce the makespan �∗ by up to 1.6% on average. For these instances, we 
find that there are only improvements in the objective considering loops if drones 
travel faster than trucks ( 𝛼 > 1 ). Note that in these instances, the drone follows an 
Euclidean path contrary to the truck that travels the Manhattan distance. Improve-
ments in considering loops occur, especially when a single drone is considered. 
Considering the TSPmD, there are nearly no reductions of �∗ as loops are only per-
formed in two instances. Conversely, the runtime increases significantly by up to 
98.4%, considering loops as an additional routing option. The runtime increase is 
significantly higher when drone loops become a more relevant and competitive flight 
option.

Further, we analyze the average number of performed loops (Fig.  3a) and the 
average increase in flights, including both sidekicks and loops (Fig.  3b) for the 
TSPD and the TSPmD for both endurance limits. We find that only a few loops 
are performed and only when considering a single drone. However, considering 
loops, the total number of drone flights increases if 𝛼 > 1 as drones perform loops 
in addition to sidekicks. Moreover, we find that both endurance limits do not have 
an impact on performed loops for these instances. A higher endurance allows more 
customers to be reached within drone loops, but this is contrasted by longer waiting 
times for the truck.

Last, we analyze the impact on the number of drones carried by the truck when 
considering loops. Figure 4 shows the average number of drones used solving the 
TSPmD for the two endurance limits and the case with and without drone loops. 
As the number of drone flights increases with increasing � , so does the number of 
drones. In addition, there are more drones when a larger endurance is considered 

Table 7  Makespan reduction and the solver’s runtime increase, if drones can perform loops, for the 
instances of Bouman et al. (2018)

TSPD TSPmD

|I0| e � �∗ Reduction (%) Runtime 
Increase (%)

�∗  Reduction (%) Runtime 
Increase (%)

11 20 0.6 – 25.6 – 17.2
1.0 – 17.9 – 20.8
1.4 – 18.9 0.5 25.9
2.0 0.4 54.3 – 7.0
2.8 1.6 66.0 – 20.6

40 0.6 – 33.1 – −12.4
1.0 – −7.5 – 4.4
1.4 – 30.3 – 21.0
2.0 0.4 75.6 – 0.3
2.8 1.6 98.4 – 11.4

Average 0.4 42.3 0.0 11.6
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because drones have longer flights on average, resulting in less availability. The 
number of drones with and without loops equals except one outlier, where all loops 
are performed at a single node, resulting in an increase in drones.

6.3.1.1 Instances of Bouman et al. (2018) Similar to the previous table, Table 8 pre-
sents the results for instances of Bouman et al. (2018) with 16 nodes for two different 
endurance limits ( e = 30 , e = 60 ) and three speed factors ( � = 1 , � = 2 , � = 3 ). The 
additional endurance limit and speed factors are similar as in El-Adle et al. (2021). 
An analysis of instances with 20 or more nodes is not meaningful, as there are only 
a few instances solved to optimality for both the consideration and the ban of loops. 
Each entry presents the average �∗ reduction or runtime increase of up to 10 instances.

Findings We find that allowing drones to perform loops may reduce �∗ by up to 
2.7%. Again, we do not find that the endurance e has a significant impact on �∗ , but 

Fig. 3  Average number of loops and increase in drone flights for the TSPD and the TSPmD for different 
endurance limits when solving the instances of Murray and Chu (2015)

Fig. 4  Average number of drones in the TSPmD for different endurance limits with and without drone 
loops when solving the instances of Murray and Chu (2015)
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a larger drone-to-truck speed ratio � has. Contrary to the results for the instances 
of Murray and Chu (2015), there is a larger reduction of �∗ when considering the 
TSPmD as loops are performed in nearly all instances. This might be because there 
are more customers in the instances who can all be supplied by drones. Addition-
ally, if drones and trucks have the same speed ( � = 1 ), there is even an instance 
where one loop is performed in the optimal solution, resulting in slight reductions 
of �∗ . Note that drones and trucks follow both Euclidean paths. Again, the runtime 
increases significantly by up to 91.4% and is especially high if one drone is consid-
ered. However, considering the TSPmD, there is no runtime increase, but the impact 
on �∗ is high. One reason for this is that sidekicks are less competitive against loops 
in these instances for the considered parameter settings, and thus, loops occur more 
frequently.

Further, Fig. 5 shows the average number of performed loops (left) and the aver-
age increase in drone flights if loops can perform loops (right). Note that considering 
the TSPD with an endurance e = 60 , no sufficient large number of instances could 
be solved optimally, and thus, it is not represented in the figure. We find that many 
more loops are performed in the instances of Bouman et  al. (2018), especially if 
multiple drones are considered. This is because there is a larger number of custom-
ers that can be all served by drones. Considering the TSPmD with an endurance of 
e = 30 , the increase in total flights decreases with additional drone speeds as there 
have already been many drone flights. Drone loops only replace certain sidekicks.

Last, we analyze the impact on the number of drones carried by the truck when 
considering loops in the TSPmD (Fig. 6). Again, there are more drones carried by 
the truck with larger values of � and e. In addition, there are slightly more drones if 
drone loops are allowed, as these loops are altogether performed at a single node.

6.3.1.2 Impact of  loops performed at the depot Further, we analyze if it is worth 
considering loops performed at the depot. For this, we compare the results when 
allowing and prohibiting loops performed at the depot for the TSPD and the TSPmD 

Table 8  Makespan reduction and the solver’s runtime increase, if drones can perform loops, for the 
instances of Bouman et al. (2018)

Entry./. indicates that no instance was solved to optimality for both the consideration and the ban of loops

TSPD TSPmD

�∗ Runtime �∗ Runtime

|I0| e � Reduction (%) Increase (%) Reduction (%) Increase (%)

16 30 1 – 55.0 0.1 49.5
2 0.8 43.5 1.4 3.5
3 0.8 36.0 1.3 −28.6

60 1 – 91.4 – 20.7
2 ./. ./. 1.7 −25.2
3 ./. ./. 2.7 −22.7

Average 0.4 49.9 1.2 −0.5
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for the same settings as before. We find that there is a single loop performed at 
the depot for one instance of Bouman et al. (2018) in the optimal solution. For the 
instances of Murray and Chu (2015), there are no depot loops. This is because the 
depot’s location is set at the outskirt of 2/3 of all instances of Murray and Chu (2015) 
and all instances of Bouman et al. (2018), so there are hardly any customers nearby.

For further analysis, we thus place the depot in the center of gravity for the 
instances of Bouman et  al. (2018) (see Table  9). We find for the considered 
instances that there are loops performed at the depot for the TSPmD as soon 
as � ≥ 2 and e = 60 , resulting in large makespan savings of up to 18.5 on aver-
age. On the contrary, the runtime increases by up to 91.4% even if there are no 
loops performed at the depot in the optimal solution. Considering the TSPD, no 
instance could be solved to optimality for � ≥ 2 and e = 60.

Fig. 5  Average number of loops and increase in drone flights for the TSPD and the TSPmD for different 
endurance limits when solving the instances of Bouman et al. (2018)

Fig. 6  Average number of drones in the TSPmD for different endurance limits with and without drone 
loops when solving the instances of Bouman et al. (2018)



95Two‑indexed formulation of the traveling salesman problem…

6.4  A‑posteriori cost analysis

In this section, we analyze the impact of permitting drones to perform loops on 
routing costs. This is done by an a-posteriori cost analysis, which means that 
costs are assigned to the makespan minimal routing. We consider the instances 
with the largest average makespan savings of 2.7%, i.e., the instances of Bouman 
et al. (2018) with e = 60 and � = 3.

We consider costs for each traveled arc by truck and drone and waiting costs 
for the truck if the truck waits for drones (Rave et  al. 2023). The costs for the 
outbound and return flights are considered the same because the reduced pay-
load after serving a customer only leads to a few reductions in costs (Rave et al. 
2023). The cost ratios vary within the literature. Thus, within the analysis, we 
take the different truck-to-drone cost ratios and waiting-to-operating cost ratios 
into account. Note that Tiniç et al. (2023) consider two truck-to-drone cost ratios. 
Table 10 shows the cost ratios and the cost savings when considering loops.

We find that the cost savings are highly dependent on the cost parameter val-
ues and vary between a cost reduction of 9.4% and even an increase in costs of 
up to 5.9%. This is because the consideration of loops increases the number of 
flights, which also increases the operating costs for drones. On the contrary, the 
truck travels less, resulting in lower operating costs. In addition, the truck’s wait-
ing time and, thus, the waiting costs increase. As a result, the largest cost sav-
ings are achieved with the parameter values of Sacramento et al. (2019) as they 
consider relatively low drone operating costs and no waiting costs. Similar but 
slightly lower cost savings are obtained with the costs as considered in Rave et al. 
(2023), taking waiting costs into account. Contrary, considering the cost values of 
Tiniç et al. (2023), drone operating costs and truck waiting costs are rather large 
compared to truck operating costs, and, thus, the additional drone tours lead to an 
increase in costs.

Table 9  Makespan reduction and the solver’s runtime increase, if drones can perform loops at the depot, 
for the instances of Bouman et al. (2018) with the depot placed in the center of gravity

Entry./. indicates that no instance was solved to optimality for both the consideration and the ban of 
loops at the depot

TSPD TSPmD

�∗ Runtime �∗ Runtime

|I0| e � Reduction (%) Increase (%) Reduction (%) Increase (%)

16 30 1 – 27.1 – 13.7
2 – 7.0 – 27.6
3 – 23.6 – 10.0

60 1 – 17.9 – −1.3
2 ./. ./. 8.2 −25.5
3 ./. ./. 18.5 39.3

Average – 18.3 4.4 10.6
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7  Conclusion

This paper considers the TSPmD with drones performing sidekicks and loops 
while minimizing the makespan. We introduce the problem as a two-indexed 
MILP that outperforms in total eight MILP formulations from the literature for 
the mFSTSP and the TSPD. We present new benchmark solutions for instances 
of Murray and Chu (2015) and Bouman et  al. (2018), which we could solve to 
optimality for up to 28 nodes. We generate managerial insights on the impact of 
allowing drone loops in general and especially at the depot on makespan minimi-
zation. Moreover, we conduct an a-posteriori cost analysis.

We find that makespan savings of up to 2.7% can be achieved by allowing 
drones to perform loops. For the considered instances, the savings are essentially 
dependent on the drone-to-truck speed ratio but not on the endurance. It follows 
that there are no drone loops if the drones’ speeds are too slow. On the other 
hand, drone loops make the problem significantly harder to solve, even if, in the 
optimal solution, drones do not perform loops. Therefore, when minimizing the 
makespan, we recommend considering drone loops as soon as drones have at 
least the truck’s speed. We also find that it is worth considering loops that are 
performed at the depot if the depot is placed centrally and the drones’ speed and 
endurance are sufficiently large.

Compact and efficient MILP formulations for truck-and-drone tandems are 
good competitors to other exact algorithms, which, however, may still outperform 
efficient MILP formulations. So, for example, Roberti and Ruthmair (2021) could 
solve instances to optimality with 40 nodes in comparison to our MILP solving 
instances with 28 nodes. However, an efficient optimal solution approach is still 
required for the TSPmD that can solve instances with more than 28 nodes to opti-
mality. Moreover, some assumptions can be strengthened, such as a consideration 
of limited (e.g., one or two) launch or return platforms for drones. This leads 
to a scheduling problem that needs to be solved to avoid drones exceeding their 
endurance limit. Further research can consider an automatic swap of batteries 
within a limited drone fleet. A battery change time s would only delay a drone’s 
next flight if the next flight is planned before the battery could have been swapped 
as mentioned in Sect. 4.2.

Table 10  Truck to drone cost ratios traveling an arc and waiting-to-operating cost ratios considered in the 
literature and the resulting cost savings. A negative entry indicates an increase in costs

Truck to drone cost ratio 
(operating cost)

Waiting-to-operating 
cost ratio (truck)

Cost savings (%)

Sacramento et al. (2019) 10.0 0.00 9.4
Rave et al. (2023) 23.3 0.53 6.7
Tiniç et al. (2023) 2.0/4.0 0.75 −5.9/−4.2
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Appendix A: Benchmark results for instances of Murray and Chu 
(2015)

The following Tables 11 and 12 present results for the instances of Murray and 
Chu (2015) for the endurance of e = 20 and e = 40 . The instance names are sim-
ilar to Dell’Amico et al. (2021).

Appendix B: Benchmark results for instances of Bouman et al. (2018)

The following Tables 13, 14, 15, 16 and 17 present the results for the instances of 
Bouman et al. (2018). The instance names are similar to El-Adle et al. (2021) and 
the results are split up for each considered number of nodes.

Appendix C: Benchmark test with the MILP of Boccia et al. (2023)

We further test the MILP of Boccia et  al. (2023) because this MILP seems to 
be an efficient formulation. This MILP only considers a single drone perform-
ing sidekicks. Thus, we additionally benchmark our MILP for the special case 
of an mFSTSP with m = 1 to their three-indexed MILP formulation. Similar to 
our MILP, the MILP of Boccia et al. (2023) considers two-indexed variables for 
drone flights. However, a three-indexed variable tracks if the truck travels an arc 
(i,  j) while the drone serves a customer k. Moreover, the MILP is an arc-based 
formulation. We tested the MILP formulation for the instances of Murray and 
Chu (2015) and Bouman et al. (2018). As the instances of Murray and Chu (2015) 
consider the case that only a subset of customers can be served by drone, the 
MILP of Boccia et al. (2023) is adjusted by constraints similar to Constraints 4 
to 6.

Considering the instances of Murray and Chu (2015), the MILP formulation 
of Boccia et  al. (2023) performs better than our MILP formulation (Table  18). 
However, when considering larger instances, the MILP has severe runtime issues, 
while our MILP formulation can solve 2 instances with 28 nodes.

One major drawback of the MILP formulation of Boccia et al. (2023) is that 
they eliminate subtours by a formulation that is based on subsets. As a result, 
there is a huge amount of constraints, which cannot even be generated in OPL in 
a reasonable amount of time. To tackle this problem, Boccia et al. (2023) develop 
a branch-and-cut approach that ignores the subtour elimination in the first step.



98 A. Rave 

Table 11  Results for instances of Murray and Chu (2015) with an endurance of 20

Problem variant 1: Problem variant 2:

TSPmD mFSTSP (m = 3) TSPD

Instance �∗ CPU (s) Gap �∗ CPU (s) Gap �∗ CPU (s) Gap

20140810T123437v1 51.3825 4 – 51.3825 5 – 54.3926 14 –
20140810T123437v2 51.6111 5 – 51.6111 6 – 51.6111 8 –
20140810T123437v3 52.8225 8 – 52.8225 10 – 54.0684 17 –
20140810T123437v4 65.6225 5 – 65.6225 8 – 66.8684 9 –
20140810T123437v5 24.4390 1 – 32.0655 8 – 45.3353 239 –
20140810T123437v6 24.0264 2 – 28.9400 8 – 43.9153 241 –
20140810T123437v7 39.8664 7 – 43.2069 13 – 46.5813 28 –
20140810T123437v8 53.1454 7 – 57.7700 16 – 59.3813 20 –
20140810T123437v9 21.8536 1 – 24.9912 9 – 39.2035 687 –
20140810T123437v10 21.9720 1 – 25.7710 8 – 36.9077 160 –
20140810T123437v11 32.3077 2 – 34.4110 8 – 39.3002 52 –
20140810T123437v12 45.1077 3 – 47.7507 9 – 51.5645 29 –
20140810T123440v1 43.8455 4 – 43.8455 7 – 46.4304 31 –
20140810T123440v2 46.2455 7 – 46.2455 12 – 49.3737 42 –
20140810T123440v3 51.6277 9 – 51.6277 8 – 53.6616 19 –
20140810T123440v4 64.4277 6 – 64.4277 9 – 66.4616 10 –
20140810T123440v5 31.6066 2 – 32.2263 2 – 39.7498 198 –
20140810T123440v6 34.0066 2 – 34.0066 1 – 40.3790 85 –
20140810T123440v7 40.7304 1 – 40.7304 2 – 43.3126 29 –
20140810T123440v8 53.5304 1 – 53.5304 2 – 55.7960 31 –
20140810T123440v9 31.6066 1 – 31.6066 1 – 35.5331 9 –
20140810T123440v10 34.0066 1 – 34.0066 1 – 36.0764 9 –
20140810T123440v11 40.7304 1 – 40.7304 1 – 40.7304 4 –
20140810T123440v12 53.5304 1 – 53.5304 1 – 53.5304 8 –
20140810T123443v1 69.5865 1 – 69.5865 4 – 69.5865 5 –
20140810T123443v2 71.5839 4 – 71.7473 3 – 72.0639 7 –
20140810T123443v3 75.9039 2 – 76.0673 2 – 76.1447 2 –
20140810T123443v4 88.7039 3 – 88.8673 2 – 89.1839 5 –
20140810T123443v5 39.7845 4 – 42.2634 4 – 54.7521 222 –
20140810T123443v6 43.9992 5 – 45.0943 6 – 55.1268 106 –
20140810T123443v7 60.8333 5 – 60.8333 5 – 62.2491 11 –
20140810T123443v8 73.8724 6 – 76.3401 26 – 80.0971 79 –
20140810T123443v9 24.5760 1 – 27.6100 2 – 41.9314 724 –
20140810T123443v10 30.9760 1 – 30.9760 1 – 42.9348 86 –
20140810T123443v11 43.7760 2 – 43.7760 1 – 51.4056 11 –
20140810T123443v12 56.5760 1 – 56.5760 1 – 62.6175 8 –
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Table 12  Results for instances of Murray and Chu (2015) with an endurance of 40

Problem variant 1: Problem variant 2:

TSPmD mFSTSP (m = 3) TSPD

Instance �∗ CPU (s) Gap �∗ CPU (s) Gap �∗ CPU (s) Gap

20140810T123437v1 33.8109 8 – 35.5186 75 – 49.1189 2946 –
20140810T123437v2 32.6510 7 – 35.3759 25 – 46.3113 490 –
20140810T123437v3 40.9090 10 – 49.2858 71 – 52.6868 221 –
20140810T123437v4 54.5333 47 – 62.5748 58 – 65.4868 238 –
20140810T123437v5 24.4390 1 – 28.4013 27 – 42.8354 3600 7.8%
20140810T123437v6 24.0264 1 – 28.4688 11 – 41.6015 1155 –
20140810T123437v7 35.8290 5 – 36.4363 9 – 43.3913 220 –
20140810T123437v8 48.6273 6 – 50.5161 12 – 56.1913 397 –
20140810T123437v9 21.8536 1 – 24.9912 6 – 37.8082 1771 –
20140810T123437v10 21.9720 2 – 25.7710 9 – 36.9077 879 –
20140810T123437v11 26.4022 1 – 29.3975 18 – 39.3002 86 –
20140810T123437v12 37.3724 1 – 42.1352 17 – 51.2536 134 –
20140810T123440v1 32.3895 1 – 35.5331 22 – 45.1029 993 –
20140810T123440v2 34.0066 1 – 37.2360 53 – 44.4461 1014 –
20140810T123440v3 45.3532 10 – 45.3532 16 – 52.3083 620 –
20140810T123440v4 58.1532 10 – 58.9284 14 – 66.3969 610 –
20140810T123440v5 31.6066 1 – 32.2263 2 – 39.7498 497 –
20140810T123440v6 34.0066 0 – 34.0066 1 – 39.6581 157 –
20140810T123440v7 40.7304 1 – 40.7304 1 – 43.3126 37 –
20140810T123440v8 53.5304 1 – 53.5304 1 – 55.7960 36 –
20140810T123440v9 31.6066 1 – 31.6066 1 – 35.5331 24 –
20140810T123440v10 34.0066 0 – 34.0066 1 – 36.0764 11 –
20140810T123440v11 40.7304 1 – 40.7304 1 – 40.7304 8 –
20140810T123440v12 53.5304 1 – 53.5304 1 – 53.5304 1 –
20140810T123443v1 37.4695 2 – 37.5843 5 – 54.0129 2117 –
20140810T123443v2 35.1953 1 – 38.5950 7 – 56.5729 1894 –
20140810T123443v3 47.4513 1 – 54.6474 23 – 66.1746 314 –
20140810T123443v4 65.6295 1 – 69.2538 7 – 81.4603 418 –
20140810T123443v5 24.2916 1 – 31.2183 9 – 48.5789 3600 20.7%
20140810T123443v6 30.0160 0 – 35.0597 9 – 48.4864 1993 –
20140810T123443v7 42.8160 0 – 44.3748 3 – 56.8793 354 –
20140810T123443v8 55.6160 0 – 56.5760 2 – 68.3988 181 –
20140810T123443v9 23.6160 0 – 27.6100 2 – 41.9314 3086 –
20140810T123443v10 30.0160 0 – 30.9760 2 – 42.9348 473 –
20140810T123443v11 42.8160 0 – 42.8160 0 – 51.3950 30 –
20140810T123443v12 55.6160 0 – 55.6160 0 – 62.6175 8 –
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Table 13  Results for instances of Bouman et al. (2018) with 16 nodes

|I0| = 16

Problem variant 1: Problem variant 2:

TSPmD mFSTSP (m = 3) TSPD

Instance �∗ CPU (s) Gap �∗ CPU (s) Gap �∗ CPU (s) Gap

Uniform-61-n20 346.9223 28 – 347.0919 27 – 347.0919 73 –
Uniform-62-n20 353.7019 2 – 353.7019 2 – 353.7019 2 –
Uniform-63-n20 370.1349 2 – 372.9289 2 – 372.9289 2 –
Uniform-64-n20 357.9113 9 – 357.9113 9 – 357.9113 10 –
Uniform-65-n20 368.6511 4 – 368.6511 3 – 368.6511 4 –
Uniform-66-n20 426.5167 2 – 426.5167 2 – 426.5167 2 –
Uniform-67-n20 372.7803 1 – 372.7803 1 – 372.7803 2 –
Uniform-68-n20 423.3365 2 – 423.3443 2 – 423.3365 3 –
Uniform-69-n20 363.4143 5 – 363.4143 5 – 363.4143 7 –
Uniform-70-n20 410.1439 7 – 410.1439 6 – 410.1439 7 –

Table 14  Results for instances of Bouman et al. (2018) with 20 nodes

|I0| = 20

Problem variant 1: Problem variant 2:

TSPmD mFSTSP (m = 3) TSPD

Instance �∗ CPU (s) Gap �∗ CPU (s) Gap �∗ CPU (s) Gap

Uniform-61-n20 351.4622 1113 – 351.4622 895 – 351.5212 958 –
Uniform-62-n20 374.1195 1497 – 374.1195 452 – 374.1195 379 –
Uniform-63-n20 391.7060 28 – 394.5000 33 – 394.5000 57 –
Uniform-64-n20 368.7314 425 – 368.7314 524 – 368.7314 578 –
Uniform-65-n20 381.0652 42 – 381.0652 39 – 390.5601 215 –
Uniform-66-n20 434.9542 57 – 435.1632 111 – 436.2728 108 –
Uniform-67-n20 391.4744 40 – 391.4744 29 – 391.4744 40 –
Uniform-68-n20 435.6068 24 – 435.6068 22 – 435.6068 40 –
Uniform-69-n20 380.4329 218 – 380.4329 126 – 380.4329 331 –
Uniform-70-n20 422.6549 41 – 422.6549 38 – 422.6549 40 –
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Table 15  Results for instances of Bouman et al. (2018) with 24 nodes

|I0| = 24

Problem variant 1: Problem variant 2:

TSPmD mFSTSP (m = 3) TSPD

Instance �∗ CPU (s) Gap �∗ CPU (s) Gap �∗ CPU (s) Gap

Uniform-71-n50 415.8466 681 – 415.8466 625 – 415.8466 1057 –
Uniform-72-n50 410.1562 30 – 410.1562 31 – 410.1562 32 –
Uniform-73-n50 391.3397 317 – 391.3397 173 – 394.5155 487 –
Uniform-74-n50 467.6828 345 – 467.6828 297 – 467.6828 472 –
Uniform-75-n50 463.6015 1810 – 463.6015 973 – 463.6015 680 –
Uniform-76-n50 394.2924 3600 5.3% 394.2924 3600 1.2% 394.2924 3600 2.1%
Uniform-77-n50 452.9030 139 – 452.9030 197 – 458.7309 467 –
Uniform-78-n50 410.8227 1040 – 410.8227 886 – 412.8484 2192 –
Uniform-79-n50 412.1437 547 – 412.1437 553 – 412.1437 422 –
Uniform-80-n50 391.7442 3600 1.6% 391.7442 3600 1.6% 397.2048 3600 4.0%

Table 16  Results for instances of Bouman et al. (2018) with 28 nodes

|I0| = 28

Problem variant 1: Problem variant 2:

TSPmD mFSTSP (m = 3) TSPD

Instance �∗ CPU (s) Gap �∗ CPU (s) Gap �∗ CPU (s) Gap

Uniform-71-n50 441.6016 3600 3.0% 441.6016 3600 3.8% 446.9016 3600 5.6%
Uniform-72-n50 449.6584 355 – 449.6584 470 – 449.6584 448 –
Uniform-73-n50 445.8629 3600 1.9% 445.8796 3600 0.3% 449.0387 3600 2.2%
Uniform-74-n50 470.8405 3600 0.4% 470.8406 2843 – 470.8407 3600 0.4%
Uniform-75-n50 473.0050 3600 4.7% 473.2393 3600 4.1% 473.0050 3600 4.9%
Uniform-76-n50 407.4875 3600 7.5% 407.4875 3600 7.9% 407.7456 3600 10.5%
Uniform-77-n50 480.5687 2820 – 480.5687 2879 – 485.5172 3600 2.4%
Uniform-78-n50 459.4857 3600 1.4% 459.4857 3600 1.0% 462.1742 3600 1.5%
Uniform-79-n50 447.7367 3600 7.5% 447.7367 3600 6.4% 447.7367 3600 7.4%
Uniform-80-n50 449.3641 3600 6.2% 449.3641 3600 7.1% 454.8248 3600 9.0%
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Table 17  Results for instances of Bouman et al. (2018) with 32 nodes

|I0| = 32

Problem variant 1: Problem variant 2:

TSPmD mFSTSP (m = 3) TSPD

Instance �∗ CPU (s) Gap �∗ CPU (s) Gap �∗ CPU (s) Gap

Uniform-
71-n50

478.3559 3600 5.8% 478.3559 3600 6.2% 483.6558 3600 7.2%

Uniform-
72-n50

493.0942 3600 2.5% 493.0942 3600 3.8% 493.0942 3600 4.3%

Uniform-
73-n50

488.0547 3600 3.9% 490.4018 3600 6.2% 497.0028 3600 7.7%

Uniform-
74-n50

478.5537 3600 11.2% 518.4635 3600 17.4% 480.7702 3600 13.6%

Uniform-
75-n50

500.3800 3600 9.8% 510.0112 3600 13.4% 525.9658 3600 16.3%

Uniform-
76-n50

496.0703 3600 20.1% 480.0877 3600 16.7% 484.6235 3600 19.2%

Uniform-
77-n50

515.3738 3600 5.6% 511.1739 3600 4.5% 518.2364 3600 7.4%

Uniform-
78-n50

504.8168 3600 5.2% 505.1834 3600 4.7% 507.7490 3600 5.4%

Uniform-
79-n50

454.3164 3600 9.9% 479.9965 3600 15.5% 467.9651 3600 13.2%

Uniform-
80-n50

447.2753 3600 13.2% 458.6088 3600 18.4% 481.3873 3600 24.6%

Table 18  Aggregated results running the MILPs of Boccia et  al. (2023) and from this paper for the 
instances of Murray and Chu (2015) and Bouman et al. (2018)

MILP of Boccia et al. 
(2023)

Our MILP (mFSTSP, 
m = 1)

|I0| e Opt CPU (s) Gap Opt CPU (s) Gap

Murray and Chu (2015) 11 20 36/36 34 0% 36/36 94 0%
11 40 36/36 28 0% 35/36 783 0%
Summary 72/72 31 71/72 439

Bouman et al. (2018) 16 30 10/10 720 0% 10/10 9 0%
20 30 0/10 – – 10/10 139 0%
24 30 0/10 – – 8/10 1115 3%
28 30 0/10 – – 2/10 3111 5%
32 30 0/10 – – 0/10 3600 10%
Summary 10/50 – 30/50 1595
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